当前位置:文档之家› 工程流体力学第1章绪论

工程流体力学第1章绪论

工程流体力学第1章绪论
工程流体力学第1章绪论

第1章 测试题

一、思考题

1.1试从力学的角度,比较流体与固体的差别。

1.2气体和液体的物理力学特性有何差别?

1.3何为连续介质?流体力学中为何需要引入连续介质假设?

1.4什么是牛顿内摩擦定律?它的应用条件是什么?

1.5流体的动力粘滞系数与运动粘滞系数有何不同?

1.6流体的动力粘性与哪些因素有关?它们随温度是如何变化的?

1.7为什么通常把水看作是不可压缩流体?

1.8为什么玻璃上一滴油总是近似呈球形?

1.9测压管管径为什么不能过细?

1.10按作用方式区分作用在流体上有哪两类力?

1.11如何认识流体力学的研究方法将不断发展和创新?

二、选择题

1.1在常温下水的密度为 kg/m 3。(C )

(A) 10 (B) 100 (C) 998.2 (D) 1000

1.2在标准大气压下200C 时空气的密度为 kg/m 3。(A )

(A) 1.2 (B) 12 (C) 120 (D) 1200

1.3温度升高时,水的粘性 。(A )

(A) 变小 (B) 变大 (C) 不变 (D) 不能确定

1.4温度升高时,空气的粘性 。(B )

(A) 变小 (B) 变大 (C) 不变 (D) 不能确定

1.5动力粘滞系数μ与运动粘滞系数ν的关系为 。(D )

(A) μρ (B) ρμ

(C) μρ

(D) p μ

1.6运动粘滞系数的是 。(B )

(A) 2/m s (B) s m /2 (C) 2/.m s N (D) s m N /.2

1.7流体的粘性与流体的 无关。(D )

(A) 分子内聚力 (B) 分子动量变换 (C) 温度 (D) 速度梯度

1.8与牛顿内摩擦定律直接有关的因素是 。(C )

(A) 切应力与速度 (B) 切应力与剪切变形

(C) 切应力与剪切变形速度 (D) 切应力与压强

1.9液体体积压缩系数是在 条件下单位压强引起的体积变化率。(B )

(A) 等压 (B) 等温 (C) 等密度 (D) 体积不变

1.10 是非牛顿流体。(D )

(A) 空气 (B) 水 (C) 汽油 (D) 沥青

1.11静止流体 切应力。(C )

(A) 可以承受 (B) 能承受很小的

(C) 不能承受 (D) 具有粘性时可以承受

1.12表面张力系数的单位是 。(A )

(A) m N / (B) 2/m N (C) 3/m N (D) s N /

1.13随温度升高,表面张力系数 。(B )

(A) 增大 (B) 减小 (C) 不变 (D) 不能确定

1.14毛细管中液柱高度的变化与 成反比。(D )

(A) 表面张力系数 (B) 接触角 (C) 粘性系数 (D) 管径

1.15作用在流体上的质量力包括 成反比。(D )

(A) 压力 (B) 摩擦力 (C) 切应力 (D) 重力

1.16理想流体的特征是 。(C )

(A) 不可压缩 (B) 粘滞系数为常数 (C) 无粘性 (D) 符合牛顿内摩擦定律

1.17不可压缩流体的特征是 。(D )

(A) 温度不变 (B)密度不变 (C) 压强不变 (D) 体积不变

1.18单位质量力是指作用在单位 流体上的质量力。(C )

(A) 面积 (B)体积 (C)质量 (D) 重量

1.19单位质量力的国际单位是 。(C )

(A) 2/m N (B) 3/m N (C) kg N / (D) N

1.20按连续介质的概念,流体质点是指 。(C )

(A )流体的分子 (B )流体内的固体颗粒

(C )几何尺寸同流动空间相比是极小量,又含有大量分子的微元体 (D )几何的点

三、计算题

1.1 某油的密度为851kg/m 3,运动粘度为3.39×10-6m 2/s ,求此油的重度γ、比容v 和动力粘度μ。

1.2 粘度μ=3.92×10﹣2Pa·s 的粘性流体沿壁面流动,距壁面y 处的流速为v=3y+y2(m/s ),试求壁

面的切应力。(11.76×10-2Pa)

1.3在相距1mm 的两平行平板之间充有某种黏性液体,当其中一板以1.2m/s 的速度相对于另一板作等速移动时,作用于板上的切应力为3 500 Pa 。试求该液体的粘度。(

2.917Pa.s)

1.4如图1所示,一圆锥体绕竖直中心轴作等速转动,锥体与固体的外锥体之间的缝隙δ=1mm ,其间充满μ=0.1Pa·s 的润滑油。已知锥体顶面半径R=0.3m,锥体高度H=0.5m,当锥体转速n=150r/min 时,求所需旋转力矩。(38.83N.m)

图1 图2

1.5如图2所示,上下两平行圆盘,直径均为d ,间隙为δ,其间隙间充满黏度为μ的液体。若下盘

固定不动,上盘以角速度ω旋转时,试写出所需力矩M 的表达式。(δ

πμω324d M =) 1.6当压强增量p ?=5×104N/m2时,某种液体的密度增长0.02%。求此液体的体积弹性模量。(11.76×108Pa)

1.7如图3所示,一圆筒形盛水容器以等角速度ω绕其中心轴旋转。试写出图中A(x,y,z)处质量力的表达式。(x f x 2ω=,y fy 2ω=,y f z 2ω=)

图3 图4 1.8图4为一水暖系统,为了防止水温升高时,体积膨胀将水管胀裂,在系统顶部设一膨胀水箱。若系统内水的总体积为8m3,加温前后温差为50℃,在其温度范围内水的热胀系数α=0.000 5/℃。求膨胀水箱的最小容积。(0.2m 3)

1.9汽车上路时,轮胎内空气的温度为20℃,绝对压强为395kPa ,行驶后,轮胎内空气温度上升到50°С,试求这时的压强。(435.4kPa)

1.10图5为压力表校正器。器内充满压缩系数为k=4.75×10﹣10m2/N 的油液。器内压强为105Pa 时,油液的体积为200mL 。现用手轮丝杆和活塞加压,活塞直径为1cm ,丝杆螺距为2mm ,当压强升高至20MPa 时,问需将手轮摇多少转?(12转)

图5 图6

1.11黏度测量仪有内外两个同心圆筒组成,两筒的间隙充满油液。外筒与转轴连接,其半径为r2,旋转角速度为ω。内筒悬挂于一金属丝下,金属丝上所受的力矩M 可以通过扭转角的值确定。外筒与内筒底面间隙为a ,内筒高H ,如图6所示。试推出油液黏度μ的计算式。

()???

???-+=1221241221

r r r H ar r a M

πω

μ

1.12内径为1mm 的玻璃毛细管插在水银中,如图7所示。水银在空气中的表面张力系数为m N /514.0,水银与玻璃的接触角0140-=θ,水银的密度3/13600m kg 。试求毛细管内外水银液面的高度差d 。(11.8mm)

1.13设一平壁浸入体积很大的水中,由于存在表面张力,在靠近壁面的地方要形成一个曲面,如图8所示。假设曲面的曲率半径r 可以表示成221

dx y d r =

,接触角θ和表面张力系数σ已知。试确定平壁附近水面的形状和最大高度h 。(()σρθσρσρθ/tan 1

,/exp /tan 1

g h g x g y =-=

)

图7 图8

工程流体力学第一章习题

第一章小结 1、流体的特征 与固体的区别:静止状态下,只能承受压力,一般不能承受拉力与抵抗拉伸变形。 在任意剪切力作用下,流体将发生连续的剪切变形(流动),剪切力大小正比于剪切变形速率。固体所受剪切力大小则正比于剪切变形量。 液体与气体的区别:难于压缩;有一定的体积,存在一个自由液面; 2、连续介质 连续介质模型:把流体视为没有间隙地充满它所占据的整个空间的一种连续介质,且其所有的物理量都是空间坐标和时间的连续函数的一种假设模型。 流体质点:几何尺寸同流动空间相比是极小量,又含有大量分子的微元体。 3、粘性 流体在运动(流动)的状态下,产生内摩擦力以抵抗流体变形的性质。粘性是流体的固有属性。 牛顿内摩擦定律(粘性定律):液体运动时,相邻液层间所产生的切应力与剪切变形的速率成正比。 动力粘性系数μ:反映流体粘滞性大小的系数。 国际单位:牛·秒/米2, N.s/m2 或:帕·秒 运动粘性系数ν:ν=μ/ρ国际单位:米2/秒, m2/s 粘度的影响因素:温度是影响粘度的主要因素。当温度升高时,液体的粘度减小,气体的粘度增加。 粘滞性是流体的主要物理性质,它是流动流体抵抗剪切变形的一种性质,不同的流体粘滞性大小用动力粘度μ或运动粘度v来反映。其中温度是粘度的影响因素:随温度升高,气体粘度上升、液体粘度下降。 复习题 1.连续介质假设意味着。 (A)流体分子互相紧连 (B) 流体的物理量是连续函数 (C) 流体分子间有空隙 (D) 流体不可压缩 2.流体的体积压缩系数k 是在条件下单位压强变化引起的体积变化率。 (A) 等压 (B) 等温 (C) 等密度 3.水的体积弹性模数空气的弹性模数。

流体力学标准化作业答案第三章

流体力学标准化作业(三) ——流体动力学 本次作业知识点总结 1.描述流体运动的两种方法 (1)拉格朗日法;(2)欧拉法。 2.流体流动的加速度、质点导数 流场的速度分布与空间坐标(,,)x y z 和时间t 有关,即 (,,,)u u x y z t = 流体质点的加速度等于速度对时间的变化率,即 Du u u dx u dy u dz a Dt t x dt y dt z dt ????= =+++ ???? 投影式为 x x x x x x y z y y y y y x y z z z z z z x y z u u u u a u u u t x y z u u u u a u u u t x y z u u u u a u u u t x y z ?????=+++?????? ????? =+++???????????=+++?????? 或 ()du u a u u dt t ?==+??? 在欧拉法中质点的加速度du dt 由两部分组成, u t ??为固定空间点,由时间变化 引起的加速度,称为当地加速度或时变加速度,由流场的不恒定性引起。 ()u u ??v v 为同一时刻,由流场的空间位置变化引起的加速度,称为迁移加速度或位变加速度, 由流场的不均匀性引起。 欧拉法描述流体运动,质点的物理量不论矢量还是标量,对时间的变化率称为该物理量的质点导数或随体导数。例如不可压缩流体,密度的随体导数 D D u t t ρρ ρ?=+???() 3.流体流动的分类

(1)恒定流和非恒定流 (2)一维、二维和三维流动 (3)均匀流和非均匀流 4.流体流动的基本概念 (1)流线和迹线 流线微分方程 x y z dx dy dz u u u == 迹线微分方程 x y z dx dy dz dt u u u === (2)流管、流束与总流 (3)过流断面、流量及断面平均流速 体积流量 3(/)A Q udA m s =? 质量流量 (/)m A Q udA kg s ρ=? 断面平均流速 A udA Q v A A == ? (4)渐变流与急变流 5. 连续性方程 (1)不可压缩流体连续性微分方程 0y x z u u u x y z ???++=??? (2)元流的连续性方程 12 1122 dQ dQ u dA u dA =?? =? (3)总流的连续性方程 1122u dA u dA = 6. 运动微分方程 (1)理想流体的运动微分方程(欧拉运动微分方程)

工程流体力学(水力学)闻德第五章-实际流体动力学基础课后答案

工程流体力学闻德课后习题答案 第五章 实际流体动力学基础 5—1设在流场中的速度分布为u x =2ax ,u y =-2ay ,a 为实数,且a >0。试求切应力τxy 、τyx 和附加压应力p ′x 、p ′y 以及压应力p x 、p y 。 解:0y x xy yx u u x y ττμ??? ?==+= ????? 24x x u p a x μμ?'=-=-?,24y y u p a y μμ?'=-=?, 4x x p p p p a μ'=+=-,4y y p p p p a μ'=+=+ 5-2 设例5-1中的下平板固定不动,上平板以速度v 沿x 轴方向作等速运动(如图 所示),由于上平板运动而引起的这种流动,称柯埃梯(Couette )流动。试求在这种流动情况下,两平板间的速度分布。(请将 d 0d p x =时的这一流动与在第一章中讨论流体粘性时的流动相比较) 解:将坐标系ox 轴移至下平板,则边界条件为 y =0,0X u u ==;y h =,u v =。 由例5-1中的(11)式可得 2d (1)2d h y p y y u v h x h h μ=- - (1) 当d 0d p x =时,y u v h =,速度u为直线分布,这种特殊情况的流动称简单柯埃梯流动或简单剪切流动。它只是由于平板运动,由于流体的粘滞性带动流体发生的流动。 当 d 0d p x ≠时,即为一般的柯埃梯流动,它是由简单柯埃梯流动和泊萧叶流动叠加而成,速度分布为 (1)u y y y p v h h h =-- (2) 式中2d ()2d h p p v x μ= - (3) 当p >0时,沿着流动方向压强减小,速度在整个断面上的分布均为正值;当p <0时,沿流动方向压强增加,则可能在静止壁面附近产生倒流,这主要发生p <-1的情况. 5-3 设明渠二维均匀(层流)流动,如图所示。若忽略空气阻力,试用纳维—斯托克斯方程和连续性方程,证明过流断面上的速度分布为2sin (2)2 x g u zh z ,单宽流量 3 sin 3 gh q 。

《工程流体力学》习题参考答案

闻建龙主编的《工程流体力学》习题参考答案 第一章 绪论 1-1 物质是按什么原则分为固体和液体两大类的? 解:从物质受力和运动的特性将物质分成两大类:不能抵抗切向力,在切向力作用下可以无限的变形(流动),这类物质称为流体。如空气、水等。而在同等条件下,固体则产生有限的变形。 因此,可以说:流体不管是液体还是气体,在无论多么小的剪应力(切向)作用下都能发生连续不断的变形。与此相反,固体的变形与作用的应力成比例,经一段时间变形后将达到平衡,而不会无限增加。 1-2 何谓连续介质假设?引入连续介质模型的目的是什么?在解决流动问题时,应用连续介质模型的条件是什么? 解:1753年,欧拉首次采用连续介质作为流体宏观流动模型,即不考虑流体分子的存在,把真实的流体看成是由无限多流体质点组成的稠密而无间隙的连续介质,甚至在流体与固体边壁距离接近零的极限情况也认为如此,这个假设叫流体连续介质假设或稠密性假设。 流体连续性假设是流体力学中第一个根本性假设,将真实流体看成为连续介质,意味着流体的一切宏观物理量,如密度、压力、速度等,都可看成时间和空间位置的连续函数,使我们有可能用数学分析来讨论和解决流体力学问题。 在一些特定情况下,连续介质假设是不成立的,例如:航天器在高空稀薄气体中飞行,超声速气流中激波前后,血液在微血管(1μm )内的流动。 1-3 底面积为2 5.1m 的薄板在液面上水平移动(图1-3),其移动速度为s m 16,液层 厚度为mm 4,当液体分别为C 020的水和C 0 20时密度为3 856m kg 的原油时,移动平板 所需的力各为多大? 题1-3图 解:20℃ 水:s Pa ??=-3 10 1μ 20℃,3 /856m kg =ρ, 原油:s Pa ??='-3 102.7μ 水: 23 3 /410 416 101m N u =??=? =--δμτ N A F 65.14=?=?=τ

工程流体力学课后习题答案_袁恩熙_流体力学第三章作业(1)

3.1一直流场的速度分布为: U=(4x 2+2y+xy)i+(3x-y 3+z)j (1) 求点(2,2,3)的加速度。 (2) 是几维流动? (3) 是稳定流动还是非稳定流动? 解:依题意可知, V x =4x 2+2y+xy ,V y =3x-y 3+z ,V z =0 ∴a x = t V x ??+ v x X V x ??+v y Y V x ??+v z Z V x ?? =0+(4x 2+2y+xy)(8x+y)+(3x-y 3+z)(2+x) =32x 3+16xy+8x 2y+4x 2y+2y 2+x y 2+6x-2 y 3+2z+3 x 2-x y 3+xz 同理可求得, a y =12 x 2+6y+3xy-9x y 2+3 y 5-3 y 2z a z =0 代入数据得, a x = 436,a y =60, a z =0 ∴a=436i+60j (2)z 轴方向无分量,所以该速度为二维流动 (3)速度,加速度都与时间变化无关,所以是稳定流动。 3.2 已知流场的速度分布为: k z yj yi x 2223+-=μ (1)求点(3,1,2)的加速度。 (2)是几维流动? 解:(1)由 z u z y u y x u x t u x x x x x u u u a ????????+++=

z u z y u y x u x t u y y y y y u u u a ????????+++= z u z y u y x u x t u z z z z z u u u a ????????+++= 得: 0202 2 2+?+?+=x y x xy y x a x 0)3(300+-?-+=y a y z z a z 420002?+++= 把点(3,1,2)带入得加速度a (27,9,64) (2)该流动为三维流动。 3-3 已知平面流动的速度分布规律为 ()() j y x x i y x y u 2 22222+Γ++Γ=ππ 解:() () 2 22 22,2y x x u y x y u y x +Γ= +Γ= ππ 流线微分方程:y x u dy u dx = 代入得: ()() 2 22 222y x x dy y x y dx +Γ= +Γππ C y x ydy xdx x dy y dx =-?=-?=220 3.4 截面为300mm ×400mm 的矩形风道,风量为2700m 3/h ,求平均流速。如风道出口截面收缩为150mm ×400mm 求该截面的平均流速。 解:因为v=q A /A 所以v 1=q A /A 1=2700/(300x400x10-6)=22500m/h=6.25m/s V 2=q A /A 2=2700/(150x400x10-6)=45000m/h=12.5m/s 3.5 渐缩喷嘴进口直径为50mm ,出口直径为10mm 。若进口流速为3m/s ,求喷嘴出口流速为多少?

工程流体力学公式

第二章 流体的主要物理性质 1.密度 ρ = m /V 7.压缩系数 T p V V ???? ? ?-=δδκ 体积模量 6.体胀系数 P V T V V ??? ??=δδα 9.牛顿内摩擦定律 h Av F /μ= dy dv x μ τ= 动力黏度:μ 运动黏度 ρμν= 第三章 流体静力学 重点:流体静压强特性、欧拉平衡微分方程式、等压面方程及其、流体静力学基本方程意义及其计算、压强关系换算、相对静止状态流体的压强计算、流体静压力的计算(压力体)。 1. 01=??-x p f x ρ 01=?-p ρf 2. 压强差公式 )(dz f dy f dx f dp z y x ++=ρ 等压面:dp =0 3.重力场中流体的平衡 4.帕斯卡定理 ()gh p z z g p p ρρ+=-+=000 5. 真空度 p p p a v -= 6. 等加速直线运动容器内液体的相对平衡 7.等角速度旋转容器中液体的相对平衡 C z g r g p +??? ? ??-=222ωρ 外加边界条件确定C 如:0,0,0p p z r === V P V K ??-=κ1

自由液面上某点的铅直坐标:g r Zs 22 2ω= 8.静止液体作用在平面上的总压力 9.静止液体作用在曲面上的总压力 水平方向的作用力:z x ghdA ghdA dF dF ρθρθ===cos cos 垂直方向的作用力 x z ghdA ghdA dF dF ρθρθ===sin sin 总压力 22y x F F F += z x F F tg = θ 第四章 流体运动学基础 1..欧拉法 加速度场 简写为 当地加速度: 迁移加速度 2. 拉格朗日法:流体质点的运动速度的拉格朗日描述为 3.流线微分方程: 4.流量计算: 单位时间内通过d A 的微小流量为 d q v=u d A 通过整个过流断面流量 平均流速 5. 水力半径 :总流的有效截面积与湿周之比 χ A R h = 6. ???' =V dV N ηρ 连续性方程 对于定常流动 r 1A 1u 1= r 2A 2u 2 对于不可压缩流体,r1 = r 2 =c A 1u 1=A 2u 2= q v υυ)(????==A A u q q d d v v

工程流体力学第2版答案

课后答案网 工程流体力学 第一章绪论 1-1. 20C 的水2.5m 3 ,当温度升至80C 时,其体积增加多少? [解]温度变化前后质量守恒,即 = 7V2 3 又20C 时,水的密度 d 二998.23kg / m 3 80C 时,水的密度 = 971.83kg/m 3 啦 3 V 2 =亠=2.5679m 「2 则增加的体积为 V 二V 2 -V^ 0.0679 m 3 1-2.当空气温度从 0C 增加至20C 时,运动粘度\增加15%,重度 减少10%,问此时动力粘度 」增加 多少(百分数)? [解] 宀(1 0.15)、.原(1 -0.1)「原 = 1.035 原「原=1.035'I 原 ■' -「原1.035?L 原一」原 原 原——原二0.035 卩原 卩原 此时动力粘度 J 增加了 3.5% 2 1-3?有一矩形断面的宽渠道,其水流速度分布为 u =0.002 Jg(hy-0.5y )/」,式中'、」分别为水的 密度和动力粘度,h 为水深。试求h =0.5m 时渠底(y=0)处的切应力。 [解] 一 =0.002「g(h -y)/「 dy 当 h =0.5m , y=0 时 = 0.002 1000 9.807(0.5 —0) J du dy -0.002 'g(h -y)

= 9.807Pa 1-4.一底面积为45 x 50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块 运动速度u=1m/s ,油层厚1cm ,斜坡角22.620 (见图示),求油的粘度。 mg sin v I mg sin A U 0.4 0.45 — d 0.001 」-0.1047Pa s 1-5 .已知液体中流速沿 y 方向分布如图示三种情况,试根据牛顿内摩擦定律 沿y 方向的分布图。 [解]木块重量沿斜坡分力 F 与切力T 平衡时,等速下滑 5 9.8 sin 22.62 -=一,定性绘出切应力 dy 1-6 ?为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。已知导线直径 的粘度」=0.02Pa . s 。若导线以速率50m/s 拉过模具,试求所需牵拉力。 0.9mm ,长度20mm ,涂料 (1.O1N ) e y I

工程流体力学课后作业答案莫乃榕版本

流体力学练习题 第一章 1-1解:设:柴油的密度为ρ,重度为γ;40C 水的密度为ρ0,重度为γ0。则在同一地点的相对密度和比重为: 0ρρ= d ,0 γγ=c 1-2解:336/1260101026.1m kg =??=-ρ 1-3解:269/106.191096.101.0m N E V V V V p p V V p p p ?=??=?- =?-=????-=ββ 1-4解:N m p V V p /105.210 4101000295 6 --?=?=??-=β 1-5解:1)求体积膨涨量和桶内压强 受温度增加的影响,200升汽油的体积膨涨量为: 由于容器封闭,体积不变,从而因体积膨涨量使容器内压强升高,体积压缩量等于体积膨涨量。故: 2)在保证液面压强增量0.18个大气压下,求桶内最大能装的汽油质量。设装的汽油体积为V ,那么:体积膨涨量为: 体积压缩量为:

因此,温度升高和压强升高联合作用的结果,应满足: 1-6解:石油的动力粘度:s pa .028.01.0100 28 =?= μ 石油的运动粘度:s m /1011.39 .01000028.025-?=?== ρμν 1-7解:石油的运动粘度:s m St /1044.0100 40 25-?=== ν 石油的动力粘度:s pa .0356.010*******.05=???==-ρνμ 1-8解:2/1147001 .01 147.1m N u =? ==δ μ τ 1-9解:()()2/5.1621196.012.02 1 5.0065.02 1 m N d D u u =-? =-==μ δ μ τ 第二章 2-4解:设:测压管中空气的压强为p 2,水银的密度为1ρ,水的密度为2ρ。在水银面建立等压面1-1,在测压管与容器连接处建立等压面2-2。根据等压面理论,有 21p gh p a +=ρ(1) gz p z H g p 2221)(ρρ+=++(2) 由式(1)解出p 2后代入(2),整理得: 2-5解:设:水银的密度为1ρ,水的密度为2ρ,油的密度为3ρ;4.0=h ,6.11=h , 3.02=h ,5.03=h 。根据等压面理论,在等压面1-1上有: 在等压面2-2上有:

工程流体力学习题 第八章.doc

第八章 8-1 根据通用气体常数值8314K M m N m ??,计算下列气体的气体常数值R :空气,氧气,氮气,氦气,氢气,甲烷,一氧化碳,二氧化碳。 8-2 当上述气体温度为15℃,求其音速。 8-3 如果上述气体的马赫数M=2,求其实际流速。 8-4 求证c 2 v p p 1k K 2 =+-。 8-5 输送氩气的管路中装置一皮托管,测得某点的总压力158kN/m 2,静压力104kN/m 2,管中气体温度20℃,求流速: 1)不计气体的可压缩特性; 2)按绝热压缩流计算。 8-6 求证 ?? ????--=-1)P p (1K 2M K 1k 0。 8-7 已知空气流速V=500m/s ,温度t=15℃,静压p=1atm,试求其M 数,总温T 0和总压p 0。 8-8 空气气流的滞止压强P 0=490kN/m 2,滞止温度T 0=293K,求滞止音速a 0及M=0.8处的音速、流速和压强值。 8-9 氧气罐中的稳定压力P 0=8atm, 温度为t=27℃, 当出流M 数分别为0.8; 1.0; 2.0;求出口的气体流速V ,温度t, 静压P 和密度ρ。 8-10 空气喷管的临界直径d *=10mm ,每秒体积流量为0.1Nm 3/s,当总温T 0=300K ,试计算喷管所要求的总压P 0,临界流速V *,出口速度V 。已知P b =Pa=1atm 。 8-11 根据上题条件,如果总温提高到420K ,为保证质量流量不变,其总压P 0应如何调整。 8-12 空气拉瓦尔喷管的出口马赫数Me=2,出口直径d e =20cm ,出口压力Pe=1atm,出口温度T e =173K, 试求列未知数:临界断面A *,总温T 0,总压P 0,质量流量m 。 8-13 空气罐中的绝对压强P 0=700kN/m 2,t 0=40℃,通过一喉部直径d=25mm 的拉瓦尔喷管向大气中喷射,大气压强P 2=98.1kN/m 2,求: 1) 质量流量m ; 2) 喷管出口断面直径d 2;

工程流体力学答案(陈卓如)第一章

[陈书1-15] 图轴在滑动轴承中转动,已知轴的直径cm D 20=,轴承宽度cm b 30=,间隙cm 08.0=δ。间隙中充满动力学粘性系数s Pa 245.0?=μ的润滑油。若已知轴旋转时润滑油阻力的损耗功率W P 7.50=,试求轴承的转速?=n 当转速min 1000r n =时,消耗功率为多少?(轴承运动时维持恒定转速) 【解】轴表面承受的摩擦阻力矩为:2D M A τ= 其中剪切应力:dr du ρντ= 表面积:Db A π= 因为间隙内的流速可近似看作线性分布,而且对粘性流体,外表面上应取流速为零的条件,故径向流速梯度: δ ω2D dr du = 其中转动角速度:n πω2= 所以:2322nD D D nb M Db πμπμπδδ == 维持匀速转动时所消耗的功率为:3322D n b P M M n μπωπδ === 所以:Db P D n μπδπ1= 将: s Pa 245.0?=μ m cm D 2.020== m cm b 3.030== m cm 410808.0-?==δ W P 7.50= 14.3=π 代入上式,得:min r 56.89s r 493.1==n 当r 3 50min r 1000==n 时所消耗的功率为: W b n D P 83.6320233==δ μπ [陈书1-16]两无限大平板相距mm 25=b 平行(水平)放置,其间充满动力学粘性系数s Pa 5.1?=μ的甘油,在两平板间以m 15.0=V 的恒定速度水平拖动一面积为

2m 5.0=A 的极薄平板。如果薄平板保持在中间位置需要用多大的力?如果置于距一板10mm 的位置,需多大的力? 【解】平板匀速运动,受力平衡。 题中给出平板“极薄”,故无需考虑平板的体积、重量及边缘效应等。 本题应求解的水平方向的拖力。 水平方向,薄板所受的拖力与流体作用在薄板上下表面上摩擦力平衡。 作用于薄板上表面的摩擦力为: A dz du A F u u u μτ== 题中未给出流场的速度分布,且上下两无限大平板的间距不大,不妨设为线性分布。 设薄板到上面平板的距离为h ,则有: h V dz du u = 所以:A h V F u μ= 同理,作用于薄板下表面的摩擦力为: A h b V F d -=μ 维持薄板匀速运动所需的拖力: ?? ? ??-+=+=h b h AV F F F d u 11μ 当薄板在中间位置时,m 105.12mm 5.123 -?==h 将m 1025mm 253-?==b 、s m 15.0=V 、2m 5.0=A 和s Pa 5.1?=μ代入,得: N 18=F 如果薄板置于距一板(不妨设为上平板)10mm 的位置,则: m 1010mm 103-?==h 代入上式得:N 75.18=F [陈书1-17]一很大的薄板放在m 06.0=b 宽水平缝隙的中间位置,板上下分别放有不同粘度的油,一种油的粘度是另一种的2倍。当以s m 3.0=V 的恒定速度水平拖动平板时,每平方米受的总摩擦力为N 29=F 。求两种油的粘度。 【解】平板匀速运动,受力平衡。 题中给出薄板”,故无需考虑平板的体积、重量及边缘效应等。 本题应求解的水平方向的拖力。

工程流体力学 禹华谦 习题答案 第1章

第一章 第二章 第三章 1.1 试谈牛顿内摩擦定律?产生摩擦力的根本原因是什么?(参考分数:8分) 答:流体内只要存在相对运动,流体内就会产生内摩擦力来抵抗此相对运动,牛顿经过大量牛 顿平板试验得出单位面积上的内摩擦力:τ=F/A=μ·du/dy 即为牛顿内摩擦定律。产生摩擦力的 根本原因是流体内存在着相对运动。 1.2 液体和气体的粘性随温度的升高或降低发生变化,变化趋势是否相同?为什么?(参考分 数:8分) 答:不相同,液体的粘度随温度升高而减小,气体的粘度却随温度升高而增大。其原因是,液 体分子间距小,内聚力强,粘性作用主要来源于分子内聚力,当液体温度升高时,其分子间距加大, 内聚力减小,粘度随温度上升而减小;而气体的内聚力极小,可以忽略,其粘性作用可以说完全是 分子热运动中动量交换的结果,当气体温度升高时,热运动加剧,其粘度随温度升高而增加。 1.3 何谓流体的连续介质模型?为了研究流体机械运动规律,说明引入连续介质模型的必要性。 答:流体的连续介质模型:假定流体是由连续分布的流体质点所组成,即认为流体所占据的空 间完全由没有任何空隙的流体质点所充满,流体质点在时间过程中作连续运动。根据流体的连续介 质假设,表征流体性质和运动特性的物理量和力学量一般为空间坐标和时间变量的连续函数,这样 就可以用数学分析方法来研究流体运动,解决流体力学问题。 1.4 什么是表面张力?试对表面张力现象作物理解释。 答:液体的表面张力是液体自由表面上相邻部分之间的拉力,其方向与液面相切,并与两相邻 部分的分界线垂直。表面张力是分子引力在液体表面上的一种宏观表现。例如,在液体和气体相接 触的自由表面上,液面上的分子受到液体内部分子的吸引力与其上部气体分子的吸引力不平衡,其 合力的方向与液面垂直并指向液体内部。在合力的作用下,表层中的液体分子都力图向液体内部收 缩,使液体具有尽量缩小其表面的趋势,这样沿液体的表面便产生了拉力,即表面张力。 1.5 动力粘度μ=0.172Pa·s 的润滑油充满在两个同轴圆柱体的间隙中,外筒固定,内径D = 12cm ,间隙h =0.02cm ,试求:(1)当内筒以速度U =1m/s 沿轴线方向运动时,内筒表面的切应力 τ1,如图1-3(a );(2)当内筒以转速n =180r/min 旋转时,内筒表面的切应力τ2,如图1-3(b )。 (b) 解:内筒外径 96cm .1102.02122h D d =?-=-= (1)当内筒以速度U =1m/s 沿轴线方向运动时,内筒表面的切应力 N 8601002.01172.0h U dy du 2 -1=??===μμτ (2)当内筒以转速n =180r/min 旋转时,内筒的旋转角速度60 2n πω= ,内筒表面的切应力

工程流体力学(水力学)闻德第五章-实际流体动力学基础课后答案

工程流体力学(水力学)闻德第五章-实际流体动力学基础课后答案

工程流体力学闻德课后习题答案 第五章 实际流体动力学基础 5—1设在流场中的速度分布为u x =2ax ,u y =-2ay ,a 为实数,且a >0。试求切应力τxy 、τyx 和附加压应力p ′x 、p ′y 以及压应力p x 、p y 。 解:0y x xy yx u u x y ττμ??? ?==+= ????? 24x x u p a x μ μ?'=-=-?,24y y u p a y μμ ?'=-=?, 4x x p p p p a μ '=+=-,4y y p p p p a μ'=+=+ 5-2 设例5-1中的下平板固定不动,上平板以速度v 沿x 轴方向作等速运动(如图所示),由于上平板运动而 引起的这种流动,称柯埃梯(Couette )流动。试求在这种流动情况下,两平板间的速度分布。 (请将d 0d p x =时的这一流动与在第一章中讨论流体粘性时的流动相比较) 解:将坐标系ox 轴移至下平板,则边界条件为 y =0,0X u u ==;y h =,u v =。 由例5-1中的(11)式可得 2 d (1)2d h y p y y u v h x h h μ=-- (1) 当d 0d p x =时,y u v h =,速度u为直线分布,这种特殊情况的流动称简单柯埃梯流动或简单剪切 流动。它只是由于平板运动,由于流体的粘滞性

带动流体发生的流动。 当d 0d p x ≠时,即为一般的柯埃梯流动,它是由简单柯埃梯流动和泊萧叶流动叠加而成,速度分布为 (1)u y y y p v h h h =-- (2) 式 中 2d () 2d h p p v x μ=- (3) 当p >0时,沿着流动方向压强减小,速度在整个断面上的分布均为正值;当p <0时,沿流动方向压强增加,则可能在静止壁面附近产生倒流,这主要发生p <-1的情况. 5-3 设明渠二维均匀(层流)流动,如图所示。若忽略空气阻力,试用纳维—斯托克斯方程和连续性方程,证明过流断面上的速度分布为 2sin (2) 2x g u zh z r q m =-,单宽流量 3 sin 3gh q r q m =。

工程流体力学课后习题答案(杜广生)

《工程流体力学(杜广生)》习题答案 第一章 习题 1. 解:依据相对密度的定义:13600 13.61000 f w d ρρ===。 式中,w ρ 表示4摄氏度时水的密度。 2. 解:查表可知,标准状态下:2 31.976/CO kg m ρ=,2 32.927/SO kg m ρ=,2 31.429/O kg m ρ=, 2 31.251/N kg m ρ=,2 30.804/H O kg m ρ= ,因此烟气在标准状态下的密度为: 11223 1.9760.135 2.9270.003 1.4290.052 1.2510.760.8040.051.341/n n kg m ρραραρα=++ =?+?+?+?+?= 3. 解:(1)气体等温压缩时,气体的体积弹性模量等于作用在气体上的压强,因此,绝对压强为4atm 的空气的等温体积模量: 34101325405.310T K Pa =?=? ; (2)气体等熵压缩时,其体积弹性模量等于等熵指数和压强的乘积,因此,绝对压强为4atm 的空气的等熵体积模量: 31.44101325567.410S K p Pa κ==??=? 式中,对于空气,其等熵指数为1.4。 4. 解:根据流体膨胀系数表达式可知: 30.0058502V dV V dT m α=??=??= 因此,膨胀水箱至少应有的体积为2立方米。 5. 解:由流体压缩系数计算公式可知: 392 5 11050.5110/(4.90.98)10 dV V k m N dp -?÷=-=-=?-? 6. 解:根据动力粘度计算关系式: 74678 4.2810 2.910Pa S μρν--==??=?? 7. 解:根据运动粘度计算公式:

工程流体力学(孔珑版)第三章_题解print(完整资料).doc

【最新整理,下载后即可编辑】 第三章 流体静力学 【3-2】 图3-35所示为一直煤气管,为求管中静止煤气的密度,在高度差H =20m 的两个截面装U 形管测压计,内装水。已知管外空气的密度ρa =1.28kg/m3,测压计读数h 1=100mm ,h 2=115mm 。与水相比,U 形管中气柱的影响可以忽略。求管内煤气的密度。 图3-35 习题3-2示意图 【解】 1air 1O H 1gas 2 p gh p +=ρ 2air 2O H 2gas 2 p gh p +=ρ 2gas gas 1gas p gH p +=ρ 2air air 1air p gH p +=ρ 2gas gas 1air 1O H 2 p gH p gh +=+ρρ gH gh p p air 2O H 1air 2gas 2 ρρ-=- gH gh gH gh air 2O H gas 1O H 2 2 ρρρρ-+= H H h h gas air 2O H 1O H 2 2ρρρρ=+- ()3 air 21O H gas kg/m 53.028.120 115 .01.010002 =+-?=+-=ρρρH h h 【3-10】 试按复式水银测压计(图3-43)的读数算出锅炉中水面上 蒸汽的绝对压强p 。已知:H =3m ,h 1=1.4m ,h 2=2.5m ,h 3=1.2m ,h 4=2.3m ,水银的密度ρHg =13600kg/m 3。

图3-43 习题3-10示意图 【解】 ()p h H g p +-=1O H 12ρ ()212Hg 1p h h g p +-=ρ ()232O H 32 p h h g p +-=ρ ()a 34Hg 3p h h g p +-=ρ ()()212Hg 1O H 2p h h g p h H g +-=+-ρρ ()()a 34Hg 232O H 2 p h h g p h h g +-=+-ρρ ()()a 3412Hg 321O H 2 p h h h h g p h h h H g +-+-=+-+-ρρ ()()()()() Pa 14.3663101013252.15.24.13807.910004.15.22.13.2807.913600a 321O H 1234Hg 2=+-+-??--+-??=+-+---+-=p h h h H g h h h h g p ρρ ()()()()()Pa 366300.683 1013252.15.24.1380665.910004.15.22.13.280665.913600a 321O H 1234Hg 2=+-+-??--+-??=+-+---+-=p h h h H g h h h h g p ρρ 【3-12】【解】两支管中的液面高度差为: mm 5.25tan == ?=Λl g a l h α (ans.) 【3-15】 图3-48所示为一等加速向下运动的盛水容器,水深h =2m ,加速度a =4.9m/s 2。试确定:(1)容器底部的流体绝对静压强;(2)加速度为何值时容器底部所受压强为大气压强?(3)加速度为何值时容器底部的绝对静压强等于零? 图3-48 习题3-15示意图 【解】 0=x f ,0=y f ,g a f z -= 压强差公式 ()z f y f x f p z y x d d d d ++=ρ ()()z g a z f y f x f p z y x d d d d d -=++=ρρ ()?? --=h p p z g a p a d d ρ ()()()()??? ? ??-=-=----=-g a gh a g h g a h g a p p a 10ρρρρ ??? ? ??-+=g a gh p p a 1ρ ()a g h p p a -=-ρh p p g a a ρ--=

工程流体力学答案(陈卓如)第八章

[陈书8-9]一个圆球放在流速为1.6m/s 的水中,受的阻力为 4.4N 。另一个直径为其两倍的圆球置于一风洞中,求在动力相似条件下风速的大小及球所受的阻力。已知13=w air νν,3m kg 28.1=air ρ。 [解]:此题涉及绕流物体的粘性阻力,应选取雷诺数为主要的相似准则,于是: w w w air air air e d u d u νν==R 从上式可得: w w air air w air u d d u νν= 由题意知:,21=air w d d ,13=w air νν,s m 6.1=w u 将以上条件代入,得风速:()m 4.10318.06.1132 1=?=??=air u 转化阻力采用牛顿数相等的原则,即: 2222w w w w air air air air e d u F d u F N ρρ== 由上式可得:w w w w air air air air F d u d u F 2222ρρ= 由题意:28 .11000=air w ρρ,N 4.4=w F 所以:()N 952.04.426.14.10100028.122=????? ???=air F [陈书8-10]需测定飞行器上所用流线型杆子的阻力,杆子厚度为30mm ,飞行器速度为 150km/h ,当用杆子模型在水槽中测定其粘性阻力时,已知水流速度为2m/s , 13=w air νν。问模型厚度应为多少? [解]:此题涉及绕流物体的粘性阻力,应选取雷诺数为主要的相似准则,于是: w w w air air air l u l u νν==Re 从上式可得: air air w w air w l u u l νν=

工程流体力学课后习题答案

第一章 绪论 1-1.20℃的水,当温度升至80℃时,其体积增加多少 [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度3 1/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 32 1 125679.2m V V == ∴ρρ 则增加的体积为3 120679.0m V V V =-=? 1-2.当空气温度从0℃增加至20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动力粘度μ增加多少(百分数) [解] 原原ρννρμ)1.01()15.01(-+==Θ 原原原μρν035.1035.1== 035.0035.1=-=-原 原 原原原μμμμμμΘ 此时动力粘度μ增加了% 1-3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02 y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深。试求m h 5.0=时渠底(y =0)处的切应力。 [解] μρ/)(002.0y h g dy du -=Θ )(002.0y h g dy du -==∴ρμ τ 当h =,y =0时 )05.0(807.91000002.0-??=τ Pa 807.9= 1-4.一底面积为45×50cm 2 ,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s ,油层厚1cm ,斜坡角 (见图示),求油的粘度。 [解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑

y u A T mg d d sinμ θ= = 001 .0 1 45 .0 4.0 62 . 22 sin 8.9 5 sin ? ? ? ? = = δ θ μ u A mg s Pa 1047 .0? = μ 1-5.已知液体中流速沿y方向分布如图示三种情况,试根据牛顿内摩擦定律 y u d d μ τ=,定性绘出切应力沿y方向的分布图。 [解] 1-6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。已知导线直径,长度20mm,涂料的粘度μ=.s。若导线以速率50m/s拉过模具,试求所需牵拉力。() [解] 2 5 3 310 024 .5 10 20 10 8.0 14 .3m dl A- - -? = ? ? ? ? = =π Θ N A h u F R 01 .1 10 024 .5 10 05 .0 50 02 .05 3 = ? ? ? ? = = ∴- - μ 1-7.两平行平板相距,其间充满流体,下板固定,上板在2Pa的压强作用下以s匀速移动,求该流体的动力粘度。 [解] 根据牛顿内摩擦定律,得 dy du /τ μ= y u u u u y u u y τ τ = 0 y τ τ y τ τ τ =0 y

工程流体力学答案(陈卓如)第三章

[陈书3-8] 已知流体运动的速度场为32x v yt at =+,2y v xt =,0z v =,式中a 为常数。试求:1t =时过(0,)b 点的流线方程。 解: 流线满足的微分方程为: x y z dx dy dz v v v == 将32x v yt at =+,2y v xt =,0z v =,代入上式,得: 3 22dx dy yt at xt = +(x-y 平面内的二维运动) 移向得:32(2)xtdx yt at dy =+ 两边同时积分:32(2)xtdx yt at dy =+??(其中t 为参数) 积分结果:223x t y t ayt C =++(此即流线方程,其中C 为积分常数) 将t=1, x=0, y=b 代入上式,得:20b ab C =++ ∴积分常数2C b ab =-- ∴t=1时刻,过(0,b)点的流线方程为:222()x y ay b ab =+-+ 整理得:222()0x y ay b ab --++= 陈书3-10 已知二元不可压缩流体流动的流线方程如下,问哪一个是无旋的? (1)2Axy C =; (2)Ax By C +=; (3)()2ln A xy C =, 其中A ,B ,C 均为常数。

[解法一] (1)根据流线方程2Axy C =? 220Aydx Axdy += 当0 A ≠时,有 dx dy x y =- 令(),u xf x y =,(),v yf x y =- 根据流体的不可压缩性,从而 '''' 0x y x y u v f xf f yf xf yf x y ??+=+--=-=?? 再把流线方程2Axy C =对x 求导得到 ' ' 220y A y A xy y x +=?=- 所以 '''''' 20x y y y y u v xf yf xf y yf yf x y ??+ =-=-=-=?? y 是任意的,得到'0y f = 2 ' '' 0y x y u v y xf yf x f y x x ????-=+=-= ???? ? 无旋 (2)根据流线方程Ax By C +=? 0Adx Bdy += 令(),u Bf x y =,(),v Af x y =- 根据流体的不可压缩性,从而 ' ' 0x y u v Bf Af x y ??+=-=?? 再把流线方程Ax By C +=对x 求导得到 ' ' 0A A By y B +=?=- 所以' ' ' 20x y y u v Bf Af Af x y ??+ =-=-=?? 当0A =时,0 v =无旋 当0 A ≠时,'0y f = 2 ''' 0y x y u v A Bf Af B f y x B ????-=+=-= ????? 无旋 (3)根据流线方程()2ln A xy C = ?2 22 111220A y dx xydy A dx dy xy xy x y ????+=+= ? ?????

工程流体力学课后习题(第二版)答案

第一章 绪论 1-1.20℃的水2.5m 3 ,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度3 1/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 32 1 125679.2m V V == ∴ρρ 则增加的体积为3 120679.0m V V V =-=? 1-2.当空气温度从0℃增加至20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动力粘度μ增加多少(百分数)? [解] 原原ρννρμ)1.01()15.01(-+== 原原原μρν035.1035.1== 035.0035.1=-=-原 原 原原原μμμμμμ 此时动力粘度μ增加了3.5% 1-3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02 y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深。试求m h 5.0=时渠底(y =0)处的切应力。 [解] μρ/)(002.0y h g dy du -= )(002.0y h g dy du -==∴ρμ τ 当h =0.5m ,y =0时 )05.0(807.91000002.0-??=τ Pa 807.9= 1-4.一底面积为45×50cm 2 ,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块 运动速度u=1m/s ,油层厚1cm ,斜坡角22.620 (见图示),求油的粘度。

[解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑 y u A T mg d d sin μθ== 001 .0145.04.062 .22sin 8.95sin ????= = δθμu A mg s Pa 1047.0?=μ 1-5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律y u d d μ τ=,定性绘出切应力沿y 方向的分布图。 [解] 1-6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。已知导线直径0.9mm ,长度20mm ,涂料的粘度μ=0.02Pa .s 。若导线以速率50m/s 拉过模具,试求所需牵拉力。(1.O1N ) [解] 2 53310024.51020108.014.3m dl A ---?=????==π y u u u u y u u y ττ= 0y ττy 0 τττ=0 y

相关主题
文本预览
相关文档 最新文档