当前位置:文档之家› 基于美国ASME标准的磁粉检测规程

基于美国ASME标准的磁粉检测规程

基于美国ASME标准的磁粉检测规程
基于美国ASME标准的磁粉检测规程

CONTENTS

1.Scope

2.Qualification of NDE Personnel.

3.Procedure

4.Magnetizing Equipment and Material

5.Surface Preparation

6.Examination

7.Evaluation

8.Demagnetization

9.Reexamination for repaired Area and Nonconformity Control

10.Post Cleaning

11.Report

SUSPENSION CONCENTRATION CALIBRATION RECORD MAGNETIC PARTICLE EXAMINATION INSTRUCTION MAGNETIC PARTICLE EXAMINATION REPORT

1.Scope

1.1.This procedure is applied to detect cracks and other discontinuities on or near the surface of ferromagnetic materials, using wet magnetic particle and AC or DC yoke technique with continuous magnetization method 1.

2.This procedure is applied to welds and materials of ASME Code pressure vessels fabricated according to ASME Code Section Ⅷ Division

1.

2.Qualification of NDE Personnel

All personnel performing magnetic particle examination shall be qualified and certified in accordance with the requirements of HT’s Written Practice for NDE Personnel Training, Examination, Qualification and Certification based on the requirements of“SNT-TC-1A”(Current Code accepted edition)

3.Procedure

This procedure shall be supplemented by MAGNETIC PARTICLE EXAMINATION INSTRUCTION which shall be issued to every product to be examined and in which more detail parameters are specified. The Instruction shall be prepared by level Ⅱ,approved by level ⅢNDE examiner,

4.Magnetizing Equipment and Materials

4.1 Magnetizing equipment

4.1.1The magnetizing equipment shown in Table 1 shall be used.

4.1.2.Calibration of Equipment

The magnetizing equipment shall be calibrated at least once a year, or whenever the equipment has been damaged. If the equipment has not been in use for a year or more, calibration shall be done prior to first use. The magnetizing equipment shall be calibrated in accordance with the requirements of MAGNETIC PARTICLE EQUIPMENT CALIBRATION PROCEDURE

4.2.Magnetic Particle Field Indicator

The magnetic particle field indicator shown in fig1 shall be used to demonstrate the direction of magnetic flux

4.3 Examination Medium

4.3.1Magnetic particle shown in Table 2 shall be used. The color of the particles shall provide adequate contrast with the surface being examined. If it is not adequate, another color shall be select and redemonstration shall be required

更多资料:无损检测招聘网https://www.doczj.com/doc/519038626.html,

中国无损检测论坛https://www.doczj.com/doc/519038626.html,

4.3.2.Water Vehicles and Suspension

Mixing ratio of rater medium magnetic suspension is 11.0-22.0g magnetic slurry per 1000ml water.

4.3.3 Concentration of Wet Magnetic particle Suspension

The concentration is normally determined by measuring its settling volume through the use of an ASME pear-shape centrifuge tube.

Before sampling, run the suspension for at least 30-min. to assure thorough mixing of all particles. Take a 100ml portion of the suspension and allow it to settle approximately 30 min. The volume settling out at the bottom of the tube is indicative of the particle concentration in the bath. Bath concentration shall be form1.2 to 2.4 ml per 100ml vehicles. The calibration shall be performed by MT levelⅡor Ⅲ and reviewed by MT level Ⅲ NDE Examiner. The calibration results shall be recorded on CALIBRATION RECORD FOR SUSPENSION CONCENTRATION.

4.4 Illumination

When natural light is not enough for examination and evaluation, adequate illumination is required ensuring adequate sensitivity during the examination and evaluation.

5. Surface Preparation

5.1 Satisfactory results are usually obtained when the surface is in the as-welded,

as-rolled, as-cast, or as-forged conditions. However, surface preparation by grinding or machining may be necessary where surface irregularities could mask indications due to discontinuities.

5.2 Prior to magnetic particle examination, the surface to be examined and all adjacent areas within at least 1 in. (25mm) shall be dried and free of all dirt, grease, lint, and scale, welding flux and spatter, oil or other extraneous matter that could interfere with the examination.

5.3 Cleaning of the test surface may be accomplished by detergents, organic solvents, or mechanical means.

5.4.When coating is left on the areas of the part being examined, all coating shall be removed prior to examination

6.Examination

Level Ⅱexaminer shall perform magnetic examination in accordance with the requirements of the Instruction, and shall record examination data on the MAGNETIC PARTICLE EXAMINATION REPORT .The temperature of the wet magnetic particle suspension and the surface of the part shall not exceed 135℉(57.3℃).

6.1 Magnetizing Technique

The AC or DC yoke technique shall be applied to detect discontinuities on the surface of the part. Except for materials 1/4 in. or less, AC yokes are superior to detect surface discontinuities.

6.2.Method of Examination

Examination shall be done by the “wet magnetic particle continuous method; that is, the magnetizing current remains on while the examination medium is being applied and while excess of the examination medium is being removed. The duration of the magnetizing current is typically on the order of 1-3s.

6.3 Application of wet magnetic Particles

Wet magnetic particle bath shall be applied by sparing, brushing or flowing over the area to be examined during the application of the magnetizing field. Care must be taken to prevent application before removing the magnetic field.

6.4 Direction of Magnetization

Each area must be magnetized in at least two directions approximately at right angle to each other so that all discontinuities on the surface of part may be detectable (see Fig.2). The indications are not normally obtained when discontinuities are parallel to applied magnetic field.

6.5 Examination Coverage

All examination shall be conducted with sufficient overlap to assure 100% coverage at the required sensitivity. The examination area shall be marked with line to satisfy 100% coverage as shown in Fig.2.

6.6 Magnetizing Current

Alternating or direct magnetizing current shall be used to establish part magnetization.

6.7 Magnetic Field Strength for Yoke Technique

The lifting power relates to the electromagnetic strength of the yoke. Alternating current electromagnetic yoke shall have a lifting power of at least 10lb(44.5N) at the maximum pole spacing that will be used. Direct current electromagnetic yoke shall have a lifting power of at least 40lb(178N) at the maximum pole spacing that will be used.

6.8.Evaluation of System Sensitivity

When it is necessary to verify the adequacy or direction of the magnetizing field, the magnetic particle field indicator described in Table 2 shall be used by positioning the indicator on the surface to be examined. A suitable flux or field strength is indicated when a clearly defined line of magnetic particles forms across the copper face of the indicator when the magnetic particles are applied simultaneously with the magnetic force. When a clearly defined line of particles is not formed, or is not formed in the desired direction. The magnetizing technique shall be changed or adjusted.

7.Evaluation

Level Ⅱor Ⅲ NDE examiner shall observe and evaluate indications in accordance with the acceptance standards of ASME Code, and shall record evaluation result on the MAGNETIC PARTICLE EXAMINATION REPORT 7.1.The illumination during observation and evaluation shall satisfy requirement of para.4.4.

7.2 Discontinuities on the surface are indicated by retention of the examination medium. However, localized surface irregularities due to machining marks or other surface conditions may produce false indications.

7.3.Broad areas of particle accumulation, which might mask indication from discontinuities, are prohibited, and such areas shall be cleaned and reexamined.

7.4 Evaluation of Indications

7.4.1 Indications will be revealed by retention of magnetic particles, all such indications are not necessarily imperfections however, since excessive surface roughness, magnetic permeability variations (such as at the edge of heat affected zoned), etc. may produce similar indications.

Note: When examine corner welded joints such as nozzle to shell joint, adequate shoes shall be used to fit the shape being examined. The yoke fixed with shoes shall verify the lifting power required in Para.6.6.

Fig.2 Max. Pitch and Direction for Yoke Technique.

An indication is the evidence of a mechanical imperfection.

Only indications, which have any, dimension greater than 1/6 in. shall be considered relevant.

(a) A linear indication is one having a length greater than three times the width.

(b) A round indication is one of circular or elliptical shape with a length equal to or less than three times its width.

(c) Any questionable or doubtful indications shall be reexamined to determine whether or not they are relevant.

7.4.2 Acceptance Standards

These acceptance standards shall apply unless other more restrictive standards are specified for specific materials or applications within this Division.

All surfaces to be examined shall be free of:

(a)Relevant linear indications.

(b)Relevant rounded indications greater than 3/16in.

(c)Four or more relevant rounded indications in a line separated by 1/16in.or less, edge to edge.

(d)An indication of an imperfection may be larger than the imperfection that causes it. However, the size of the indication is the basis for acceptance evaluation.

8.Demagnetization

When residual magnetic forth interfere the subsequent processing or usage, and equipped in the drawings, specification or purchase order, the part or area shall

be demagnetized.

8.1 Demagnetization Methods

8.1.1 Withdrawal from Alternating Current Coil

The fastest and most simple technique is to pass the part through a high intensity alternating current coil and then slowly withdraw the part from the field of the coil. A coil of 5000 to10000 ampere-turns is recommended. Line frequency is usually from 50 to 60Hz alternating current because of its inability to penetrate. Alternating-current yokes may be used for local demagnetization by replacing the poles on the surface, moving them around the area, and slowly withdrawing the AC yoke while it is still energized. Care should be exercised to assure that the part is entirely removed from the influence of the coil or AC yoke before the demagnetizing force is discontinued, otherwise the demagnetizer may have the reverse effect of magnetizing the part.

8.1.2 Decreasing Alternating Current

An alternative technique for part demagnetization is subjecting the part to the field while gradually reducing its strength to a desired level.

8.1.3 Reversing Direct Current

The part to be demagnetized is subjected to consecutive steps of reversed and reduced direct current magnetization to a desired level (This is the most effective process of demagnetizing large parts in which the alternating current field has insufficient penetration to remove the internal residual magnetization.). this technique requires special equipment for reversing the current while simultaneously

reducing it in small increments.

8.2 Effectiveness of the Demagnetizing

Operation can be indicated by the use of appropriate magnetic field indicators or field strength meters. However, a part may retain a strong residual field after having been circularly magnetized and exhibit little or no external evidence of this field. Therefore, the circular magnetization should be conducted before longitudinal magnetization of complete demagnetization is required.

9 Reexamination for Repaired Area and Nonconformity Control

9.1Reexamination for Repaired Area

The reexamination for repaired area shall be the same as original and a record of repaired area shall be noted as well as the results of the reexamination for repaired area.

9.2 Nonconformity Control

Any nonconformity of examined item shall be reported to level ⅢNDE examiner and handled according to Section 6 of QC Manual.

10.Post Cleaning

Post cleaning is necessary where magnetic particle material could interfere with subsequent processing or service requirements. Post cleaning shall be done to remove wet particles by wiping with cotton cloth or flushing with solvent.

11. Report

11.1 The report shall be satisfactory to the requirements of ASME Code for the report of NDE.

11.2.The report shall be prepared by the level ⅡNDE examiner who engaged in the magnetic particle examination operation and evaluation, reviewed by the level Ⅱor ⅢNDE examiner and approved by the NDE Department Manager or his designated NDE Level Ⅲ Examiner prior to submission to the AI.

11.3 The report shall be kept in file in the NDE Room for at least 5 years.

磁粉检测(6~10)

6 磁粉检测工艺 所谓磁粉工艺,是指从预处理、磁化工件、施加磁粉或磁悬液,磁痕的观察与记录、缺陷评级、退磁和后处理等的全过程。 只有正确执行磁粉探伤工艺要求,才能保证磁粉探伤的灵敏度,检出应检的缺陷。 影响磁粉探伤灵敏度的因素主要有:磁场大小和方向的选择;磁化方法的选择;磁粉的性能;磁悬液的浓度;设备的性能;工件形状和表面粗糙度;缺陷的性质、形状和埋藏深度;工艺操作;人员水平;观察条件。

磁粉探伤方法的一般选择原则: a连续法和剩磁法都可进行探伤时,优先选择连续法。 b对于湿法和干法,优先选择湿法。 c对于按磁化方法分类的六种探伤方法,选用要根据工件的形状、尺寸、探伤操作的困难程度进行。 磁粉检测的检测方法,一般根据磁粉检测所用的载液或载体 不同,分为湿法和干法检测;根据磁化工件和施加磁粉或磁悬液的 时机不同,分为连续法和剩磁法检测。根据不同分类条件,磁粉检 测方法的分类为表6-1所示。 表6-1磁粉检测方法分类

6.1 预处理 预处理:被检工件表面不得有油脂、铁锈、氧化皮或其它粘附磁粉的物质。 表面的不规则状态不得影响检测结果的正确性和完整性,否则应做适当的修理,即预处理。如打磨,则打磨后被检工件的表面粗糙度 Ra≤25μm。 如果被检工件表面残留有涂层,当涂层厚度均匀且不超过0.05mm,不影响检测结果时,经合同各方同意,可以带涂层进行磁粉检测。 此外,预处理还包括:涂敷(反差增强剂)、封堵、装配件的撤解等。

6. 2 磁化、施加磁粉或磁悬液 磁化:选择磁化方法,确定磁化规范。磁化时间为1S ~3S,停施磁悬液至少1S后方可停止磁化; 1,为保证磁化效果,至少反复磁化2次(连续法)。2,分段磁化时,必须注意相邻部位的探伤需有重叠。 3,对于单磁轭磁化和触头法磁化,均只能实现单方向磁化,在同一部位,必须作2次互相垂直的磁化探伤。4,对于通电法包括触头法,注意烧伤问题。 5,对于交叉磁轭法,四个磁极端面与检测面之间应尽量贴合,最大间隙不应超过1.5MM。连续拖动检测时,检测速度应尽量均匀,一般不应大于4M/MIN。

磁粉探伤中的磁痕分析与判断.改doc

磁粉探伤中的磁痕分析与判断 摘要:本论文根据理论联系实际工作,对磁粉探伤工作中的磁痕作出正确的分析与判断。 前言:磁粉探伤又称磁粉检测,是应用较广泛的无损检测方法之一。作为一名磁粉探伤人员来讲,正确地检测和判断磁痕是极为重要的,它直接影响探伤结果的准确性。 关键词:磁粉探伤磁痕分析判断 现简单谈一下各种磁痕显示的分析和判断: 一、假磁痕 假磁痕是一种非正常显示,是一种假象,它不是由于漏磁场而产生的,所以应正确予以判定。假磁痕产生的原因及特征和鉴别方法: 1、工件表面粗糙(如焊缝两侧的凹陷,粗糙的机加工和铸造表面)会滞留磁粉形成磁痕。磁粉的堆积很松散,磁痕轮廓不清晰,如果将工件在煤油或水分散剂内漂洗可将磁痕除去。 2、工件表面存在油脂、纤维物、发丝及脏物都会粘附磁粉而形成磁痕。只要仔细观察即可辨认,然后通过清洗工件表面可以消除。 3、工件表面的氧化和锈蚀以及油漆斑点的边缘上滞留磁粉会形成磁痕,该磁痕经仔细观察即可辨认清楚。 4、磁悬液浓度过大,磁粉施加不当都可能造成假磁痕,不易辨认,磁粉松散,磁痕轮廓不清晰,漂洗后磁痕即消除。 二、非相关显示的判定 非相关显示不是来源于缺陷,但却是由漏磁场产生的,其形成原因复杂,一般与工件本身、工件外形结构、采用的磁化规范、工件的制造工艺等因素有关。非相关显示的工件,其强度和使用性能并不受影响,对工件不构成危害,但它却与相关显示容易混淆,不易识别,如若不慎,将非相关磁痕误判为相关磁痕,就会使合格的工件报废而造成经济损失;相反,如果把相关磁痕误判为非相关磁痕,也会造成质量隐患。 非相关显示产生的原因和特征以及鉴定方法如下: (一)磁极和电极附近

表面裂纹荧光磁粉检测分析

表面裂纹荧光磁粉检测分析 摘要荧光磁粉检测是对钢制零件表面裂纹进行检测的一种常用方法,由于其在实际应用中表现出了很好的应用效果,所以直至今日,表面裂纹荧光磁粉检测方法还是受到一致好评和广泛应用。但是,荧光磁粉检测方法的准确性和灵敏性受到检测环境、检测设备、被检测零件特质等的影响较大,所以为了提高荧光磁粉的检测效果我们要对荧光磁粉检测进行综合性分析。 关键词表面裂纹;磁粉检测;分析 能够对工件进行无损检测的方法有很多种,但常见的有超声检测法、涡轮检测法、磁粉检测法等,但不同的检测方法都各有优缺点,超声检测方法对被检工件的表面光洁度要求较高,同时对经济要求较高,导致这种检测方法在我国国内应用较少;涡轮检测方法虽然具有检测速度上的优势,但检测的灵敏性较差。这样综合对比来看,磁粉检测方法能够达到经济要求低、检测灵敏性高、检测效果直观、可操作性强等效果,因而备受关注,也因此本文要对其进行重点论述。 1 对磁痕进行分析 在被检测工件接受检测之后首先要做的工作就是根据记录对磁痕进行分析,磁痕分析所依据的原理主要是磁粉探伤原理。虽然磁痕的存在大部分都是由裂纹所导致的,但是并不排除有其他原因也会导致磁痕的产生,例如常见的有缺陷磁痕;非缺陷磁痕;伪磁痕等等,故而在磁痕形成之后还要对磁痕进行准确的分析。 1.1明确不同磁痕特征 在荧光磁粉检测过程中,在磁力作用下所形成的磁痕具有很大的相似性,所以分辨起来具有较大的困难,如果不从特征入手很难精准区分。缺陷磁痕是一种线状磁痕同时磁痕本身也呈现细长状,分布不规则并长短不一;非缺陷磁痕是一种直线状的磁痕,相对于其他几种磁痕来说,这种磁痕的位置相对比较固定;伪磁痕其形成原因是被检测工件的表面不光洁所导致的,由于被检测工件上存在铁锈或者油污等,在磁悬液经过时受到阻力而粘附上形成磁痕。 1.2区分出真假磁痕 真假磁痕的区分是需要较多的检测经验的,如果在区分过程中出现了失误就很有可能导致错误,真假裂纹混淆,这样就会导致合格的工件呗报废或者是报废的工件被应用,很有可能导致事故的出现。对于这一问题最有效的解决方式就是对检测人员进行培训考核,严格根据相关的标准进行,以提高检测人员的工业技能。 2 磁痕影响因素

磁粉(MT)检测通用工艺规程111讲解

广州番禺潮流水上乐园建造有限公司 磁 粉 检 测 工 艺 规 程 工艺规程版本号:CL/Y01-2016 二零一六年一月一日

1.适用范围 本规程适应于本公司对大型游乐设施磁粉检测方法及质量分级的要求。 本规程适用于铁磁性材料制造的大型游乐设施的原材料、零部件和焊接接头表面、近表面缺陷的检测,不适于奥氏体不锈钢和其它非铁磁性材料的检测。 与大型游乐设施有关的支承件和结构件,如有要求也可参照本规程进行磁粉检测。 2. 规范性引用文件 下列文件中的条款通过NB/T47013-2015《承压设备无损检测》的本部分的引用而成为本部分的条款。凡是注日期的引用文件,其随后所有的修改单(不包括刊物的内容)或修订版均不适用于本部分,然而,鼓励根据本部分达成协议的各方研究是否使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本部分。 GB 11533-1989 标准对数视力表 GB/T 16673-1996 无损检测用黑光源(UV-A)辐射的测量 NB/T47013.1-2015 承压设备无损检测第1部分:通用要求 JB/T 6063-1992 磁粉探伤用磁粉技术条件 JB/T 6065-2004 无损检测磁粉检测用试片 JB/T 8290-1998 磁粉探伤机 3. 一般要求 磁粉检测的一般要求除应符合NB/T47013.1的有关规定外,还应符合下列规定。 3.1 磁粉检测人员 磁粉检测人员未经矫正或经矫正的近(距)视力和远(距)视力应不低于5.0(小数记录值为 1.0),测试方法应符合GB 11533的规定。并1年检查1次,不得有色盲。 3.2 磁粉检测程序 磁粉检测程序如下: a) 预处理; b) 磁化; c) 施加磁粉或磁悬液; d) 磁痕的观察与记录; e) 缺陷评级; f) 退磁; g) 后处理。 3.3 磁粉检测设备 3.3.1设备 磁粉检测设备应符合JB/T 8290的规定。本公司采用CJX-220E交流磁粉仪,仪器编号:15876

磁粉探伤技术与分析

磁粉探伤技术分析与判断 秦郁雯 (马鞍山钢铁股份有限公司) 磁粉探伤作为检查机械零件内部及表面缺陷的一种常用手段, 其原理简单, 操作容易, 现已广泛应用于机械零件缺陷的检查中。而对磁粉探伤中发现的缺陷如何正确分析和判断比较困难。本文就此问题理论结合实际加以总结与讨论。 1 正确判断裂纹缺陷的重要性 产品的技术条件中都规定有验收标准, 如我厂使用的设备、设备零件不允许有裂纹, 即磁粉探伤的零件有裂纹而又不能消除时应报废。因此, 正确判断零件是否有裂纹是执行技术条件的基础工作之一。如果判断标准过宽或漏检缺陷,会造成重大事故; 反过来, 把不应报废的零件报废, 会产生严重经济损失。两者均要避免, 做到恰如其分。这样必须掌握好磁粉探伤原则, 并在实践中积累经验, 使认识臻于完善。 2 裂纹缺陷判断的依据 (1) 磁粉图是分析裂纹缺陷的第一手资料, 其特征是: 磁粉图的形状和分布情况大体上是裂纹的形状和分布情况的描写; 磁粉图受裂纹宽度、深度、形状及裂纹导磁系数的影响。 (2) 必须了解零件在磁粉探伤前的工艺过程, 因裂纹是有来源、有规律可循的。 (3) 一般磁力探伤中所发现的裂纹形状和分布特征都取决于工艺过程中零件所受的最大正应力和零件内部情况, 所以裂纹的形成、形状、大小和分布情况都是这两个因素迭加的结果磁力探伤本身不能制造裂纹缺陷。 3 常见裂纹缺陷的特征及其规律性 3.1 白点 白点是在热轧和锻压合金钢中出现的一种缺陷。白点是在钢热压力加工后的冷却过程中形成的, 属于钢的内部开裂的一种。白点大多分布在大型轧材或锻件的近中心或离表面一定距离处, 在钢件的纵向断口上呈圆形或椭圆形的银白色斑点, 直径一般约5mm~ 10mm ; 白点往往成群出现, 磁粉探伤发现的白点是其横断面,

磁粉探伤实例分析

磁粉探伤实例分析 夏纪真 国营3007厂探伤室(1984) 注:本文原来未曾公开发表过 本文对两例磁粉探伤工艺进行了分析,对其存在问题及改进方法作了评述。 第一例:飞机用球面管嘴模锻件 该锻件材料为45#钢,形状如同三通管,见上图a。该锻件原模锻工艺为将加热好的Φ35mm棒料如上图c所示置于300吨双盘摩擦压力机的下模型腔上,经二火一毛(即加热一次锻压一次,然后回炉加热后再锻压,最后在冲床上冲切毛边)。这样的放料方法不利于变形时的金属流动,容易在锻件大圆外分模线两侧的圆周面上产生折叠,这是由于金属卷流所造成,如上图b和下图(磁粉探伤的磁痕显示),其出现率经磁粉探伤发现达到15.3%左右。

这种折叠因为经过两次模压,其缝隙紧密,锻后经正火处理,再经喷砂清理表面,仍难以用肉眼观察出来,而在后续机械加工时才能暴露造成报废。为此考虑采用磁粉探伤手段在模锻件毛坯上进行检查,一旦发现则可及时采取局部打磨方法消除(深度超过加工余量的则报废)。 该折叠的特点是呈圆弧状并有规律地出现在锻件大圆外分模线两侧的圆周面上,因为使用的是Fe3O4黑磁粉,为了提高背景的对比度和避免表面粗糙度影响,在探伤前要先用砂轮磨去外分模线上的冲切毛刺并对外分模线两侧的圆周面用抛光轮作粗略抛光。 探伤方法:使用TC-500型手提式磁粉探伤机,交流电直接通电连续法(沿 大圆头轴向通电)的周向磁化检查。充磁电流为交流有效值500A,峰值 电流可计算得到为21/2·Ie=707A,按照I=HD/4得到H≈857A/cm=682(Oe), 基本符合HB/Z 5002-74的最严规范(15D)。磁悬液为25#变压器油50%+ 煤油50%,浓度为化学分析纯Fe3O4黑磁粉30克/升。 探伤结果:共检查600件,发现有折叠的92件,经打磨修伤后复探直至缺陷清除干净为止,合计探伤1237件次,除了少数因缺陷过深超过加工余量而报废外,大部分锻件被挽救而避免了浪 费。 根据探伤结果和对原锻造工艺的分析,将原工艺改 为先将Φ35mm棒料经过一次热压扁,然后再放到 模具型腔上进行模锻,如右图所示。由于工艺改进 后坯料完全覆盖在型腔上,变形时金属流动均匀而 不再产生折叠。 件,均未发现折叠,从而肯定了改进后锻造工艺的 正确性。 锻件经磁粉探伤后的退磁:利用磁粉探伤机配件中 的线圈框架(纵向长度为14.5cm,直径19cm,见 下图),将探头电缆端头用螺栓连接缠绕在框架上 6匝作为退磁线圈。 计算此时线圈的中心磁场强度 H=(2πNI)/[5·(l2+r2)1/2]=217.5奥斯特(按电流 有效值计算),1A/m=4π/10 (Oe),退磁电流500A, 将锻件置于线圈内侧,在线圈通电的同时把锻件沿 线圈轴向缓慢移出到距离线圈1米以外才结束通 电,完成退磁。 讨论:该探伤方法能有效地发现折叠,但仍存在下述缺点: ①该批锻件是在1980年检查的,那时手头尚没有A型试片和高斯计、磁强计,无法 定量评估探伤灵敏度; ②那时尚没有条件使用高斯计、磁强计检查退磁效果,当时是以锻件不能吸附起回 形针来判断是否已经退磁。 尽管如此,此次的磁粉探伤仍是利用无损探伤手段配合改进锻造工艺的一个很好的 例证。 第二例:氧气压缩机与气体膨胀机连杆螺栓

钢构件磁粉探伤的聚磁成因分析

钢构件磁粉探伤的聚磁成因分析 发表时间:2018-08-15T10:49:41.200Z 来源:《防护工程》2018年第7期作者:韩冰 [导读] 本文通过使用磁粉探伤、电子探针、低倍检验等多种检验分析方法,得出了由C38N2制成的某钢构件的聚磁成因,并且从构件加工角度考虑,明确分析这一裂纹的产生原理。 中国航发哈尔滨东安发动机有限公司黑龙江哈尔滨 150066 摘要:本文通过使用磁粉探伤、电子探针、低倍检验等多种检验分析方法,得出了由C38N2制成的某钢构件的聚磁成因,并且从构件加工角度考虑,明确分析这一裂纹的产生原理。 关键词:钢构件;磁粉探伤;聚磁成因 磁粉探伤被称之为MT或者MPI,它是一种有效的探测方法,经常被应用于钢铁等磁性材料的表面探伤中。本文对聚磁误判的钢结构构件中取样展开了检验,通过磁粉探伤和低倍检验等多种方法,全面分析了聚磁现象产生的原因。 1、成因 某钢厂生产的GCr15轴承钢用于生产铁路轴承滚子,在对轴承滚子进行磁粉探伤检验时,发现个别滚子表面有聚磁现象。对该轴承钢聚磁件进行低倍检验、金相检验、电镜扫描及能谱分析,结果表明,轴承钢淬火金相组织存在隐晶马氏体区和结晶马氏体区,这是由于钢锭结晶时产生树枝状偏析造成碳和铬在成分上的不均匀所致,在加热淬火时此微区为欠热区,存在较多的未溶碳化物颗粒、较细的奥氏体晶粒和较多隐晶马氏体区,从而保留较多的残余奥氏体,产生聚磁现象。 2、取样 本次取样工作的重点是,在初次磁粉探伤的过程中,发现有磁痕而被误判的钢结构构件中,切取聚磁部位展开分析。 3、检验 3.1再次磁粉探伤 在实验过程中,将这一钢构件的聚磁部分切取下来,采取荧光湿法和横向磁化的方法再次实施磁粉探伤工作,以此确定磁痕的具体问题。等到再次确认磁粉探伤的时候可以看出,钢结构磁粉聚集现象和第一次磁粉探伤时产生的现象是一摸一样的。 3.2低倍检验 使用提示显微镜来观察试样聚磁部位的外表特点,随后实施低倍组织检验工作。 从低倍组织图可以看出,呈现的钢构件试样聚磁位置处,有着较小的裂痕,并且这种裂痕现象的实际走向是垂直于构架加工过程中的磨削方向。 3.3高倍检验 通过对该钢结构件试样切片之后,实施金相组织检验工作,根据检验结果可得出,钢材的金相组织是一种回火马氏体组织情况,其中剩余的奥氏体量比较小,并且没有任何组织发生异常现象。 从夹杂物实际检验现象可以看出来,观察到的钢构件试样夹杂物自身具有很低的等级,硫化物呈现良好的发展趋势。 3.4电子探针分析 使用电子探针分析方式对这一钢构件试样切片展开全面的分析和研究。 在3000倍下开展观察工作,从表面一直到3.0mm位置上,每间隔0.5mm便观察一次,在大约 2.0~3.0mm位置处,可以看出,组织存在一定的异常情况,呈现细微的针状马氏体形状。钢构件试样表面到3.0mm不同深度处的组织面貌如下图所示: 图十 2.0mm处的组织形貌图十一 3.0mm处的组织形貌 从以上多个图观察到的试样不同深度处组织形貌可以看出,在3.0mm范围内,试样的组织大都是较为粗大的回火马氏体,这一种物体属于钢种中频淬火之后的低温回火组织。 从电子探针观察到的现象可以看出,上述图中钢构件试样磁痕位置处具有一定的裂纹,并且这一裂纹的实际走向和硫化物方向是一样的,两者差不多都属于垂直方向,纵向的裂纹表面如下图所示,横向裂纹形貌如下:

ASME标准中文版

ASME标准中文版 ASME B16.20-1993 管法兰用环连接式.螺旋缠绕式及夹套式金属垫片 ASME B16.21-1992 管法兰用非金属平垫片 ASME SECTION-I ASME锅炉及压力容器规范第Ⅰ卷动力锅炉建造规范2004版+05+06增补 ASME SECTION-II A ASME锅炉及压力容器规范第Ⅱ卷A篇铁基材料2004版+05+06增补 ASME SECTION-II B ASME锅炉及压力容器规范第Ⅱ卷B篇非铁基材料2004版+05+06增补 ASME SECTION-II C ASME锅炉及压力容器规范第Ⅱ卷C篇焊条焊丝及填充材料2004版+05+06增补ASME SECTION-II D ASME锅炉及压力容器规范第Ⅱ卷D篇材料性能2004版+05+06增补 ASME SECTION-IV ASME锅炉及压力容器规范第Ⅳ卷采暖锅炉建造规范2004版+05+06增补 ASME SECTION-V ASME锅炉及压力容器规范第Ⅴ卷无损检测2004版+05+06增补 ASME SECTION-III NB 1995版ASME规范Ⅲ卷核动力装置设备制造准则一册NB分卷一级设备ASME SECTION-III NC 1995版ASME规范Ⅲ卷核动力装置设备制造准则一册NC分卷二级设备ASME SECTION-III NCA ASME规范Ⅲ卷(89版) 核动力设备建造规则NCA卷一册与第二册之总要求ASME SECTION-III ND 1995版ASME规范Ⅲ卷核动力装置设备制造准则一册ND分卷三级设备ASME SECTION-III NF 1995版ASME规范Ⅲ卷核动力装置设备制造准则一册NF分卷设备支承结构ASME SECTION-IX ASME锅炉及压力容器规范第Ⅸ卷焊接及钎焊评定标准2004版+05+06增补 ASME SECTION-VI ASME锅炉及压力容器规范第Ⅵ卷采暖锅炉维护和运行推荐规则2004版+05+06增补ASME SECTION-VII ASME锅炉及压力容器规范第Ⅶ卷动力锅炉维护推荐导则05年版 ASME SECTION-VIII-1 ASME锅炉及压力容器规范第Ⅷ卷1压力容器建造规则2004版+05+06增补 ASME SECTION-VIII-2 ASME锅炉及压力容器规范第Ⅷ卷2压力容器另一规则2004版+05+06增补 ASME SECTION-VIII-3 ASME锅炉及压力容器规范第Ⅷ卷3高压容器建造另一规则2004版+05+06增补ASME SECTION-XII ASME锅炉及压力容器规范第Ⅻ卷运输罐的建造和连续使用规则2004版+05+06增补CODE CASES 规范案例2004年版 TCED 41001-2000 ASME 压力容器规范实施导则 ASME B31.1-2004版动力管道 ASME B31.3-2004版工艺管道 ASME规范压力管道及管件B31、B16系列标准(上册)含5个标准 1.ASME B31.4-1998版液态烃和其他液体管线输送系统 2.ASME B31.5-1992(R1994) 制冷管道 3.ASME B31.8-1999版输气和配气管道系统 4.ASME B31.9-1996版建筑管道规范 5.ASME B31.11a-1989(R1998)版浆液输送管道系统 ASME B31G-1991版确定已腐蚀管线剩余强度的手册 (对ASME B31压力管道规范的补充文件) ASME规范压力管道及管件B31、B16系列标准(下册)含10个标准 1.ASME B16.1-1998版铸铁管法兰和法兰管件(25、125和250磅级) 2.ASME B16.3-1998版可锻铸铁螺纹管件(150和300磅级) 3.ASME B16.4-1998版灰铸铁螺纹管件(125和250磅级) 4.ASME B16.9-1993版工厂制造的锻钢对焊管件 5.ASME B1 6.10-1992版阀门的面至面和端至端尺寸 6.ASME B16.11-1996版承插焊式和螺纹式锻造管件 7.ASME B16.14-1991版钢铁管螺纹管堵、内外螺丝和锁紧螺母 8.ASME B16.28-1994版锻轧钢制对接焊小弯头半径弯头和180度弯头 9.ASME B18.2.1a-1999版方头及六角头螺栓和螺钉 10.ASME PTC25-1994 压力泄放装置性能试验规范

磁粉探伤检验规范

磁粉探伤检验规范 1、适用范围 本规范叙述的是湿磁粉对铁磁性材料表面及近表面裂纹及其它 不连续的一种检测。适用于钻井工具表面和连接螺纹的磁粉检测。 2、引用标准、规范 ASME 709 磁粉检测的标准推荐操作方法 GB11522 标准对数视力表 JB/T4730.1 承压设备无损检测第1部分:通用部分 JB/T4730.4 承压设备无损检测第4部分:磁粉检测 JB/T6063 磁粉探伤用磁粉技术条件 JB/T6065 无损检测磁粉检测用试片 JB/T8290 磁粉探伤机 ASNT-TC-1A 无损检测人员的资格鉴定 3、磁粉检测人员 3.1 从业人员应按ASNT-TC-1A和《特种设备无损检查人员考核与监督管理规定》的要求,取得相应无损检测资格。 3.2 无损检测人员资格的分级为:Ⅲ(高)级、Ⅱ(中)级、Ⅰ(初)级。取得不同无损检测方法和资格级别人员,只能从事于该方法和资格级别相应的工作,并负责相应的叫声责任。 3.3 磁粉检测人员未经矫正会经矫正的近(距)视力或远(距)视力应不低于5.0(小数记录值为1.0)。测试方法应符合GB11533的规定。 3.4 无损检测人员应根据ASNT-TC-1A的规定,每年进行一次视力检查,

不得有色盲。 4、检测设备、器材和材料 4.1 磁粉探伤机 磁粉探伤机,在有效适用期内应良好的保养。交流电磁轭应有45N的提升力,直流电磁轭至少应有177N的提升力。检测周期为6个月一次。 4.2 磁悬液 磁悬液浓度应根据磁粉种类、力度、施加方法和被检工件表面状况等因素来确定。用于完全润湿工件表面的油机介质,如出现不完全润湿,要从新进行清洗或添加更多磁粉或添加更多润湿剂。 4.3 退磁装置 退磁装置应能保证退磁后,表面剩磁不大于0.3mT(240A/m)。 4.4 辅助设备 磁场强度计 标准试片A1(或CX) 磁场指示器 磁悬液浓度测试仪(管) 2~10倍放大镜。 5、被检工件表面 清洁被检工件表面,不得有油脂、铁锈、氧化皮或其他粘附磁粉的物质。被检工件表面不规则状态,不得影响检测结果的正确性和完整性。 6、检测操作规程及工艺 6.1 用磁悬液浓度沉淀管或浓度测试仪测量磁粉浓度,浓度范围见表1。

铸件磁粉检测缺陷分析及预防

万方数据

铸造聂小武等:铸件磁粉检测缺陷分析及预防?1057? 1磁粉检验检测出的铸件缺陷类型’ 磁粉检验的缺陷是通过磁痕来显示的,但磁痕并不一定能真实地反映缺陷的本质,因为形成漏磁的因素很多,并非所有的磁痕都表征缺陷的存在,这就使得对铸件经磁粉检验检测出的缺陷进行分类比较复杂。要判断缺陷的类型,首先要观察磁痕的形状:是点状还是线状,是聚集还是分散;其次分析磁痕所在的位置以及产生此类磁痕的铸件数量有多少,有无规律性;最后,结合铸造工艺理论判断缺陷类型。由于铸件缺陷分类的方法比较多,可按照国际铸件缺陷图详1】分类标准,认为磁粉检验能检测出的铸件缺陷主要有三类—孔洞类缺陷,如气孔、针孔、缩孔、缩松、疏 松;裂纹;冷隔类缺陷,如冷裂、热裂、冷隔、热处理裂纹;夹杂类缺陷,如夹杂物、夹渣、砂眼等。 2磁粉检测出的缺陷分析及防止 2.1孔洞类缺陷 2.1.1侵入气孑L 侵人气孔特征是数量较少,尺寸较大,内表面光滑,形状有梨形和椭圆形,产生在铸件的局部,有时显露在铸件表面。产生机理主要是,铸型在高温金属液的热作用下,产生的气体侵人金属液而形成的。比如在砂型中,当砂型或砂芯产生的气体压力超过金属液对气体的阻力时,气体进入金属液中。特别是砂型砂芯局部过湿或通气孔钻人金属液堵死,会形成侵入气孔。侵入气孑L方向,可观察气孔的尖端指向来判断。 防止措施口卅有,①控制型(芯)砂混合料中的发气物加入量;湿型少喷水或少刷水,烘干后的型芯不要久放,不用潮湿或生锈的冷铁。②改善型砂透气性,紧实度要合适。③保证金属液平稳进入型腔。④适当提高浇注温度,使侵入金属液气体有时间排出。2.1.2析出气孔 析出气孔特征是多呈细小的圆形、椭圆形或针状,往往出现在铸件的厚大断面上或热节处,经加工后显露。产生机理,主要由于金属液在熔炼过程中吸收了较多的气体,在凝固过程中大部分气体会逐渐析出,而此时金属液的流动陛很差,气体较难聚集浮起,形成气孔。防止措施,①炉料人炉前应进行烘干、滚光或吹砂等处理。 ②熔炼时加入适量溶剂,使金属液面上形成熔渣保护层,以隔绝空气进入。③浇包工具要烘干,对金属液采取高温出炉低温浇注等。④采用真空熔炼和压力凝固。2.1.3反应性气孔 反应性气孔常出现在球墨铸铁件上,也称为皮下气孔,热处理去除氧化皮后会显露出来。产生机理,高温金属液注入铸型后,与型(芯)、冷铁和熔渣等发生化学反应生成气体而形成的气孔。铁液中逸出的镁和铁液表面的硫化镁与铸型中的水发生化学反应,生成氢和硫化氢等气体。防止措施,①净化炉料,减少铁液中含气量;②严格控制型砂水分,在保证球化的前提下,尽量减少镁的加人量;③适当提高浇注温度,在铁液表面或铸型表面撒少量冰晶石粉或氟硅酸钠等。上述三类缺陷在磁粉检验时显示的磁痕特征是,一般多呈圆形或椭圆形,密集形分布,均有一定面积。2.1.4缩孔 缩孔特点是形状不规则,孔壁粗糙并带有枝晶,常出现在热节或最后凝固部位。磁粉检验时显示的磁痕特征是磁粉堆积密集,磁痕外形不规则,多呈云朵状出现。产生机理,铸件逐层凝固时,液态收缩与凝固收缩之和大于其固态收缩。防止措施,①工艺设计时应使各个断面的模数大致相同;②采用补贴增厚的办法改进断面形状;⑧充分考虑断面的有效距离;④根据合金特性,使用适当数量的冒口;⑤对熔模铸造,模组的分布要合理,防止局部散热困难。 2.1.5缩松、疏松 缩松是细小分散的孔洞;疏松是枝晶间及枝晶臂间的细小孑L洞,和缩松相似,但孔洞更细小。缩松部位在加水压时会渗透。磁粉检验时显示的磁痕特征是磁粉堆积松散,多呈片状。图1为某铸件的缩松缺陷,图2为其金相表征,可以看出是由一些不规则的孔洞组成,形状不规则。产生机理,缩松是由于铸件体积凝固时,液态收缩与凝固收缩的总和大于固态收缩。疏松产生的原因有两方面——铸件冷却速度过快,来不及补缩;铸件冷却速度过于缓慢,枝晶粗大妨碍补缩。防止缩孔的办法,①工艺设计上力求做到顺序凝固;②冒口的尺寸和数量要适当;⑧必要时采用补贴增厚的办法;④控制铁液成分,主要控制碳当量和磷,尽可能提高C与Si之比。防止表面疏松的办法,①加快铸件表面冷却速度,如适当降低铸型温度,降低浇注温度等;②在熔模铸造中,可在型壳装箱填砂前于疏松区域上刷上石墨粉,加快散热,或采用不填砂浇注的方式。 图l缩松 F培lSllrinkage 2一裂纹、冷隔类缺陷 2.2.1冷裂 冷裂常常是穿过晶体而不是沿晶界断裂,断口金 属光泽或呈轻微氧化色泽,断口形状与普通抗拉试棒  万方数据

JB4730.3-2005超声波标准和ASME标准对照

JB/T4730-2005 《承压设备无损检测》 第3部分超声检测ultrasonic [?ltr?′s?nik] 标准修改介绍以及与ASME标准对比 JB/T 4730.3-2005标准条款及技术内容 4.2 承压设备用钢锻件超声检测 4.2.1 范围 本条适用于承压设备用碳钢和低合金钢锻件的超声检测和质量等级评定。 本条不适用于奥氏体钢等粗晶材料锻件的超声检测,也不适用于内、外半径之比小于80%的环形和筒形锻件的周向横波检测。 国外标准的对应条款及技术内容,技术差异的简要评述 【1】对应条款:ASME2004-SA388-1.1 【2】相关技术内容: ASME规定:操作方法包括用直射波和斜射波技术对大型锻件作接触脉冲回波式超声 波检验程序。直射波法包括DGS(距离—增益—当量)法。 【3】简要评述:JB4730对适用范围作了限定,ASME没有那么明确。 JB/T 4730.3-2005标准条款及技术内容 4.2.2 探头 双晶直探头的公称频率应选用5MHz。探头晶片面积不小于150mm2;单晶直探头的公称频率应选用2~5MHz,探头晶片一般为φ14~φ25mm。 主要修改内容: ①探头 2005版增加了有关探头的内容,即:双晶直探头的公称频率应选用5MHz。探头晶片面积不小于150mm2;单晶直探头的公称频率应选用2MHz~5MHz,探头晶片一般为φ14mm~φ25mm。 解释:1994版没有对探头做出规定,选择余地较大,由此也可能造成检测结果的不一致,2005版对此作了规定。值得注意的是,锻件双晶直探头的检测范围是45mm。一般而言,用一个双晶直探头较难覆盖45mm,可能需要一个以上焦点不同的双晶直探头。 国外标准的对应条款及技术内容,技术差异的简要评述 【1】对应条款:ASME2004-SA388-4.2,7.2 【2】相关技术内容: ASME规定:a) 对于直射波扫查可采用换能器的最大有效面积为650mm2,其最小尺寸为20mm,最大为30mm。对于斜射波扫查,可采用换能器的尺寸从13×25mm至25×25mm。 b) 换能器应使用其标称频率。

ASME与国产材料对照表

国产材料与ASME材料对照表check list of GB material and ASME material 国产材料GB material ASME材料ASME material 材料牌号Material trademark Q235-C板plate 材料牌号 Material trademark SA-414 C σb375 σb380 σS235 σS230 材料牌号 Material trademark 20R板plate 材料牌号 Material trademark SA-283 D SA-515 60 SA-516 60 σb400 σb415 σS235 σS230 材料牌号 Material trademark 20g板plate 材料牌号 Material trademark SA-283 D SA-515 60 SA-516 60 σb400 σb415 σS225 σS220 材料牌号Material trademark 16Mn板plate 材料牌号 Material trademark SA-537 SA-738 C σb470 σb485 σS305 σS315 材料牌号Material trademark 20# 管子piping 材料牌号 Material trademark SA-53 S/B σb392 σb415 σS226 σS240 材料牌号Material trademark 20G 管子piping 材料牌号 Material trademark SA-53 S/B σb402 σb415 σS216 σS240 材料牌号Material trademark 15CrMo板plate 材料牌号 Material trademark SA-662 C σb450 σb485 σS295 σS295 材料牌号 Material trademark 15CrMo管子piping 材料牌号 Material trademark SA-178 D SA-106 C SA-210 C σb441 σb485 σS226 σS275 ※ A516Gr.60-------------------------16MnR热轧板, A516Gr.70N-----------------------16MnR正火板。 A516Gr.4---------------------------16MnII锻件, A334Gr1----------------------------16Mn,

3磁粉检测通用工艺(2)分析

特种设备磁粉检测通用工艺 1.总则 1.1.适用范围:本规程适用于铁磁性材料制锅炉、压力容器及压力管道的原材料、零部件和焊接接头 的表面及近表面缺陷的检测。 1.2.参照标准 1.2.1.JB/T4730.4-2005《承压设备无损检测》第4部分:磁粉检测 1.2.2.JB/T8290-1998《磁粉探伤机》 2.检测人员 2.1.从事锅炉、压力容器及压力管道的原材料、零部件和焊缝磁粉检测的人员,应按照《特种设备无损检测人员考核与监督管理规则》的要求取得相应无损检测资格。 2.2.磁粉检测人员的未经矫正或经矫正的近(距)视力和远(距)视力应不低于5.0(小数记录值为1.0), 测试方法应符合GB 11533的规定。并一年检查一次,不得有色盲。 3.仪器设备 3.1.磁粉探伤机 3.1.1.磁粉探伤机必须满足JB/T8290-1998《磁粉探伤机》的要求。 3.1.2.交流磁轭磁粉探伤仪在其磁轭最大极间距时其提升力应不小于45N。 3.1.3.旋转磁场磁粉探伤仪在其磁轭最大极间距时提升力应不少于118N(磁极与试件表面间隙为0.5mm)。 3.2.磁粉及磁悬液 3.2.1.磁粉应具有高磁导率、低矫顽力和低剩磁,并应与被检工件表面颜色有较高的对比度。磁粉粒度和性能的其他要求应符合JB/T 6063的规定。 3.2.2.湿法应采用水或低粘度油基载体作为分散媒介。若以水为载体时,应加入适当的防锈剂和表面活性剂,必要时添加消泡剂。油基载体的运动粘度在38℃时小于或等于3.0 mm2/s,使用温度下小于或等于5.0mm2/s,闪点不低于94℃,且无荧光和无异味。 3.2.3.磁悬液浓度应根据磁粉种类、粒度、施加方法和被检工件表面状态等因素来确定。一般情况下,磁悬液浓度范围应符合表1的规定。测定前应对磁悬液进行充分的搅拌。 表1 磁悬液浓度 3.3.辅助设备

磁粉检测作业指导书范文

磁粉检测作业指导 书

作业指导书 (MT-09) 编制: 审核: 批准: 执行日期: 3月10日

1 目的 1.1为使钢结构的部件和焊缝采用磁粉检测时其全过程的操作规范 化,能正确反映产品质量制定本操作规程。 1.2磁粉检测能够发现裂纹、夹杂、气孔、未熔合未焊透等缺陷, 但难以发现表面浅而宽的凹坑、埋藏较深的缺陷以及与工件表面夹角极小的分层。 2 适用范围 2.1磁粉检测适用于检测铁磁性材料表面和近表面的缺陷,因此对于奥氏体不锈钢,铁和钦合金、铝和铝合金、铜等非磁性材料不能用磁粉检测。由于马氏体不锈钢、沉淀硬化不锈钢具有磁性,因此能够进行磁粉检测。 3 引用标准 3.1GB/T 5616- 无损检测应用导则 3.2GB/T 9445- 无损检测人员资格鉴定与认证 3.3JB/T 6065- 无损检测磁粉检测用试片 3.4JB/T 6061- 无损检测焊缝无损检测 3.5NB/T 47013.4- 承压设备无损检测第4部分:磁粉检测 3.6GB/T 3721-1983 磁粉探伤机

4.人员资格要求 4.1.2 无损检测人员的资格评定应按照《特种设备无损检测人员考核与监督管理规则》的要求取得相应的无损检测资格后,持证操作。 4.2签发检验报告者必须持有磁粉检测II级以上资格证书。 4.3检验人员应了解产品中常出现的缺陷类型,部位,方向,并掌握可使重要缺陷不漏检的检测方法。 4.4不得有色盲和色弱,其近距离视力或近距离矫正视力应不低于 5.0(小数记录值为1.0), 的近距离视力敏锐度。检测员每年进行视力检查. 5 检测准备 5.1 工艺准备 5.1.1 检测方案 大型检测项目或客户有特殊要求的检测项目应单独编制磁粉检测方案(或包含在无损检测方案中)。磁粉检测方案由MT-II级人员编制,无损检测工程师审核项目技术负责人批准后执行。 5.1.2 检测工艺卡

磁粉探伤常见问题解析

磁粉探伤常见问题解析 磁粉探伤机,磁粉探伤仪常见问题解析,阅读完后让你成为磁粉探伤高手。 1用于车辆探伤的磁粉粒度是怎样规定的? 答:干法探伤的磁粉粒度为100~200目,湿法探伤的磁粉粒度,小于320目。 2日常性能校验时,如何对试片显示情况进行磁痕分析? 答:(1)局部磁化时,与磁场垂直的圆形沟槽部位显示不封闭的两弧形“()”聚粉痕和十字沟槽显示“-”或“I”形聚粉磁痕,清晰者为合格;(2)全轴复合磁化时,A型试片各沟槽均应显示清晰。 3轮轴磁粉探伤人员必须取得什么资格? 答:轮轴磁粉探伤人员必须取得铁道部,无损检测人员鉴定考核委员会,颁发的Ι级及以上级别的磁粉探伤技术资格证书,独立作业的探伤工必须取得Ⅱ级及以上的探伤技术资格证书,或取得Ⅰ级超声波探伤技术资格证书并经过一年以上的实际操作。 4轮轴磁粉探伤人员必须经什么培训? 答:经过铁道部车辆系统无损检测人员鉴定考核委员会组织的磁粉探伤专门培训。 5探伤记录及卡片的填写有何要求? 答:须做到字迹清晰,干净整齐,不涂不改,不错不漏,提倡用仿宋体填写。 6如何进行磁悬液浓度校验? 答:每日均须检查磁悬液的浓度,测量前须对磁悬液进行充分搅拌,用梨形沉淀管取磁悬液100ml,进行沉淀试验,时间不得少于30min,然后观察梨形沉淀管中沉淀的磁粉,其浓度须符合规定要求,浓度不符合规定时须重新调配。 7从事轮轴磁粉探伤人员在学历及身体方面须符合什么条件? 答:须具有高中、技校或中专及以上学历,视力达到1.0以上,非色盲。 8什么是裂纹?其磁痕特征是什么? 答:在工艺过程中,使金属的连续性破坏而形成缺陷。在磁粉探伤时,其磁痕特征一般为锯齿形,两端呈尖角状,磁粉聚集的图象不规则,清晰、密集。 9何谓湿法连续探伤? 答:在磁化的同时,用洗淋机喷洒方式施加磁悬液,磁悬液也应能在检验区缓缓流过,施加磁悬液结束后再应进行1-2次磁化或使喷液磁化提前1s结束。 10磁悬液配制具有哪些特性? 答:(1)润滑性:即操作中,磁悬液能速迅润湿被控工件表面,以便于磁粉移动和吸引; (2)防锈性:工件检验后在规定时间内存放不生锈;

ASME标准对照表

ASME标准对照表 SA-6/SA-6M 结构用轧制钢板、型钢、板桩和棒钢通用要求 SA-20/SA-20M 压力容器用钢板通用要求 SA-29/SA-29M 热加工与冷精整碳钢和合金钢棒材通用要求 SA-36/SA-36M 碳素结构钢 SA-47 铁素体可锻铸铁件 SA-53/SA-53M 无镀层及热浸镀锌焊接及无缝公称钢管 SA-105/SA-105M 管道元件用碳钢锻件 SA-106 高温用无缝碳钢公称管 SA-134 电弧熔焊公称钢管(尺寸≥NPS 16) SA-135 电阻焊公称钢管 SA-178/SA-178M 电阻焊碳钢和碳锰钢锅炉及过热器管子 SA-179/SA-179M 换热器及冷凝器用无缝冷拔低碳钢管子 SA-181/SA-181M 一般管道用碳钢锻件 SA-182/SA-182M 高温用锻制或轧制合金钢管道法兰、锻制管配件、阀门和零件 SA-192/SA-192M 高压用无缝碳钢锅炉管子 SA-193/SA-193M 高温用合金钢和不锈钢螺栓材料 SA-194/SA-194M 高温高压螺栓用碳钢和合金钢螺母 SA-199/SA-199M 热交换器及冷凝器用无缝冷拔中合金钢管子 SA-202/SA-202M 压力容器用铬锰硅合金钢板 SA-203/SA-203M 压力容器用镍合金钢板

SA-204/SA-204M 压力容器用钼合金钢板 SA-209/SA-209M 锅炉和过热器用无缝碳钼合金钢管子 SA-210/SA-210M 锅炉和过热器用无缝中碳钢管子 SA-213/SA-213M 锅炉、过热器和换热器用无缝铁素体和奥氏体合金钢管子 SA-214/SA-214M 换热器和冷凝器用电阻焊碳钢管子 SA-216/SA-216M 可熔焊高温用碳钢铸件 SA-217/SA-217M 高温承压零件用马氏体不锈钢和合金钢铸件 SA-225/SA-225M 压力容器用锰钒镍合金钢板 SA-226/SA-226M 高压锅炉和过热器用电阻焊碳钢管子 SA-232/SA-232M 铬钒合金钢阀门弹簧品级钢丝 SA-234/SA-234M 中、高温用锻制碳钢和合金钢管道配件 SA-240 压力容器用耐热铬及铬镍不锈钢板、薄板和钢带 SA-249/SA-249M 锅炉、过热器、换热器和冷凝器用焊接奥氏体钢管子 SA-250/SA-250M 锅炉和过热器用电阻焊铁素体合金钢管子 SA-263 耐腐蚀铬钢复合钢板、薄板及钢带 SA-264 不锈铬镍钢复合钢板、薄板和钢带 SA-265 镍和镍基合金复合钢板 SA-266/SA-266M 压力容器部件用碳钢锻件 SA-268/SA-268M 一般用途无缝和焊接铁素体和马氏体不锈钢管子 SA-275/SA-275M 钢锻件磁粉检验 SA-278 温度至650°F 承压零件用灰口铁铸件 SA-283/SA-283M 中、低强度碳素钢板件

ASME B36.1M-1996标准尺寸及重量对照表

124不锈钢——按照ASME B36 10M-1996标准尺寸及重量对照表标准尺寸及重量对照表外径壁厚重量 英寸毫米. 单位毫米. 英寸. 公斤/米. 磅/英尺. 1/8” 10.3 10S 1.24 0.049 0.28 0.19 1/8” 10.3 STD-40 1.73 0.068 0.37 0.25 1/8” 10.3 XS-80 2.41 0.095 0.48 0.32 1/4”13.7 10S 1.65 0.065 0.50 0.34 1/4” 13.7 STD-40 2.24 0.088 0.64 0.43 1/4” 13.7 XS-80 3.02 0.119 0.81 0.55 3/8” 17.1 10S 1.65 0.065 0.64 0.43 3/8” 17.1 STD-40 2.31 0.091 0.85 0.57 3/8” 17.1 XS-80 3.20 0.126 1.11 0.75 1/2” 21.3 5S 1.05 0.042 0.53 0.36 1/2” 21.3 10S 2.11 0.083 1.01 0.68 1/2” 21.3 STD-40 2.77 0.109 1.28 0.86 1/2” 21.3 XS-80 3.73 0.147 1.63 1.10 1/2” 21.3 160 4.78 0.188 1.97 1.33 1/2” 21.3 XXS 7.47 0.294 2.57 1.73 3/4” 26.7 5S 1.65 0.065 1.03 0.69 3/4” 26.7 10S 2.11 0.083 1.29 0.87 3/4” 26.7 STD-40 2.87 0.113 1.70 1.14 3/4” 26.7 XS-80 3.91 0.154 2.22 1.49 3/4” 26.7 160 5.56 0.219 2.93 1.97 3/4” 26.7 XXS 7.82 0.308 3.68 2.48 1” 33.4 5S 1.65 0.065 1.31 0.88 1” 33.4 10S 2.77 0.109 2.12 1.42 1” 33.4 STD-40 3.38 0.133 2.53 1.70 1” 33.4 XS-80 4.55 0.179 3.27 2.18 1” 33.4 160 6.35 0.250 4.28 2.88 1” 33.4 XXS 9.09 0.358 5.51 3.71 1 1/4” 42. 2 5S 1.65 0.065 1.67 1.12 1 1/4” 42. 2 10S 2.77 0.109 2.72 1.83 1 1/4” 42. 2 STD-40 3.56 0.140 3.4 3 2.31 1 1/4” 42. 2 XS-80 4.85 0.191 4.51 3.03 1 1/4” 42. 2 160 6.35 0.250 5.67 3.81 1 1/4” 42. 2 XXS 9.70 0.382 7.85 5.28 1 1/2” 48.3 5S 1.65 0.065 1.9 2 1.29 1 1/2” 48.3 10S 2.77 0.109 3.14 2.11 1 1/2” 48.3 STD-40 3.68 0.145 4.09 2.75 1 1/2” 48.3 XS-80 5.08 0.200 5.47 3.68 1 1/2” 48.3 160 7.14 0.281 7.3 2 4.92 1 1/2” 48.3 XXS 10.15 0.400 9.65 6.49 2” 60.3 5S 1.65 0.065 2.41 1.62 2” 60.3 2.11 0.083 3.06 2.06

相关主题
文本预览
相关文档 最新文档