当前位置:文档之家› 聚合物材料的维卡软化点的测定

聚合物材料的维卡软化点的测定

聚合物材料的维卡软化点的测定
聚合物材料的维卡软化点的测定

实验9 聚合物材料的维卡软化点的测定

1. 实验目的

了解热塑性塑料的维卡软化点的测试方法。测定PP、PS等试样的维卡软化点。

2. 实验原理

聚合物的耐热性能,通常是指它在温度升高时保持其物理机械性质的能力。聚合物材料的耐热温度是指在一定负荷下,其到达某一规定形变值时的温度。发生形变时的温度通常称为塑料的软化点T S。因为使用不同测试方法各有其规定选择的参数,所以软化点的物理意义不像玻璃化转变温度那样明确。常用维卡(Vicat)耐热和马丁(Martens)耐热以及热变形温度测试方法测试塑料耐热性能。不同方法的测试结果相互之间无定量关系,它们可用来对不同塑料作相对比较。

维卡软化点是测定热塑性塑料于特定液体传热介质中,在一定的负荷、一定的等速升温条件下,试样被1mm2针头压入1mm时的温度。本方法仅适用于大多数热塑性塑料。实验测得的维卡软化点适用于控制质量和作为鉴定新品种热性能的一个指标,但不代表材料的使用温度。现行维卡软化点的国家标准为GB 1633—1979。

3. 实验设备和材料

(1)仪器

ZWK-6微机控制热变形维卡软化点温度试验机。维卡软化点温度测试装置原理如图2-43所示。负载杆压针头长3~5mm,横截面积为(1.000+0.015) mm2,压针头平端与负载杆成直角,不允许带毛刺等缺陷。加热浴槽选择对试样无影响的传热介质,如硅油、变压器油、液体石蜡、乙二醇等,室温时黏度较低。本实验选用甲基硅油为传热介质。可调等速升温速度为(5±0.5)℃/6min或(12±1.0)℃/6min。试样承受的静负载G=W+R+T [W为砝码质量;R 为压针及负载杆的质量(本实验装置负载杆和压头为95g,位移传感器测量杆质量10g);T 为变形测量装置附加力],负载有两种选择:G A=1kg;G B=5kg。装置测量形变的精度为0.01mm。

图2-43维卡软化点温度测试装置原理

(2)试样

维卡实验中,试样厚度应为3~6.5mm,宽和长至少为10mm×10 mm,或直径大于10mm。试样的两面应平行,表面平整光滑、无气泡、无锯齿痕迹、凹痕或裂痕等缺陷。每组试样为两个。

1)模塑试样厚度为3~4mm。

2)板材试样厚度取板材厚度,但厚度超过6mm时。应在试样一面加工成3~4mm。如厚度不足3mm时,则可由不超过3块叠合成厚度大于3mm。

本试验机也可用于热变形温度测试,热变形试验选择斧刀式压头,长条形试样,试样长度约为120mm,宽度为3~15 mm,高度为10~20 mm。

4. 实验步骤

(1)按照“工控机”→“电脑”→“主机”的开机顺序打开设备的电源开关,让系统启动并预热10min。

(2)开启Power Test-W电脑软件,检查电脑软件显示的位移传感器值、温度传感器值是否正常。(正常情况下,位移传感器值显示值应该在-1.9~+1.9之内随传感器头的上下移动而变化。

(3)在主界面中选择“试验”,依据试验要求,选择试验方案名为维卡温度测试,选择试验结束方式,维卡测试定形变为1mm,升温速度设为50℃/h。填好后,按“确定”,微机显示“实验曲线图”界面,点击实验曲线图中的“实验参数”及“用户参数”,检查参数设置是否正确。

(4)按一下主机面板的“上升”按钮,将支架升起,选择维卡测试所需的针式压头装在负载杆底端。安装时压头上标有的编号印迹应与负载杆的印迹一一对应。抬起负载杆,将试样放入支架,然后放下负载杆,使压头位于其中心位置,并与试样垂直接触,试样另一面紧贴支架底座。

(5)按“下降”按钮,将支架小心浸入油浴槽中,使试样位于液面35mm以下。浴槽的起始温度应低于材料的维卡软化点50℃。

(6)按测试需要选择砝码,使试样承受负载1kg(10N)或5kg(50N)。本实验选择50N砝码,小心将砝码凹槽向上平放在托盘上,并在其上面中心处放置一小磁钢针。

(7)下降5min后,上下移动位移传感器托架,使传感器触点与砝码上的小钢磁针直接垂直接触,观察电脑上各通道的变形量,使其达到-l~+1mm,然后调节微调旋钮,令电脑显示屏上各通道的显示值在-0.01~+0.01mm之间。

(8)点击各通道的“清零”键,对主界面窗口中各通道形变清零。

(9)在“试验曲线”界面中点击“运行”键进行实验。装置按照设定速度等速升温。电脑显示屏显示各通道的形变情况。当压针头压入试样1mm时,实验自行结束,此时的温度即为该试样的维卡软化点。实验结果以“年-月-日-时-分试样编号”作为文件名,自动保存在“DATA”子目录中。材料的维卡软化点以两个试样的算术平均值表示,同组试样测定结果之差应小于2℃。

(10)当达到预设的变形量或温度,实验自动停止后,打开冷却水源进行冷却。然后向上移动位移传感器托架,将砝码移开,升起试样支架,将试样取出。

(11)实验完毕后,依次关闭主机、工控机、打印机、电脑电源。

5. 数据处理

(1)点击主界面菜单栏中的数据处理图标,进入“数据处理”窗口,然后点击打开,双击所需的实验文件名,点击“结果”可查看试样维卡温度值,记录试样在不同通道的维卡温度,计算平均值。

(2)点击“报告”,出现“报告生成”窗口,钩选“固定栏”的试验方案参数,以及“结果栏”的内容,如试样名称、起始温度、砝码重、传热介质等。按“打印”按钮打印实验报告。

6. 问题与讨论

(1)影响维卡软化点测试的因素?

(2)材料的不同热性能测定数据是否具有可比性?

金属硬度检测方法

金属硬度检测方法 作者:张凤林 硬度是评定金属材料力学性能最常用的指标之一。硬度的实质是材料抵抗另一较硬材料压入的能力。硬度检测是评价金属力学性能最迅速、最经济、最简单的一种试验方法。硬度检测的主要目的就是测定材料的适用性,或材料为使用目的所进行的特殊硬化或软化处理的效果。对于被检测材料而言,硬度是代表着在一定压头和试验力作用下所反映出的弹性、塑性、强度、韧性及磨损抗力等多种物理量的综合性能。由于通过硬度试验可以反映金属材料在不同的化学成分、组织结构和热处理工艺条件下性能的差异,因此硬度试验广泛应用于金属性能的检验、监督热处理工艺质量和新材料的研制。 金属硬度检测主要有两类试验方法。一类是静态试验方法,这类方法试验力的施加是缓慢而无冲击的。硬度的测定主要决定于压痕的深度、压痕投影面积或压痕凹印面积的大小。静态试验方法包括布氏、洛氏、维氏、努氏、韦氏、巴氏等。其中布、洛、维三种试验方法是应用最广的,它们是金属硬度检测的主要试验方法。这里的洛氏硬度试验又是应用最多的,它被广泛用于产品的检验,据统计,目前应用中的硬度计70%是洛氏硬度计。另一类试验方法是动态试验法,这类方法试验力的施加是动态的和冲击性的。这里包括肖氏和里氏硬度试验法。动态试验法主要用于大型的,不可移动工件的硬度检测。 各种金属硬度计就是根据上述试验方法设计的。下面分别介绍基于各种试验方法的硬度计的原理、特点与应用。 1.布氏硬度计(GB/T231.1—2002) 1.1布氏硬度计原理 对直径为D的硬质合金球压头施加规定的试验力,使压头压入试样表面,经规定的保持时间后,除去试验力,测量试样表面的压痕直径d,布氏硬度用试验力除以压痕表面积的商来计算。 HB =F / S ……………… (1-1) =F / πDh ……………… (1-2) 式中: F ——试验力,N; S ——压痕表面积,mm; D ——球压头直径,mm; h ——压痕深度, mm; d ——压痕直径,mm。 1、2布氏硬度计的特点: 布氏硬度试验的优点是其硬度代表性好,由于通常采用的是10 mm直径球压头,3000kg试验力,其压痕面积较大,能反映较大范围内金属各组成相综合影响的平均值,而不受个别组成相及微小不均匀度的影响,因此特别适用于测定灰铸铁、轴承合金和具有粗大晶粒的金属材料。它的试验数据稳定,重现性好,精度高于洛氏,低于维氏。此外布氏硬度值与抗拉强度值之间存在较好的对应关系。

热塑性塑料维卡软化温度(VST)的测定

热塑性塑料维卡软化温度(VST)的测定(GB/T1633) 1.试样准备*1 试样要求厚度在3~6mm,长、宽(或直径)分别为10 mm以上; 过厚的材料应单面加工成3~4 mm厚,安装时将加工面朝下; 过薄的材料可用2~3块试样迭合进行试验; 每组至少二个试样。 2.试验标准 2.1升温速率选择: 根据试验标准或规定选择: A 速度:5±0.5℃/6min B 速度:12±1.0℃/6min 2.2静负荷的选择: 施加的静负荷是砝码、负载杆(包括压头)和位移传感器的弹力的总和,根据试验要求,组成 静负荷的质量分别为: 1000 +039g (对应重力负荷 10N±0.2N); 5000+0199g (对应重力负荷 50N±1N)。 2. 3维卡软化点温度记录的标准 在指定速率的升温过程中,当负载杆下移(即针头针入试样体内)1mm时的温度,即确认为 维卡软化点温度。以同组二个试样的软化点温度的算术平均值表示试验结果,二个试验结果相差大于2℃时,应重做。 3.样品的放置 3.1取出测试单元,搁置在浴槽面板上; 3.2提起负载杆,把试样放在测试板中心位置(见图一),放下负载杆,压针头应位于试样中心;3.3将测试单元浸入浴槽,加上选定的砝码; 3.4将温度传感器和水银温度计各顺斜孔插入(水银温度计仅供校对使用,可以不用); 3.5调节位移传感器的上下位置,使传感器检测检测行程位于总行程的中间位置。 4.位移传感器的调整 位移传感器的调整比较简单,一般,位移传感器选用的量程为3~5mm,只要调节位移传感 器的上下位置,使行程大约处于量程的中间即可。 不过不要忘了,调整传感器前,最好要先将安置好试样的测试架放入面板上的长方孔内,浸入油中,并根据需要加上所需砝码稳妥就位。 5.参数设置 从电脑界面的测试仪菜单选项中,点击参数设定,出现以下界面: 参数设定 × 仪器设定单元1 单元2 单元3 升温速率[摄氏度/小时]: 〇 50 〇120 上限温度[摄氏度]: ×××.× 参与算术平均值计算:□单元1 □单元2 □单元3 确定取消 选择测试单元。如选择测试单元1,点击在上界面仪器设定后面的单元1,在选中该单元进行测试

热变形维卡温度软化点测试仪使用说明书

目录 一、概述 (1) 二、仪器的主要性能指标 (1) 三、操作说明与安装 (1) 四、工作原理 (2) 五、变形量设定 (5) 六、注意事项及维护保养 (7) 七、试验机的搬运 (7) 八、附件及随机文件 (8) 九、附表 (8) 装箱单 (10) 合格证 (11)

一、概述: 1.1主要用途及使用范围: HS-XRW-300HB热变形维卡软化点温度测定仪运用PLC可编程控制器进行温度调节采用汉字液晶显示操作。该产品操作简单、使用方便、性能稳定、产品精度高,并在试验过程中可时实监控试验温度和变形量;试验结束时系统自动停止加热,该机可设定目标温度具有温度保护功能。该机是各质检单位、大专院校和各企业自检的必备仪器。 该机主要用于非金属材料如塑料、橡胶、尼龙、电绝缘材料等的热变形温度及维卡软化点温度的测定。产品符合IS075(E)、IS0306(E)、GB/T8802、GB/T1633、GB/T1634等标准要求。 二、仪器的主要性能指标: 2.1温度控制范围:室温—300℃ 2.2升温速率:50℃/h、120℃/h 2.3最大温度测量误差:±0.5℃ 2.4最大温度控制误差: ±1℃/6分钟(热变形试验) ±0.5℃/6分钟(维卡试验) 2.5最大形变测量范围:1.0mm 2.6最大形变测量误差:±0.005mm 2.7试样架数量:3个 2.8加热介质: 甲基硅油(200厘斯以下、闪点300℃以上,最好选用100厘斯、闪点300℃以上)2.9最大加热功率:3KW 2.10冷却方式:150℃以上气冷、150℃以下水冷 2.11电源:AC220V±10%20A50Hz; 2.12负载杆及托盘的质量:69g±1g

金属硬度测试实验指导书讲解

北京理工大学珠海学院-工程材料及热处理实验 工程材料及热处理实验指导书 北京理工大学珠海学院机械与车辆学院 2012.10

实验一金属材料的硬度实验 一、实验目的 1、了解硬度测定的基本原理及应用范围。 2、了解布氏、洛氏硬度实验机的主要结构及操作方法。 二、概述 金属的硬度可以认为是金属材料表面在接触应力作用下抵抗塑性变形的一种能力。硬度测量能够给出金属材料软硬程度的数量概念。硬度值越高,表明金属抵抗塑性变形的能力越大,材料产生塑性变形就越困难。另外硬度与其他机械性能(如强度指标σ b及塑性指标ψ和δ)之间有着一定的内在联系。所以从某种意义上说硬度的大小对于机械零件或工具的使用性能及寿命具有决定性意义。 测量硬度的方法很多,在机械工业中广泛采用压入法来测定硬度,压入法又分为布氏硬度、洛氏硬度、维氏硬度等。 压入法硬度试验的主要特点是: ①实验时应力状态最软,(即最大切应力远远大于最大正应力)因而不论是塑性材料还是脆性材料均能发生塑性变形。 ②金属的硬度与强度指标之间存在如下近似关系: σ b=K*HB 式中:σ b ——材料的抗拉强度值;HB——布氏硬度值K——系数 退火状态的碳钢K=0.34~0.36 合金调质钢K=0.33~0.35 有色金属合金K=0.33~0.53 ③硬度值对材料的耐磨性、疲劳强度等性能也有一定的参考价值,通常硬度值高,这些性能也就好。在机械零件设计图纸上对机械性能的技术要求,往往只标注硬度值,其原因就在于此。 ④硬度测量后由于仅在金属表面局部体积内产生很小压痕,并不损坏零件,因而适合 于成品检验。 ⑤设备简单,操作迅速方便。 三、布氏硬度 (一)布氏硬度试验的基本原理 布氏硬度试验是施加一定大小的载荷P,将直径为D的钢球压入被测金属表面(如图1-1所示)保持一定时间,然后卸除载荷,根据钢球在金属表面上所压出的凹痕面积F凹求

塑料维卡软化温度的测定(精)

塑料维卡软化温度的测定(GB/T 8802-2001,GB1633-2000) 塑料维卡软化温度的测定适用于当材料开始迅速软化时,能测定出温度的热塑性塑料材料,不适用于结晶或半结晶的聚合材料。 1、基本原理 塑料维卡软化温度的测定把试样放在液体介质或加热箱中,在等速升温条件下测定标准压针在50±1N力的作用下,压入从管材或管件上切取的试样内1mm时的温度,该温度即为试样的维卡软化温度(VST)。 2、试验设备 塑料维卡软化温度的测定可采用液浴槽或烘箱加热装置,宜采用加热温度及压入深度可自动记录的设备。选用合适的液体(液体石蜡、变压器油、甘油和硅油等),应保证在测试温度下是稳定的,并且在测试中对试样不产生影响,如软化、膨胀、破裂。 3、试验步骤 塑料维卡软化温度的测定管材试样应是从管材上沿轴向截下的弧形管段,长度约为50mm,宽度10mm~20mm;管件试样应是从管件的承口、插口或柱面上截下的弧形片断,对于直径小于或等于90mm的管件,试样长度和承口长度相等,直径大于90mm的管件,试样长度为50mm,试样的长度均为10mm~20mm,而且试样应从没有合模线或注射点的部位切取。如果管材或管件壁厚大于6mm,塑料维卡软化温度的测定则应采用合适的方法加工管材或管件外表面,使壁厚减至4mm,如果管件承口带有螺纹,则应车掉螺纹部分,使其表面光滑。壁厚在2.4mm~6mm(包括6mm)范围内的试样,可直接截下测试。如果管材或管件壁厚小于2.4mm,则可将两个弧形管段叠加在一起,使其总厚度不小于2.4mm,作为垫层的下层管段试样应首先压平,为此可将该试样加热到140℃并保持15min,再置于两块光滑平板之间压平,上层管段应保持其原样不变。每次试验用两个试样,但在裁制试样时,应多提供几个试样,以备试验结果相差太大时作补充试验用。 将试样在低于预期维卡软化温度(VST)50℃的温度下预处理至少5min;对于ABS和ASA 试样,应在烘箱中90±2℃的温度下干燥2h,取出后在23±2℃的温度和50±5%的相对湿度下,冷却15±1min,然后将试样在低于预期维卡软化温度50℃的温度下预处理至少5min。将加热浴槽温度调节至约低于试样软化温度50℃并保持恒温。将试样凹面向上,水平放置在无负载金属杆的压针下面,试样和仪器底座的接触面应是平的,对于壁厚小于2.4mm的试样,压针端部应置于未压平试样的凹面上,下面放置压平的试样,压针端部距试样边缘不小于3mm。压针定位5min后,在载荷盘上加上所要求的重量,以使试样所承受的总轴向压力为(50±1)N,并将初始位置调至零点。以每小时(50±5)℃的速度等速升温,提高浴槽温度,在整个过程中应开动搅拌器。当压针压入试样内(1±0.01)mm时,记录此时的温度,此温度即为该试样的维卡软化温度。 4、数据处理 塑料维卡软化温度的测定两个试样的维卡软化温度的算术平均值,即为所测试管材或管件的维卡软化温度。若两个试样结果相差大于2℃时,应重新取不少于两个的试样继续试验。1、注意事项 1)应严格按照规定进行制备试样,以免因尺寸达不到要求而损坏设备或造成偏差; 2)若从管件上截取试样,应从其承口、插口或柱面上截取,而且试样应从没有合模线或注射点的部位切取; 3)试验前,将加热浴槽温度调节至约低于试样软化温度50℃并保持恒温; 4)压针定位5min后,再加上砝码,不要将试样放在压针下面就开始试验。

维卡温度

维卡软化温度维卡软化温度(Vicat Softening Temperature)是将热塑性塑料放于液体传热介质中,在一定的负荷和一定的等速升温条件下,试样被1平方毫米的压针头压入1毫米时的温度,对应的国标是GB1633-79(目前已被GB/T 1633-2000所代替);维卡软化温度是评价材料耐热性能,反映制品在受热条件下物理力学性能的指标之一。材料的维卡软化温度虽不能直接用于评价材料的实际使用温度,但可以用来指导材料的质量控制。维卡软化温度越高,表明材料受热时的尺寸稳定性越好,热变形越小,即耐热变形能力越好,刚性越大,模量越高。 维卡软化点 Vicat softening temperature(简称VST)——工程塑料、通用塑料等聚合物的试样于液体传热介质中,在一定的载荷、一定的等速升温条件下,被1m㎡的压针压入1mm深度时的温度。 维卡软化点试验 中文名称:维卡软化点英文名称:Vicat softening temperature(VST) 维卡软化温度:当匀速升温时,某一负荷条件下,截面1 m㎡的标准压针刺入热塑性塑料1mm深时的温度。该温度反映了当一种材料在升温装置中使用时期望的软化点。测试标准:ASTM D1525, ISO 306, GB/T 1633 试验数据:维卡软化点试验测定了针头压入试样1mm时的温度. 维卡软化点测定仪 维卡软化点适用于控制聚合物品质和作为鉴定新品种热性能的一个指标,不代表材料的使用温度。维卡软化点测定仪器为热变形维卡温度测定仪,是根据GB/T1633《热塑性塑料软化温度(VST)的测定》、GB/T1634《塑料弯曲负载热变形温度试验方法》、GB8802《硬聚氯乙烯(PVC-U) 管材及管件维卡软化温度测定方法》以及ISO75 、ISO306 、ISO2507 、ASTM1525 ASTM D648标准的要求设计制造的,广泛用于热塑性塑料、硬橡胶和长纤维增强复合材料等热变形温度(HDT)和维卡温度(VST)的测定。 挠曲在水平或平缓的岩层中,由一般岩层突然变陡而表现出的膝状弯曲,或是由于岩层翘曲或其他和缓变形所形成的弯曲均称挠曲。挠曲是弯曲折裂的意思。挠曲性是指某材料的弯曲性能。

软水硬度的检测方法及操作规程

版次:A/0状态标识: 发放号:保密等级:内部 山东南山铝业股份有限公司 (建筑型材公司) 软水硬度的检测方法及操作规程 NSLY3-1107-134-1 拟制:刘勇 审核: 标检: 批准: 2008年08月01日发布2008年08月01日实施

更改页 序号更改页次更改章节更改方式更改日期备注

QHSE一体化管理性文件文件编号:NSLY3-1107-134-1 标题:软水硬度的检测方法及操作规程第B版第0次修订第1页共1页 1目的 为了满足铸造用水的要求。 2范围 适用于东海熔铸水泵房。 3职责 东海熔铸水泵房水分析员负责本规程的执行。 4具体内容 4.1方法原理 在PH值等于10的条件下,用EDTA标准溶液混合滴定钙镁离子作为指示剂的铬黑T 与钙镁离子形成紫红色或紫色溶液。滴定中,游离的钙镁离子首先与EDTA标准溶液反应,到达终点时溶液的颜色由紫色变成亮蓝色。 4.2所需试剂: 0.1mol/L EDTA标准溶液氨水缓冲溶液铬黑T 4.3测定方法 用移液管取100ml水样于锥形瓶中,加入5ml的氨水缓冲溶液,摇匀,再加入适量的铬黑T指示剂,立即用EDTA标准溶液进行滴定,但速度不可太快,并不断振摇。临近终点时更应慢滴多摇,使其充分反应。 4.4计算公式 y=v*c/v1*1000mol/L c-----EDTA标准溶液的浓度,mol/L V-----滴定时所消耗EDTA标准溶液的体积,ml V1---水样的体积。 4.5化验结果 软水器设定的产水数为50方水,当40方水时的硬度为0.1mmol/L,30方水时的硬度为0.1 mmol/L,20方水时的硬度为0.1mmol/L,10方水时的硬度为0.2mmol/L。综上所述,软水器产水能够达到软水硬度的标准。

维卡软化温度试验作业指导书

塑料埋地排水管维卡软化温度试验作业指导书 一编制目的: 为确保操作熟练、规范和检测数据的准确可靠、有效。 二试样要求: 1 取样 1)管材 试样应是从管材上沿轴向裁下的弧形管段,其尺寸如下: 长度:约50mm,宽度:10mm~20 mm。 2)管件 试样应是从管家的承口、插口或柱面上裁下的弧形片段,其长度为: 直径小于或等于90mm的管件,试样长度和承口长度相等; 直径大于90mm的管件,试样长度为50mm。 宽度为10mm~20mm. 试样应从没有合模限或注射点的部位切取。 2 试样制备 1)如果管材或管件壁厚大于6mm,则采用适宜的方法加工管材或管件外表面,使壁厚减至4mm。如果管件承口带有螺纹,则应车掉螺纹部分,使其表面光滑。 2)壁厚在2.4mm~6mm(包括6mm)范围内的试样,可直接进行测试。 3)如果管材或管件壁厚小于2.4mm,则可将两个弧形管段叠加在一起,使其总厚度不小于2.4mm。作为垫层的下层管段试样应首先压平,为此可将该试样加热到140℃并保持15min,在置于两块光滑平板之间压平。上层弧段应保持其原样不变。 3 试样数量 每次试验用两个试样,但在裁制试样时,应多提供几个试样,以备试验结果相差太大时做补充试验用。 三检测原理 把试样放在液体介质或加热箱中,在等速升温条件下测定标准压针在(50±1)N力的作用下,压入从管材或管件上切取的试样内1mm时的温度。 压入1mm时的温度即为试样的维卡软化温度(VST),单位:℃。 四预处理 1 将试样在低于预期维卡软化温度(VST)50℃的温度下预处理至少5min;

2 对于丙烯腈-丁二烯-苯乙烯(ABS)和丙烯腈-苯乙烯-丙烯酸(ASA)试样,应在烘 箱中(90±2)℃的温度下干燥2h,取出后在(23±2)℃的温度和(50±5)%的相对湿度下,冷却(15±1)min。然后再按第1条进行处理。 五仪器设备: 试样支架、负载杆;压针;千分表;载荷盘;砝码;加热浴槽;水银温度计;加热箱六检测依据: GB/T8802-2001《热塑性塑料管材、管件维卡软化温度的测定》 七试验步骤: 1 将加热浴槽温度调至低于试样软化温度50℃并保持恒温。 2 将试样凹面向上,水平放置在无负载金属杆的压针下面,试样和仪器底座的接触面 应是平的。对于壁厚小于2.4mm的试样,压针端部应置于未压平试样的凹面下,下面放置压平的试样。压针端部距试样边缘不小于3mm。 3 将试验装置放在加热浴槽中。温度计的水银球或测温装置的传感器与试样在同一水 平面,并尽可能靠近试样。 4 压针定位5min后,在荷载盘上加说要求的质量,以使试样所承受的总轴向压力为(50 ±1)N,记录下千分表(或其他测量仪器)的读书或将其调至零点。 5 以每小时(50±5)℃的速度等速升温,提高浴槽温度。在整个试验过程中应开动搅 拌器。 6 当压针压入试样内(1±0.01)mm时,迅速记录下此时的温度,此温度即为该试样 的维卡软化温度(VST)。 八结果计算: 两个试样的维卡软化温度的算术平均值,即为所测试管材或管件的维卡软化温度(VST),单位以℃表示。若两个试样结果相差大于2℃时,应重新取不少于两个的试样进行试验。

金属材料硬度试验

实验一 金属材料的硬度实验 一、实验目的 1.了解布氏、洛氏硬度测定的基本原理及应用范围。 2.了解布氏、洛氏硬度试验机的主要结构及硬度数据的测试方法。 二、实验原理 金属的硬度可以认为是金属材料局部表面在接触压力的任用下抵抗塑性变形的一种能力。硬度值是材料性能的一个重要指标。试验方法简单、迅速,不需要专门的试样,同时保持试样的完整性,设备也比较简单。而且对大多数金属材料,可以硬度值估算出它的抗拉强度。因此在设计图纸的技术条件中大多规定材料的硬度值。检验材料或工艺是否合格有时也需用硬度。所以硬度试验在生产中广泛使用。 硬度测试方法很多,使用最广泛的是压入法。压入法就是一个很硬的压头以一定的压力压入试样的表面,使金属产生压痕,然后根据压痕的大小来确定硬度值。压痕越大,则材料越软;反之,则材料越硬。根据压头类型和几何尺寸等条件的不同,常用的硬度测试方法可分为布氏法、洛氏法和维氏法三种。 三、布氏硬度(HB ) 布氏硬度用符号HB 表示。这种试验方法是把规定直径(10mm 、5mm 、2.5mm )的硬质合金球以一定的试验力压入所测材料的表面(如图1-1所示),保持规定时间后,测量表面压痕直径(如图1-2所示),然后按下式计算硬度: ) (222d D D D P F P HBW --= = π 式中 HBW-表示用硬质合金球测试时的布氏硬度值; P-载荷(kgf );(1kgf =9.8N )

D-压头钢球直径(mm ); d-压痕平均直径(mm ); F-压痕面积(mm2); 式中只有d 是变数,故只需要测出压痕直径d ,根据已知D 和P 值就可以计算出HB 值。布氏硬度习惯上不标出单位。生产中已专门制定了平面布氏硬度值计算表见附录一,用读数显微镜测出压痕直径后,直接查表就可获得HB 硬度值。 图1-1 布氏硬度测量示意图 图1-2 用读数显微镜测量压痕直径 由于金属材料有软有硬,工件有厚有薄,有大有小,如果只采用同一种载荷和钢球直径时,就会出现对硬的材料合适,而对软的材料可能发生钢球陷入金属内部的现象;若对厚的材料合适,而对薄的材料又可能会出现压透的现象。因此为了得到统一的,可以相互比较的值,必须使P 和D 之间维持某一比值关系。这样对同一种材料而言,不论采用何种大小的载荷和钢球直径,只要能 满足2 D P =常数,所得的HB 值是同样的;则对不同的材料来说,所得的HB 值也是可以进行比较的。按照GB231-63规定,2 D P 比值有30、10和2.5三种。 具体试验数据的选择和使用范围可参考表1-1 由于硬度和强度都以不同形式反映了材料在外力作用下抵抗塑性变形的

意大利CEAST公司热变形维卡软化点仪

H D T3&6V I C A T These instruments are made in compliance with CE health and safety requirements D E S I G N A N D P R O D U C T I O N O F I N S T R U M E N T S A N D A P P A R A T U S F O R Q U A L I T Y C O N T R O L O N M A T E R I A L S

“HDT” test means: determination of temperature of deflection under load Field of application The test determines the temperature at which a specified deflection occurs when a standard test specimen is subjected to a bending stress, to produce one of the nominal surface stresses according to international standards. This test is very important for both quality control and research into plastics because it determines the heat resistance characteristics of materials, and is indispensable to define precisely the thermal behaviour of the polymers. The values obtained are indicative of the heat resistance characteristics of materials, even if not directly applicable for design purposes.Method The specimen, in the form of a rectangular bar of dimensions complying with the chosen standard, is tested as a simple beam with a load applied at midspan to produce a maximum, nominal surface stress according to the chosen standard. The test assembly, with the loaded specimen, is then immersed in a heat-transfer medium, equipped with a system capable of increasing the temperature linearly at a uniform rate (generally 2 °C/min). The temperature, when the specimen reaches a specified deflection is recorded.This value is indicated as the Temperature of Deflection Under Load, in degrees Celsius, of the material under test.“VICAT” test means: determination of the VICAT softening temperature Field of application The test determines the temperature at which a standard indenter penetrates 1 mm into the surface of a test specimen under load. It is used to establish the differences between many types of thermoplastic materials with regard to their softening properties.Method An indenting tip of 1 mm 2circular cross sectional area is placed on the specimen and is loaded with a constant force (10 N or 50 N depending on the standard method used).The test assembly, with the loaded specimen, is immersed in a heat-transfer medium equipped with a system capable of increasing the temperature linearly at a uniform rate (generally, 50°C/hour or 120°C/hour). The temperature, when the needle has penetrated 1 mm into the specimen, is recorded. This temperature, expressed in °C, is indicated as the VICAT Softening Temperature of the material under load.Additional tests Using this instrument it is possible to perform flexural creep tests and to determine the elastic modulus of materials and to measure the thermal dilatation. The elastic modulus can be evaluated at different temperature so that it is possible to study the trend of elastic modulus of a material as a function of temperature.Standards Designed and built to meet the following standards:“HDT” TEST ISO 75, ASTM D 648, DIN 53461, BSI 2782, Method 121 C,NT T 51-005, UNE 53075and others equivalent.“VICAT” TEST ISO 306, ASTM D 1525, DIN 53460, BSI 2782, Method 120 C,NT T 51-021, UNE 53118and others equivalent. HDT test station VICAT test station

金属材料硬度的测定办法

金属材料硬度的测定方法 1.金属材料的力学性能 金属材料的力学性能是指金属材料在外力作用下表现出来的特性,如强度、塑性、硬度、冲击韧度等。强度是指材料在外力作用下抵抗变形和破坏的能力。以屈服强度σs和抗拉强度σb最为常用。塑性是指金属材料在外力作用下产生塑性变形而不破坏的能力,常用延伸率(δ)和断面收缩率(ф)作为材料的塑性指标。冲击韧度是指材料抵抗冲击载荷的能力。金属材料韧性的好坏用冲击韧度值衡量。硬度是指金属材料抵抗硬物压入其表面的能力。工程上常用的有布氏硬度和洛氏硬度。 图1?布氏硬度试验原理图 (1)布氏硬度布氏硬度试验是用一定的载荷P,将直径为D的淬火钢球,在一定压力作用下,压入被测金属的表面(图1),保持一定的时间后卸去载荷,以载荷与压痕表面积的比值作为布氏硬度值,用HB表示。HB值愈大,材料愈硬。 用布氏硬度试验测材料的硬度值,其测试数据比较准确,但不能测太薄的试样和硬度较高的材料。 (2)洛氏硬度洛氏硬度试验是用一定的载荷将顶角为120°的金刚石圆锥体或直径为1.588mm的淬火钢球压入被测试样表面,然后根据压痕的深度来确定它的硬度值。 用洛氏硬度计可以测量从软到硬的各种不同材料,这是因为它采用了不同的压头和载荷,组成各种不同的洛氏硬度标度,如HRA、HRB、HRC。 2.硬度测定方法 (1)布氏硬度测定方法。图2为HB-3000布氏硬度计。测定硬度时其基本操作和程序如下: 图2?HB-3000布氏硬度计 1—指示灯2—压头3—工作台4—立柱5—丝杠6—手轮7—载荷砝码8—压紧螺钉9—时间定位器10—加载按钮1)将试样平稳放在工作台上,转动手轮使工作台徐徐上升使试样与压头接触(应注意压头固定是否可靠),到手轮打滑为至,此时初载荷已加上。 2)按下加载按钮,加荷指示灯亮,自动加载并卸载指示灯灭。 3)逆时针转动手轮,使工作台下降,取下试样。 4)用读数放大镜测量压痕直径,测得压痕直径后从表中查出布氏硬度值。 (2)洛氏硬度测定方法。以HRC测试为例(图3a),它是采用顶角为120°金刚石圆锥压头,总载荷为1500N。测试时先加预载荷100N,压头从起始位置0—0到1—1位置,压入试件深度为h1,后加总载荷1500N(实为主载荷1400N 加上预载荷100N),压头位置为2一2,压入深度为h2,停留数秒后,将主载荷1400N卸除,保留预载荷100N。由于被测试件弹性变形恢复,压头略为提高,位置为3—3,实际压入试件深度为h3,因此在主载荷作用下,压头压入试件的深度h=h3一h1。为了便于从硬度计表盘上直接读出硬度值,一是规定表盘上每一小格相当于0.002mm压深,二是将HRC值用HRC=100一的公式表示,从而符合人们的习惯概念,即材料越硬,硬度值(HRC)越高。洛氏硬度试验过程如图3b所示。 图3a?洛氏硬度测定原理示意图 图3b?洛氏硬度测定过程

热变形、维卡软化点温度测定仪技术参数

热变形、维卡软化点温度测定仪技术参数 概述 热变形、维卡软化点温度测定仪用于测定各种塑料、橡胶等热塑性材料的热变形温度和维卡软化点温度。广泛应用于塑胶原料和制品的生产、科研和教学中。该系列仪器结构紧凑、造型美观、质量稳定、并具有排出油烟异味污染和冷却功能。采用先进的MCU(多点微控制单元)控制系统,自动测控温度和变形、自动计算试验结果,可循环存储10组试验数据。该系列仪器有多种机型供选择:自动型采用液晶屏中(英)文显示,自动测量;微控型可连接电脑、打印机,由计算机进行控制,试验软件WINDOWS中(英)文界面,具有自动测量、实时曲线、存储数据、打印输出等功能。 执行标准 仪器符合ISO75、ISO306、GB/T1633、GB/T1634、GB/T8802、ASTM D1525、ASTM D648标准要求。 技术参数及指标 1、温控范围:室温~300℃ 2、升温速率:120℃/h [(12±1)℃/6min] 50℃/h [(5±0.5)℃/6min] 3、最大温度误差:±0.5℃ 4、形变测量范围:0~3mm 5、最大形变测量误差:±0.005mm 6、形变测量显示精度:±0.01mm 7、试样架(测试工位): 4 8、试样支撑跨距:64mm、100mm 9、负载杆和压头(刺针)重量:71g 10、加热介质要求:甲基硅油或标准中规定的其它介质(闪点大于300℃) 11、冷却方式:150℃以下水冷,150℃以自然冷却或风冷(风冷设备需自备) 12、具有上限温度设定,自动报警。 13、显示方式:液晶中(英)文显示 14、可显示测试温度,可设定上限温度,自动记录试验温度,温度达到上限值后自动停止加热。 15、变形测量方法:专用高精度数显表+自动报警。 16、具有自动排除油烟系统,可有效抑制油烟散发,时刻保持室内良好空气环境。 17、电源电压:220V±10% 10A 50Hz 18、加热功率:3kW

软化水检验方法

软化水检验方法 一、感官指标的检验 取300ml水样,置于500ml的三角瓶中,将水样摇匀,在光线明亮处迎光观察其杂质、沉淀情况。 取100ml水样,置于250ml的三角瓶中,振摇后从瓶口嗅水的气味。并取少量水样放入口中,不要咽下去,品尝水的味道。 二、理化指标检测 试剂 1.1.1 l乙二胺四乙酸钠标准溶液 1.1.2 氨缓冲溶液(ph=10):秤取16.9g氯化铵,溶于143ml氨水(密度=0.88g/ml)中。 1.1.3 铬黑T指示剂:称取0.5g铬黑T用乙醇(95%)溶解,并稀释至100ml。放置于冰箱中可稳定一个月。 三、原理 当水样中有铬黑T指示剂存在时,与钙、镁离子形成紫红色的螯合物,这些螯合物的不稳定常数大于乙二胺四乙酸钙和镁螯合物不稳定常数。当PH=10时,乙二胺四乙酸钠先与钙离子,再与镁离子形成螯合物,滴定至终点时,溶液呈现出铬黑T指示剂的天蓝色。 1.2仪器及试剂 15ml碱式滴定管、250ml三角瓶、100ml量筒、2ml刻度吸管

方法 1.4.1 量取100ml水样于250ml三角瓶中, 1.4.2 加入1-2ml PH=10的氨-氯化铵缓冲溶液,再加入5滴5g/L 的铬黑T指示剂,混匀, 1.4.3 然后用L的EDTA溶液滴定溶液至天蓝色, 1.4.4 根据消耗L的EDTA溶液的体积计算出水样的硬度。 四、计算 总硬度(DH)= (a-b)*1000* *V C:EDTA标准溶液的浓度 V:水样的体积 a:滴定水样时消耗EDTA标准溶液的体积 b:滴定空白时消耗EDTA标准溶液的体积 —与乙二胺四乙酸钠标准溶液相当的以mg表示的总硬度以碳酸钙计 —换算系数 四、PH的测定 1、仪器: PHS—2C型PH计 2、方法:将电极用蒸馏水洗净后,再用被测水样冲洗2次以上,然后浸入水样经行进行测定,读数。水样温度控制在20度左右。

金属材料硬度试验 ()

实验一金属材料的硬度实验 一、实验目的 1.了解布氏、洛氏硬度测定的基本原理及应用范围。 2.了解布氏、洛氏硬度试验机的主要结构及硬度数据的测试方法。 二、实验原理 金属的硬度可以认为是金属材料局部表面在接触压力的任用下抵抗塑性变形的一种能力。硬度值是材料性能的一个重要指标。试验方法简单、迅速,不需要专门的试样,同时保持试样的完整性,设备也比较简单。而且对大多数金属材料,可以硬度值估算出它的抗拉强度。因此在设计图纸的技术条件中大多规定材料的硬度值。检验材料或工艺是否合格有时也需用硬度。所以硬度试验在生产中广泛使用。 硬度测试方法很多,使用最广泛的是压入法。压入法就是一个很硬的压头以一定的压力压入试样的表面,使金属产生压痕,然后根据压痕的大小来确定硬度值。压痕越大,则材料越软;反之,则材料越硬。根据压头类型和几何尺寸等条件的不同,常用的硬度测试方法可分为布氏法、洛氏法和维氏法三种。 三、布氏硬度(HB) 布氏硬度用符号HB表示。这种试验方法是把规定直径(10mm、5mm、2.5mm)的硬质合金球以一定的试验力压入所测材料的表面(如图1-1所示),保持规定时间后,测量表面压痕直径(如图1-2所示),然后按下式计算硬度:式中HBW-表示用硬质合金球测试时的布氏硬度值; P-载荷(kgf);(1kgf=9.8N) D-压头钢球直径(mm); d-压痕平均直径(mm); F-压痕面积(mm2); 式中只有d是变数,故只需要测出压痕直径d,根据已知D和P值就可以

计算出HB 值。布氏硬度习惯上不标出单位。生产中已专门制定了平面布氏硬度值计算表见附录一,用读数显微镜测出压痕直径后,直接查表就可获得HB 硬度值。 图1-1 布氏硬度测量示意图 图1-2 用读数显微镜测量压痕直径 由于金属材料有软有硬,工件有厚有薄,有大有小,如果只采用同一种载荷和钢球直径时,就会出现对硬的材料合适,而对软的材料可能发生钢球陷入金属内部的现象;若对厚的材料合适,而对薄的材料又可能会出现压透的现象。因此为了得到统一的,可以相互比较的值,必须使P 和D 之间维持某一比值关系。这样对同一种材料而言,不论采用何种大小的载荷和钢球直径,只要能满 足2 D P =常数,所得的HB 值是同样的;则对不同的材料来说,所得的HB 值也是可以进行比较的。按照GB231-63规定,2 D P 比值有30、10和2.5三种。 具体试验数据的选择和使用范围可参考表1-1 由于硬度和强度都以不同形式反映了材料在外力作用下抵抗塑性变形的能力,因而硬度和强度之间有一定的关系,其经验换算公式为: 低碳钢 6.3/b HB σ≈ 高碳钢 4.3/b HB σ≈ 调质合金钢 2 5.3/b HB σ≈ 铝铸件 26.0/b HB σ≈ 退火青铜和黄铜 55.0/b HB σ≈ 锌合金 09.0/b HB σ≈ 表1-1 布氏硬度试验规范

聚合物材料的维卡软化点的测定

实验9 聚合物材料的维卡软化点的测定 1. 实验目的 了解热塑性塑料的维卡软化点的测试方法。测定PP、PS等试样的维卡软化点。 2. 实验原理 聚合物的耐热性能,通常是指它在温度升高时保持其物理机械性质的能力。聚合物材料的耐热温度是指在一定负荷下,其到达某一规定形变值时的温度。发生形变时的温度通常称为塑料的软化点T S。因为使用不同测试方法各有其规定选择的参数,所以软化点的物理意义不像玻璃化转变温度那样明确。常用维卡(Vicat)耐热和马丁(Martens)耐热以及热变形温度测试方法测试塑料耐热性能。不同方法的测试结果相互之间无定量关系,它们可用来对不同塑料作相对比较。 维卡软化点是测定热塑性塑料于特定液体传热介质中,在一定的负荷、一定的等速升温条件下,试样被1mm2针头压入1mm时的温度。本方法仅适用于大多数热塑性塑料。实验测得的维卡软化点适用于控制质量和作为鉴定新品种热性能的一个指标,但不代表材料的使用温度。现行维卡软化点的国家标准为GB 1633—1979。 3. 实验设备和材料 (1)仪器 ZWK-6微机控制热变形维卡软化点温度试验机。维卡软化点温度测试装置原理如图2-43所示。负载杆压针头长3~5mm,横截面积为(1.000+0.015) mm2,压针头平端与负载杆成直角,不允许带毛刺等缺陷。加热浴槽选择对试样无影响的传热介质,如硅油、变压器油、液体石蜡、乙二醇等,室温时黏度较低。本实验选用甲基硅油为传热介质。可调等速升温速度为(5±0.5)℃/6min或(12±1.0)℃/6min。试样承受的静负载G=W+R+T [W为砝码质量;R 为压针及负载杆的质量(本实验装置负载杆和压头为95g,位移传感器测量杆质量10g);T 为变形测量装置附加力],负载有两种选择:G A=1kg;G B=5kg。装置测量形变的精度为0.01mm。 图2-43维卡软化点温度测试装置原理

锅炉软化水检测方法

1.37分析、化验。 1.38硬度的测定。 1.39试剂: (1)0.02MEDTA标准溶液 (2)0.01MEDTA标准溶液 (3)氨---氯化氨冲溶液 (4)0.5%铬黑T指示剂 1.40测定方法:取100ML透明小样注入锥形瓶中,加入5ML氨---氯化铵缓冲液和2滴0.5%铬黑T指示剂,用0.02MEDTA标准溶液滴定到溶液同酒红色变为纯蓝色。 1.41计算公式: C(Y2EDTA)Vn Y2= ×103 V 单位(毫摩尔/升) 1.42总碱度的测定: 1.43试剂:(1)1%酚酞指示剂 (2)甲基橙指示剂 (3)甲基红—亚甲基蓝指示剂 (4)0.1N,0.05,0.01N,H 2 SO4标准溶液 1.44测定方法:量取100ML(炉水)透明水样注入250ML锥形瓶中加入2-3滴 1%酚酞指示剂,若溶液显红色,则用0.01N H 2 SO4标准溶液滴定至恰好无色,记 录耗酸量V1。在上述锥形瓶中,再加入2滴1%甲基橙指示剂,继续用H 2 SO4标准溶液滴定至溶液呈橙色,记录第二次耗酸量V2。 1.45计算公式:TD=N(V1+V2)×10(Me/L) 1.46氯化物测定: 1.47试剂:(1)氯化钠标准溶液 (2)硝酸银标准溶液(1ML=1mg) (3)10%铬酸钾指示剂 (4)1%酚酞指示剂 (5)0.1N氢氧化钠溶液 (6)0.1N硫酸标准溶液 1.48测定方法:取100ML水样于锥形瓶中,加2-3滴1%酚酞指示剂,若显红色, 即用H 2SO4中和至红色,若不显红色,则用氢氧化钠中和至微红色,然后用H 2 SO4 滴回无色,再加入1ML10%铬酸钾指示剂。 用硝酸银标准溶液滴定至橙色,记录硝酸银标准溶液的消耗量V1,同时作空白试验,记录硝酸银标准溶液的消耗体积V2。 1.49计算公式: (V1-V2)×1.0 [CL—]= ×100 V 1.50 PH测定: 用PH试纸测出水样的大致PH值,选用相应的指示剂,一般炉水的PH值10-12,给水的PH值>=7。

金属材料的硬度试验 实验报告

实验五硬度实验 一.实验目的 1.了解硬度测定的基本原理及应用范围。 2.了解布氏硬度实验机的主要结构及操作方法。 二.概述 硬度是指材料对另一较硬物体压入表面的抗力,是重要的机械性能之一。它是给初级金属材料软硬程度的数量概念,硬度值越高,表明金属抵抗塑性变形能力越大,材料产生塑性变形就越困难,硬度实验方法简单,操作方便,出结果快,又无损于零件,因此被广泛应用。测定金属硬度的方法很多,有布氏硬度、洛氏硬度和维氏硬度等。 1.布氏硬度(HB) (1)布氏硬度实验的基本原理 布氏硬度实验是以一定直径的钢球施加一定负荷P,压入被测金属表面(如图1所 示)保持一定时间,然后卸荷,根据金属表面的压痕面积F求应力值,以此作为硬度值的计量指标,以HB表示,则 (5-1) 式中:P—负荷(kgf); D—钢球直径(mm) h—压痕深度(mm)

图5-1 布氏硬度实验原理图 由于测量压痕d要比测量压痕深度h容易,将h用d代换,这可由图5-1(b)中的△Oab关系求出: (5-2) 将式(5-2)代入式(5-1)即得: (5-3) 式(5-3)中,只有d是变数,所以只要测量出压痕直径,就可根据已知的D和P值计算出HB值。在实际测量时,可根据HB、D、P、d的值所列成的表,若D、P已选定,则只需用读数测微尺(将实际压痕直径d放大10倍的测微尺)测量压痕直径d,就可直接查表求得HB值。 由于金属材料有硬有软,所测工件有厚有薄,若采用同一种负荷(如 3000kgf)和钢球直径(如10mm)时,则对硬的金属适合,而对软的金属就不合适,会使整个钢球陷入金属中;若对厚的工件适合,而对薄的金属则可能压透,所以规定测量不同材料的布氏硬度值时,要有不同的负荷和钢球直径,为了保持统一的,可以相互进行比较的数值,必须使P和D之间保持某一比值关系,以保证所得到的压痕形状的几何相似关系,其必要条件就是使压入角保持不便。 由图5-1(b)可知:

相关主题
文本预览
相关文档 最新文档