当前位置:文档之家› 水、蒸汽及压缩空气管道推荐流速

水、蒸汽及压缩空气管道推荐流速

水、蒸汽及压缩空气管道推荐流速
水、蒸汽及压缩空气管道推荐流速

管径计算公式

管道的设计计算——管径和管壁厚度 空压机是通过管路、阀门等和其它设备构成一个完整的系统。管道的设计计算和安装不当,将会影响整个系统的经济性及工作的可靠性,甚至会带来严重的破坏性事故。A.管内径:管道内径可按预先选取的气体流速由下式求得: i d 8 .182 1 u q v 式中, i d 为管道内径(mm );v q 为气体容积流量( h m 3 );u 为管内气体平均流速( s m ),下 表中给出压缩空气的平均流速取值范围。 管内平均流速推荐值 气体介质 压力范围 p (Mpa) 平均流速u (m/s ) 空气 0.3~0.6 10~20 0.6~1.0 10~15 1.0~2.0 8~12 2.0~3.0 3~6 注:上表内推荐值,为输气主管路(或主干管)内压缩空气流速推荐值;对于长度在 1m 内的管 路或管路附件——冷却器、净化设备、压力容器等的进出口处,有安装尺寸的限制,可适当提高瞬间气体流速。 例1:2台WJF-1.5/30及2台H-6S 型空压机共同使用一根排气管路,计算此排气管路内径。 已知WJF-1.5/30型空压机排气量为 1.5 m 3 /min 排气压力为 3.0 MPa 已知H-6S 型空压机排气量为0.6 m 3 /min 排气压力为 3.0 MPa 4台空压机合计排气量v q =1.5×2+0.6×2=4.2 m 3/min =252 m 3 /h 如上表所示u=6 m/s 带入上述公式 i d 8 .182 1 u q v i d 8 .182 1 6 252=121.8 mm 得出管路内径为121mm 。 B.管壁厚度:管壁厚度取决于管道内气体压力。

压缩空气管道施工设计方案

WORD格式整理版 XXXXXXXXX 工程 XXXX 压缩空气管道施工方案 编写人: ____________________ 日期:__________________ 审核人:____________________ 日期:_________________

WORD格式整理版 批准人: _______________ 日期: ______________

XXXXXXXXXC目经理部 压缩空气管道施工方案 一、编制依据: 1、建设指挥部有关建设管理文件、会议纪要和设计单位提供的施工图设计文件。 2、根据现场勘察情况和前湾港站内运营规定。 3、《采暖通风与空气调节设计规范》GB50019-2003 4、《工业金属管道设计规范》GB50316-2000 5、《压力管道安全与监察规定》、《工业金属管道工程施工及验收规范》GB50235-97。 &《现场设备、工业管道焊接工程与施工验收规范》GB50236-97 7、《工业设备及管道绝热施工及验收规范》GBJ126 二、编制范围: 本工程为XXXX试风设备综合楼室外压缩空气管道设计。 三、工程概括: 1、本工程位于既有1股与新1股之间,施工里程为GLK1+77至GLK2+76范围内,压缩空气管道采用无缝钢管。 2、压缩空气管道及组成件属于压力管道,类别为GC级,流体类别为D类,设计压 力0.8MPa,水压试验为1.2MP&

3、室外压缩空气管道采用无缝钢管直埋敷设,管道连接采用焊接连接,管道阀门 为截断塞门,管道外刷防锈漆两道,银粉一道。埋地管道穿越铁路时需设套管保护,管顶距铁路轨面不小于1.2m。管道外壁与套管两端部的间隙用浸沥青的麻丝填实,再在外端用沥青堵塞。气源由空压机室外部储风缸接引。微控试风设备的试风柜距脱轨器轨边设备20m埋设管道作加强环氧沥青防腐层,防腐层厚度不小于6mm 四、施工方案及工艺 (一)、压缩空气管道系统 自然界的空气经空气压缩机压缩后称为压缩空气。压缩空气是一种重要的动力源。 1、压缩空气站的组成 1)、压缩空气站工艺生产流程 压缩空气的生产流程主要包括空气的过滤、空气的压缩、压缩空气的冷却及油和水分的排除、压缩空气的贮存与输送等。 2)、压缩空气站设备 (1)空气压缩机 在一般的压缩空气站中,最广泛采用的是活塞式空气压缩机。在大型压缩空气站中,较多采用离心式或轴流式空气压缩机。 (2)空气过滤器 (3)后冷却器 (4)贮气罐

动力蒸汽管径计算公式及焓值对照表

蒸汽部分计算书 一、蒸汽量计算:(6万平米) 市政管网过热蒸汽参数:压力=0.4MPa 温度=180℃ 密度=2.472kg/m3蒸汽焓值=2811.7KJ/kg 换热器凝结水参数:温度=70℃焓值=293 KJ/kg 密度=978kg/m3(1)采暖部分耗汽量:热负荷6160kW G=3.6*Q/Δh=3.6*6160*1000/(2811.7-293)=8805kg/h 凝结水量计算:G=m/ρ=8805/978=9m3/h (2)四十七层空调耗汽量:热负荷200kW G=3.6*Q/Δh=3.6*200*1000/(2811.7-293)=285kg/h 凝结水量计算:G=m/ρ=285/978=0.29m3/h (3)高区供暖耗汽量:热负荷1237kW G=3.6*Q/Δh=3.6*1237*1000/(2811.7-293)=1768kg/h 凝结水量计算:G=m/ρ=1768/978=1.8m3/h (4)中区供暖耗汽量:热负荷1190kW G=3.6*Q/Δh=3.6*1385*1000/(2811.7-293)=1980kg/h 凝结水量计算:G=m/ρ=1980/978=2m3/h (5)低区供暖耗汽量:热负荷1895kW G=3.6*Q/Δh=3.6*1895*1000/(2811.7-293)=2708kg/h 凝结水量计算:G=m/ρ=2708/978=2.8m3/h (6)低区空调耗汽量:热负荷1640kW G=3.6*Q/Δh=3.6*1640*1000/(2811.7-293)=2344kg/h 凝结水量计算:G=m/ρ=3830/978=4m3/h (7)生活热水耗汽量:热负荷200kW G=3.6*Q/Δh=3.6*200*1000/(2811.7-293)=286kg/h 凝结水量计算:G=m/ρ=286/978=0.3 m3/h (8)洗衣机房预留蒸汽量: 150kg/h

压缩空气管道规范

压缩空气管道规范 为避免重复建设和节约投资,压缩空气管道考虑近期发展的需要是必要的。近期发展应包括对流量、压力及品质的要求。 9.0.2 本条是原规范第9.0.1 条后段的修订条文。 压缩空气管道系统有辐射状、树枝状和环状三种形式。其中,厂(矿区)管道一般采用辐射状和树枝状系统,车间采用树枝状和环状系统。辐射状系统便于集中调节用气量,压力和泄漏损失小,但一次性投资大,管网较复杂;树枝状系统的优缺点则与辐射状系统相反;环状系统的主要特点是供气可靠,压力稳定。由于各有优缺点,并且在不同的使用条件下均能获得较好的效益,所以,笼统地推荐一种系统是不合适的,特别是近年来,许多厂(矿)已经采用了树枝与辐射混合型的管网系统,其效益也是明显的。在设计管道系统时,可以根据当地的实际情况,因地制宜地选择合适的管道系统。 管道的三种敷设方式:架空、管沟和埋地,各有其特点和使用条件。架空管道安装、维修方便、直观,也便于以后改造。这种敷设方式被夏热冬暖地区、温和地区、夏热冬冷地区和寒冷地区的大多数厂(矿)采用。管沟敷设如能与热力管道同沟,将是经济合理的。直接埋地敷设在寒冷地区及总平面布置不希望有架空管线的厂(矿)采用较多。 寒冷地区和严寒地区的饱和压缩空气管道架空敷设时,冻结的可能性比较大,尤其是严寒地区需采取严格的防冻措施。 9.0.3 本条是原规范第9.0.2 条的修订条文。 管道设坡度有利于排放油水,但也有许多单位在管道设计时均不设坡度。多年来的使用证明,只要设有排除油水的装置,一般是没有问题的,尤其在不冻结地区,并且还有设计和施工方便的优点,因此,本条文对坡度设置问题未作规定,仅规定了管道应设置可排放油水的装置。如有坡度敷设时,推荐不小于0.002。 条文中提到的“饱和压缩空气”是指未经干燥处理或干燥处理后其露点温度仍然高于当地极端环 境最低温度的压缩空气,这样的压缩空气在架空管道中会析出水分,所以,架空敷设时需考虑防冻措施。 干燥、净化压缩空气管道的管材和附件的选择,对于确保供应用气设备符合要求的干燥、净化压缩空气十分重要。若管材和附件选择不当,常会使已经干燥、净化的压缩空气受到污染。根据对各行业企业的调查,将压缩空气按干燥净化程度分为四档,分别推荐使用不同的管材,这样既节约了成本,又保证了压缩空气的品质。 对于近年来出现的PVC塑料管、铝塑管、不锈钢复合管等新材料,由于尚无使用的成熟经验,故这里未予列出。 现在用于干燥和净化压缩空气管道的阀门和附件品种及材质较多,凡在强度、密封、抗腐蚀性方面满足要求者均可采用。 管道连接采用焊接,已有多年成熟的经验。焊接比法兰或螺纹连接更具有省料、施工快和严密性好等优点,故推荐采用。 干燥和净化压缩空气管道的焊接方式与一般压缩空气管道的焊接方式有所不同,这在《洁净厂房设计规范》(GB 50073)中已有明确的规定,因此,本条文要求遵照执行。 9.0.7 本条为新增条文。

管道直径设计计算步骤

管道直径设计计算步骤 以假定流速法为例,其计算步骤和方法如下: 1.绘制通风或空调系统轴测图,对各管段进行编号,标注长度和风量。 管段长度一般按两管件间中心线长度计算,不扣除管件(如三通,弯头)本身的长度。 2.确定合理的空气流速 风管内的空气流速对通风、空调系统的经济性有较大的影响。流速高,风管断面小,材料耗用少,建造费用小;但是系统的阻力大,动力消耗增大,运用费用增加。对除尘系统会增加设备和管道的摩损,对空调系统会增加噪声。流速低,阻力小,动力消耗少;但是风管断面大,材料和建造费用大,风管占用的空间也增大。对除尘系统流速过低会使粉尘沉积堵塞管道。因此,必须通过全面的技术经济比较选定合理的流速。根据经验总结,风管内的空气流速可按表6-2- 1、表6-2-2及表6-2-3确定。除尘器后风管内的流速可比表6-2-3中的数值适当减小。 表6-2-1一般通风系统中常用空气流速(m/s) 支室内xx空干管 管进风口回风口气入口6~2~1.5~2.5~ 5.5~薄钢1483.53.5 工业建筑机6.5板、混凝土 械通讯 4~2~1.5~2.0~ 砖等

5~61263.03.0 工业辅助及 民用建筑 0.5 0.50.2~~0.7 自然通风~1.01.0类别 机械通风5~8 52~ 2~4风管 材料 表6-2-2空调系统低速风管内的空气流速部位 新风xx 总管和总干管 无送、回风口的支管 有送、回风口的支管频率为1000Hz时室内允许声压级(dB)<40~60>60 3.5~ 4.04.0~4.5 5.0~ 6.0 6.0~8.06.0~8.0 7.0~12.0 3.0~ 4.0 5.0~7.0 6.0~8.0 2.0~ 3.03.0~5.03.0~6.0表6-2-3除尘风管的最小风速(m/s)粉尘类

管径寸径计算方法

中 海 石 油 炼 化 有 限 责 任 公 司 惠 州 炼 油 项 目 管道寸D 统计方法规定 内部文件 注意保密

中海石油炼化有限责任公司惠州炼油项目 管道寸D统计方法规定 第一章总则 第一条为统一惠州炼油项目管道寸径统计方法,尽可能准确地反映焊工的实际工作量,特制定了本规定,同时作为《进度检测及控制管理办法》附件C 焊接工作量计算的补充规定。 第二条编制依据:《广东省安装工程综合定额》——第六册《工业管道工程》。 第三条本方法仅适用于中海石油炼化有限责任公司惠州炼油项目管道寸D的统计计算。 第二章寸径统计方法规定 第四条标准寸D的规定 以低压碳钢管道DN25的1道焊口为标准寸D,即1寸D,其它规格低压管道的寸D数见下表。 表1:低压管道公称直径—寸D对照表

第五条其它压力等级、材质及规格的管道寸D计算 其它压力等级和材质的管道以低压碳钢管相应公称直径的寸D数乘以下表中的系数,计算1道焊口的寸D数。 表2:管道寸D计算系数表 举例说明: 1)1道中压碳钢DN25的焊口寸D数=1标准寸D*1.3=1.3 D” 2)1道中压合金钢DN50的焊口寸D数=2标准寸D*1.9=3.8D” 3)1道低压不锈钢DN80的焊口寸D数=3标准寸D*1.7=5.1D” 注:D”为“寸D”的一种简单表示方法 第六条管道焊口数统计规定 管道焊口数以单线图中的焊口数为准,区分材质、压力等级分别统计(不区分对接焊口和承插焊口统一计算)。 第七条寸D数的合计

寸D数的合计首先区分材质小计,然后汇总为总寸D数量,如:碳钢管道寸D数合计2300 D” 合金钢管道寸D数合计800 D” 不锈钢管道寸D数合计1200 D” 以上各项总寸D数=2300+800+1200=4300 D” 第三章附则 第八条本规定解释权归属控制部。 第九条本规定自发布之日起执行。 附:管道寸D工作量统计表

压缩空气管道安装标准

压缩空气管道安装标准 The manuscript was revised on the evening of 2021

压缩空气管道安装标准 压缩空气管道安装标准和气动设备工程安装验收标准参照GB5038-2006一般规定管子与管子,管子与设备连接不得进行强力对口。压缩空气碳素钢管道涂漆前应清除其表面的铁锈、焊渣、毛刺、油和水等污物,试压前焊缝不得涂漆管道焊接压缩空气碳素钢管对接焊缝应采用氩弧焊接或氩弧焊打底,电弧填充。压缩空气碳素钢管道对接焊缝外观质量不允许有裂纹、气孔、夹渣、溶合性飞溅和未焊透:咬边深度小于,且焊缝两侧的总长度小于焊缝全长的10%,焊缝与高小于或等于1+(b为焊缝宽度),且不大于3mm。管道制作管子切断、管子坡口应采用机械加工方法。切口端面应平整,端面应与管子轴线垂直,允许偏差为管子直径的1%且不应大于。管子焊接坡口形式、尺寸应符合焊接作业指导书的规定,坡口加工完应将铁屑、毛刺等清除干净。管子制弯应符合下列规定:1、弯管宜采用冷弯,弯管的最小弯曲半径不应小于 管子外径的3倍;采用冲压弯头时,弯曲半径不就小于管子外径的1倍。2、管子弯制后的最大外径与最小外径之差不应超过管径的8%。3、管子弯曲部位不宜有皱纹、起皮等缺陷。4、管道螺纹加工应符合设计技术文件的规定。螺纹加工完成后,表面应无裂纹、凹陷、毛刺等缺陷。有轻微机械损伤或断面不完整的螺纹,全长累计不应大于1/3圈,螺纹牙高减少不应大于其高度的1/5。管道安装压缩空气碳素钢管道的敷设应符合下列规定:1、管道走向应符合设计技术文件要求,水平管道平直度允许偏差为2/1000,且不大于30mm;立管垂直度允许偏差为3/1000,且不大于20mm;按设计技术文件规定的坐标位置和标高尺寸安装管道,坐标位置允许偏差为15mm,标高允许偏差为±15mm。2、管子

管道的设计计算——管径和管壁厚度(精)

管道的设计计算——管径和管壁厚度 空压机是通过管路、阀门等和其它设备构成一个完整的系统。管道的设计计算和安装不当,将会影响整个系统的经济性及工作的可靠性,甚至会带来严重的破坏性事故。 A.管内径:管道内径可按预先选取的气体流速由下式求得: =i d 8.1821 ?? ? ??u q v 式中,i d 为管道内径(mm );v q 为气体容积流量(h m 3);u 为管内气体平均流速(s m ),下表中给出压缩空气的平均流速取值范围。 管内平均流速推荐值 1m 内的管路或管路附件——冷却器、净化设备、压力容器等的进出口处,有安装尺寸的限制,可适当提高瞬间气体流速。 例1:2台WJF-1.5/30及2台H-6S 型空压机共同使用一根排气管路,计算此排气管路内径。 已知WJF-1.5/30型空压机排气量为1.5 m 3/min 排气压力为3.0 MPa 已知H-6S 型空压机排气量为0.6 m 3/min 排气压力为3.0 MPa 4台空压机合计排气量v q =1.5×2+0.6×2=4.2 m 3/min =252 m 3/h 如上表所示u=6 m/s 带入上述公式=i d 8.1821??? ??u q v =i d 8.1821 6252??? ??=121.8 mm 得出管路内径为121mm 。

B.管壁厚度:管壁厚度δ取决于管道内气体压力。 a.低压管道,可采用碳钢、合金钢焊接钢管;中压管道,通常采用碳钢、合金钢无缝钢管。其壁厚可近似按薄壁圆筒公式计算: min δ= []c np npd i +-?σ2 式中,p 为管内气体压力(MPa );n 为强度安全系数5.25.1~=n ,取[σ]为管材的许用应力(MPa ),常用管材许用应力值列于下表;?为焊缝系数,无缝钢管?=1,直缝焊接钢管?=0.8;c 为附加壁厚(包括:壁厚偏差、腐蚀裕度、加工减薄量),为简便起见,通常当δ>6mm 时,c ≈0.18δ;当δ≤6mm 时,c =1mm 。 当管子被弯曲时,管壁应适当增加厚度,可取 'δ=R d 20δ δ+ 式中,0d 为管道外径;R 为管道弯曲半径。 b.高压管道的壁厚,应查阅相关专业资料进行计算,在此不做叙述。 常用管材许用应力 例2: 算出例1中排气管路的厚度。管路材料为20#钢 公式 min δ=[]c np npd i +-?σ2中 n=2 , p=3.0 MPa , i d =121 如上表20#钢150o C 时的许用应力为131,即σ=131 ?=1 , C =1 带入公式 min δ=[]c np npd i +-?σ2=1321131212132+?-????=3.8 mm 管路厚度取4 mm

压缩空气管道的选择

d=(Q/v)1/2 d为管道内径,mm d为管道内径,mm Q为介质容积流量,m3/h v为介质平均流速,m/s,此处压缩气体取流速10-15m/s。 计算,d=48.5mm,实际取57×管道即可。 说明,上述计算为常温下的计算,输送高温气体另行计算为宜。 上述Q指实际气体流量,当指标况下应换算为实际气体流量,由pv=nRT公式可推导出。 一、空压管道设计属于压力管道范畴(压力大于,管径大于25MM),你所在的单位应持有《中华人民共和国特种设备设计许可证》。 二、空压站及管道设计,应参照有关规范及相关设计手册。 1、GB50029-2003 压缩空气站设计规范 2、GB50316-2000 工业金属管道设计规范 3、动力管道设计手册机械工业出版社 三、压力管道设计,应按持证单位的《设计质量管理手册》《压力管道设计技术规定》《设计管理制度》等工作程序进行,这是单位设计平台的有效文件,有利于设计工作的正常开展。 四、设计前应有相关设计参数,你的问题中没有说明,无法具体回答。 五、问题1 ①管材的使用要求应按GB50316-2000执行,参照相关的材料章节。 ②公称直径为表征管子、管件、阀门等囗径的名义内直径,其实际数值与内径并不完全相同。钢管是按外径和壁厚系列组织生产的,管道的壁厚应参照GB50316中金属管道组成件耐压强度计算等有关章节。根据GB/8163或GB3087或GB6479或GB5310,选用壁厚应大于计算壁厚。 问题2 ①压力管道的连接应以焊接为主,阀门、设备接囗和特殊要求的管均应用法兰连接。 ②有关阀门的选用建议先了解一下阀门的类型、功

能、结构形式、连接形式、阀体材料等。压缩空气管可选用截止阀和球阀,大管径用截止阀,小管径用球阀。 一为安全,二为经济,所谓安全,就是有毒易燃易爆的介质,比如乙炔、纯氧管道,这些介 质一旦流速过快, 有爆炸等安全方面的危险, 所谓经济, 就是要算经济账, 比如你的压缩空 气,都是用压缩机打出来的,压缩机要消耗电,或者消耗蒸汽,要耗电就要算钱,经济流速 的选择就是因流速而引起的压力降不能过大,要在经济的范围之内。 何谓经济?拿你帖子里的数据举个很简单的例子就知道了: 压缩空气 P= MPaG,T=30℃(空压机冷却后大致都是这个温度),密度ρ=kg/m3,标态流量V0=1000 Nm3/h,工况流量V=125 m3/h,质量流量W=1292 kg/h,管道57X3.5mm,di=50mm,管长L=100m(含管件当量长度),管道绝对粗糙度0.2mm,摩擦系数λ取,空压机功率110 kW。 上面这组数据在工程现场楼主可随意取得,就上面这组数据简单的计算就可知道什么叫 “经济流速”:管道流速u= m/s,那么这个流速到底经济与否呢?要看阻力损失在空压机功率中所占比 例而定,阻力损失 ΔP=ρ.λ.(L/d).(u^2/2)=96788Pa= MPa,也就说经过100m长的管道管件后,压力自MPaG下降到了~ MPaG,阻力损失折算成功率损失ΔW=G.λ.(L/d).(u^2/2)=(1292/3600)X(9346/1000)=kW,占压缩机总能耗的110=% 看到了吗?在经历了100m后,损失了kW的功率,因为这段管道,每小时就有度电没了,一年按8000小时计就是26800度电,每度电按元,仅此一项,每年13400元就没了,悄无声息地没了。如果你把这根管道换成的DN38的管道,100m管道后的压力就只有MPaG了,压力保不住了,相应的功率损失更大,可达20 kW,每年83000元没了,这样的损失是无法接受的,也无法容忍。很自然,你

给水管道各种管材管径与计算内径一览表

表1 给水塑料管及钢塑复合管公称管径与计算内径一览表(一) 氯化聚氯乙烯 PVC-U 管 聚丙烯管 PP-R 聚丙烯 PP-RR 热水管0.00000047 S6.3 1.6MPa S5 2.0MPa 铝塑复合管 1.0MPa 1.6MPa 1.0MPa 1.25MPa 2.0MPa 2.5MPa 2.0MPa 2.5MPa 公称直径 计算内径d j 计算内径d j 计算内径 计算内径d j 计算内径d j 计算内径d j 计算内径d j 计算内径d j 计算内径d j 计算内径d j 计算内径d j mm mm mm mm mm mm mm mm mm mm mm mm 15 12.2 20 16 16 15.7 16 15.4 14.4 13.2 14.4 13.2 25 21 20.4 19.8 21 20.4 18 16.6 18 16.6 32 27.2 26.2 25.3 27.2 27.2 26 23.2 21.2 23.2 21.2 40 34 32.6 31.2 36 34 34 32.6 29 26.6 29 26.6 50 42.6 40.8 40.1 45.2 42 42.6 40.8 36.2 33.2 36.2 33.2 65 53.6 51.4 50.0 57 53.6 53.6 51.4 45.6 42 45.6 42 75 63.8 61.4 58.7 67.8 64 63.6 61.2 49.9 50 49.9 50 90 76.6 73.6 81.4 76.6 76.6 73.6 76.6 60 76.6 60 110 93.8 90 100.4 95.6 93.8 90 93.8 73.5 93.8 73.5 125 106.6 102.2 114.2 110 140 119.4 114.6 127.8 123.4 160 136.4 130.8 146 140 180 164.4 158.6 200 182.6 176.2 225 205.4 198.2 250 228.2 220.4 280 255.6 246.8 315 287.6 277.6 355 325.4

压缩空气管道材质要

《洁净室施工及验收规范》GB50591-2010中第32页6.气体系统第6.2管材及附件项,对空气管道的明确要求说明,如下图: 《洁净厂房设计规范》GB50073-2013中第29页8.2管道材料和阀门项,干燥的压缩空气管道材质作出了明确要求,如下图:

制药工厂压缩空气系统设计完全指南 2018-10-1317:12设计/微生物/污染 1、引言 新建或改建一个制药工厂,设计是一项重要工作,其中包括制药工艺、设备、土建、空调、给排水、动力等方面,是多种专业配合的整体工作。制药工厂设计与机械工厂设计比较,有许多特殊之处,本文仅就制药工厂压缩空气系统设计方面的问题,结合近年来的一些设计实践做一简述。 2、制药工厂压缩空气用途及品质要求 2.1压缩空气主要用途 在制药工厂中,压缩空气主要用于液体制剂中的灌装机,固体制剂中的制粒机、加浆机、填充机、包装机、印字机,提取工艺中的提取罐。此外,还有化验中试用气、物料输送、干燥、吹扫、气动仪表、自动控制用气等等。上述压缩空气用途中,很多情况下压缩空气与药品直接接触,所以,在制药工厂设计中对压缩空气的品质有着严格的要求。 2.2压缩空气品质控制的必要性

制药工厂压缩空气的品质主要是控制其含水量、含油量、含尘粒量和含生物粒子量,同时还要求压缩空气无气味。 含有油份的压缩空气直接与药物接触会污染药物。含有液态水滴的压缩空气会使管道阀门和设备产生锈蚀,水滴锈渍同样也会污染药物,影响药品质量。 空气中含有大量尘粒和微生物粒子,对医药工业来说,微粒特别是尘粒会直接影响药品质量,进而危及人们生命安全。微生物(生物粒子)对人体的危害更强,微生物多指细菌和真菌,污染药品后不但会使药品本身燃菌、变质,一旦误用,无论从肠道或非肠道进入人体,都会直接影响人体健康,其后果更为严重。所以制药工厂所用压缩空气必须以微粒和微生物为主要控制对象,这一点就是制药工厂与只控制微粒的其他工厂(如电子、机械工厂等)的主要区别之一。 2.3压缩空气品质控制指标 a.仪表、自动控制等用气的质量标准可由GB/T13277-91《一般用压缩空气质量等级》(等效采用ISO8573/1)中查出。这个标准根据固体粒子尺寸和含量、水蒸气含量及含油量4项控制指标划分质量等级,见表1。 对于仪表、自动控制用压缩空气的质量等级要求,推荐4项指标为2.3.3级,具体指标为:颗粒尺寸最大1μm颗粒含量1mg/m3,水含量(压力露点)最高-20℃,油含量最大值1mg/m3。 b.制药用压缩空气质量指标 目前,对于制药用压缩空气还没有相关的质量标准,采用的国际标准ISO8573/1的GB/T13277-97,明确医用压缩空气不包括在本标准之内。多数资料文献中仅有定性的一般要求,缺少具体的控制指标。

流量与管径、压力、流速的关系

流量与管径、压力、流速的一般关系 一般工程上计算时,水管路,压力常见为0.1--0.6MPa,水在水管中流速在1--3米/秒,常取1.5米/秒。 流量=管截面积X流速=0.002827X管内径的平方X流速 (立方米/小时)。 其中,管内径单位:mm ,流速单位:米/秒,饱和蒸汽的公式与水相同,只是流速一般取20--40米/秒。 水头损失计算Chezy 公式 Chezy 这里: Q——断面水流量(m3/s) C ——Chezy糙率系数(m1/2/s) A ——断面面积(m2) R ——水力半径(m) S ——水力坡度(m/m) 根据需要也可以变换为其它表示方法: Darcy-Weisbach公式 由于 这里: h f——沿程水头损失(mm3/s) f ——Darcy-Weisbach水头损失系数(无量纲) l——管道长度(m) d——管道内径(mm)

v ——管道流速(m/s) g ——重力加速度(m/s2) 水力计算是输配水管道设计的核心,其实质就是在保证用户水量、水压安全的条件下,通过水力计算优化设计方案,选择合适的管材和确经济管径。输配水管道水力计算包含沿程水头损失和局部水头损失,而局部水头损失一般仅为沿程水头损失的5~10%,因此本文主要研究、探讨管道沿程水头损失的计算方法。 管道常用沿程水头损失计算公式及适用条件 管道沿程水头损失是水流摩阻做功消耗的能量,不同的水流流态,遵循不同的规律,计算方法也不一样。水泵输配水管道水流流态都处在紊流区,紊流区水流的阻力是水的粘滞力及水流速度与压强脉动的结果。紊流又根据阻力特征划分为水力光滑区、过渡区、粗糙区。管道沿程水头损失计算公式都有适用范围和条件,一般都以水流阻力特征区划分。 水流阻力特征区的判别方法,工程设计宜采用数值做为判别式,目前国内管道经常采用的沿程水头损失水力计算公式及相应的摩阻力系数,按照水流阻力特征区划分如表1。 沿程水头损失水力计算公式和摩阻系数表1 达西公式是管道沿程水力计算基本公式,是一个半理论半经验的计算通式,它适用于流态的不同区间,其中摩阻系数λ可采用柯列布鲁克公式计算,克列布鲁克公式考虑的因素多,适用范围广泛,被认为紊流区λ的综合计算公式。利用达西公式和柯列布鲁克公式组合进行管道沿程水头损失计算精度高,但计算方法麻烦,习惯上多用在紊流的阻力过渡区。

(完整版)压缩空气管道施工方案

一、工程概况及有关参数 (一)工程概况 本工程为************公司,********************项目,压缩空气管道安装工程。 工程地点:************************ 设计单位:************************* 施工单位:************************* 工程开、竣工日期:计划开工日期为****年月日,竣工日期为****年月日 总工期为天。 (二)管道技术参数 1. 压缩空气管道 1.1. 管道规格:φ159×4.5 1.2. 管道编号:A0601—φ159×4.5—1.0A1 1.3. 工作压力:0.7Mpa 1.4. 工作温度:常温 1.5. 设计压力:0.8Mpa 1.6. 设计温度:常温 1.7. 强度试验压力:1.2Mpa 1.8. 试验介质:水 1.9. 管道材质:20#钢 1.10. 压力管道类别:GC2—4 二、编制依据 (一)GB50235-97《工业金属管道工程施工及验收规范》 (二)GB50236-98《现场设备、工业管道焊接工程施工及验收规范》 (三)GB50316-2000《工业金属管道设计规范》 (四)GB50231 《机械设备安装工程施工及验收规范》 (五)GB50275 《压缩机、风机、泵安装工程施工及验收规范》 (六)GB50093 《工业自动化仪表工程施工及验收规范》 (七)GB7231-2003 《工业管路的基本识别色、识别符号和安全标志》 (八)劳部发(1996)140号《压力管道安全管理及监察规定》及解析 (九)中华人民共和国国务院令第393号《建设工程安全生产管理条例》 (十)业主提供的施工图纸、相关要求及施工现场条件 三、管道安装施工及检验 (一)施工准备工作 1. 技术准备 1.1. 开工前须办理好开工告知,经有关部门审批通过后方可施工。 1.2. 了解熟悉图纸、技术资料及有关标准、规范。 1.3. 认真察悉现场编制施工方案,做好深化设计,并做好与设计单位、建设单位的技术 交底工作。 1.4. 准备好必要的焊接工艺卡和焊接工艺评定。

管径计算公式

流体在一定时间内通过某一横断面的容积或重量称为流量。用容积表示流量单位是L/s或 (`m^3`/h);用重量表示流量单位是kg/s或t/h。 流体在管道内流动时,在一定时间内所流过的距离为流速,流速一般指流体的平均流速,单位为 m/s。 流量与管道断面及流速成正比,三者之间关系: `Q = (∏ D^2)/ 4 · v · 3600 `(`m^3` / h ) 式中 Q —流量(`m ^3` / h 或 t / h ); D —管道内径(m); V —流体平均速度(m / s)。 根据上式,当流速一定时,其流量与管径的平方成正比,在施工中遇到管径替代时,应进行计算后方 可代用。例如用二根DN50的管代替一根DN100的管是不允许的,从公式得知DN100的管道流量是DN50管 道流量的4倍,因此必须用4根DN50的管才能代用DN100的管。 给水管道经济流速 影响给水管道经济流速的因素很多,精确计算非常复杂。 对于单独的压力输水管道,经济管径公式: D=(fQ^3)^[1/(a+m)] 式中:f——经济因素,与电费、管道造价、投资偿还期、管道水头损失计算公式等多项因素有关的系数;Q——管道输水流量;a——管道造价公式中的指数;m——管道水头损失计算公式中的指数。 为简化计算,取f=1,a=1.8,m=5.3,则经济管径公式可简化为: D=Q^0.42 例:管道流量22 L/S,求经济管径为多少? 解:Q=22 L/S=0.022m^3/s 经济管径 D=Q^0.42=0.022^0.42=0.201m,所以经济管径可取200mm。 水头损失 没有“压力与流速的计算公式 管道的水力计算包括长管水力计算和短管水力计算。区别是后者在计算时忽略了局部水头损失,只考虑沿程水头损失。(水头损失可以 理解为固体相对运动的摩擦力) 以常用的长管自由出流为例,则计算公式为 H=(v^2*L)/(C^2*R), 其中H为水头,可以由压力换算, L是管的长度, v是管道出流的流速, R是水力半径R=管道断面面积/内壁周长=r/2, C是谢才系数C=R^(1/6)/n,

压缩空气管道施工设计方案

XXXXXXXXX工程 XXXX 压缩空气管道施工方案 编写人:日期: 审核人:日期: 批准人:日期:

XXXXXXXXXX项目经理部 压缩空气管道施工方案 一、编制依据: 1、建设指挥部有关建设管理文件、会议纪要和设计单位提供的施工图设计文件。 2、根据现场勘察情况和前湾港站运营规定。 3、《采暖通风与空气调节设计规》GB50019-2003。 4、《工业金属管道设计规》GB50316-2000。 5、《压力管道安全与监察规定》、《工业金属管道工程施工及验收规》GB50235-97。 6、《现场设备、工业管道焊接工程与施工验收规》GB50236-97。 7、《工业设备及管道绝热施工及验收规》GBJ126。 二、编制围: 本工程为XXXXX试风设备综合楼室外压缩空气管道设计。 三、工程概括: 1、本工程位于既有1股与新1股之间,施工里程为GLK1+772至GLK2+766围,压缩空气管道采用无缝钢管。 2、压缩空气管道及组成件属于压力管道,类别为GC3级,流体类别为D类,设计压力0.8MPa,水压试验为1.2MPa。 3、室外压缩空气管道采用无缝钢管直埋敷设,管道连接采用焊接连接,管道阀门

为截断塞门,管道外刷防锈漆两道,银粉一道。埋地管道穿越铁路时需设套管保护,管顶距铁路轨面不小于1.2m。管道外壁与套管两端部的间隙用浸沥青的麻丝填实,再在外端用沥青堵塞。气源由空压机室外部储风缸接引。微控试风设备的试风柜距脱轨器轨边设备20m,埋设管道作加强环氧沥青防腐层,防腐层厚度不小于6mm。四、施工方案及工艺 (一)、压缩空气管道系统 自然界的空气经空气压缩机压缩后称为压缩空气。压缩空气是一种重要的动力源。 1、压缩空气站的组成 1)、压缩空气站工艺生产流程 压缩空气的生产流程主要包括空气的过滤、空气的压缩、压缩空气的冷却及油和水分的排除、压缩空气的贮存与输送等。 2)、压缩空气站设备 (1)空气压缩机 在一般的压缩空气站中,最广泛采用的是活塞式空气压缩机。在大型压缩空气站中,较多采用离心式或轴流式空气压缩机。 (2)空气过滤器 (3)后冷却器 (4)贮气罐 活塞式压缩机都配备有贮气罐,目的是减弱压缩机排气的周期性脉动,稳定管网压力,同时可进一步分离空气中的油和水分。 贮气罐分立式和卧式两种,通常立式的用得较多,其高度为直径的2~3倍,容积约为压缩机每分钟生产能力换算成压缩后气体的体积。

水管管径计算公式

镀锌管是按内径计算的,内径15mm=4分管,20mm=6分,25mm=1寸;PPR管/铝塑管则是按外径计算的,16mm也就相当于3分管,20mm差不多相当于4分的镀锌管径一般工程上计算时,水管路,压力常见为0.1--0.6MPa,水在水管中流速在1--3米/秒,常取1.5米/秒。 流量=管截面积X流速=0.002827X管径^2X流速(立方米/小时)^2:平方。管径单位:mm 管径=sqrt(353.68X流量/流速) sqrt:开平方 饱和蒸汽的公式与水相同,只是流速一般取20--40米/秒。如果需要精确计算就要先假定流速,再根据水的粘度、密度及管径先计算出雷诺准数,再由雷诺准数计算出沿程阻力系数,并将管路中的管件(如三通、弯头、阀门、变径等)都查表查出等效管长度,最后由沿程阻力系数与管路总长(包括等效管长度)计算出总管路压力损失,并根据伯努利计算出实际流速,再次用实际流速按以上过程计算,直至两者接近(叠代试算法)。因此实际中很少友人这么算,基本上都是根据压差的大小选不同的流速,按最前面的方法计算电动调节水阀的流量特性是指空调水流过阀门的相对流量与阀门的相对开度之间的函数关系,目前工程上常用的主要有直线流量特性、等百分比流量特性的电动水阀。

单位行程变化所引起的相对流量变化与点的相对流量成正比关系的是等百分比流量特性水阀。该类型水阀可调范围相对较宽,比较适合具有自平衡能力的空调水系统,因此ba系统中大量应用的是等百分比流量特性的电动水阀。 *电动水阀的口径决定了阀门的调节精度。水阀口径选择过大,不仅增大业主投资成本,而且使阀门基本行程单位变大导致阀门调节精度降低,达不到节能目的;水阀口径选择过小,往往会出现即使水阀全部打开系统也难以达到设定温度值,无法实现控制目标。 那么如何计算选择电动水阀口径? 工程上我们常用的是通过计算电动阀门的流量系数(kv/cv)值来推导电动水阀口径,因为流量系数和水阀口径是成对应关系的,换句话说,流量系数定了,水阀口径大小也就确定了。 水阀流量系数(kv/cv)采用以下公式计算: cv=q/δp1/2 其中q-设备(空调/新风机组)的冷量/热量或风量δp-为调节阀前后压差比 理论上讲,在不同的空调回路中,δp值是不同的,是一个动态变化的值,取值范围一般在1-7之间。但由于在流量系数的计算过程中δp 是开根号取值,所以对cv计算影响并不是很大。因此,在工程设计中一般选δp值为4。

压缩空气管道规范

压缩空气管道规范 Prepared on 24 November 2020

压缩空气管道规范 为避免重复建设和节约投资,压缩空气管道考虑近期发展的需要是必要的。近期发展应包括对流量、压力及品质的要求。 本条是原规范第条后段的修订条文。 压缩空气管道系统有辐射状、树枝状和环状三种形式。其中,厂(矿区)管道一般采用辐射状和树枝状系统,车间采用树枝状和环状系统。辐射状系统便于集中调节用气量,压力和泄漏损失小,但一次性投资大,管网较复杂;树枝状系统的优缺点则与辐射状系统相反;环状系统的主要特点是供气可靠,压力稳定。由于各有优缺点,并且在不同的使用条件下均能获得较好的效益,所以,笼统地推荐一种系统是不合适的,特别是近年来,许多厂(矿)已经采用了树枝与辐射混合型的管网系统,其效益也是明显的。在设计管道系统时,可以根据当地的实际情况,因地制宜地选择合适的管道系统。 管道的三种敷设方式:架空、管沟和埋地,各有其特点和使用条件。架空管道安装、维修方便、直观,也便于以后改造。这种敷设方式被夏热冬暖地区、温和地区、夏热冬冷地区和寒冷地区的大多数厂(矿)采用。管沟敷设如能与热力管道同沟,将是经济合理的。直接埋地敷设在寒冷地区及总平面布置不希望有架空管线的厂(矿)采用较多。 寒冷地区和严寒地区的饱和压缩空气管道架空敷设时,冻结的可能性比较大,尤其是严寒地区需采取严格的防冻措施。 本条是原规范第条的修订条文。 管道设坡度有利于排放油水,但也有许多单位在管道设计时均不设坡度。多年来的使用证明,只要设有排除油水的装置,一般是没有问题的,尤其在不冻结地区,并且还有设计和施工方便的优点,因此,本条文对坡度设置问题未作规定,仅规定了管道应设置可排放油水的装置。如有坡度敷设时,推荐不小于。 条文中提到的“饱和压缩空气”是指未经干燥处理或干燥处理后其露点温度仍然高于当地极端环境最低温度的压缩空气,这样的压缩空气在架空管道中会析出水分,所以,架空敷设时需考虑防冻措施。 干燥、净化压缩空气管道的管材和附件的选择,对于确保供应用气设备符合要求的干燥、净化压缩空气十分重要。若管材和附件选择不当,常会使已经干燥、净化的压缩空气受到污染。根据对各行业企业的调查,将压缩空气按干燥净化程度分为四档,分别推荐使用不同的管材,这样既节约了成本,又保证了压缩空气的品质。 对于近年来出现的PVC塑料管、铝塑管、不锈钢复合管等新材料,由于尚无使用的成熟经验,故这里未予列出。 现在用于干燥和净化压缩空气管道的阀门和附件品种及材质较多,凡在强度、密封、抗腐蚀性方面满足要求者均可采用。 管道连接采用焊接,已有多年成熟的经验。焊接比法兰或螺纹连接更具有省料、施工快和严密性好等优点,故推荐采用。 干燥和净化压缩空气管道的焊接方式与一般压缩空气管道的焊接方式有所不同,这在《洁净厂房设计规范》(GB 50073)中已有明确的规定,因此,本条文要求遵照执行。 本条为新增条文。

流量与管径、压力、流速的一般关系

流量与管径、压力、流速的一般关系 2007年03月16日星期五13:21 一般工程上计算时,水管路,压力常见为0.1--0.6MPa,水在水管中流速在1--3米/秒,常取1.5米/秒。流量=管截面积X流速=0.002827X管内径的平方X流速 (立方米/小时)。 其中,管内径单位:mm ,流速单位:米/秒,饱和蒸汽的公式与水相同,只是流速一般取20--40米/秒。水头损失计算Chezy 公式 Chezy 这里: Q ——断面水流量(m3/s) C ——Chezy糙率系数(m1/2/s) A ——断面面积(m2) R ——水力半径(m) S ——水力坡度(m/m) 根据需要也可以变换为其它表示方法: Darcy-Weisbach公式 由于 这里: h f——沿程水头损失(mm3/s) f ——Darcy-Weisbach水头损失系数(无量纲) l ——管道长度(m) d ——管道内径(mm) v ——管道流速(m/s) g ——重力加速度(m/s2)

水力计算是输配水管道设计的核心,其实质就是在保证用户水量、水压安全的条件下,通过水力计算优化设计方案,选择合适的管材和确经济管径。输配水管道水力计算包含沿程水头损失和局部水头损失,而局部水头损失一般仅为沿程水头损失的5~10%,因此本文主要研究、探讨管道沿程水头损失的计算方法。 1.1 管道常用沿程水头损失计算公式及适用条件 管道沿程水头损失是水流摩阻做功消耗的能量,不同的水流流态,遵循不同的规律,计算方法也不一样。输配水管道水流流态都处在紊流区,紊流区水流的阻力是水的粘滞力及水流速度与压强脉动的结果。紊流又根据阻力特征划分为水力光滑区、过渡区、粗糙区。管道沿程水头损失计算公式都有适用范围和条件,一般都以水流阻力特征区划分。 水流阻力特征区的判别方法,工程设计宜采用数值做为判别式,目前国内管道经常采用的沿程水头损失水力计算公式及相应的摩阻力系数,按照水流阻力特征区划分如表1。 达西公式是管道沿程水力计算基本公式,是一个半理论半经验的计算通式,它适用于流态的不同区间,其中摩阻系数λ可采用柯列布鲁克公式计算,克列布鲁克公式考虑的因素多,适用范围广泛,被认为紊流区λ的综合计算公式。利用达西公式和柯列布鲁克公式组合进行管道沿程水头损失计算精度高,但计算方法麻烦,习惯上多用在紊流的阻力过渡区。 海曾—威廉公式适用紊流过渡区,其中水头损失与流速的 1.852次方成比例(过渡区水头损失h∝V1.75~2.0)。该式计算方法简捷,在美国做为给水系统配水管道水力计算的标准式,在欧洲与日本广泛应用,近几年我国也普遍用做配水管网的水力计算。 谢才公式也应是管道沿程水头损失通式,且在我国应用时间久、范围广,积累了较多的工程资料。但由于谢才系数C采用巴甫洛夫公式或曼宁公式计算确定,而这两个公式只适用于紊流的阻力粗糙区,因此谢才公式也仅用在阻力粗糙区。 另外舍维列夫公式,前一段时期也广泛的用做给水管道水力计算,但该公式是由旧钢管和旧铸铁管

相关主题
文本预览
相关文档 最新文档