当前位置:文档之家› 响应面分析

响应面分析

响应面分析
响应面分析

响应面分析

响应面实验考察的范围比较窄,如果不先确定存在最大响应值的区域的话,很有可能在响应面实验时无法得到最值。在B&B上有一篇文章就通过具体的实例证明了这一点:笫一次响应面没有得到最值,经过分析发现考察区域本身不存在最值点。经过进一步搜索后确定了一个存在最值的区域,再进行响应面实验就成功了。最陡爬坡法就是一个经典的搜索考察区域、逼近最值空间的方法。

最陡爬坡法在运用中存在两个问题,一是爬坡的方向,二是爬坡的步长。前者根据效应的正负就可以确定:如果某个因素是正效应,那么爬坡时就增加因素的水平;反之,即减少因素水平。而对应爬坡步长,则要稍微复杂些。

以下是自己对软件使用的一些想法,挺凌乱的,怕日后忘了,先写下来:

应用design expert应注意的问题:在析因实验设讣中,如果至少有一个是数量因子,则在分析中得到的fit summary是不可黑的,不能应用其中suggest的方程(线性/二次/三次等,一般来说suggest都是一次方程),如何选择方程要尽量考虑以下儿点:

1.尽量考虑较高次的方程

2.满足所选方程不会aliased(在方差分析里看)

3.model要显著(在方差分析里看)

https://www.doczj.com/doc/523987095.html,ck of fit要不显著(在方差分析里看)。

5.诊断项里的残差要近似符合正态分布。

特别是第四条,如果发现lack of fit显著了,那么很可能是漏掉了某项交互作用,对于A B两因素的二次方程而言,如果出现lack of fit,考虑下是否漏掉A2B AB2 A2B2 等.

只有当试验中有重复的点时,才能讣算拟合不足。

对于响应面设计而言:山于一般的响应面设讣就那儿种,如2因素,得到的方程就绝对不会含有A2B AB2 A2B2这些项,这是因为响应面设计?的实验点数太少,这些项就如同A3 B3 一样会被aliased的。

总之两句话:对于响应面设计,在f(x)里的model比较简单,都是二次的,一般默认的那儿个A, B , AB, A2 ,B2就OK 了。

对于含有数量因子的析因设计,如发现因子间存在二次关系,这个时候就要小心了,除了响应面里面的那儿个外,是否还存在A2B, AB2, A2B2等(判断标准就是上面5条)

要注意的是,析因实验与响应面设讣的一个区别是:析因必须对每个因素的每个水平交义重复'次(N>=2),对于析因实验来说,不重复就无法分离交互作用和纯误差对响应变量的贡献。而响应面只需对中心点重复\次(山响应面的方法而定),其余的点做一次就够了。

lack of fit,失拟检验,评估模型的拟合度。如果p值小于您选择的a水平,则证明模型未能与数据准确拟合。您可能需要添加项,或者变换数据,以便更准确地为数据建模。插值和拟合是统讣中经常用到的两种方法,是解决离散点近似符合某函数的问题实验或者实际测量得到一系列的点Al, A2, A3,…

想要知道这些点近似符合哪个函数

插值就是经过这些点,做出多项式函数或者其他函数,来作为这些点的近似函数而拟合就是尽量黑近这些点,做出多项式函数或者其他函数,来作为这些点的近似函数这两个的区别是:插值出来的函数肯定要过所有的点,也就是说所有的点都在这个函数上。而拟合出来的函数不一定过所有的点,但所有的点到这个函数的距离的某个运算式是最小的,或者说拟合岀来的函数是所有近似函数中误差最小的那个。

失拟性就是反应拟合出来的函数与这些点相近程度的量

如果拟合函数与这些点的误差太大,那这个函数是不能作为这些点的近似函数来用

的,这叫做失拟。

响应面分析的一般策略是:1)用一阶模型求出响应面的近似坡度(slop) ;2)用最陡上升法(下降法)逼近最优区域;3)建立适合于局部的二阶(或更高阶)模型;4)模型的拟合不足(Lack-of-fit)检验;5)等高线(Contour Plot)分析和正则分析(Canonical Analysis) ;6)求最优解和作结论.所谓Ridge Analysis,本质上就是适用于二阶模型的〃最陡上升法〃?在上面提到的第二步里,其U的是通过不断探索一步一步地逼近最优区域;而岭分析则是当我们感到我们已处在最优区域或者离最优区域相当接近时才要做的工作.岭分析的LI的是anchor the stationary point in the region of the experiment.其输出是对应于与设讣中心之不同距离(R)的一系列坐标值(预测的响应值,各预测变量的取值)?描绘成图基本上有两张:一张是以预测响应值为纵坐标以R值为横坐标的曲线;巧一张则是以各预测变量(因子)的取值为纵坐标以R值为横坐标的曲线?如果上述第5步中得到的结论是,稳定点为鞍点(Saddle Point),或者计算出的最优点远离实验区域(用R值度量),那么我们就可通过对上述二图中岭线的分析,找到实验区域中最合理的工作点,或者找到进一步实验的方向.说到这里,也许有人会说:MINITAB不是有Contour Plot和3D Surface Plot吗?看这两张图不就知道了?要知道,Contour Plot是二维的,要作一张这样的图就必须先将其它因子的取值固定下来?因此如果显著因子多了,就需要很多张图,而且将多个因子水平固定的做法,会使我们得不到准确的信息?另外,Contour Plot 只是图,其坐标值表达得也不够清晰.3D Surface Plot的道理也一样.-质量- SPC , six sigma, TS16949, MSA, FMEA, '0 f/ m,

{ B; z9 K7 i+ jo U, z. 10 r MINITAB提供了做岭分析的矩阵计算工具,但遗憾的是仍缺少行列式计算工具(用来解线性方程组).所以,要使用MINITAB做岭分析是相当麻烦的.如果能配合使用一些数学软件如Maple就非常方便了.就我所知道的, U前只有SAS有完整的岭分析程序.最后推荐一点文献供大家参考.看懂这三个文献,就可以精通岭分析了. 1. Norman R. Draper: "Ridge Analysis" of Response Surface, Technometrics, Vol. 5, No. 4, 1963. 2. Roger W.

Hoerl:Ridge Analysis 25 Years Later, American

Statistician, Vol. 39, No. 3, 1985. 7 j z4 G" L# V2 "3 1;

V 3. Douglas C. Montgomery, Raymond H. Myers :Response Surface Methodology:Process and

Product Optimization Using Designed Experiments, Wiley- Interscience, 1995.其中笫三个为RSM 专著,只需看Ridge System, Canonical Analysis和Ridge Analysis儿个小节就可以了

Lack of fit (LOF)是由design expert软件自动生成的,它和pure error没有联系,pure error与重复设计点有关,是重复设汁点误差的和。lack of fit是非合理指数,如果它显著,说明对你的数据拟合度不好;相反,如果它不显著,说明对你的数据拟合效果较好。F value与LOF和pure error有关,F value

是LOF与pure error的比值。如果某项訂F value趋近于1,说明该项忖不显著。

下面是赠送的儿篇网络励志文章需要的便宜可以好好阅读下,不需要的朋友可以下载后编辑删除?-谢谢?--

出路出路,走出去才有路

“岀路出路,走出去才有路。”这是我妈常说的一句话,每当我面临困难及有畏难情绪的时候,我妈就用这句话来鼓励我。

很多人有一样的困惑和吐槽,比如在自己的小家乡多么压抑,感觉自己的一生不甘

心这样度过,自己的工作多么不满意,不知道该离开还是拔地而起去反击。你问我,我也不知道你应该怎么选择,人生都是自己的,谁也无法代替你做怎样的选择。

有一个和我熟识的快递员,我之前与他合作了三年。最开始合作的时候,他负责收件和送件,我搬家的时候,他帮我安排过两次公司的面包车,有时候他送件会顺路把我塞在他的三蹦子里当货物送回我家。他时常跟我提起在老家农村种地的生活,以及进城之前父母的担忧及村里人为他描绘的可怕的城里人的世界。那时候的他,工资不高、工作辛苦、老婆怀孕、孩子马上就要出生了,住在北京很郊区的地方。

一定有很多人想说:“这还在北京混个什么劲儿啊?”但他每天都乐呵呵的,就算把快递送错了也乐呵呵的。某天,他突然递给我一堆其他公司的快递单跟我说:“我开了家快递公司,你看得上我就用我家的吧。”我有点惊愕,有一种“哎呦喂,张老板好,今天还能三蹦子顺我吗”的感慨。之后我却很少见他来,我以为是他孩子出生了休假去了。再然后,我就只能见到单子见不到他了。

某天,我问起他们公司的快递员,小伙子说老板去上海了,在上海开了家新公司。我很杞人忧天地问他:“那上海的市场不激烈吗,新快递怎么驻足啊?”小伙子嘿嘿一笑说:“我们老板肯定有办法呗?他都过去好儿个月了,据说干得很不错呢?”“那老婆孩子呢,孩子不是刚生还很小吗,”“过去了,一起去上海了?”

那个瞬间,我回头看了一眼办公室里坐着的各种愁眉苦脸的同事,并且举起手机黑屏幕照了一下我自己的脸,一股“人生已经如此的艰难,有些事情就不要拆穿”的气息冉冉升起。并不是说都跳槽出去开公司才厉害,在公司瞪着眼睛看屏幕就是没发展,我是想说,只有勇气才能让自己作出改变。

我们每个人都觉得自己越活越内向,越来越自闭,越长大越孤单,以至于滋生7 “换个新环境,我这种性格估讣也不会跟其他人相处融洽,所以还是待着忍忍凑合过算了”的思想感情。与其说自己自闭,其实就是懒,不想突破自己好不容易建立起来的安全区域。于是大家都活在了对别人的羡慕嫉妒恨与吐槽抱怨生活不得志中,搞得刚毕业的学生都活得跟30岁一样。

《拒绝平庸》里有一句话:很多时候我们为什么嫉妒别人的成功,正是因为知道做成一件事不容易乂不愿意去做,然后乂对自己的懒惰和无能产生愤怒,只能靠嫉妒和诋毁来平衡。

其实走出去不一定非要走到什么地方去,而是更强调改变自己不满意的现状。有人问我那你常说要坚持,天天跑岀去怎么坚持,其实要坚持的是一种信仰,而不是一个地方,如果你觉得一个地方让你活得特别难受,工作得特别憋屈,除了吐槽和压抑没别的想法,那就要

考虑走出去。就像歌词里说的:“梦想失败了,那就换一个梦想。”不能说外面都是大好前程,但肯定你会认识新的人,有新的机会,其至改头换面重新做人。

很多人觉得在一个公司做不下去了,需要思考下是不是自己能力有问题。职场上的合适不合适,有很多可能性和干扰因素,不仅仅是能力的事,谁说他在这里干不好,去别的地方也不行呢,想想,真的是这样,职场上总能见到在一个地方呆不下去而在另一个地方就如鱼得水的人。有时候走出去不仅仅是找到新机会,更重要的是找到合适自己的位置,树立起人生新的自信与欢乐。

别在同一个地方折磨自己太久,别跟自己长时间过不去。出路出路,走出去了都是路。

说给昨天的今天的明天的我们自己

如果有来生,要做一棵树,站成永恒,没有悲欢的姿势。一半在尘土里安详,一半的风力飞扬,一半洒落阴凉,一半沐浴阳光。如果有来生,要做一只飞鸟,飞越永

恒,没有迷途的苦恼。东方有火红的希望,南方有温暖的巢床,向西逐退残阳,向北唤醒芬芳。

_三毛?《说给自己听》

我们都已走过了昨天。如果,我们都希望有这样一个如果,能够让一切重新来过,回到最初,抛弃悲伤,丢掉包袱,去完成在心中蕴藏已久的梦想,带上年少时不羁的血性,独自一人乘坐火车去遥远陌生的地方遇见另一个自己。如果还有如果,一切是否还会走到现在的地步,37度的体温,身上的每一个的疤痕都是昨天的一个的一个故事。看着电影、电视或小说里某些情节和片段,我也幻想着抛弃现在的工作,义无返顾的背起行囊去远方。昨天,我真的这样想过,直到现在,这样的幻想不止一次的岀现在脑海里,可是最终还是只在心中去了远方。

谁年轻的时候没有迷茫过,最终我们也没有缺胳脚少腿,就算带来了满身的伤痕,那乂能怎样,就算是无理取闹,也要跟自己说句你是对的。这就是我们大致相似却乂不相同的昨天。昨天,那场没有看完的电影,没有听完的歌曲,没有写完的日志,没有来一场说走就走的旅行…这些,都已风尘仆仆的定格在了我们的昨天。今天,还在依旧鲜活的闪亮登场。人

生没有如果,也无法重来,人生就是每天都在上映着没有彩排的现场直播。努力投入到今天的角色中,全情搏一个无悔的我们的明天。哪怕明天,我知道会有悲伤,我也要积极面对。有时候坚强,是我们根本别无选择的选择。

明天,明天近在咫尺,也远在天涯。因为人生充满了变数,所以,于世人而言,明天永远是谜,是未知。时光从来都不会为任何人停留,不管今天你是春风得意,还是怀才不遇;不管今天你是一帆风顺,还是举步维艰;不管今天你是逍遥自在,还是身受束缚;不关今天你是富甲一方,还是一无所有,明天,已在路上,正向我们走来。

颓废者,会让幸福悄然远走;堕落者,会让美好戛然止步。成败不过一步之遥,同样的际遇,不一样的面对和处置,最后会有不一样的明天和结局。千里之行始于足下,明天是平淡还是出彩,是成功还是失败,都取决于你今天的选择和行动。你若盛开,清风自来。你若付出,必有收获。生活茶,品过才知甘苦;人生路,走过才知深浅,明天的一切都有待于我们的铺陈。毋庸置疑,唯有今天的耕耘才能换来明天的馈赠。

亲爱的朋友们,今天幸福不代表明天美好,今天失意不代表明天失败,人一定要经得起生活的考验,努力做事,从容做人,宠辱不惊。“海纳百川,有容乃大,壁立千仞,无欲则刚”。面对生活,不言弃,走过今天的崎岖,也许就能迎来明天的顺利;走过今天的风雨,也许就能迎来明天的晴朗;走过今天的挫败,也许就能迎来明天的辉煌。

人生里喜忧参半,生命中得失并存。纵然风沙肆虐,口杨依然选择挺立;纵然瞬间一现,昙花依然选择绽放。“虚心竹有低头叶,傲骨梅无仰面花”,为了明天,别在享福中丢了追求,别在落难时丢了自尊,别在迷茫中丢了自信。

明天是一片待星的荒原,努力者会让它生机勃勃、美丽如画。明天,是没有尽头的时间隧道,若要明天会更好,今天的我们就必须全力以赴。哪怕自己只是尘埃里的一朵小花,也请选择做最美的绽放。不管身在何处,我们,都要把最美的诗篇写在今天留在明天,把潇洒的身影印在世界拉长在地平线。

这就是我想说给昨天的、今天的和明天的我自己的话,而且我也希望我的朋友们可以和我一起分享。然后我们一起卯足了劲儿,珍藏昨天、珍惜今天、珍重明天?我们风雨兼程、我们寒署无休,我们且行且坚定且努力且珍惜?

冰心在她的散文中说过“今生如果美好,我乂何求来世,今生若不美好,我乂何求来生。”

童年的我老是被重男轻女的爸爸严厉的指责和打骂,连住在我家的邻居看到我被打骂都看不下去,还有,就是我爸爸宠着我的弟弟,很冷淡的对待我。

到了成年了,父母下岗了,父亲没有工作,母亲偷渡到法国,给在法国的中国家庭当保姆,本来是条件好了点,不幸乂降临到我身上。我因为恋爱原因,我竟然疯了。送到了精神病医院住了1个半月的院。面对人生我绝望了,不知道未来的路如何行走,看着路人的嫌

弃眼光,和无意中说的“神经病”三个字,我死的心都有了。天天在家吃了睡,睡了吃。有天我一个亲戚叫我去外地打工,我父亲叫我去了,结果,我乂出了问题了。我神经病发作,从摩托车上摔下来,乂送到医院去,住了半个月的院,乂从外地拖回了家中。第二次病发了,我乂在神经病院住了1个半月的医院。出院后,我就在想自己人生的路应该怎么走了,

我依然参加了成人高考,考取了英文系,读了2年的英文,过了四,六级。母亲给的钱,自己读的书。那年我毕业才24岁,有了大专文凭了,自己找了份工作。有工作了谈恋爱应该可以吧。于是,我每谈恋爱都告诉他我有病的事,不是吓的手机关机,就是吓的人失踪,没人踪影。偶尔,有个对你的好的吧,自己乂看不上。

一下都30 了,工作换了N个,男朋友也谈了、个,有次在保险公司上班,碰到个单身的客户,和他在一起后,怀孕结婚了,本以为挺幸福的。谁知,天有不测风云,我结婚当天发疯了,在婚宴上,他脸面丢尽了,把小孩打掉了,和我离婚。于是,我乂送进了神经病医院。

出院后,我任然是积极向上的,找了份工作,准备读法律课程。谁知,书读多了我乂送到神经病医院去了,总共在医院住了4次院。

我任然没有向老天低头,在我一个亲戚的公司当文案。我原本没机会的,听说是她们可怜我,照顾我,我才进来的。没想到是叫我写写微信,写写公司的会议稿件。这么一写,他们都说我很有才情,就这样留在了公司。

是呀,每个人的人生都是一个故事,每一个人的故事都是独一无二的,我老是记得一句话,上帝给自己关了扇门,总会留扇开着的窗户。每当自己痛苦的时候就告诉自己,忍受住苍天的考验,发疯的时候告诉自己,我是在充电休息,工作压力逼的自己要辞职的时候,告诉自己下份工作会做的更好。每当自己被人家谩骂的时候,笑着告诉自己,有什么关系,有病我一样坚强。

能支撑我走到现在,没有走上绝路的,出了自己的自强自立。还有就是社会上的关爱。

在医院的时候,医生和护士的细心照顾,让我的病情好转的很快,她们说我病是病了,但是,人还是很清醒的,可以和他们正常沟通。在工作的时候,老板和同事都对我很关照,前辈的教导和老板的叮咛,每天都不绝于耳。在感情上,有很多男士主动追求,目前,就有一位对我很好。

我还年轻,没什么人生感悟,只是写出自己的经历,勉励自己,以后再有困难,再发病送医院,我也不害怕。未来的路还长着呢,我将继续坚强,用毅力战胜病魔,用笑容面对人生的不如意,用乐观的态度接受命运的挑战,用真心真意来对待爱自己的人。

Design-Expert软件在响应面优化法中的应用详解

Design-Expert 软件在响应面优化法中的应用 (王世磊郑州大学450001) 摘要:本文简要介绍了响应面优化法,以及数据处理软件Design-ExpertDesign-Expert的相关知识,最后结合实例,介绍该软件在响应面优化法上的应用实例。 关键词:数据处理,响应面优化法,Design-Expert软件 1.响应面优化法简介 响应面优化法,即响应曲面法( Response Surface Methodology ,RSM),这是一种实验条件寻优的方法,适宜于解决非线性数据处理的相关问题。它囊括了试验设计、建模、检验模型的合适性、寻求最佳组合条件等众多试验和统计技术;通过对过程的回归拟合和响应曲面、等高线的绘制、可方便地求出相应于各因素水平的响应值[1]。在各因素水平的响应值的基础上,可以找出预测的响应最优值以及相应的实验条件。 响应面优化法,考虑了试验随机误差;同时,响应面法将复杂的未知的函数关系在小区域内用简单的一次或二次多项式模型来拟合,计算比较简便,是降低开发成本、优化加工条件、提高产品质量、解决生产过程中的实际问题的一种有效方法[2]。 响应面优化法,将实验得出的数据结果,进行响应面分析,得到的预测模型,一般是个曲面,即所获得的预测模型是连续的。与正交实验相比,其优势是:在实验条件寻优过程中,可以连续的对实验的各个水平进行分析,而正交实验只能对一个个孤立的实验点进行分析。 当然,响应面优化法自然有其局限性。响应面优化的前提是:设计的实验点应包括最佳的实验条件,如果实验点的选取不当,使用响应面优化法师不能得到很好的优化结果的。因而,在使用响应面优化法之前,应当确立合理的实验的各因素与水平。 结合文献报道,一般实验因素与水平的选取,可以采用多种实验设计的方法,常采用的是下面几个: 1.使用已有文献报道的结果,确定响应面优化法实验的各因素与水平。 2.使用单因素实验[3],确定合理的响应面优化法实验的各因素与水平。 3.使用爬坡实验[4],确定合理的响应面优化法实验的各因素与水平。 4.使用两水平因子设计实验[5],确定合理的响应面优化法实验的各因素与水平。 在确立了实验的因素与水平之后,下一步即是实验设计。可以进行响应面分析的实验设计有多种,但最常用的是下面两种:Central Composite Design-响应面优化分析、Box-Behnken Design-响应面优化分析。 Central Composite Design,简称CCD,即中心组合设计,有时也成为星点设计。其设计表是在两水平析因设计的基础上加上极值点和中心点构成的,通常实验表是以代码的形式编排的,实验时再转化为实际操作值(,一般水平取值为0,±1,±α,其中0为中值,α为极值, α=F*(1/ 4); F 为析因设计部分实验次数, F = 2k或F = 2 k×(1/ 2 ),其中 k为因素数,F = 2 k×(1/ 2 一般 5 因素以上采用,设计表有下面三个部分组成[6]:(1) 2k或 2 k×(1/ 2 )析因设计。(2)极值点。由于两水平析因设计只能用作线性考察,需再加上第二部分极值点,才适合于非线性拟合。如果以坐标表示,极值点在相应坐标轴上的位置称为轴点(axial point) 或星点( star point) ,表示为(±α,0,…, 0) , (0,±α,…, 0) ,…, (0, 0,…,±α)星点的组数与因素数相同。(3)一定数量的中心点重复试验。中心点的个数与CCD设计的特殊性质如正交

DesignExpert响应面分析实验设计案例分析和CCD设计详细教程

食品科学研究中实验设计的案例分析 —响应面法优化超声波辅助酶法制备燕麦ACE抑制肽的工艺研究 摘要:选择对ACE 抑制率有显著影响的四个因素:超声波处理时间(X1)、超声波功率(X2)、超声波水浴温度(X3)和酶解时间(X4),进行四因素三水平的响应面分析试验,经过Design-Expert优化得到最优条件为超声波处理时间28.42min、超声波功率190.04W、超声波水浴温度55.05℃、酶解时间2.24h,在此条件下燕麦ACE 抑制肽的抑制率87.36%。与参考文献SAS软件处理的结果中比较差异很小。 关键字:Design-Expert 响应面分析 1.比较分析 表一响应面试验设计 因素 水平 -1 0 1 超声波处理时间X1(min) 20 30 40 超声波功率X2(W) 132 176 220 超声波水浴温度X3(℃) 50 55 60 酶解时间X4(h) 2.Design-Expert响应面分析 分析试验设计包括:方差分析、拟合二次回归方程、残差图等数据点分布图、二次项的等高线和响应面图。优化四个因素(超声波处理时间、超声波功率、超声波水浴温度、酶解时间)使响应值最大,最终得到最大响应值和相应四个因素的值。 利用Design-Expert软件可以与文献SAS软件比较,结果可以得到最优,通过上述步骤分析可以判断分析结果的可靠性。 2.1 数据的输入

2.2 Box-Behnken响应面试验设计与结果 2.3 选择模型

2.4 方差分析 在本例中,模型显著性检验p<0.05,表明该模型具有统计学意义。由图4知其自变量一次项A,

B,D,二次项AC,A2,B2,C2,D2显著(p<0.05)。失拟项用来表示所用模型与实验拟合的程度,即二者差异的程度。本例P值为0.0861>0.05,对模型是有利的,无失拟因素存在,因此可用该回归方程代替试验真实点对实验结果进行分析。 图 5 由图5可知:校正决定系数R2(adj)(0.9788>0.80)和变异系数(CV)为0.51%,说明该模型只有2.12%的变异,能由该模型解释。进一步说明模型拟合优度较好,可用来对超声波辅助酶法制备燕麦ACE抑制肽的工艺研究进行初步分析和预测。

响应面优化实验方案设计

食品科学研究中实验设计的案例分析 ——响应面法优化超声辅助提取车前草中的熊果酸 班级:学号:姓名: 摘要:本文简要介绍了响应面曲线优化法的基本原理和使用步骤,并通过软件Design-Expert 软件演示原文中响应面曲线优化法的操作步骤。验证原文《响应面法优化超声辅助提取车前草中的熊果酸》各个数据的处理过程,通过数据对比,检验原文数据处理的正确与否。 关键词:响应面优化法数据处理 Design-Expert 车前草 前言: 响应曲面设计方法(Response SufaceMethodology,RSM)是利用合理的试验设计方法并通过实验得到一定数据,采用多元二次回归方程来拟合因素与响应值之间的函数关系,通过对回归方程的分析来寻求最优工艺参数,解决多变量问题的一种统计方法(又称回归设计)。 响应面曲线法的使用条件有:①确信或怀疑因素对指标存在非线性影响;②因素个数2-7个,一般不超过4个;③所有因素均为计量值数据;试验区域已接近最优区域; ④基于2水平的全因子正交试验。 进行响应面分析的步骤为:①确定因素及水平,注意水平数为2,因素数一般不超过4个,因素均为计量值数据;②创建“中心复合”或“Box-Behnken”设计;③确定试验运行顺序(Display Design);④进行试验并收集数据;⑤分析试验数据;⑥优化因素的设置水平。 响应面优化法的优点:①考虑了试验随机误差②响应面法将复杂的未知的函数关系在小区域内用简单的一次或二次多项式模型来拟合,计算比较简便,是降低开发成本、优化加工条件、提高产品质量,解决生产过程中的实际问题的一种有效方法③与正交试验相比,其优势是在试验条件寻优过程中,可以连续的对试验的各个水平进行分析,而正交试验只能对一个个孤立的试验点进行分析。 响应面优化法的局限性: 在使用响应面优化法之前,应当确立合理的实验的各因素和水平。因为响应面优化法的前提是设计的试验点应包括最佳的实验条件,如果试验点的选取不当,实验响应面优化法就不能得到很好的优化结果。 原文《响应面法优化超声辅助提取车前草中的熊果酸》采用经典的三因素三水平Box-Behnken 试验设计,以熊果酸的提取率为响应值,通过回归分析各工艺参数与响应值之间的关系,并由此预测最佳的工艺条件。本文利用软件验证原文中的数据处理过程,以检验原文数据是否处理正确。 1 确定实验因素 原文利用超声波辅助提取车前草中的熊果酸,而影响熊果酸提取率的因素有很多,如超声波的功率、提取时间、溶剂温度、溶剂种类、液固比等。原文参考文献《柿叶中总三萜的提取以及熊果酸分离, 纯化研究》中提取熊果酸的方法提取熊果酸,即将干燥的车前草粉碎后过筛,取20~40 目的车前粉,用石油醚在 55℃脱脂 3 次,干燥备用。精密称取一定量的车前粉,加入一定量的乙醇,称量,在一定的超声波功率下提取一定时间后,擦干外壁,再称量,用乙醇补充缺失的质量,离心。用注射器抽取一定量上清液,过μm 滤膜,进行检测。每个实验进行 3 次平行实验。取其平均值。结果以提取率(E)的来表示。

响应面法实验

试验设计与优化方法,都未能给出直观的图形,因而也不能凭直觉观察其最优化点,虽然能找出最优值,但难以直观地判别优化区域.为此响应面分析法(也称响应曲面法)应运而生.响应面分析也是一种最优化方法,它是将体系的响应(如萃取化学中的萃取率)作为一个或多个因素(如萃取剂浓度、酸度等)的函数,运用图形技术将这种函数关系显示出来,以供我们凭借直觉的观察来选择试验设计中的最优化条件. 显然,要构造这样的响应面并进行分析以确定最优条件或寻找最优区域,首先必须通过大量的量测试验数据建立一个合适的数学模型(建模),然后再用此数学模型作图. 建模最常用和最有效的方法之一就是多元线性回归方法.对于非线性体系可作适当处理化为线性形式.设有m个因素影响指标取值,通过次量测试验,得到n组试验数据.假设指标与因素之间的关系可用线性模型表示,则有应用均匀设计一节中的方法将上式写成矩阵式或简记为式中表示第次试验中第个因素的水平值;为建立模型时待估计的第个参数;为第次试验的量测响应(指标)值;为第次量测时的误差.应用最小二乘法即可求出模型参数矩阵B如下将B阵代入原假设的回归方程,就可得到响应关于各因素水平的数学模型,进而可以图形方式绘出响应与因素的关系图. 模型中如果只有一个因素(或自变量),响应(曲)面是二维空间中的一条曲线;当有二个因素时,响应面是三维空间中的曲面.下面简要讨论二因素响应面分析的大致过程. 在化学量测实践中,一般不考虑三因素及三因素以上间的交互作用,有理由设二因素响应(曲)面的数学模型为二次多项式模型,可表示如下:通过n次量测试验(试验次数应大于参数个数,一般认为至少应是它的3倍),以最小二乘法估计模型各参数,从而建立模型;求出模型后,以两因素水平为X坐标和y坐标,以相应的由上式计算的响应为Z坐标作出三维空间的曲面(这就是2因素响应曲面).应当指出,上述求出的模型只是最小二乘解,不一定与实际体系相符,也即,计算值与试验值之间的差异不一定符合要求.因此,求出系数的最小二乘估计后,应进行检验.一个简单实用的方法就是以响应的计算值与试验值之间的相关系数是否接近于1或观察其相关图是否所有的点都基本接近直线进行判别.如果以表示响应试验值,为计算值,则两者的相关系数R定义为其中对于二因素以上的试验,要在三维以上的抽象空间才能表示,一般先进行主成分分析进行降维后,再在三维或二维空间中加以描述.等等………… 2注意事项 对于构造高阶响应面,主要有以下两个问题: 1,抽样数量将显著增加,此外,普通的实验设计也将更糟。 2,高阶响应面容易产生振动。 响应面法(response surface methodology,记为RSM)最早是由数学家Box和Wilson于1951年提出来的。就是通过一系列确定性的“试验”拟合一个响应面来模拟真实极限状态曲面。其基本思想是假设一个包括一些未知参量的极限状态函数与基本变量之间的解析表达式代替实际的不能明确表达的结构极限状态函数。响应面方法是一项统计学的综合试验技术,用于处理几个变量对一个体系或结构的作用问题,也就是体系或结构的输入(变量值)与输出(响应)的转换关系问题。现用两个变量来说明:结构响应Z与变量x1,x2具有未知的、不能明确表达的函数关系Z=g(x1,x2)。要得到“真实”的函数通常需要大量的模拟,而响应面法则是用有限的试验来回归拟合一个关系Z= g’(x1,x2),并以此来代替真实曲面Z=g(x1,x2),将功能函数表示成基本随机变量的显示函数,应用于可靠度分析中。响应面方法实际上源于一种试验设计方法,试验设计方法是用来研究设计参数对模型设计状况影响的一种取样策略,决定了构造近似模型所需样本点的个数和这些点的空间分布情况。目前广泛应用于计算机仿真试验设计的主要方法是拉丁超立方体抽样和均匀设计,这两种试验设计能应用于多种多样的模型,且对模型的变化具有稳健性。 3响应面分析

响应面法 试验设计与优化方法

响应面法试验设计与优化方法,都未能给出直观的图形,因而也不能凭直觉观察其最优化点,虽然能找出最优值,但难以直观地判别优化区域.为此响应面分析法(也称响应 曲面法)应运而生.响应面分析也是一种最优化方法,它是将体系的响应(如萃取化学中的萃取率)作为一个或多个因素(如萃取剂浓度、酸度等)的函数,运用图 形技术将这种函数关系显示出来,以供我们凭借直觉的观察来选择试验设计中的最优化条件. 显然,要构造这样的响应面并进行分析以确定最优条件或寻找最优区域,首先必须通过大量的量测试验数据建立一个合适的数学模型(建模),然后再用此数学模型 作图. 建模最常用和最有效的方法之一就是多元线性回归方法.对于非线性体系可作适当处理化为线性形式.设有m个因素影响指标取值,通过次量测试验,得到n组试验 数据().假设指标与因素之间的关系可用线性模型表示,则有应用均匀设计一节中的方法将上式写成矩阵式或简记为式中表示第次试验中第个因素的水平值;为建 立模型时待估计的第个参数;为第次试验的量测响应(指标)值;为第次量测时的误差.应用最小二乘法即可求出模型参数矩阵B如下将B阵代入原假设的回归方 程,就可得到响应关于各因素水平的数学模型,进而可以图形方式绘出响应与因素的关系图.模型中如果只有一个因素(或自变量),响应(曲)面是二维空间中的一条曲线;当有二个因素时,响应面是三维空间中的曲面.下面简要讨论二因素响应面分析的 大致过程. 在化学量测实践中,一般不考虑三因素及三因素以上间的交互作用,有理由设二因素响应(曲)面的数学模型为二次多项式模型,可表示如下:通过n次量测试验 (试验次数应大于参数个数,一般认为至少应是它的3倍),以最小二乘法估计模型各参数,从而建立模型;求出模型后,以两因素水平为X坐标和y坐标,以相应 的由上式计算的响应为Z坐标作出三维空间的曲面(这就是2因素响应曲面). 应当指出,上述求出的模型只是最小二乘解,不一定与实际体系相符,也即,计算值与试验值之间的差异不一定符合要求.因此,求出系数的最小二乘估计后,应进 行检验.一个简单实用的方法就是以响应的计算值与试验值之间的相关系数是否接近于1或观察其相关图是否所有的点都基本接近直线进行判别.如果以表示响应试 验值,为计算值,则两者的相关系数R定义为其中 对于二因素以上的试验,要在三维以上的抽象空间才能表示,一般先进行主成分分析进行降维后,再在三维或二维空间中加以描述.

响应面分析

响应面分析 响应面实验考察的范围比较窄,如果不先确定存在最大响应值的区域的话,很有可能在响应面实验时无法得到最值。在B&B上有一篇文章就通过具体的实例证明了这一点:笫一次响应面没有得到最值,经过分析发现考察区域本身不存在最值点。经过进一步搜索后确定了一个存在最值的区域,再进行响应面实验就成功了。最陡爬坡法就是一个经典的搜索考察区域、逼近最值空间的方法。 最陡爬坡法在运用中存在两个问题,一是爬坡的方向,二是爬坡的步长。前者根据效应的正负就可以确定:如果某个因素是正效应,那么爬坡时就增加因素的水平;反之,即减少因素水平。而对应爬坡步长,则要稍微复杂些。 以下是自己对软件使用的一些想法,挺凌乱的,怕日后忘了,先写下来: 应用design expert应注意的问题:在析因实验设讣中,如果至少有一个是数量因子,则在分析中得到的fit summary是不可黑的,不能应用其中suggest的方程(线性/二次/三次等,一般来说suggest都是一次方程),如何选择方程要尽量考虑以下儿点: 1.尽量考虑较高次的方程 2.满足所选方程不会aliased(在方差分析里看) 3.model要显著(在方差分析里看) https://www.doczj.com/doc/523987095.html,ck of fit要不显著(在方差分析里看)。 5.诊断项里的残差要近似符合正态分布。 特别是第四条,如果发现lack of fit显著了,那么很可能是漏掉了某项交互作用,对于A B两因素的二次方程而言,如果出现lack of fit,考虑下是否漏掉A2B AB2 A2B2 等. 只有当试验中有重复的点时,才能讣算拟合不足。

对于响应面设计而言:山于一般的响应面设讣就那儿种,如2因素,得到的方程就绝对不会含有A2B AB2 A2B2这些项,这是因为响应面设计?的实验点数太少,这些项就如同A3 B3 一样会被aliased的。 总之两句话:对于响应面设计,在f(x)里的model比较简单,都是二次的,一般默认的那儿个A, B , AB, A2 ,B2就OK 了。 对于含有数量因子的析因设计,如发现因子间存在二次关系,这个时候就要小心了,除了响应面里面的那儿个外,是否还存在A2B, AB2, A2B2等(判断标准就是上面5条) 要注意的是,析因实验与响应面设讣的一个区别是:析因必须对每个因素的每个水平交义重复'次(N>=2),对于析因实验来说,不重复就无法分离交互作用和纯误差对响应变量的贡献。而响应面只需对中心点重复\次(山响应面的方法而定),其余的点做一次就够了。 lack of fit,失拟检验,评估模型的拟合度。如果p值小于您选择的a水平,则证明模型未能与数据准确拟合。您可能需要添加项,或者变换数据,以便更准确地为数据建模。插值和拟合是统讣中经常用到的两种方法,是解决离散点近似符合某函数的问题实验或者实际测量得到一系列的点Al, A2, A3,… 想要知道这些点近似符合哪个函数 插值就是经过这些点,做出多项式函数或者其他函数,来作为这些点的近似函数而拟合就是尽量黑近这些点,做出多项式函数或者其他函数,来作为这些点的近似函数这两个的区别是:插值出来的函数肯定要过所有的点,也就是说所有的点都在这个函数上。而拟合出来的函数不一定过所有的点,但所有的点到这个函数的距离的某个运算式是最小的,或者说拟合岀来的函数是所有近似函数中误差最小的那个。 失拟性就是反应拟合出来的函数与这些点相近程度的量 如果拟合函数与这些点的误差太大,那这个函数是不能作为这些点的近似函数来用

DesignExpert响应面分析实验设计案例分析

学校 食品科学研究中实验设计的案例分析 —响应面法优化超声波辅助酶法制备燕麦ACE抑制肽的工艺研究 摘要:选择对ACE 抑制率有显著影响的四个因素:超声波处理时间(X1)、超声波功率(X2)、超声波水浴温度(X3)和酶解时间(X4),进行四因素三水平的响应面分析试验,经过Design-Expert优化得到最优条件为超声波处理时间28.42min、超声波功率190.04W、超声波水浴温度55.05℃、酶解时间2.24h,在此条件下燕麦ACE 抑制肽的抑制率87.36%。与参考文献SAS软件处理的结果中比较差异很小。 关键字:Design-Expert 响应面分析 1.比较分析 表一响应面试验设计 因素 水平 -1 0 1 超声波处理时间X1(min) 20 30 40 超声波功率X2(W) 132 176 220 超声波水浴温度X3(℃) 50 55 60 酶解时间X4(h) 1 2 3 2.Design-Expert响应面分析 分析试验设计包括:方差分析、拟合二次回归方程、残差图等数据点分布图、二次项的等高线和响应面图。优化四个因素(超声波处理时间、超声波功率、超声波水浴温度、酶解时间)使响应值最大,最终得到最大响应值和相应四个因素的值。 利用Design-Expert软件可以与文献SAS软件比较,结果可以得到最优,通过上述步骤分析可以判断分析结果的可靠性。

2.1 数据的输入 图 1 2.2 Box-Behnken响应面试验设计与结果 图 2 2.3 选择模型

2.4 方差分析 在本例中,模型显著性检验p<0.05,表明该模型具有统计学意义。由图4知其自变量一次项A,

响应面法

响应面 所谓的响应面是指响应变量η与一组输入变量(ζ1,ζ2,ζ3...ζk)之间的函数关系式:η=f(ζ1,ζ2,ζ3...ζk)。依据响应面法建立的双螺杆挤压机的统计模型可用于挤压过程的控制和挤压结果的预测。 试验设计与优化方法,都未能给出直观的图形,因而也不能凭直觉观察其最优化点,虽然能找出最优值,但难以直观地判别优化区域.为此响应面分析法(也称响应曲面法)应运而生.响应面分析也是一种最优化方法,它是将体系的响应(如萃取化学中的萃取率)作为一个或多个因素(如萃取剂浓度、酸度等)的函数,运用图形技术将这种函数关系显示出来,以供我们凭借直觉的观察来选择试验设计中的最优化条件. 显然,要构造这样的响应面并进行分析以确定最优条件或寻找最优区域,首先必须通过大量的量测试验数据建立一个合适的数学模型(建模),然后再用此数学模型作图.建模最常用和最有效的方法之一就是多元线性回归方法.对于非线性体系可作适当处理化为线性形式.设有m个因素影响指标取值,通过次量测试验,得到n组试验数据.假设指标与因素之间的关系可用线性模型表示,则有应用均匀设计一节中的方法将上式写成矩阵式或简记为式中表示第次试验中第个因素的水平值;为建立模型时待估计的第个参数;为第次试验的量测响应(指标)值;为第次量测时的误差.应用最小二乘法即可求出模型参数矩阵B如下将B阵代入原假设的回归方程,就可得到响应关于各因素水平的数学模型,进而可以图形方式绘出响应与因素的关系图. 模型中如果只有一个因素(或自变量),响应(曲)面是二维空间中的一条曲线;当有二个因素时,响应面是三维空间中的曲面.下面简要讨论二因素响应面分析的大致过程.在化学量测实践中,一般不考虑三因素及三因素以上间的交互作用,有理由设二因素响应(曲)面的数学模型为二次多项式模型,可表示如下:通过n次量测试验(试验次数应大于参数个数,一般认为至少应是它的3倍),以最小二乘法估计模型各参数,从而建立模型;求出模型后,以两因素水平为X坐标和y坐标,以相应的由上式计算的响应为Z坐标作出三维空间的曲面(这就是2因素响应曲面). 应当指出,上述求出的模型只是最小二乘解,不一定与实际体系相符,也即,计算值与试验值之间的差异不一定符合要求.因此,求出系数的最小二乘估计后,应进行检验.一个简单实用的方法就是以响应的计算值与试验值之间的相关系数是否接近于1或观察其相关图是否所有的点都基本接近直线进行判别.如果以表示响应试验值,为计算值,则两者的相关系数R定义为其中对于二因素以上的试验,要在三维以上的抽象空间才能表示,一般先进行主成分分析进行降维后,再在三维或二维空间中加以描述. 什么叫响应面法? 试验设计与优化方法,都未能给出直观的图形,因而也不能凭直觉观察其最优化点,虽然能找出最优值,但难以直观地判别优化区域.为此响应面分析法(也称响应 曲面法)应运而生.响应面分析也是一种最优化方法,它是将体系的响应(如萃取化学中的萃取率)作为一个或多个因素(如萃取剂浓度、酸度等)的函数,运用图 形技术将这种函数关系显示出来,以供我们凭借直觉的观察来选择试验设计中的最优化条件.

正交与响应面的区别

响应面法: 响应面法的基本思想是通过近似构造一个具有明确表达形式的多项式来表达隐式功能函数.本质上来说,响应面法是一套统计方法,用这种方法来寻找考虑了输入变量值的变异或不确定性之后的最佳响应值[1]。 响应面法与正交法的区别 正交试验设计则注重如何科学合理地安排试验,可同时考虑几种因素,寻找最佳因素水平组合;但它不能在给出的整个区域上找到因素和响应值之间的一个明确的函数表达式即回归方程,从而无法找到整个区域上因素的最佳组合和响应值的最优值.因此,人们期望找到一种试验次数少、周期短,求得的同归方程精度高、能研究几种因素间交互作用的回归分析方法,响应面分析方法的很大程度上满足了这些要求. 响应面法与正交法的应用 1.童心等在正交实验联用响应面法优化脱皮马勃总生物碱提取的研究中得到了响应面法比正交法能得到更精确的因素水平量,从而有更好的实验结果。 传统的正交设计方法是一种用线性数学模型进行设计的设计方法,可以找出多个因素水平的最佳组合。但是正交设计只能分析离散型数据,具有精度不高,预测性不佳的缺点。响应面法采用非线性模型,能求得高精度的回归方程,进行合理预测来找出最优工艺条件[2]。 张崟等在响应面法和正交试验对骨素酶解工艺优化的比较实验中发现响应面法得出的最优工艺所得的水解度比正交试验高出15.4 %[3]。 总的来说,正交实验比响应面设计实验次数更少,但是响应面设计可以得到一个回归方程,并能得到精确的因素水平值。 参考文献 [1] 王永菲,响应面法的理论与应用 [2] 童心, 正交实验联用响应面法优化脱皮马勃总生物碱提取的研究 [3] 张崟, 响应面法和正交试验对骨素酶解工艺优化的比较

响应面分析法优化反应条件的中心组合设计

响应面分析法优化反应条件的中心组合设计分组 组数pH 时间温度摩尔比 一. 加热温度为130℃(17组) (1)(9组) 1 3 4.50 10.00 130.00 1.25 3 17 4.50 150.00 130.00 1.25 25 6 7.00 80.00 130.00 1.25 26 11 7.00 80.00 130.00 1.25 27 14 7.00 80.00 130.00 1.25 28 8 7.00 80.00 130.00 1.25 29 5 7.00 80.00 130.00 1.25 4 24 9.50 150.00 130.00 1.25 2 1 9.50 10.00 130.00 1.25 (2)(4组) 9 18 4.50 80.00 130.00 0.50 21 16 7.00 10.00 130.00 0.50 22 20 7.00 150.00 130.00 0.50 10 13 9.50 80.00 130.00 0.50 (3)(4组) 11 7 4.50 80.00 130.00 2.00 23 27 7.00 10.00 130.00 2.00 24 22 7.00 150.00 130.00 2.00 12 21 9.50 80.00 130.00 2.00 组数pH 时间温度摩尔比 二. 加热温度为110℃(6组) 5 19 7.00 80.00 110.00 0.50 7 10 7.00 80.00 110.00 2.00 13 28 7.00 10.00 110.00 1.25 14 26 7.00 150.00 110.00 1.25 17 12 4.50 80.00 110.00 1.25 18 23 9.50 80.00 110.00 1.25 三.加热温度为150℃(6组) 6 9 7.00 80.00 150.00 0.50 8 4 7.00 80.00 150.00 2.00 15 15 7.00 10.00 150.00 1.25 16 29 7.00 150.00 150.00 1.25 19 2 4.50 80.00 150.00 1.25 20 25 9.50 80.00 150.00 1.25

最新响应面优化实验方案设计

响应面优化实验方案 设计

食品科学研究中实验设计的案例分析 ——响应面法优化超声辅助提取车前草中的熊果酸 班级:学号:姓名: 摘要:本文简要介绍了响应面曲线优化法的基本原理和使用步骤,并通过软件Design-Expert 7.0软件演示原文中响应面曲线优化法的操作步骤。验证原文《响应面法优化超声辅助提取车前草中的熊果酸》各个数据的处理过程,通过数据对比,检验原文数据处理的正确与否。 关键词:响应面优化法数据处理 Design-Expert 7.0 车前草 前言: 响应曲面设计方法(Response SufaceMethodology,RSM)是利用合理的试验设计方法并通过实验得到一定数据,采用多元二次回归方程来拟合因素与响应值之间的函数关系,通过对回归方程的分析来寻求最优工艺参数,解决多变量问题的一种统计方法(又称回归设计)。 响应面曲线法的使用条件有:①确信或怀疑因素对指标存在非线性影响;②因素个数2-7个,一般不超过4个;③所有因素均为计量值数据;试验区域已接近最优区域;④基于2水平的全因子正交试验。 进行响应面分析的步骤为:①确定因素及水平,注意水平数为2,因素数一般不超过4个,因素均为计量值数据;②创建“中心复合”或“Box-Behnken”设计;③确定试验运行顺序(Display Design);④进行试验并收集数据;⑤分析试验数据;⑥优化因素的设置水平。

响应面优化法的优点:①考虑了试验随机误差②响应面法将复杂的未知的函数关系在小区域内用简单的一次或二次多项式模型来拟合,计算比较简便,是降低开发成本、优化加工条件、提高产品质量,解决生产过程中的实际问题的一种有效方法③与正交试验相比,其优势是在试验条件寻优过程中,可以连续的对试验的各个水平进行分析,而正交试验只能对一个个孤立的试验点进行分析。 响应面优化法的局限性: 在使用响应面优化法之前,应当确立合理的实验的各因素和水平。因为响应面优化法的前提是设计的试验点应包括最佳的实验条件,如果试验点的选取不当,实验响应面优化法就不能得到很好的优化结果。 原文《响应面法优化超声辅助提取车前草中的熊果酸》采用经典的三因素三水平Box-Behnken 试验设计,以熊果酸的提取率为响应值,通过回归分析各工艺参数与响应值之间的关系,并由此预测最佳的工艺条件。本文利用软件验证原文中的数据处理过程,以检验原文数据是否处理正确。 1 确定实验因素 原文利用超声波辅助提取车前草中的熊果酸,而影响熊果酸提取率的因素有很多,如超声波的功率、提取时间、溶剂温度、溶剂种类、液固比等。原文参考文献《柿叶中总三萜的提取以及熊果酸分离, 纯化研究》中提取熊果酸的方法提取熊果酸,即将干燥的车前草粉碎后过筛,取20~40 目的车前粉,用石油醚在 55℃脱脂 3 次,干燥备用。精密称取一定量的车前粉,加入一定量的乙醇,称量,在一定的超声波功率下提取一定时间后,擦干外壁,再称量,用乙醇补充缺失的质量,离心。用注射器抽取一定量上清液,过 0.45μm 滤膜,进行检测。每个实验进行 3 次平行实验。取其平均值。结果以提取率(E)的来表示。 C × V E/%= ———× 100

相关主题
文本预览
相关文档 最新文档