当前位置:文档之家› 稀土发光材料研究进展

稀土发光材料研究进展

稀土发光材料研究进展
稀土发光材料研究进展

稀土发光材料

来源:本站原创日期:2009-01-16 加入收藏

1 稀土发光材料发展年表

稀土元素无论被用作发光(荧光)材料的基质成分,还是被用作激活剂,共激活剂,敏化剂或掺杂剂,所制成的发光材料,一般统称为稀土发光材料或稀土荧光材料。30多年来,我国稀土发光及材料科学技术的研发在各级领导和部门关心下从起步和跟踪走向自主发展;稀土荧光体(粉)生产从零开始,已形成一个新的产业。

20世纪60年代是稀土离子发光及其发光材料基础研究和应用发展的划时代和转折点。三价稀土离子发光的光学光谱学、晶体场理论等基础研究日益深入和完善。1964年,高效YVO4∶Eu和Y2O3∶Eu红色荧光粉和1968年Y2O2S∶Eu红色荧光粉的发明,并很快被应用于彩色电视显象管(CRT)中。步入70年代,无论是基础研究,还是新材料研制及其开发应用进入迅速发展时期。

在20世纪70年代以前,我国稀土发光及材料科学和技术并没有形成,仅中科院物理所对CaS和SrS体系中掺Eu、Sm、Ce离子的红外磷光体的光致发光性能,以及在ZnS∶Cu或Mn的电致发光材料中某些稀土离子作为掺杂剂对性能影响进行少量的研究。所用稀土材料全部进口,价格比黄金还贵。

20世纪70年代中科院长春物理所抓住机遇,将这一时期国际上大量的新科研成果引入翻译出版向全国介绍,起"催化剂"作用;同时有一批从事稀土分离的化学科技工作者也纷纷转入从事稀土发光及材料科研和开发工作,加之彩电荧光粉会战,使这一新兴学科在我国正式起步并不断发展。

20世纪60和70年代国际稀土发光材料发展和我国稀土冶炼及分离工业崛起,许多单位跟踪国际上已有成效的工作,纷纷开展稀土离子发光性能研究,以及许多不同用途、不同体系的稀土发光功能材料的研发工作,这里特别应指出的彩电荧光粉成为全国会战任务。

根据当时国内外发展,1973年国家计委下达彩电荧光粉全国会战任务,由中科院长春物理所任组长单位,组织北京大学、北京有色金属研究总院、南京华东电子管厂、北京化工

厂、中科院长春应用化学研究所、上海跃龙化工厂和上海电子管二厂等全国主要的研究院所、高校和工厂对彩电三基色荧光粉进行协作攻关。经过3年努力,使彩电三基色荧光粉一次特性接近国外水平。

成果和意义:

(1)找出我国稀土红色荧光粉比日本、美国等国荧光粉性能差的根本原因是三价铈、钕等少量轻稀土杂质及非稀土杂质的猝灭作用。而当时我国生产的氧化钇中含有相当多的这些杂质。

(2)证实加入微量的三价铽或镨离子可以有效地提高发红光的三价铕离子的发光效率。

(3)由于找到影响稀土红色荧光粉亮度的根本原因,使当初亮度只有相对国外样品的80%左右,一下子提高到98%左右,光谱和色品质相同。

(4)上述成果及时反馈我国稀土分离厂,使荧光级Y2O3和Eu2O3原料达到彩电粉要求,使我国高纯单一稀土氧化物开始工业化生产,不仅满足国内要求,而且逐步出口,走向世界,直到今日。

彩电显象管及荧光粉引进

20世纪70年代后期,改革开放开始,我国咸阳彩电显象管总厂在1980年整体引进日本日立公司生产彩电显像管及日本化成公司彩电荧光粉的技术和设备,成立了我国第一家彩电显像管总厂和彩电荧光粉厂。开始,红色稀土荧光粉所用的氧化钇和氧化铕原料全部从日本高价进口,后来几经证明和证实并与日方协商才改用国产稀土原料。当初,彩电三基色荧光粉设计生产能力为90吨/年,现已发展到500吨/年。通过引进使我国彩电显像管和荧光粉与世界先进水平的差距大大缩短。

紧凑型荧光灯及其稀土三基色荧光粉

由于能源危机,20世纪70年代中后期,荷兰菲利浦公司首先发明新一代光源-紧凑型荧光灯及其稀土三基色荧光粉。在国家计委稀土办公室的领导和支持下,这一新兴光源及荧

光粉的发展在70年代后期至80年代主要经历跟踪、从无到有发展阶段。在80年代也走过一些弯路,规模小,一味相信进口设备,荧光粉生产作坊式,设备落后。

2 自主发展和应用

我国稀土发光及其材料科学技术和产业化经过30年的研发,尽管与发达国家相比还存在一定差距,但取得许多自主发展的科技成果,特别是从1980年改革开放以来,短短的20年来,取得了令人瞩目的成就。

队伍、科研成果、生产基地等方面

目前已在高等院校、中科院和产业部门形成水平较高的科研和工程技术队伍,科研和生产基地。在国际著名的杂志上发表许多高水平学术论文,申请一批发明专利,出版一些专著。取得的国家、省部级成果为国家建设和安全做出了一定贡献,并获得重大经济和社会效益。北方交通大学成立了光电技术研究所,专门从事发光和显示的研发工作,北京有色金属研究总院建设稀土材料国家工程研究中心;长春有中科院凝聚态物理开放实验室及稀土化学和物理开放实验室,还有北京大学等其他院校开放实验室,为稀土发光材料的基础研究提供先进实验条件;历年培养的一批批青年专业人材,已成为本领域的骨干和带头人;在咸阳、北京、上海、江浙和广东等地形成一批生产基地。

各种彩电荧光粉和显示器用的荧光粉生产

20世纪90年代初,为适应咸阳彩管总厂扩建需求,咸阳彩电荧光粉厂自主开发出适应从日本某公司引进的彩管严格工艺要求的彩电荧光粉,节省大量外汇,保证二期工程扩建。北京化工厂和上海跃龙化工厂也分别建成了彩电荧光粉厂。目前我国三大彩电荧光粉厂在2001年产量达到1000吨。除了配套满足咸阳彩虹集团、北京松下显象管厂及上海永新显象管厂外,还逐渐应用到我国其他外资合资企业中,占我国绝大部分市场。近两年他们正向东南亚、印度开拓市场。在彩电荧光粉中主要应用铕激活的硫氧化钇红色荧光粉,它在三基色荧光粉中技术含量和附加值最高。

从20世纪90年代中期以来,上述三大彩电荧光粉厂积极开发计算机终端显示器用的彩色荧光粉,目前产量约80吨。此外,人们正在使彩色投影电视用的稀土荧光体达到国产

化。

紧凑型荧光灯(节能灯)及其荧光粉

这一产业涉及"绿色照明工程",得到各级政府支持。从20世纪90年代开始,该产业逐步摆脱一味仿制和设备引进,形成有一定特色产业。稀土三基色荧光粉也经历从无到有发展阶段,目前已形成稀土荧光粉第二大产业,2001年年产达650吨,而且红色和绿色荧光粉每年出口几十吨。上海跃龙新材料股份有限公司、复旦大学、广东江门科恒公司及杭州大明荧光粉厂等在这方面做出贡献。逐步摆脱规模小,设备落后局面。近两年由稀土三基色荧光体制作的环形灯获得了迅猛发展,这将给灯用稀土荧光粉的产业带来一个新的局面。

增感屏用荧光体

许多稀土荧光体可以用作X射线增感屏,对于诊断人类疾病,保障人们医疗健康起重要作用。北京大学开发的二价铕激活的氟氯化钡荧光体成功地用于X射线增感屏,在医院使用。他们研发的二价铕激活的氟溴化钡荧光体用于存储计算的X射线摄象系统,其图象板和仪器已研制成功,正在多家医院试用。

新一代长余辉磷光体

从1989年至今,我国大力研制和发展二价铕和其他稀土离子掺杂的铝酸盐新一代篮绿色、绿色及蓝色长余辉磷光体,它们的性能均超过以往的ZnS型和SrS型长余辉粉,

SrAl2O4∶Eu,Dy绿色磷光体长达12小时。与此同时,我国科技工作者将长余辉磷光体和涂料、不干胶、油墨或纺织品结合开发出各种荧光涂料制品,并已实现大规模产业化。

大连路明科技集团在这一领域卓有成就,在国内外享有盛誉,其各类制品得到顾客认可,产品远销欧美各国,创造重大经济和社会效益。他们研发的蓄光自发光型疏散指示标志系统推向了全球,现已发展成为世界各国消防部门优先推荐的消防新品。2001年4月我国公安部、建设部已联合审定将这种发光消防安全指示制品列入新审定的国家消防规范进行实施。一些重点场所和工程也已率先使用。

农用光转换膜

将发光材料作为太阳光的转光剂,加入到农用塑料薄膜中制成农膜或大棚,改善光合作用的光质,提高光能利用率,促进农作物、主要使蔬菜的早熟和增产。这一新技术于20世纪90年代在我国迅速发展。目前使用和发展的转光剂分两大类:

(1)有机铕(钐)的配合物/螯合物;

(2)稀土激活的发红光无机荧光体。这一新技术对西部和北部绿色农业工程发展,甚至脱贫致富很有帮助。

军事

稀土发光材料制作的各种显示器已用于歼击机、强击机和武装直升机中,提高其功能和性能。长余辉夜光粉制品用于舰艇等方面。我国有关单位已做出了贡献。

白光LED

发白光的发光二极管(LED)在20世纪90年代末出现,成为第四代照明光源。实现白光LED其中有两个重要方案:(1)蓝光LED芯片和可被蓝光有效激发的发黄光的荧光体有机结合组成白光LED;(2)像三基色节能灯那样发紫外光LED芯片和可被紫外光有效激发而发红、蓝、绿的三基色荧光体或多基色荧光体有机结合。

由蓝色InGaN LED芯片和可被蓝光有效激发的发黄光的铈激活的稀土石榴石荧光体有机结合,是实现发白光LED目前的主导方案,在国内外已产业化。在这种稀土石榴石荧光体在我国有良好的基础和很高的水平,用国产的这种荧光体制作的白光LED达到了国际先进水平。

其他特种荧光灯用稀土荧光体

一些稀土荧光体在我国早已被用做保健灯、灭虫灯、复印灯等特殊光源,产量可观。

平板显示器用的稀土荧光体

各类平板显示器如等离子体平板显示器(PDP)、场发射显示器(FED)以及LCD背光源用的三基色荧光体大多为稀土发光材料。我国一些单位正在研发,并积极配合相关器件单位攻关,可望早日达到实用化。

我国稀土掺杂玻璃和光纤的研发在能量光电子和信息光电子高技术领域中也取得一些成就。稀土有机配合物荧光材料已在某些方面获得了应用。稀土闪烁体,太阳能的利用,纳米荧光体及无汞平面光源等有大的发展和应用空间。

经过30多年发展,我国稀土发光材料的研发、生产和应用并带动了相关科技和产业化发展,目前已涉及主要的应用领域和范围有:信息显示人类医疗保健照明光源高能粒子探测和记录光电子通信农业军事纳米材料

稀土发光材料科学是一个交叉学科,它涉及物理、化学化工、材料科学、信息显示、照明工程及光电子等科技。小小荧光粉的水平也能体现综合实力。发光材料研发和应用带动相关科技和产业化发展,产生显著经济和社会效益。

(1)荧光粉光谱和色品质测试仪。我国先后研制出阴极射线发光测试装置,荧光灯及灯粉光谱和色度学参数测试仪,PDP荧光粉光学参数测试系统等,过去都是空白,全部进口。目前,我国荧光粉生产厂家和紧凑型荧光灯厂家均使用国产自主开发的这类仪器。

(2)推动我国同步辐射实验室3B1B光源实验站的逐步完善建设。

(3)带动我国高温窖业炉及陶瓷业发展。

(4)带动一些高纯无机化工原材料产业的兴建和出口,使其附加值大大增加。如荧光级各种稀土氧化物,氧化铝,碳酸钠等原料在不同地区兴建生产基地,价格便宜,全部国产化。20世纪70年代后期,荧光级氧化钇每公斤3000元左右,现在每公斤只需要120元,荧光级氧化铕每公斤要1万多元,现在3000元/公斤左右。这不仅满足国内市场需要,而且大量出口。目前,一些高技术需要的更高的99.999%或以上纯度的单一稀土氧化物我国也能生产提供。质量提高,价格降低,反过来又促进一些高科技发展。

(5)赋予传统涂料化工行业新面貌。长余辉磷光体和传统涂料化工业有机结合,发育

出新的产业--发光涂料、夜光涂料,改造传统涂料化工产品结构,大大提高产品附加值,赋予我国传统涂料化工行业新面貌。

3 我国稀土发光材料生产现状

我国稀土发光材料生产自20世纪80年代起步以来,获得了迅速发展,目前已形成三大主流产品:信息显示用荧光粉、灯用三基色荧光粉、长余辉荧光粉。

1990~2003年我国彩电粉年产量增长了20倍以上,灯粉产量增长幅度更大,达到30倍以上。我国稀土长余辉发光材料的产业化虽晚于彩电粉和灯粉,但发展速度迅猛,目前生产能力已达600吨左右。

4 CRT显示用稀土发光材料

20世纪80年代初,为了适应我国彩电工业的快速发展,尽快实现彩电荧光粉的国产化,彩虹集团在引进日本日立公司彩电显象管技术的同时,引进了日本化成公司彩电荧光粉的技术和设备,建立了我国首家彩电荧光粉厂,后又引进东芝技术生产25英寸大屏幕彩电粉。目前,彩虹荧光材料有限公司彩电粉生产能力已达300吨,较最初90吨的设计能力增长了2倍多。北京北化精细化学品有限公司荧光粉厂最早生产黑白电视荧光粉,80年代后期引进了日本化成公司技术生产彩电荧光粉,目前生产能力已达450吨。上海跃龙新材料股份有限公司于90年代初引进了东芝21英寸红粉生产技术,后又开发出多种系列的彩电荧光粉和显示荧光粉,目前已具备了180吨/年的生产能力,可以提供多种系列的彩电荧光粉和显示荧光粉,用于14英寸到17英寸彩电显象管及21英寸到34英寸彩色显象管的制造。上海跃龙更大规模的荧光粉生产线正在加紧建设中。上述3家企业已成为我国彩管粉的主要生产基地。

目前彩管中红粉普遍采用铕激活的硫氧化钇(Y2O2S∶Eu)荧光粉。由于氧化钇、氧化铕价格昂贵,致使红粉成本较高。目前的研究方向是探索与优化纳米级稀土红色荧光粉的制备工艺,将稀土氧化物超细化、纳米化,同时尽量减少稀土用量或寻找廉价材料以代替红粉中昂贵的稀土原料。蓝粉使用银或银、铝激活的硫化锌,尽管研制了铥激活的硫化锌或二价铕离子激活的氯磷酸锶等新的蓝粉,但由于发光效率和成本比不上银激活的硫化锌,未得到推广使用。绿粉主要采用钙、铝激的硫化锌(镉),该荧光粉光衰较红粉和绿粉大,故需

开发新的绿粉。据报道,铽激活的硫氧化镧特性较好,但发光效率低,而铈激活的硫化钙虽然发光效率高,但稳定性差。

投影电视用荧光粉与普通彩电荧光粉相比,需承受更大的电流密度和更高的阴极电压。红粉采用铕激活的氧化钇。绿粉以铽为激活剂,基质主要有钇铝石榴石、溴氧化镧、氯氧化镧等。蓝粉采用二价铕激活的碱土金属氯磷酸盐或碱土金属硅酸盐。2001年,中科院长春光机所与物理所研制成功了彩色投影电视用稀土荧光粉,具有亮度大、对比度高等优点,主要技术指标达到了世界商用投影管的要求。该项目是国家"863"计划资助的产业化项目,2002年已进行了中试,其产品在天津三星电管厂已进行试用,符合要求。

计算机显示器要求荧光粉具有高亮度、高对比度和清晰度,其红粉也采用铕激活的硫氧化钇,但铕的含量比彩电红粉稍高。绿粉为铽镝激活的硫氧化钇或硫氧化钆,据报道,蓝粉也将由稀土发光材料取代锌、锶硫化物。多年来,我国彩色显示管用彩粉市场一直被日本产品所垄断。北京北化精细化学品有限公司已研制成功彩色显示管用稀土荧光粉,产品发光亮度高,粒度小,分散窄,分散性好。据报道,彩色显示管荧光粉的产业化已受到国家发展改革委专项基金的支持,预计不久将实现规模化生产。

5 平板显示用稀土发光材料

平板显示分等离子体显示、液晶显示、场发射显示及电致发光显示等。等离子体显示用荧光粉主要发光区域在紫外区域,所用的红粉为铕激活的硼酸钇和硼酸钆,绿粉为锰激活的硅酸锌,蓝粉为二价铕激活的碱土金属多铝酸盐。我国从事等离子体荧光粉研制的单位较多,如包头稀土研究院、北京有色金属研究总院、长春应用化学研究所、长春物理研究所。据报道,长春应用化学研究所已完成了实验室试验与扩大试验,为下一步产业化提供了可靠依据。上海跃龙新材料股份有限公司在建的荧光粉项目中有彩色等离子体荧光粉,2004年可能投产。另外,江西南方稀土高技术股份有限公司与韩国合资建设的荧光粉项目中亦包括年生产能力60吨的等离子荧光粉生产线,预计近两年投产。

场发射显示器用荧光粉基本是由传统CRT用荧光粉加以改进而制成,要求荧光粉组成稳定,发光效率高,不易分解,颗粒结晶质量完好,物理化学性能稳定,颗粒尺寸小,目前尚未见规模化生产。

接近商业化应用的电致发光稀土荧光粉主要有铽激发的硫化锌绿色荧光粉、铈激发的硫化锶蓝绿色荧光粉。

6 灯用稀土三基色荧光粉

稀土三基色灯用荧光粉的产业化离不开节能灯的发展。20世纪80年代初菲利浦发明了世界上第一支紧凑型节能荧光灯,并在发达国家很快推广。不久,我国的稀土节能灯研制成功,并开始在大门灯泡厂、云南个旧灯泡厂、上海波力通照明有限公司投入生产。与此同时,我国第一条稀土三基色荧光粉生产线在上海跃龙建成。1994年,国家有关部门为了发展和推广以稀土节能灯为主的高效照明器具,开始制定并实施"中国绿色照明工程"。受此推动,我国建成一大批节能灯生产厂家,稀土灯粉厂家发展到20多家左右,目前,稀土灯粉生产能力最大的是上海跃龙新材料股份有限公司与中国稀土(控股)股份有限公司。

目前商用蓝粉为铕、锰共激活的多铝酸钡镁。绿粉为铽激活的多铝酸镁铈,红粉为铕激活的氧化钇。

制造高品质的节能灯一般要求荧光粉化学稳定性好、制灯后光效高、使用寿命长和光衰低。我国的灯用红粉质量已达国际先进水平,主要是降低成本的研究。绿粉的量子效率只有80%,故主要是关于提高发光效率的研究。多年来,围绕铽来合成不同体系的绿粉一直是人们感兴趣的课题。近年来研究较多的铈、铽共激活的正磷酸盐,在工业上也得到越来越多的应用。我国的灯用蓝粉一度与国际先进水平有较大差距,主要是显色指数低。20世纪90

年代末东京化学公司推出了铕锰共激活的多铝酸钡镁(BaMgAl10O17∶Eu,Mn),具有较高显色指数,上海跃龙公司对这一产品进行跟踪,对粉体成份、工艺条件、后处理进行了改进,并对工业生产装备、条件控制进行了开拓,大批量生产出高显色性稀土铝酸盐蓝粉。目前我国稀土灯粉质量已得到全面提升。

我国稀土灯粉未来的技术发展趋势是:一是根据制灯企业的要求开发各种不同规格的产品。以上海跃龙为首的几家主要粉厂已着手研制开发适用于T1~T12荧光灯的稀土荧光粉,包括稀土单色荧光粉、混合荧光粉、双峰及多峰波长荧光粉。二是加强灯粉物性控制,提高制灯后的二次特性。影响稀土三基色荧光粉发光性能的因素除化学指标外还有物性指标,如料度大小和分布、结晶性、分散性、密度等。我国有关研究单位对稀土灯粉的物性指标和控制进行了很多研究,对制粉厂家来说,主要是从原料制备到产品的后处理加工的整个生产过

程加以控制,从而开发出超细粒荧光粉、不球磨荧光粉和包膜荧光粉等。

7 稀土长余辉发光材料

20世纪90年代以来,为了发展更优良的长余辉发光材料,人们尝试使用稀土,成功开发了二价铕和其他稀土离子掺杂的绿色、蓝绿色及蓝色长余辉发光材料。目前商用的蓝色长余辉发光材料是铕、镝激发的铝酸钙(CaAl2O4∶Eu,Dy),绿色长余辉发光材料是铕、镝激发的铝酸锶(SrAl2O4∶Eu,Dy),其发光强度、余辉亮度及余辉时间均超过传统的碱土金属硫化物发光材料,而且在空气中的化学稳定性比硫化物优良,但缺点是浸泡在水中容易发生分解。

20世纪90年代中期稀土长余辉荧光粉在我国实现了产业化,目前年生产能力已达到600吨。龙头企业是大连路明发光科技股份有限公司。四川省新力集团与清华大学研发的稀土长余辉发光材料已进入产业化阶段,已建成共沉淀法稀土长余辉发光材料生产线和多个应用加工车间。产品分3大类,9个系列,近200多个品种,主要有红、黄、蓝、紫长余辉发光材料;发光涂料、油墨、塑料、陶瓷和发光工艺品等;发光地名、消防、电力和公共信息标示牌等。最近中标深圳地铁标示牌,合同金额近4000万元。

近年来,我国稀土铝酸盐长余辉发光材料及其各种涂料制品开发相当活跃。此外,有关单位正在研制性能更优良的新型红色长余辉发光材料,以取代传统的碱土金属硫化物。

8 白光发光二极管用稀土发光材料

白光发光二极管是一种新型的固体照明光源,具有体积小、重量轻、节能、寿命长等优点。1993年日本日亚开发成功了蓝色氮化镓发光二极管芯片,在封装材料中添加钇铝石榴石黄色荧光粉,还有一种是在发紫光芯片上涂敷稀土三基色荧光粉,从而使发白光成为现实。长春物理研究所从事钇铝石榴石荧光粉的研究已有20多年的历史,并于20世纪末研制成功了白光发光二极管。

近年来,白光发光二极管光效大大提高,而价格又在不断降低,估计这种新颖的固体光源在照明方面的广泛应用为时不会太远。

9 X射线增感屏用稀土荧光粉

传统的X射线用荧光粉是钨酸钙。20世纪70~80年代,国外开发成功了增感屏用稀土荧光粉,如铽激活的硫氧化镧、铽激活的溴氧化镧(绿屏用),铽激活的硫氧化钇、二价铕激活的氟氯化钡及铥激活的溴氧化镧。与钨酸钙相比,上述稀土荧光粉可使患者受X射线照射的时间减少80%,还能提高X光片的分辨率,延长X射线管的寿命,并降低能耗。

我国武汉大学等单位研制成功了X射线增感屏用稀土荧光粉。但由于价格昂贵,未获得普遍采用。

10 新的合成方法的发展

目前工业生产荧光粉的方法均为传统的高温固相合成法,主要优点是微晶的晶体质量优良,表面缺陷少、发光效率高,缺点是合成清晰度高,颗粒尺寸大且分布不均匀,难以获得球形颗粒。20世纪80年代以来,发展了一系列新的合成方法,如溶胶-凝胶法、燃烧法、水热法。这些方法的共同优点是合成温度大大降低,产物物相纯度高,可以得到较小的颗粒,缺点是发光效率低,荧光粉结晶质量欠佳,晶体形状难以控制。此外,还发展了微波辐射加热法和等离子体加热法等物理合成方法。微波辐射法的优点是合成速度快、能耗小,操作简便,产品物相纯度高。这些新的合成方法成本一般较高,大规模生产中用的不多。

11 纳米稀土荧光粉的发展

1994年国外首次报道了锰激活的硫化锌纳米发光材料,引起了人们对此的广泛研究。同时,稀土纳米发光材料也受到关注。如北京大学稀土实验室、长春物理研究所等都用燃烧法合成了纳米级稀土红粉,中山大学用溶胶-凝胶法合成了亚纳米级稀土绿粉。纳米稀土荧光粉显示出许多独特性能,极有希望成为一类新型发光材料。由于纳米发光材料研究起步较晚,种类不多,目前研究的所有纳米荧光粉的发光强度均比商用体材料低。今后的研究方向是增加新品种,发展先进的合成方法,提高荧光粉的发光效率;研究纳米复合材料等。

12 稀土发光材料终端应用市场

12.1 信息显示

信息显示是稀土荧光粉的主要应用领域之一。按显示方式可分为传统CRT(阴极射线管,下同)显示与平面显示两大类,平面显示主要包括液晶显示与等离子体显示,按终端产品划分,主要包括彩电与计算机显示器两大类。

信息显示所用稀土荧光粉可分为CRT红粉、投影粉、等离子显示粉及液晶显示背光灯用稀土荧光粉。每只CRT需红粉平均为10~12克,屏幕越大,用量越大;每台42英寸等离子彩电用稀土荧光约100克;液晶显示背光灯中消耗稀土荧光粉极少,据统计,2002年全球用量仅70吨。

(1)阴极射线管

阴极射线管(包括彩色显像管和彩色显示管)技术是传统的显示技术,经过长期的不断改进、完善,在图像清晰度、亮度、对比度、寿命等方面已达到极其完善的程度,其性能价格比也非常好,市场占有率占各种显示器的首位。

我国彩管工业起步于20世纪70年代末。80年代后期,随着彩电市场的蓬勃发展,带动了为之配套的彩管工业的迅猛发展,表51列出了1989年以来我国彩管产量变化状况。目前,我国有彩管企业10余家,主要是咸阳彩虹、上海永新、福地科技、深圳赛格、LG 曙光、三星电管、北京松下、南京华飞。近年来,由于日本、韩国及台湾等国家和地区纷纷向我国转移彩管生产线,我国已成为全球彩管生产、供给中心。经过2001年的调整之后,2002年我国生产彩管7600万只,较2001年增长了40%以上。按每只彩管消耗10克红粉计算,估计2002年我国彩管工业消费红色荧光粉760吨。

(2)彩电

起步于20世纪70年代中期的我国彩电业除1989年和2000年出现两次回落之外,基本上保持了逐年上升的态势,并经历了三个发展时期,70年代中期至80年代初期的导入期,80年代初中期至90年代初期的成长期及90年代之后的成熟期。目前我国彩电生产能力已达到8000万台/年以上,已成为世界彩电生产和出口大国。2002年我国生产彩电5200万台,销量5300万台,其中出口1800万台。彩电的发展促进了彩显管及所用荧光粉的发展。

(3)显示器

与彩电产业及彩管产业相比,我国显示器产业的投资主体是外资及股份制企业,是以国际市场为主的出口导向型产业。全球的显示器产业移产布局于我国改革开放政策的生动体现。我国政府依靠政策,并以很少的投资,赢得了显示器产业的巨大发展。但需注意的是,我国显示器用彩管75%左右靠进口,故国内彩色显示管用荧光粉市场空间不大。

2002年全球显示器产量为11600万台,其中CRT显示器8236万台,液晶显示器3364万台。我国显示器产量占全球总量的48.6%,其中CRT显示器占全球总量的55.6%,液晶显示器占全球总量31.4%。

目前,我国共有显示器厂商89家,主要分布在广东、福建、江苏、北京、天津等地。其中生产CRT显示器产量在100万台以上的有12家,占我国CRT显示器总产量的84.5%;生产液晶显示器产量在10万台以上企业共有13家,占液晶显示器总产量97%。

12.2照明

(1)稀土三基色灯

20世纪80年代初,上海开发了第一批稀土节能灯管。"七五"期间,国务院稀土领导小组会同轻工部、机电部,加强了稀土节能灯的发展战略研究和宏观调控,打破行业界限,发挥综合优势,以提高稀土节能灯质量为中心,重点扶持了一批大中型骨干企业。"八五"期间,国家计委稀土办对稀土节能灯整个系统工程进行了优化组合,全国形成了每年1.5亿支的生产能力,初具规模。

1994年,根据欧美发达国家的成功经验,国务院有关部委开始制订并实施"中国绿色照明工程",并在发展和推广以稀土节能灯为主的高效照明器具,节约照明用电,改善照明条件,减少环境污染。受此推动,我国出现了一大批节能灯生产企业,尤其是外国制灯企业的拥入,不仅带来了雄厚的资金和先进的设备,并引入了先进的管理经验。1995年我国从德国欧司朗引进了水涂粉工艺,不仅使节能灯成本下降,而且提高了光效和光通维持率,易燃、易爆,有害的醋酸丁酯溶剂随之淘汰。

近年来,由于绿粉、蓝粉性能的提高,节能灯产品质量与国外的差距逐渐缩短,出口量不断提高。2001年欧盟反倾销一案使我国很多节能灯企业产品出口受到负面影响,但大多能吸取教训,从价格竞争转向产品质量、技术含量的竞争。尤其是浙江阳光与佛山照明利用上市公司的优势,筹集资金建立了数条T8、T5灯生产线,使我国的稀土节能灯生产规模进一步提高。

目前,世界电光源的发展趋势是,由稀土荧光灯为主的高效节能器具逐渐取代白炽灯。我国稀土荧光灯的发展与西方国家相比还有一定差距。如,1998年,日本稀土荧光灯与白炽灯的产量比是1∶0.4,而我国目前白炽灯产量远大于荧光灯,更不用说稀土荧光灯了。说明我国稀土荧光灯的发展潜力还很大。根据国家"十五"规划,到2005年荧光灯将占我国电光源总量的30%,其中稀土三基色荧光灯占荧光灯总量的比例不低于40%,稀土三基色荧光灯的年需求增长率不低于45%。

目前我国生产直管T5、T8荧光灯自动生产线有40余条,年生产能力达8亿支,如有1/3采用灯用稀土三基色荧光粉,平均以每支耗用3克计,预计到2005年仅直管型、环型荧光灯需用稀土荧光粉1800吨。我国未来几年灯用稀土三基色荧光粉的市场将有很大发展。加入WTO有利于国外公司对国内投资和国内企业的出口。照明器具生产行业属于劳动密集型的行业,世界上许多著名的厂商纷纷到中国来求发展,如荷兰飞利浦、德国欧司朗、美国GE、日本松下、东芝等公司都已在我国以独资或合资的方式设立了包括稀土荧光灯在内的照明灯具生产工厂,这无疑会增加国内稀土灯粉的需求量。由于国内的劳动力成本较低,稀土荧光灯企业只要能在管理和材料成本控制上有一定的优势,相应的稀土荧光灯的成本就会比较低,在国际市场上就会有竞争力。如佛山照明、浙江阳光集团等照明灯具的龙头企业产品出口的比例都很高。稀土荧光灯出口量的增加会扩大稀土灯粉的消费量。

(2)金属卤化物灯

用于金属卤化物灯的稀土发光材料主要是镝、铒、钬、钪的卤化物,通过一种或几种不同金属卤化物组合,可制成不同颜色的光源材料。

我国自20世纪70年代中期开始,开展了灯用稀土碘化物和溴化物及相关金属碘化物、溴化物的制备方法的研制并试生产,并用于研制金属卤化物灯。北京有色金属研究总院是国内唯一全面研制和生产金属卤化物灯用发光材料的单位,基本满足了国内灯厂的需求。金属卤化物灯广泛应用于广场、机场、建筑物外墙、车间及宾馆大厅等,目前正由室外照明向室内照明发展。

金属卤化物灯在世界灯泡市场上约占1/4的份额,并以每年25%的速度增长。进入20世纪90年代末期,我国引进了10多条先进多发卤化物灯生产线,2001年我国金属卤化物灯为800万支,2003年达2000万支以上,金属卤化物灯在我国正处于高速发展的初期,预计2005年产量可达3000万支。

目前我国金属卤化物灯生产企业有20多家,其中年产100万支以上的有飞利浦亚明照明公司、江苏常州普罗斯灯饰有限公司及江苏武进牛塘特种灯泡厂。年产40万支至100万支的企业有浙江亚茂照明电器有限公司、江苏常州礼嘉照明电器厂、杭洲照明电器公司。年产30~40万支的企业有上海罗曼电光源有限公司、北京安华太平洋电光源公司、安徽芜湖光华莱特照明公司、上海亚明特种灯泡厂。2008年北京奥运会的举办,将促进全国大中型城市体育场馆的建设,预计到2005年国内市场需求量为2500~3000万支左右

稀土发光材料的研究和应用.

稀土发光材料的研究和应用 摘要:介绍了稀土发光材料的发光特性与发光机理。综述了我国在稀土发光材料的化学合成方法。总结了稀土发光材料的应用。最后对我国存在问题和发展前景进行了叙述。关键字:稀土发光材料;发光特性;发光机理;合成;应用;问题和展望。 Abstract:Introduces the luminescence properties of rare earth luminescent material and luminescence mechanism. Rare-earth luminescence materials in China, the paper summarized the chemical synthesis method. The application of rare earth luminescence materials is summarized. Finally, the existing problems and development prospect of the narrative in our country. Keywords:Rare earth luminescent material; Luminescence properties; Light-emitting mechanism; Synthesis; Application; Problems and its prospect. 化学元素周期表中镧系元素———镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的两个元素——钪(Sc)和钇(Y)共17种元素称为稀土元素。稀土化合物包含至少一种稀土元素的化合物。它是一种重要的战略资源,特别是高新技术工业的重要原料,如军事装备方面一些精确打击武器、一些汽车零部件和高科技产品,都依赖用稀土金属制造的组件。据了解,中国是唯一能有效提供全部17种稀土金属的国家,且储量远远超过世界其他国家的总和,是名副其实的“稀土大国”。由于稀土元素的离子具有特别的电子层结构和丰富的能级数量,使它成为了一个巨大的发光材料宝库。在人类开发的各种发光材料中,稀土元素发挥着重要作用,稀土发光几乎覆盖了整个固体发光的范畴。稀土发光材料具有发光谱带窄,色纯度高,色彩鲜艳;光吸收能力强,转换效率高;发射波长分布区域宽;荧光寿命从纳秒跨越到毫秒达6个数量级;物理和化学性质稳定,耐高温,可承受大功率电子束、高能辐射和强紫外光的作用等。目前稀土材料已广泛用于照明、显示、信息、显像、医学放射学图像和辐射场的探测等领域,并形成很大的工业生产和消费市场规模;同时也正在向着其他新型技术领域扩展,成为人类生活中不可缺少的重要组成部分。本文将介绍掺稀土离子发光材料的发光机理、节能灯、白光LED用荧光粉、PDP显示用荧光粉,以及对在上转换发光、生物荧光标记和下转换提升太阳能效率等方面的应用前景进行总结和展望。

稀土发光材料的研究现状与应用(综述)

稀土发光材料的研究现状与应用 材化092 班…指导老师:…. (陕西科技大学材料科学与工程学院陕西西安710021) 摘要稀土元素包括元素周期表中的镧系元素(Ln)和钪(Sc)、钇(Y),共17个元素。由于稀土离子的4f电子在不同能级之间的跃迁产生的丰富的吸收和发射光谱,使其在发光材料中具有广泛的应用。稀土元素的特殊原子结构导致它们具有优异的发光特性,用于制造发光材料、电光源材料和激光材料,其合成的发光材料充分应用在照明、显示、医学、军事、安全保卫等领域中。稀土元素在我国的储量丰富,约占全世界的40%。本文综述了稀土发光材料的发光机理、发光特性、化学合成方法、主要应用领域以及稀土矿藏的开采方面存在的问题,并预测了今后深入研究的方向。 关键词稀土,发光材料, 应用 Current Research and Applications of rare earth luminescent materials Abstract Rare earth elements, including the lanthanides (Ln) and scandium (Sc) , yttrium (Y)of the periodic table, a total of 17 elements. a plenty of absorption and emission spectra in the light-emitting materials produced by the 4f electrons of rare earth ions transiting between different energy levels lead to a wide range of applications of rare earth luminescent materials. Special atomic structure of rare earth elements lead to their excellent luminescence properties, which is used in the manufacture of luminescent materials, the electric light materials and laser materials, 1 / 8

稀土发光材料的研究进展

前言 当稀土元素被用作发光材料的基质成分,或是被用作激活剂、共激活剂、敏化剂或掺杂剂时,这类材料一般统称为稀土发光材料或稀土荧光材料。我国丰富的稀土资源,约占世界已探明储量的80%以上。稀土元素具有许多独特的物理化学性质,被广泛地用于各个领域,成为发展尖端技术不可缺少的特殊材料。稀土离子由于独特的电子层结构使得稀土离子掺杂的发光材料具有其它发光材料所不具有的许多优异性能,可以说稀土发光材料的研究开发相对于传统发光材料来说犹如一场革命。稀土无机发光材料方面,稀土发光材料与传统的发光材料相比具有明显的优势。就长余辉发光材料来说,稀土长余辉发光材料的发光亮度是传统发光材料的几十倍,余辉时间高达几千分钟。由于稀土发光材料所具有如此优异的性能使得发光材料的研究主要是围绕稀土发光材料而进行的。 由于稀土元素具有外层电子结构相同、内层4f 电子能级相近的电子层构型,含稀土的化合物表现出许多独特的理化性质,因而在光、电、磁领域得到广泛的应用,被誉为新材料的宝库。在稀土功能材料的发展中,尤其以稀土发光材料格外引人注目。稀土因其特殊的电子层结构,而具有一般元素所无法比拟的光谱性质,稀土发光几乎覆盖了整个固体发光的范畴,只要谈到发光,几乎离不开稀土。稀土元素的原子具有未充满的受到外界屏蔽的4f5d 电子组态,因此有丰富的电子能级和长寿命激发态,能级跃迁通道多达20 余万个,可以产生多种多样的辐射吸收和发射,构成广泛的发光和激光材料。随着稀土分离、提纯技术的进步,以及相关技术的促进,稀土发光材料的研究和应用将得到显著的发展。进入二十一世纪后,随着一些高新技术的发展和兴起,稀土发光材料科学和技术又步入一个新的活跃期,它为今后占主导地位的平板显示、第四代新照明光源、现代医疗电子设备、更先进的光纤通信等高新技术的可持续发展和源头创新提供可靠的依据和保证。所以,充分综合利用我国稀土资源库,发展稀土发光材料是将我国稀土资源优势转化为经济和技术优势的具体的重要途径。 纳米稀土发光材料是指基质粒子尺寸在1~100 纳米的发光材料。纳米粒子本身具有量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应等。受这些结构特性的影响,纳米稀土发光材料表现出许多奇特的物理和化学和和特性,从

荧光材料文献综述

一、荧光材料的种类与特性 总的说来,荧光材料分有机荧光材料和无机荧光材料。 有机荧光材料又有有机小分子发光材料和有机高分子光学材料之分。有机小分子荧光材料种类繁多,它们多带有共轭杂环及各种生色团,结构易于调整,通过引入烯键、苯环等不饱和基团及各种生色团来改变其共轭长度,从而使化合物光电性质发生变化。如恶二唑及其衍生物类,三唑及其衍生物类,罗丹明及其衍生物类,香豆素类衍生物,1,8-萘酰亚胺类衍生物,吡唑啉衍生物,三苯胺类衍生物,卟啉类化合物,咔唑、吡嗪、噻唑类衍生物,苝类衍生物等。它们广泛应用于光学电子器件、DNA诊断、光化学传感器、染料、荧光增白剂、荧光涂料、激光染料[7]、有机电致发光器件(ELD)等方面。但是小分子发光材料在固态下易发生荧光猝灭现象,一般掺杂方法制成的器件又容易聚集结晶,器件寿命下降。因此众多的科研工作者一方面致力于小分子的研究,另一方面寻找性能更好的发光材料,高分子发光材料就应运而生了。 有机高分子光学材料通常分为三类:(1) 侧链型:小分子发光基团挂接在高分子侧链上,(2) 全共轭主链型:整个分子均为一个大的共轭高分子体系,(3) 部分共轭主链型:发光中心在主链上,但发光中心之间相互隔开没有形成一个共轭体系。目前所研究的高分子发光材料主要是共轭聚合物,如聚苯、聚噻吩、聚芴、聚三苯基胺及其衍生物等。还有聚三苯基胺,聚咔唑,聚吡咯,聚卟啉[8]及其衍生物、共聚物等,目前研究得也比较多。 常见的无机荧光材料有硫化物系荧光材料、铝酸盐系荧光材料、氧化

物系荧光材料及稀土荧光材料等。 碱土金属硫化物体系是一类用途广泛的发光基质材料[8211 ] 。二价铕掺杂的CaS 及SrS 可以被蓝光有效激发而发射出红光,因而可用作蓝光L ED 晶片的白光L ED 的红色成分,可制造较低色温的白光L ED ,其显色性明显得到改善,目前使用的红粉硫化物体系主要是(Ca1-X ,SrX ) S : Eu2+ 体系,在蓝区宽带激发,红区宽带发射。通过改变Ca2+ 的掺杂量,可使发射峰在609~647 nm 间移动。共掺杂Er3 + , Tb3 + ,Ce3 +等可增强红光发射。 铝酸盐系荧光材料中SrAl2O4, CaAl2O4, BaAl2O4为常用的发光基质。例如,Sr3A12O6 是一种新型红色荧光粉,它的激发峰位于460~470nm 范围内,是与主峰为465nm 的蓝光L ED 晶片相匹配的红色荧光材料。刘阁等[31 ] 利用水热沉淀法合成了Sr3A12O6 。通过对其纯相粉末的荧光性质的研究,发现该荧光粉样品的最大激发峰位于459nm 波长处且在415nm 波长处有一小的激发峰。而样品的发射带落在615~683nm 的波长范围内, 其中最大发射峰的波长位于655nm 处, 表明在459nm 波长的光激发下,样品能够发出红色光。 氧化物荧光材料在荧光粉中的应用较多。如,以ZnO 作为基质合成的红色荧光材料稳定性很好。红色荧光材料ZnO : Eu ,Li 和ZnO :Li + 的最大激发峰范围都在340~370nm 范围内,与365~370nm 紫光L ED 晶片的发射峰大部分相交,因而适用于三基色白光L ED 制造。 稀土离子因其具有特殊的电子结构和成键特征,故能表现出独特的荧光性质,而通过与配体的作用,又可以在很大程度上增强它的荧光强度,因此稀土配合物的研究为荧光材料分子的设计提供了广阔的前景。近些年

稀土发光材料研究进展

稀土发光材料 来源:本站原创日期:2009-01-16 加入收藏 1 稀土发光材料发展年表 稀土元素无论被用作发光(荧光)材料的基质成分,还是被用作激活剂,共激活剂,敏化剂或掺杂剂,所制成的发光材料,一般统称为稀土发光材料或稀土荧光材料。30多年来,我国稀土发光及材料科学技术的研发在各级领导和部门关心下从起步和跟踪走向自主发展;稀土荧光体(粉)生产从零开始,已形成一个新的产业。 20世纪60年代是稀土离子发光及其发光材料基础研究和应用发展的划时代和转折点。三价稀土离子发光的光学光谱学、晶体场理论等基础研究日益深入和完善。1964年,高效YVO4∶Eu和Y2O3∶Eu红色荧光粉和1968年Y2O2S∶Eu红色荧光粉的发明,并很快被应用于彩色电视显象管(CRT)中。步入70年代,无论是基础研究,还是新材料研制及其开发应用进入迅速发展时期。 在20世纪70年代以前,我国稀土发光及材料科学和技术并没有形成,仅中科院物理所对CaS和SrS体系中掺Eu、Sm、Ce离子的红外磷光体的光致发光性能,以及在ZnS∶Cu或Mn的电致发光材料中某些稀土离子作为掺杂剂对性能影响进行少量的研究。所用稀土材料全部进口,价格比黄金还贵。 20世纪70年代中科院长春物理所抓住机遇,将这一时期国际上大量的新科研成果引入翻译出版向全国介绍,起"催化剂"作用;同时有一批从事稀土分离的化学科技工作者也纷纷转入从事稀土发光及材料科研和开发工作,加之彩电荧光粉会战,使这一新兴学科在我国正式起步并不断发展。 20世纪60和70年代国际稀土发光材料发展和我国稀土冶炼及分离工业崛起,许多单位跟踪国际上已有成效的工作,纷纷开展稀土离子发光性能研究,以及许多不同用途、不同体系的稀土发光功能材料的研发工作,这里特别应指出的彩电荧光粉成为全国会战任务。 根据当时国内外发展,1973年国家计委下达彩电荧光粉全国会战任务,由中科院长春物理所任组长单位,组织北京大学、北京有色金属研究总院、南京华东电子管厂、北京化工

稀土掺杂纳米发光材料的研究发展

稀土掺杂纳米发光材料的研究发展 姓名:王林旭学号:5400110349 班级:经济107 摘要:本文先介绍了关于稀土纳米发光材料的有关基本概念及基本用途,让读者有个基本认识。文章重点对稀土氟化物纳米颗粒的上转换光学性能以及稀土磷酸盐纳米发光材料的研究进展方面做个简单的介绍 关键词:稀土发光材料稀土磷酸盐纳米发光材料 1.引言:短短半个学期的选修课学习,自己对纳米材料有了一定的了解,这篇论文的选题是“稀土掺杂纳米发光材料的研究发展”,查阅跟搜索了相关资料后,主要从稀土氟化物纳米颗粒的上转换光学性能以及稀土磷酸盐纳米发光材料的研究进展方面给以论述。 首先,先来了解几个基本概念。 1.1什么是稀土元素? 稀土元素包括钪、钇和57到71的镧系元素共17种元素。它们在自然界中共同存在,性质非常相似。由于这些元素发现的比较晚又难以分离出高纯状态,最初得到的是元素的氧化物,它们的外观似土,所以称它们为稀土元素。 稀土元素的电子组态是[Xe]4fDI15s25 ̄sao~6s2。镧系元素离子的吸收光谱或激发光谱,来源于组态内的电子跃迁,即f—f跃迁;组态间的能级跃迁,即4f一5d,4f一6s,4f一6p等跃迁:还有电荷迁移跃迁,即配体离子的电子向离子的跃迁,从高能级向低能级的跃迁就产生相应的发射光谱。由于稀土的这些特性,所以它可以做发光材料。发光材料包括半导体发光材料和稀土化合物发光材料两大类…1。稀土荧光材料以应用铕、铽、钆、钇等高纯中稀土为主要特色2。纳米稀土发光材料是指基质粒子尺寸在1—1oo哪的发光材料l3。纳米粒子本身具有量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应等。受这些结构特性的影响,纳米稀土发光材料表现出许多奇特的物理和化学特性,从而影响其中掺杂的激活离子的发光和动力学性质,如光吸收、激发态寿命,能量传递,发光量子效应和浓度猝灭等性质。在各种类型激发作用下能产生光发射的材料。 1.2什么是发光材料? 在各种类型激发作用下能产生光发射的材料。主要由基质和激活剂组成,此外还添加一些助溶剂、共激活剂和敏化剂 1.3什么是稀土发光材料? 稀土发光是由稀土4f电子在不同能级间跃出而产生的,因激发方式不同,发光可区分为光致发光(photoluminescence)、阴极射线发光(cathodluminescence)、电致发光(electroluminescence)、放射性发光(radiation luminescence)、X射线发光(X-ray luminescence)、摩擦发光(triboluminescence)、化学发光(chemiluminescence)和生物发光(bioluminescence)等。稀土发光具有吸收能力强,转换效率高,可发射从紫外线到红外光的光谱,特别在可见光区有很强的发射能力等优点。稀土发光材料已广泛应用在显示显像、新光源、X射线增光屏等各个方面。 1.4什么是纳米材料? 纳米材料是指晶粒尺寸小于100nm的单晶体或多晶体,由于晶粒细小,使其晶界上的原子数多于晶粒内部的,即产生高浓度晶界,因而使纳米材料有许多不同于一般粗晶材料的性能,如强度和硬度增大、低密度、低弹性模量、高电阻、低热导

稀土发光材料的发光机理及其应用

万方数据

万方数据

万方数据

万方数据

万方数据

稀土发光材料的发光机理及其应用 作者:谢国亚, 张友, XIE Guoya, ZHANG You 作者单位:谢国亚,XIE Guoya(重庆邮电大学移通学院,重庆,401520), 张友,ZHANG You(重庆邮电大学数理学院,重庆,400065) 刊名: 压电与声光 英文刊名:Piezoelectrics & Acoustooptics 年,卷(期):2012,34(1) 被引用次数:2次 参考文献(19条) 1.周贤菊;赵亮;罗斌过渡金属敏化稀土化合物近红外发光性能研究进展[期刊论文]-重庆邮电大学学报(自然科学版) 2007(06) 2.段昌奎;王广川稀土光谱参量的第一性原理研究[期刊论文]-重庆邮电大学学报(自然科学版) 2011(01) 3.周世杰;张喜燕;姜峰轻稀土掺杂对TbFeCo材料磁光性能的影响[期刊论文]-重庆工学院学报 2004(05) 4.CARNALL W T;GOODMAN G;RAJNAK K A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3 1989(07) 5.LIU Guokui;BERNARD J Spectroscopic properties of rare earths in optical materials 2005 6.DUAN Changkui;TANNER P A What use are crystal field parameters? A chemist's viewpoint[外文期刊] 2010(19) 7.蒋大鹏;赵成久;侯凤勤白光发光二极管的制备技术及主要特性[期刊论文]-发光学报 2003(04) 8.黄京根节能灯用稀土三基色荧光粉 1990(05) 9.VERSTEGEN J M P J A survey of a group of phosphors,based on hexagonal aluminate and gallate host lattices 1974(12) 10.PAN Yuexiao;WU Mingmei;SU Qiang Tailored photoluminescence of YAG:Ce phosphor through various methods 2004(05) 11.KIM J S;JEON P E;CHOI J C Warm-whitelight emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+,Mn2+ phosphor[外文期刊] 2004(15) 12.苏锵;梁宏斌;王静稀土发光材料的进展与新兴技术产业[期刊论文]-稀土信息 2010(09) 13.SIVAKUMAR S;BOYER J C;BOVERO E Upconversion of 980 nm light into white light from SolGel derived thin film made with new combinations of LaF3:Ln3+ nanoparticles[外文期刊] 2009(16) 14.WANG Jiwei;TANNER P A Upconversion for white light generation by a single compound[外文期刊] 2010(03) 15.QUIRINO W G;LEGNANI C;CREMONA M White OLED using β-diketones rare earth binuclear complex as emitting layer[外文期刊] 2006(1/2) 16.BUNZLI J C G;PIGUET C Taking advantage of luminescent lanthanide ions 2005 17.WANG Leyu;LI Yadong Controlled synthesis and luminescence of lanthanide doped NaYF4 nanocrystals[外文期刊] 2007(04) 18.LINDA A;BRYAN V E;MICHAEL F Downcoversion for solar cell in YF3:Pr3+,Yb3+ 2010(05) 19.TENG Yu;ZHOU Jiajia;LIU Jianrong Efficient broadband near-infrared quantum cutting for solar cells 2010(09) 引证文献(2条) 1.杨志平.梁晓双.赵引红.侯春彩.王灿.董宏岩橙红色荧光粉Ca3Y2(Si3O9)2:Eu3+的制备及发光性能[期刊论文]-硅酸盐学报 2013(12) 2.严回.孙晓刚.王栋.吕萍.郑长征C24H16N7O9Sm 的晶体合成、结构与性质研究[期刊论文]-江苏师范大学学报(自然科学版) 2013(3) 本文链接:https://www.doczj.com/doc/5210042682.html,/Periodical_ydysg201201028.aspx

稀土发光材料的特点及应用介绍

稀土发光材料的特点及应用介绍 专业:有机化学姓名:杨娟学号:201002121343 发光是物体把吸收的能量转化为光辐射的过程。当物质受到诸如光照、外加电场或电子束轰击等的激发后,吸收外界能量,处于激发状态,它在跃迁回到基态的过程中,吸收的能量会通过光或热的形式释放出来。如果这部分能量是以光的电磁波形式辐射出来,即为发光。 所谓的稀土元素,是指镧系元素加上同属IIIB族的钪Sc和钇Y,共17种元素。这些元素具有电子结构相同,而内层4f电子能级相近的电子层构型、电价高、半径大、极化力强、化学性质活泼及能水解等性质,故其应用十分广泛。 1稀土发光材料的发光特性 稀土是一个巨大的发光材料宝库,稀土元素无论被用作发光(荧光)材料的基质成分,还是被用作激活剂,共激活剂,敏化剂或掺杂剂,所制成的发光材料,一般统称为稀土发光材料或稀土荧光材料。 物质发光现象大致分为两类:一类是物质受热,产生热辐射而发光,另一类是物体受激发吸收能量而跃迁至激发态(非稳定态)在返回到基态的过程中,以光的形式放出能量。 因为稀土元素原子的电子构型中存在4f轨道,当4f电子从高的能级以辐射驰骋的方式跃迁至低能级时就发出不同波长的光。稀土元素原子具有丰富的电子能级,为多种能级跃迁创造了条件,从而获得多种发光性能。 稀土发光材料优点是发光谱带窄,色纯度高色,彩鲜艳;吸收激发能量的能力强,转换效率高;发射光谱范围宽,从紫外到红外;荧光寿命从纳秒跨越到毫秒6个数量级,磷光最长达十多个小时;材料的物理化学性能稳定,能承受大功率的电子束,高能射线和强紫外光的作用等。今天,稀土发光材料已广泛应用于显示显像,新光源,X射线增感屏,核物理探测等领域,并向其它高技术领域扩展。 2稀土发光材料的合成方法 稀土发光材料的合成方法包括水热合成法、高温固相合成法、微波合成法、溶胶——凝胶法、微波辐射法、燃烧合成法以及共沉淀法。 2. 1 水热合成法

稀土发光

关于稀土发光材料的认识(孙三大) 绪论 稀土元素由于具有未充满的4f电子壳层和4f电子被外层的5s,5p电子屏蔽的特性,使稀土元素具有极复杂的类线性光谱。吸收光谱使稀土离子大多有色,发射光谱使许多稀土化合物产生荧光和激光。镧系原子的组态为1S22S22P63S23P63d104S24P64d105S25P6(4f n6S2或4f n-15d6S2),其中n=1-15,La,Ce,Gd,Lu为4f n-15d6S2(镧系稀土元素电子层结构的特点是电子在外数第三层的4f轨道上填充,4f轨道的角量子数l=3,磁量子数m可取0、±1、±2、±3等7个值,故4f亚层具有7个轨道。根据Pauli不相容原理,在同一原子中不存在4个量子数完全相同的两个电子,即一个原子轨道上只能容纳自旋相反的两个电子,4f 亚层只能容纳14个电子,从La到Lu,4f电子依次从0增加到14),其余的元素4f n6S2[1-3]。 大部分无机固体致发光材料遵守斯托克斯定律,即发射光的光谱能量低于激发光的光谱能量,这样发光的现象叫做下转换发光。对于下转换发光由外界光源直接作用于稀土离子。1)使稀土离子中的电子由基态跃迁到激发态,完成高能级电子的排布,如图(1)所示,2)由某基团或离子等吸收高能光子后通过非福射他豫将能量传递给较低能级的稀土离子,使稀土离子中的电子由基态跃迁到激发态,如图(2)所示;另外,在1966年,在研究钨酸镱钠玻璃时,意外发现,当基质材料中掺入Yb3+离子时,Er3+、Ho3+和Tm3+离子在红外光激发时,可见发光几乎提高了两个数量级,由此正式提出了“上转换发光”的观点。这一小部分光致发光材料违背了斯托克斯定律,即上转换发光,它通过吸收低光子能量的长波福射转换为高光子能量的短波福射。稀土离子可以通过激发态吸收或能量传递过程被激发至高能级而发射上转换发光,如图(3)所示。 Gound state (1)(2)(3) 图中所示(1)和(2)为下转换发光过程,图(3)为上转换发光过程。 稀土上转换/下转换发光材料在众多领域具有巨大的应用价值,对其进行理论和实验的深入

稀土发光材料研究与发展方向

#专题论述# 稀土发光材料研究与发展方向 李 洁1,张哲夫2 (1.中国轻工总会电光源材料研究所,江苏南京210015;21南京林业大学化学工程学院,江苏南京210037) 摘 要:对稀土发光材料稀土三基色荧光粉、计算机显示器和投影电视用粉、PD P 用荧光粉的物化性能、合成方法、材料回收以及纳米材料的研制等作了简要论述。 关键词:稀土;发光材料;荧光粉;纳米技术 中图分类号:TG 146145 文献标识码:A 文章编号:1004-0536(2002)02-0037-04 稀土元素具有独特的4f 电子结构,大的原子磁矩,很强的自旋轨道耦合等,与其他元素形成稀土配位化合物时,配位数可在3~12之间变化,且其稀土化合物的晶体结构也呈多样化,稀土元素独特的物理化学特性决定了其广泛的用途。 稀土的发光性能是由于稀土的4f 电子在不同能级之间的跃迁而产生的。当稀土离子吸收光子或X 射线等能量以后,4f 电子可从能量低的能级跃迁至能量高的能级;当4f 电子从高的能级以辐射弛豫的方式跃迁至低能级时发出不同波长的光。两个能级之间的能量差越大,发射的波长越短。由于很多稀土离子具有丰富的能级和它们的4f 电子的跃迁特性,使稀土发光材料在彩电、显像管、计算机显示器、照明、医学、核物理和辐射场、军事等领域都得到广泛的应用[1]。科研人员和生产厂家为了得到更多更好的发光材料,对稀土发光材料的化合特性、物化特性、制造方法、新型配方等都进行了大量的研究和试验。 1 稀土三基色荧光粉 制造高品质的节能灯一般要求荧光粉具有:(1)化学稳定性好;(2)制灯后光效高,9W 灯的光视效能在65lm/W 以上;(3)使用寿命长和光衰低,如国外要求灯的使用寿命在10000h 以上,3000h 的光衰不超过8%;(4)有高的显色指数,R a \80;(5)对 制灯工艺的适宜性。现时我国的节能灯与国外相比,质量上有很大的差距,显色指数较低,100h 光衰 一般为25%,好的也在15%~18%,使用寿命不到2000h 。其原因除了制灯工艺外,荧光粉的质量也有很大的影响。 稀土三基色荧光粉主要组成部分为红粉Y 2O 3B Eu 3+,约占60%~70%(质量分数,下同),绿粉为Ce 0.67M g 0.33Al 11O 19B Tb 3+(~30%),蓝粉为Ba M gAl 16O 27B Eu 2+(少量)。 我国的灯用红粉,质量已达国际先进水平[2]。因为氧化钇很贵,所以主要是降低成本的研究。而一般绿粉的量子效率只有80%,故主要是关于提高发光效率的研究。探索合成不同体系的发光材料具有很大的实际意义。由于Tb 3+离子具有特征的绿色发射,所以围绕铽来合成不同体系的绿粉一直是人们所感兴趣的课题。而铝酸盐绿粉因为烧成温度高,合成周期长,烧成后的粉末硬,后处理困难,收率低等缺点,其替代物Ce 、Tb 共激活的正磷酸盐近年来得到较多的研究,在工业上也得到越来越多的应用。如北京化工大学、复旦大学等对此都进行了报道,对稀土磷酸盐绿粉的合成工艺,发光特性,Ce 3+、Tb 3+、Gd 3+的不同掺杂体系的能量传递等都进行了研究,得到了一些新的结果。 我国的灯用蓝粉与国际先进水平有较大差距,显色指数较低,100h 光衰一般为25%,好的蓝粉也 收稿日期:2001-10-08 作者简介:李 洁(1957-),女,大学本科毕业,工程师,从事金属材料和电光源研究工作。 第30卷第2期2002年6月 稀有金属与硬质合金Rare Metals and Cemented Carbides V ol.30 l .2 Jun. 2002

稀土上转换发光材料应用文章

稀土上转换发光及其光电产品推荐 目录 一、什么是上转换发光? 二、镧系掺杂稀土上转换发光的发光原理 三、稀土上转换发光材料的应用 四、相关光电产品推荐 五、几个容易混淆的“上转换”概念 一、什么是上转换发光? 斯托克斯(Stokes)定律认为材料只能受到高能量的光激发,发射出低能量的光,即经波长短、频率高的光激发,材料发射出波长长、频率低的光。而上转化发光则与之相反,上转换发光是指连 续吸收两个或者多个光子,导致发射波长短于激发波长的发光类型,我们亦称之为反斯托克斯 (Anti-Stokes)。 Figure 1.常规发光和上转换发光能级跃迁图Figure 2.样品被绿光激光激发之后产生荧光 (左边样品为Stokes emission,右边样品为Anti-stokes emission) 上转换发光在有机和无机材料中均有所体现,但其原理不同。 有机分子实现光子上转换的机理是能够通过三重态-三重态湮灭(Triplet-triplet annihilation,TTA),典型的有机分子是多环芳烃(PAHs)。 无机材料中,上转换发光主要发生在镧系掺杂稀土离子的化合物中,主要有NaYF4、NaGdF4、LiYF4、YF3、CaF2等氟化物或Gd2O3等氧化物的纳米晶体。NaYF4是上转换发光材料中的典型基质材 料,比如NaYF4:Er,Yb,即镱铒双掺时,Er做激活剂,Yb作为敏化剂。本应用文章我们着重讲讲稀 土掺杂上转换发光材料(Upconversion nanoparticles,UCNPs)。 二、镧系掺杂稀土上转换发光的发光原理 无机材料有三个基本发光原理:激发态吸收(Excited-state absorption, ESA),能量传递上转换(Energy transfer upconversion, ETU)和光子雪崩(Photon avalanche, PA)。

稀土发光材料研究进展

稀土发光材料的研究进展 XX (XXXXXXXXXXX,XX,XXXXXX) 摘要:稀土发光材料是信息显示、照明、光源、光电器件不可缺少的原料。 目前我国传统显像管CRT,节能灯用稀土荧光粉的产量居全球首位。白光、LED、也在发展,这些已经逼近了国外的水平。我国拥有巨大的照明工业和照明市场,LED技术的快速进步和新的运用,不仅代表照明革命性的变化,而且代表原材料装备信息、汽车等相关行业的发展,改善了人民生活环境与质量[1]。本文主要论述了稀土发光材料的兴起发展、发光性能、制备工艺、产业优势以及进惠普的发展动向、发展趋势。 关键字:稀土;发光;发光材料;纳米;制备方法 一、稀土发光材料的兴起与发展 发光现象是指物体内部以某种方式吸收能量后转化为光辐射的过程,或者物质在各种类型激发作用下能发光的现象,其可以分为如白炽灯、火焰等的物质受热产生热辐射而发光,“夜明珠”、LED等的受外界激发吸收能力而跃迁至激发态再返回基态时,以光形式释放能量发光以及固体化合物受到光子、带电粒子、电场或电离辐射点激发,发生的能量吸收、存储、传递和转换而进行的固体发光[2]。发光材料发光属于第二种发光方式,辐射的光能取决于电子跃迁前后电子所在能级的能量差,两个能级之间的能量差越大,发射的波长越短,稀土离子具有4f能级,吸收能量的能力强,转换效率高而且具有发射可见光能力强而且稳定等优点,受到人们的青睐。 上世纪六十年代是稀土离子发光及其发光材料基础研究和应用发展的划时代转折点。国外学者进行二价稀土离子的4f-4f能级跃迁、4f5d能态及电荷转移态的基础研究,发现上转换现象,完成二价稀土离子位于5000cm-1以下的4f电子组态能级的能量位置基础工作,所有二价稀土离子的发光和激光均起源十这些能级,这些能级间的跃迁产生从紫外至近红外荧光光谱。稀土离子的光学光谱学、晶体场理论及能量传递机理等研究口益深入和完善,新的现象和新概念不断被揭示和提出,新材料不断被研制。1964年,在国际上由十稀土分离技术的突破,导致高效YVO4:Eu和Y203:Eu红色荧光粉的发明,紧接着,1968年又发明另一种高效的Y2O2S:Eu3+红色荧光粉。尽管它们昂贵,但很快被应用十电子射线管(CRT)彩色电视中,使彩电发生质的变化,同时导致现代高纯稀土分离和高纯氧化物工业生产的兴起。

稀土发光

l 设为首页 l 加入收藏 l 联系我们  飞达光学网光学技术光纤通讯 激光技术 光电技术 技术动态 产业新闻 实用查询 软件下 飞达光学网: 技术文章 / 光学技术 / 光学理论 / 稀土发光材料  稀土发光材料 2004-04-15 飞达光学网 人气: 1633 【字体:大 中 小】 稀土发光材料  自古以来,人类就喜欢光明而害怕黑暗,梦想能随意地控制光,现在我们已开发出很多实用的发光材料。在这些发光材料中,稀土元素起的作用很大,稀土的作用远远超过其它元素。 一、稀土发光材料 物质发光现象大致分为两类:一类是物质受热,产生热辐射而发光,另一类是物体受激发吸收能量而跃迁至激发态(非稳定态)在反回到基态的 过程中,以光的形式放出能量。以稀土化合物为基质和以稀土元素为激活剂的发光材料多属于后一类,即稀土荧光粉。稀土元素原子具有丰富的电子能级,因为稀土元素原子的电子构型中存在4f 轨道,为多种能级跃迁创造了条件,从而获得多种发光性能。稀土是一个巨大的发光材料宝库,在人类开发的各种发光材料中,稀土元素发挥着非常重要的作用。 自1973年世界发生能源危机以来,各国纷纷致力于研制节能发光材料,于是利用稀土三基色荧光材料制作荧光灯的研究应运而生。1979年荷兰菲利浦公司首先研制成功,随后投放市场,从此,各种品种规格的稀土三基色荧光灯先后问世。随着人类生活水平的不断提高,彩电已开始向大屏幕和高清晰度方向发展。稀土荧光粉在这些方面显示自己十分优越的性能,从而为人类实现彩电的大屏幕化和高清晰度提供了理想的发光材料。 稀土荧光材料与相应的非稀土荧光材料相比,其发光效率及光色等性能都更胜一筹。因此近几年稀土荧光材料的用途越来越广泛,年用量增长较快。 根据激发源的不同,稀土发光材料可分为光致发光(以紫外光或可见光激发)、阴极射线发光(以电子束激发)、X 射线发光(以X 射线激发)以及电致发光(以电场激发)材料等。 站内搜索 高标题 ×?ê????? ??ê??ˉì? 2úòμD??? ?óòμììμ? 光学技术 光学理论 光学工艺 光学设计 薄膜技术 光存储技术  光纤通讯 光通讯基础理 光纤技术 光器件 光网络  激光技术 理论研究 激光器件 激光加工    激光应用 光学军事应用 光电技术 红外与夜视 光电显示 光机电一体化 自动控制 电子技术  其它相关 光学软件/软件 电子资源 物理基础

稀土发光材料的综述

稀土发光材料的综述 一.前言 所谓的稀土元素,是指镧系元素加上同属IIIB族的钪Sc和钇Y,共17种元素。这些元素具有电子结构相同,而内层4f电子能级相近的电子层构型、电价高、半径大、极化力强、化学性质活泼及能水解等性质,故其应用十分广泛 稀土元素在发光材料的研究与实际应用中占有重要地位。全球稀土荧光粉占全部荧光粉市场的份额正在逐年增加。由于稀土发光材料具有优异的性能,甚至在某些领域具有不可替代的作用,故稀土发光材料正在逐渐取代部分非稀土发光材料。目前,彩色阴极射线管用红粉、三基色荧光灯用蓝粉、绿粉和红粉,等离子显示屏用红粉、蓝粉,投影电视用绿粉与红粉,以及近几年问世的发光二极管照明的黄粉和三基色粉,全是稀土荧光粉。稀土发光材料已成为信息显示和高效照明器具的关键基础材料之一。 我国是世界稀土资源最丰富的国家,尤其是南方离子型稀土资源(氧化钇)为我国稀土发光材料的发展提供了重要资源保障。但多年来,我国虽是稀土资源大国,但不是稀土强国。国家领导人非常重视我国稀土的开发利用工作,明确提出要把我国的稀土资源优势转化为经济优势。稀土发光材料作为高新材料的一部分,为某些高纯稀土氧化物提供了一个巨大市场,而且其本身具有较高附加值,尤其是辐射价值更是不可估量,故发展稀土发光材料是把我国稀土资源优势向经济优势转化的具体体现。 二.稀土发光材料的合成方法 稀土发光材料的合成方法包括水热合成法、高温固相合成法、微波合成法、溶胶——凝胶法、微波辐射法、燃烧合成法以及共沉淀法。 2. 1 水热合成法 在水热合成中水的作用是:作为反应物直接参加反应;作为矿化剂或溶媒促进反应的进行;压力的传递介质,促进原子、离子的再分配和结晶化等[1]。由于在高温高压下,水热法为各种前驱物的反应和结晶提供了一个在常压条件下无法得到的特殊的物理、化学环境,使得前驱物在反应系统中得到充分的溶解,并达到一定的过饱和度,从而形成原子或分子生长基元,进行成核结晶生成粉末或纳米晶[2]。 大量的实验表明,反应过程及产物的组成、结构等都会受到多种因素的影响。尤其是原料的摩尔比,它会影响到产物的基本结构,主要是影响固溶体的晶格,导致晶胞大小的改变 [10];而且也常常会影响到产物的结晶度从而改变物相;它也是能够合成出纯相的关键因素 [11]。因此往往要通过实验来确定起始原料的摩尔比,但是在稀土发光材料的合成中,掺杂

稀土发光材料的发展

稀土发光材料的发展 姓名:杜浩学号:09432206 班级:材化二班 摘要: 综述了光致发光材料的大致研究进展,阐述了光致发光材料的发光原理,常见的发光材料,并对未来光致发光材料发展趋势作了展望。荧光稀土是我国的重要战略资源,稀土发光材料在一些方面已得到普遍应用并在 关键字光至发光材料荧光 【Abstract】It is summarize the investigation of photoluminescence material. And tell us about the theory of photoluminescence material. And familiar photoluminescence material. Future development aspects of researches and applications about the material are proposed Keyword photoluminescence material fluorescence 前言 在各种类型激发作用下能产生光发射的材料。主要由基质和激活剂组成,此外还添加一些助溶剂、共激活剂和敏化剂。发光材料分永久性发光材料(放射性辐射激发)和外加能量激发而发光如光激发、电场激发、阴极射线激发、X射线激发等的材料。 光致发光材料又称超余辉的蓄光材料。它是一种性能优良,无需任何电源就能自行发光的材料。 1发展历史 光致发光材料的研究历史非常悠久。最早可追溯到1866 年法国人Sidot 制备的ZnS :Cu 上,它是第一个具有实际应用意义的长余辉蓄光材料。20 世纪初,Lenard 制备出了ZnS :M (M = Cu ,Ag ,Bi ,Mg 等) 发光材料,并研究了荧光衰减曲线,提出了“中心论”。但该类发光材料由于发光亮度不高,寿命短等缺点,人们往其中引入了放射性物质,虽然能解决以上问题,但又会危害人体安全、损害环境,因而人们将目光又投向了其他基质的发光材料领域。1934 年,Haberlandt 在研究天然CaF2 结构时发现,痕量Eu2+ 占据矿石中Ca2+ 的位置时,引起矿石发出蓝光。1964 年, Y2O3 : Eu , Y2O2S : Eu3+发光材料的研制发明,使彩色电视机得到迅速的推广。20 世纪80年代,石春山等对复合氟化物中的光谱特性进行研究,得出Eu2+ 的f - f 跃迁出现的若干判据,推进了我国发光材料的发展。20 世纪80 年代以后,一些制备发光材料的新工艺及一系列超长余辉发光材料的研究成功,为发光材料的应用开辟了广阔的领域。 2发光机理 2.1.反光与发光的区别 在生活中人眼睛能看看到的发光的材料分成两大类。1. 反光材料这种材料 可以将照在其表面上的光迅速地反射回来。材料不同,反射的光的波长范围也就不同。反射光的颜色取决于材料吸收何种波长的光并反射何种波长的光,,因此 必须要有光照在材料表面,材料表面才能反射光,如各种执照牌、交通标志牌等。

稀土发光材料的制备及应用

第二章稀土发光材料的制备及应用 近几十年来,稀土发光材料在国内外得到惊人的发展,形成了相当大的生产规模和客观的市场,其产值和经济效益都很高[1-3]。到90 年代,依然以一定的速度增长。国内外在稀土新材料方面几乎每隔3~5 年就有一次突破,而稀土发光材料则是这宝库中五光十色的瑰宝。据美国商业信息公司最近统计,在美国稀土各应用高技术领域中,光存储器的年增长率达50%,灯用稀土荧光粉20%,名列第二位,电视荧光粉为 3.4%,仅电视用荧光粉1998 年在美国的消费量居稀土消费量第五位,为104.3 吨,价值2700 万美元,到1995 年达131.5 吨。我国彩电荧光粉及紧凑型荧光灯用稀土荧光粉在80年代增长速率更快,工业生产规模相当可观,且有部分出口。这表明,稀土发光材料的发展及在稀土各应用领域中占有举足轻重地位。随着新型平板显示器、固态照明光源的发展,对新型高效发光粉体的需求日益增多。由于纳米材料具有其他大颗粒材料所不具有的结构及各种性质如电性质、光性质等,研究纳米稀土发光材料已成为目前引人注目的课题。以钒酸盐、磷酸盐为基质的纳米稀土发光材料都是很具有研究意义及应用价值的稀土荧光粉,比如纳米级YVO4:Eu,作为一种很好的红光粉体,已经广泛应用于荧光灯以及彩色显像管(CRT)中[4-6]。另外,近来的研究表明纳米级Y(V,P)O4:Eu,YPO4:Tb在真空紫外区(VUV)有较好的吸收,是很有前途的等离子体平板显示器(PDPs)用的发光材料[7-11]。在纳米尺度的YBO3:Eu3+中,由于表面Eu3+对称性低,使得5D0-7F2的跃迁几率增加,这改善了YBO3:Eu3+体材料中色纯度低的问题[12 ]。总之,随着科技的发展和人们生活的需要,稀土发光材料的研究面临着新的挑战:这主要包括激发波长的变化,如PDP用荧光粉需真空紫外激发,固态照明用荧光粉需近紫外激发;材料尺寸形态的变化等。这就要求人们改善材料的发光性质或开发新的发光体系。 §2-1影响发光的主要因素 目前,稀土掺杂发光体系主要包括:稀土氧化物、硼酸盐、钒酸盐、磷酸盐、铝酸盐等体系,不同的体系有着不同的应用背景。比如说,Eu3+、Tb3+掺杂的硼酸盐、磷酸盐体系可用作PDP荧光材料[13,14];Eu2+、Dy3+共掺的铝酸盐体系可用作长余辉材料[15]。 影响稀土掺杂发光材料发光性质的因素有很多,主要包括基质晶格、发光中

相关主题
文本预览
相关文档 最新文档