当前位置:文档之家› 一类新型改进的广义蚁群优化算法

一类新型改进的广义蚁群优化算法

一类新型改进的广义蚁群优化算法
一类新型改进的广义蚁群优化算法

matlab 蚁群算法 机器人路径优化问题

用ACO 算法求解机器人路径优化问题 4.1 问题描述 移动机器人路径规划是机器人学的一个重要研究领域。它要求机器人依据某个或某些优化原则(如最小能量消耗,最短行走路线,最短行走时间等),在其工作空间中找到一条从起始状态到目标状态的能避开障碍物的最优路径。机器人路径规划问题可以建模为一个有约束的优化问题,都要完成路径规划、定位和避障等任务。 4.2 算法理论 蚁群算法(Ant Colony Algorithm,ACA),最初是由意大利学者Dorigo M. 博士于1991 年首次提出,其本质是一个复杂的智能系统,且具有较强的鲁棒性,优良的分布式计算机制等优点。该算法经过十多年的发展,已被广大的科学研究人员应用于各种问题的研究,如旅行商问题,二次规划问题,生产调度问题等。但是算法本身性能的评价等算法理论研究方面进展较慢。 Dorigo 提出了精英蚁群模型(EAS),在这一模型中信息素更新按照得到当前最优解的蚂蚁所构造的解来进行,但这样的策略往往使进化变得缓慢,并不能取得较好的效果。次年Dorigo 博士在文献[30]中给出改进模型(ACS),文中 改进了转移概率模型,并且应用了全局搜索与局部搜索策略,来得进行深度搜索。 Stützle 与Hoos给出了最大-最小蚂蚁系统(MAX-MINAS),所谓最大-最小即是为信息素设定上限与下限,设定上限避免搜索陷入局部最优,设定下限鼓励深度搜索。 蚂蚁作为一个生物个体其自身的能力是十分有限的,比如蚂蚁个体是没有视觉的,蚂蚁自身体积又是那么渺小,但是由这些能力有限的蚂蚁组成的蚁群却可以做出超越个体蚂蚁能力的超常行为。蚂蚁没有视觉却可以寻觅食物,蚂蚁体积渺小而蚁群却可以搬运比它们个体大十倍甚至百倍的昆虫。这些都说明蚂蚁群体内部的某种机制使得它们具有了群体智能,可以做到蚂蚁个体无法实现的事情。经过生物学家的长时间观察发现,蚂蚁是通过分泌于空间中的信息素进行信息交流,进而实现群体行为的。 下面简要介绍蚁群通过信息素的交流找到最短路径的简化实例。如图 2-1 所示,AE 之间有

基于蚁群算法的路径规划

MATLAB实现基于蚁群算法的机器人路径规划 1、问题描述 移动机器人路径规划是机器人学的一个重要研究领域。它要求机器人依据某个或某些优化原则(如最小能量消耗,最短行走路线,最短行走时间等),在其工作空间中找到一条从起始状态到目标状态的能避开障碍物的最优路径。机器人路径规划问题可以建模为一个有约束的优化问题,都要完成路径规划、定位和避障等任务。 2 算法理论 蚁群算法(Ant Colony Algorithm,ACA),最初是由意大利学者Dorigo M. 博士于1991 年首次提出,其本质是一个复杂的智能系统,且具有较强的鲁棒性,优良的分布式计算机制等优点。该算法经过十多年的发展,已被广大的科学研究人员应用于各种问题的研究,如旅行商问题,二次规划问题,生产调度问题等。但是算法本身性能的评价等算法理论研究方面进展较慢。 Dorigo 提出了精英蚁群模型(EAS),在这一模型中信息素更新按照得到当前最优解的蚂蚁所构造的解来进行,但这样的策略往往使进化变得缓慢,并不能取得较好的效果。次年Dorigo 博士给出改进模型(ACS),文中改进了转移概率模型,并且应用了全局搜索与局部搜索策略,来得进行深度搜索。Stützle 与Hoos给出了最大-最小蚂蚁系统(MAX-MINAS),所谓最大-最小即是为信息素设定上限与下限,设定上限避免搜索陷入局部最优,设定下限鼓励深度搜索。蚂蚁作为一个生物个体其自身的能力是十分有限的,比如蚂蚁个体是没有视觉的,蚂蚁自身体积又是那么渺小,但是由这些能力有限的蚂蚁组成的蚁群却可以做出超越个体蚂蚁能力的超常行为。蚂蚁没有视觉却可以寻觅食物,蚂蚁体积渺小而蚁群却可以搬运比它们个体大十倍甚至百倍的昆虫。这些都说明蚂蚁群体内部的某种机制使得它们具有了群体智能,可以做到蚂蚁个体无法实现的事情。经过生物学家的长时间观察发现,蚂蚁是通过分泌于空间中的信息素进行信息交流,进而实现群体行为的。 下面简要介绍蚁群通过信息素的交流找到最短路径的简化实例。如图2-1 所示,AE 之间有两条路ABCDE 与ABHDE,其中AB,DE,HD,HB 的长度为1,BC,CD 长度为0.5,并且,假设路上信息素浓度为0,且各个蚂蚁行进速度相同,单位时间所走的长度为1,每个单位时间内在走过路径上留下的信息素的量也相同。当t=0时,从A 点,E 点同时各有30 只蚂蚁从该点出发。当t=1,从A 点出发的蚂蚁走到B 点时,由于两条路BH 与BC 上的信息素浓度相同,所以蚂蚁以相同的概率选择BH 与BC,这样就有15 只蚂蚁选择走BH,有15 只蚂蚁选择走BC。同样的从E 点出发的蚂蚁走到D 点,分别有15 只蚂蚁选择DH 和DC。当t=2 时,选择BC 与DC的蚂蚁分别走过了BCD 和DCB,而选择BH 与DH 的蚂蚁都走到了H 点。所有的蚂蚁都在所走过的路上留下了相同浓度的信息素,那么路径BCD 上的信息素的浓度是路径BHD 上信息素浓度的两倍,这样若再次有蚂蚁选择走BC 和BH 时,或选择走DC 与DH 时,都会以较大的概率选择信息素浓度高的一边。这样的过程反复进行下去,最短的路径上走过的蚂蚁较多,留下的信息素也越多,蚁群这样就可以找到一条较短的路。这就是它们群体智能的体现。 蚁群算法就是模拟蚂蚁觅食过程中可以找到最短的路的行为过程设计的一种仿生算法。在用蚁群算法求解组合优化问题时,首先要将组合优化问题表达成与信息素相关的规范形式,然后各个蚂蚁独立地根据局部的信息素进行决策构造解,并根据解的优劣更新周围的信息素,这样的过程反复的进行即可求出组合优化问题的优化解。 归结蚁群算法有如下特点: (1)分布式计算:各个蚂蚁独立地构造解,当有蚂蚁个体构造的解较差时,并不会影响整体的求解结果。这使得算法具有较强的适应性; (2)自组织性:系统学中自组织性就是系统的组织指令是来自系统的内部。同样的蚁

利用蚁群算法优化前向神经网络

利用蚁群算法优化前向神经网络 来源:深圳发票 https://www.doczj.com/doc/512194052.html,/ 内容摘要:蚁群算法(ant colony algorithm,简称ACA)是一种最新提出的新型的寻优策略,本文尝试将蚁群算法用于三层前向神经网络的训练过程,建立了相应的优化模型,进行了实际的编程计算,并与加动量项的BP算法、演化算法以及模拟退火算法进行比较,结果表明该方法具有更好的全局收敛性,以及对初值的不敏感性等特点。关键词:期货经纪公司综合实力主成分分析聚类分析 人工神经网络(ANN)是大脑及其活动的一个理论化的数学模型,由大量的处理单元(神经元)互连而成的,是神经元联结形式的数学抽象,是一个大规模的非线性自适应模型。人工神经网络具有高速的运算能力,很强的自学习能力、自适应能力和非线性映射能力以及良好的容错性,因而它在模式识别、图像处理、信号及信息处理、系统优化和智能控制等许多领域得到了广泛的应用。 人工神经网络的学习算法可以分为:局部搜索算法,包括误差反传(BP)算法、牛顿法和共轭梯度法等;线性化算法;随机优化算法,包括遗传算法(GA)、演化算法(EA)、模拟退火算法(SA)等。 蚁群算法是一种基于模拟蚂蚁群行为的随机搜索优化算法。虽然单个蚂蚁的能力非常有限,但多个蚂蚁构成的群体具有找到蚁穴与食物之间最短路径的能力,这种能力是靠其在所经过的路径上留下的一种挥发性分泌物(pheromone)来实现的。蚂蚁个体间通过这种信息的交流寻求通向食物的最短路径。已有相关计算实例表明该算法具有良好的收敛速度,且在得到的最优解更接近理论的最优解。

本文尝试将蚁群算法引入到前向神经网络的优化训练中来,建立了基于该算法的前向神经网络训练模型,编制了基于C++语言的优化计算程序,并针对多个实例与多个算法进行了比较分析。 前向神经网络模型 前向人工神经网络具有数层相连的处理单元,连接可从一层中的每个神经元到下一层的所有神经元,且网络中不存在反馈环,是常用的一种人工神经网络模型。在本文中只考虑三层前向网络,且输出层为线性层,隐层神经元的非线性作用函数(激活函数)为双曲线正切函数: 其中输入层神经元把输入网络的数据不做任何处理直接作为该神经元的输出。设输入层神经元的输出为(x1,x2,Λ,xn),隐层神经元的输入为(s1,s2,Λ,sh),隐层神经元的输出为 (z1,z2,Λ,zh),输出层神经元的输出为(y1,y2,Λ,ym),则网络的输入-输出为: 其中{w ij}为输入层-隐层的连接权值,{w i0}隐层神经元的阈值,{v ki}为隐层-输出层的连接权值,{v k0}为输出层神经元的阈值。网络的输入-输出映射也可简写为: 1≤k≤m (5)

智能优化算法(蚁群算法和粒子群算法)

7.1 蚁群优化算法概述 ?7.1.1 起源 ?7.1.2 应用领域 ?7.1.3 研究背景 ?7.1.4 研究现状 ?7.1.5 应用现状

7.1.1 蚁群优化算法起源 20世纪50年代中期创立了仿生学,人们从生物进化的机理中受到启发。提出了许多用以解决复杂优化问题的新方法,如进化规划、进化策略、遗传算法等,这些算法成功地解决了一些实际问题。

20世纪90年代意大利学者M.Dorigo,V.Maniezzo,A.Colorni等从生物进化的机制中受到启发,通过模拟自然界蚂蚁搜索路径的行为,提出来一种新型的模拟进化算法——蚁群算法,是群智能理论研究领域的一种主要算法。

背景:人工生命 ?“人工生命”是来研究具有某些生命基本特征的人工系统。人工生命包括两方面的内容。 ?研究如何利用计算技术研究生物现象。?研究如何利用生物技术研究计算问题。

?现在关注的是第二部分的内容,现在已经有很多源于生物现象的计算技巧。例如,人工神经网络是简化的大脑模型,遗传算法是模拟基因进化过程的。 ?现在我们讨论另一种生物系统-社会系统。更确切的是,在由简单个体组成的群落与环境以及个体之间的互动行为,也可称做“群智能”(swarm intelligence)。这些模拟系统利用局部信息从而可能产生不可预测的群体行为(如鱼群和鸟群的运动规律),主要用于计算机视觉和计算机辅助设计。

?在计算智能(computational intelligence)领域有两种基于群智能的算法。蚁群算法(ant colony optimization)和粒子群算法(particle swarm optimization)。前者是对蚂蚁群落食物采集过程的模拟,已经成功运用在很多离散优化问题上。

13基于蚁群算法的连续函数优化通用MATLAB源代码

基于蚁群算法的连续函数优化通用MATLAB源代码 此源码是对人工蚁群算法的一种实现,用于无约束连续函数的优化求解,对于含有约束的情况,可以先使用罚函数等方法,把问题处理成无约束的模型,再使用本源码进行求解。 function [BESTX,BESTY,ALLX,ALLY]=ACOUCP(K,N,Rho,Q,Lambda,LB,UB) %% Ant Colony Optimization for Unconstrained Continuous Problem %% ACOUCP.m %% 无约束连续函数的蚁群优化算法 %% 此函数实现蚁群算法,用于求解无约束连续函数最小化问题 %% 对于最大化问题,请先将其加负号转化为最小化问题 % GreenSim团队——专业级算法设计&代写程序 % 欢迎访问GreenSim团队主页→https://www.doczj.com/doc/512194052.html,/greensim %% 输入参数列表 % K 迭代次数 % N 蚁群规模 % Rho 信息素蒸发系数,取值0~1之间,推荐取值0.7~0.95 % Q 信息素增加强度,大于0,推荐取值1左右 % Lambda 蚂蚁爬行速度,取值0~1之间,推荐取值0.1~0.5 % LB 决策变量的下界,M×1的向量 % UB 决策变量的上界,M×1的向量 %% 输出参数列表 % BESTX K×1细胞结构,每一个元素是M×1向量,记录每一代的最优蚂蚁 % BESTY K×1矩阵,记录每一代的最优蚂蚁的评价函数值 % ALLX K×1细胞结构,每一个元素是M×N矩阵,记录每一代蚂蚁的位置 % ALLY K×N矩阵,记录每一代蚂蚁的评价函数值 %% 测试函数设置 % 测试函数用单独的子函数编写好,在子函数FIT.m中修改要调用的测试函数名即可 % 注意:决策变量的下界LB和上界UB,要与测试函数保持一致 %% 参考设置 % [BESTX,BESTY,ALLX,ALLY]=ACOUCP(50,30,0.95,1,0.5,LB,UB) %% 第一步:初始化 M=length(LB);%决策变量的个数 %蚁群位置初始化 X=zeros(M,N); for i=1:M x=unifrnd(LB(i),UB(i),1,N); X(i,:)=x; end %输出变量初始化 ALLX=cell(K,1);%细胞结构,每一个元素是M×N矩阵,记录每一代的个体 ALLY=zeros(K,N);%K×N矩阵,记录每一代评价函数值

蚁群算法路径优化算法

其中,表示在t时刻蚂蚁k由元素(城市)i转移到元素(城市)j的状态转移概率。allowedk = C ? tabuk表示蚂蚁k下一步允许选择的城市。α为启发式因子,表示轨迹的相对重要性,反映了蚂蚁在运动过程中所积累的信息在蚂蚁运动时所起的作用,其值越大,则该蚂蚁越倾向于选择其他蚂蚁经过的路径,蚂蚁之间的协作性越强。β为期望启发式因子,表示能见度的相对重要性,反映了蚂蚁在运动过程中启发信息在蚂蚁选择路径中的受重视程度,其值越 大,则该状态转移概率越接近于贪心规则;ηij(t) 为启发函数,表达式为。式中,dij表示相邻两个城市之间的距离。(6)修改禁忌表指针,即选择好之后将蚂蚁移动到新的元素(城市),并把该元素(城市)移动到该蚂蚁个体的禁忌表中。(7)若集合C中元素(城市)未遍历完,即k

for i=1:NC % 计算各城市间的距离 for j=1:NC distance(i,j)=sqrt((CooCity(i,2)-CooCity(j,2))^2+(CooCity(i,3)-CooCity(j,3))^2); end end MAXIT=10;%最大循环次数 Citystart=[]; % 起点城市编号 tau=ones(NC,NC); % 初始时刻各边上的信息痕迹为1 rho=0.5; % 挥发系数 alpha=1; % 残留信息相对重要度 beta=5; % 预见值的相对重要度 Q=10; % 蚁环常数 NumAnt=20; % 蚂蚁数量 routelength=inf; % 用来记录当前找到的最优路径长度 for n=1:MAXIT for k=1:NumAnt %考查第K只蚂蚁 deltatau=zeros(NC,NC); % 第K只蚂蚁移动前各边上的信息增量为零 %[routek,lengthk]=path(distance,tau,alpha,beta,[]); % 不靠率起始点[routek,lengthk]=path(distance,tau,alpha,beta,Citystart); % 指定起始点if lengthk

蚁群算法在车辆路径问题中的应用

蚁群算法在车辆路径问题中的应用 摘要 蚁群算法(Ant Colony Optimization, ACO)是意大利学者M.Dorigo等人通过模拟蚁群觅食行为提出的一种基于种群的模拟进化算法。通过介绍蚁群觅食过程中基于信息素(pheromone)的最短路径的搜索策略,给出了基于MATLAB 的蚁群算法在车辆路径问题(Vehicle Routing Problem, VRP)中的应用。蚁群算法采用分布式并行计算机制,易于其他方法结合,而且具有较强的鲁棒性,但搜索时间长,容易陷入局部最优解。针对蚁群算法存在的过早收敛问题,加入2—opt方法对问题求解进行了局部优化,计算机仿真结果表明,这种混合型蚁群算法对求解车辆路径问题有较好的改进效果。 关键词:蚁群算法、组合优化、车辆路径问题、2-opt方法 1.车辆路径问题 车辆路径问题(VRP)来源于交通运输,1959年由Dantzig 提出,它是组合优化问题中一个典型的NP-hard问题。最初用于研究亚特兰大炼油厂向各个加油站投送汽油的运输路径优化问题,并迅速成为运筹学和组合优化领域的前沿和研究热点。

车路优化问题如下: 已知有一批客户,各客户点的位置坐标和货物需求已知,供应商具有若干可供派送的车辆,运载能力给定,每辆车都是从起点出发,完成若干客户点的运送任务后再回到起点。现要求以最少的车辆数和最少的车辆总行程来完成货物的派送任务。 2、蚁群系统基本原理 在蚂蚁群找到食物时,它们总能找到一条从食物到蚁穴之间的最短路径。因为蚂蚁在寻找食物时会在路途上释放一种特殊的信息素。当它们碰到一个还没有走过的路口时,会随机地挑选一条路径前行。与此同时释放出与路径长度有关的信息素。路径越长,释放的激素浓度越低。当后面的蚂蚁再次碰到这个路口时,会选择激素浓度较高的路径走。这样形成了一个正反馈,最优路径上的激素浓度越来越高,而其他的路径上激素浓度却会随时间的流逝而消减。最终整个蚁群会找出最优路径。在整个寻找过程中,整个蚁群通过相互留下的信息素作用交换着路径信息,最终找到最优路径。 3、基本蚁群算法求解车辆路径问题 求解VRP问题的蚂蚁算法中,每只蚂蚁是一个独立的用 于构造路线的过程,若干蚂蚁过程之间通过信息素值来交换信

蚁群优化算法

蚁群优化算法
目录 [隐藏]
? ?
比较
1 2
蚁群算法的提出: 人工蚂蚁与真实蚂蚁的异同
o o ? ? ? ? ?
3 4 5 6 7
2.1 2.2
相同点比较 不同点比较
蚁群算法的流程图 基本蚁群算法的实现步骤 蚁群算法的 matlab 源程序 蚁群算法仿真结果 版权声明
[编辑]蚁群算法的提出:
人类认识事物的能力来源于与自然界的相互作用,自然界一直是人类创造力 的源泉。 自然界有许多自适应的优化现象不断地给人以启示,生物和自然中的生 态系 统可以利用自身的演化来让许多在人类看来高度复杂的优化问题得到几乎完美 的解决。近些年来,一些与经典的数学问题思想不同的,试图通过模拟自然生态 系统 来求解复杂优化问题的仿生学算法相继出现,如蚁群算法、遗传算法、粒子群算 法等。 这些算法大大丰富了现在优化技术,也为那些传统最优化技术难以处理的 组 合优化问题提供了切实可行的解决方案。 生物学家通过对蚂蚁的长期的观察发现,每只蚂蚁的智能并不高,看起来没 有集中的指挥,但它们却能协同工作,集中事物,建起坚固漂亮的蚁穴并抚养后 代, 依靠群体能力发挥出超出个体的智能。 蚁群算法是最新发展的一种模拟昆虫王国 中蚂蚁群体智能行为的仿生优化算法,它具有较强的鲁棒性、优良的分布式计算 机 制、易于与其他方法相结合等优点。尽管蚁群算法的严格理论基础尚未奠定,国 内外的相关研究还处于实验阶段, 但是目前人们对蚁群算法的研究已经由当初单 一 的旅行商问题(TSP)领域渗透到了多个应用领域,由解决一维静态优化问题发展 到解决多维动态组合优化问题, 由离散域范围内的研究逐渐扩展到了连续域范围 内的

蚁群算法最优路径

机器人的路径规划---蚁群算法 1.蚁群算法 众所周知,蚁群算法是优化领域中新出现并逐渐引起重视的一种仿生进化算法它是群体智能的典型实现,是一种基于种群寻优的启发式搜索算法。自从M.Dorigo等意大利学者在1991年首先提出蚁群算法(Ant Colony System,ACS)以来,这种新型的分布式智能模拟算法已逐渐引起人们的注意并得到广泛的使用。 蚁群算法的特点主要表现在以下五个方面: (1)蚂蚁群体行为表现出正反馈过程。蚁群在寻优的过程中会释放一定量的信息素,蚁群的规模越大,释放的信息素的量也就越大,而寻优路径上存在的信息素浓度越高,就会吸引更多的蚂蚁,形成一种正反馈机制,然后通过反馈机制的调整,可对系统中的较优解起到一个自增强的作用,从而使问题的解向着全局最优的方向演变,最终能有效地获得全局相对较优解。 (2)蚁群算法是一种本质并行的算法。个体之间不断进行信息交流和传递.有利于最优解的发现,并在很大程度上减少了陷于局部最优的可能。 (3)蚁群算法易于和其他方法结合。蚁族算法通过和其他算法的结合,能够扬长避短,提高算法的性能。 (4) 蚁群算法提供的解具有全局性的特点。一群算法是一种群只能算法,每只蚂蚁巡游的过程相对独立,他们会在自己的活动空间进行搜索,蚂蚁在寻优过程中通过释放信息素,相互影响,互相通信,保证了解的全局性。 (5) 蚁群算法具有鲁棒性。蚁族算法的数学模型易于理解,可以广泛使用在很多复杂的优化问题中,蚁族算法区别于传统优化算法的一个特点在于该算法不依赖于初始点的选择,受初始点的影响相对较小,并且在整个算法过程中会自适应的调整寻优路径。 由此可见,在机器人寻找最优路径的过程中,采用蚁群算法实现路径的规划问题,可以高效,准确的找到最优的路径。 2.移动机器人的路径规划 2.1环境信息处理 假设机器人运行环境为边长分别为x和Y的矩形区域,在矩形区域内分布有n

matlab_蚁群算法_机器人路径优化问题

用ACO算法求解机器人路径优化问题 4.1问题描述 移动机器人路径规划是机器人学的一个重要研究领域。它要求机器人依据某个或某些优化原则(如最小能量消耗,最短行走路线,最短行走时间等),在其工作空间中找到一条从起始状态到目标状态的能避开障碍物的最优路径。机器人路径规划问题可以建模为一个有约束的优化问题,都要完成路径规划、定位和避障等任务。 4.2算法理论 蚁群算法(Ant ColonyAlgorithm,ACA),最初是由意大利学者Dorigo M. 博士于1991 年首次提出,其本质是一个复杂的智能系统,且具有较强的鲁棒性,优良的分布式计算机制等优点。该算法经过十多年的发展,已被广大的科学研究人员应用于各种问题的研究,如旅行商问题,二次规划问题,生产调度问题等。但是算法本身性能的评价等算法理论研究方面进展较慢。 Dorigo提出了精英蚁群模型(EAS),在这一模型中信息素更新按照得到当前最优解的蚂蚁所构造的解来进行,但这样的策略往往使进化变得缓慢,并不能取得较好的效果。次年Dorigo博士在文献[30]中给出改进模型(ACS),文中 改进了转移概率模型,并且应用了全局搜索与局部搜索策略,来得进行深度搜索。 Stützle 与Hoos给出了最大-最小蚂蚁系统(MAX-MINAS),所谓最大-最小即是为信息素设定上限与下限,设定上限避免搜索陷入局部最优,设定下限鼓励深度搜索。 蚂蚁作为一个生物个体其自身的能力是十分有限的,比如蚂蚁个体是没有视觉的,蚂蚁自身体积又是那么渺小,但是由这些能力有限的蚂蚁组成的蚁群却可以做出超越个体蚂蚁能力的超常行为。蚂蚁没有视觉却可以寻觅食物,蚂蚁体积渺小而蚁群却可以搬运比它们个体大十倍甚至百倍的昆虫。这些都说明蚂蚁群体内部的某种机制使得它们具有了群体智能,可以做到蚂蚁个体无法实现的事情。经过生物学家的长时间观察发现,蚂蚁是通过分泌于空间中的信息素进行信息交流,进而实现群体行为的。 下面简要介绍蚁群通过信息素的交流找到最短路径的简化实例。如图 2-1 所示,AE 之间有

基本蚁群优化算法及其改进毕业设计

摘要 自意大利学者M. Dorigo于1991年提出蚁群算法后,该算法引起了学者们的极大关注,在短短十多年的时间里,已在组合优化、网络路由、函数优化、数据挖掘、机器人路径规划等领域获得了广泛应用,并取得了较好的效果。本文首先讨论了该算法的基本原理,接着介绍了旅行商问题,然后对蚁群算法及其二种改进算法进行了分析,并通过计算机仿真来说明蚁群算法基本原理,然后分析了聚类算法原理和蚁群聚类算法的数学模型,通过调整传统的蚁群算法构建了求解聚类问题的蚁群聚类算法。最后,本文还研究了一种依赖信息素解决聚类问题的蚁群聚类算法,并把此蚁群聚类算法应用到对人工数据进行分类,还利用该算法对2005年中国24所高校综合实力进行分类,得到的分类结果与实际情况相符,说明了蚁群算法在聚类分析中能够收到较为理想的结果。 【关键词】蚁群算法;计算机仿真;聚类;蚁群聚类

Study on Ant Colony Algorithm and its Application in Clustering Abstract: As the ant colony algorithm was proposed by M. Dorigo in 1991,it bringed a extremely large attention of scholars, in past short more than ten years, optimized, the network route, the function in the combination optimizes, domains and so on data mining, robot way plan has obtained the widespread application, and has obtained the good effect.This acticle discussed the basic principle of it at first, then introduced the TSP,this acticle also analysed the ant colony algorithm and its improved algorithm, and explanated it by the computer simulates, then it analysed the clustering algorithm and the ant clustering algorithm, builded the ant clustering algorith to solution the clustering by the traditioned ant algorithm. At last, this article also proposed the ant clustering algorith to soluted the clustering dependent on pheromon. Carry on the classification to the artificial data using this ant clustering algorithm; Use this algorithm to carry on the classification of the synthesize strength of the 2005 Chinese 24 universities; we can obtain the classified result which matches to the actual situation case. In the next work, we also should do the different cluster algorithm respective good and bad points as well as the classified performance aspect the comparison research; distinguish the different performance of different algorithm in the analysis when the dates are different. Key words: Ant colony algorithm; Computer simulation; clustering; Ant clustering 目录

蚁群算法在路径优化中的应用3改

蚁群算法在路径优化中的应用 作者:孙阳阳指导老师:刘冲 摘要针对蚁群算法在路径中的优化问题,本文首先介绍了蚁群算法的概念及其原理,利用数学 形式建立算法模型.根据蚁群算法计算的基本步骤来分析蚁群算法在交通路径优化、TSP问题等3 个方面的应用,由实验结果可知蚁群算法在路径优化中具有很好的可行性和优越性,能起到很 好的效果. 关键词蚁群算法算法模型算法步骤分析应用 1 引言 路径规划是指在具有障碍物的环境下,在符合某种评价条件中,寻找到一条从起始地点到目标地点最优的路径.蚁群算法是近几年优化领域中新出现的一种启发式仿生类并行智能进化系统,计算法采用分布式并行计算和正反馈机制,且易于其它算法结合,目前已有许多关于其在路径规划方面的文献. 建立蚁群算法模型]2][1[,解决城市交通路径优化问题,实验结果表面在搜索效率和搜索最优解的能力两方面都有很大的提高.但是传统蚁群算法易陷入局部最优解和收敛速度较 4[ ,将传统蚁群算法进行改进,例如与栅格法相结合、慢,为此在机器人路径规划的应用中]7 在几何模型下建立模型等.提高了算法的有效性和鲁棒性,解决了蚁群过早陷入局部最优解的问题,扩大了蚂蚁的搜索空间,增强了蚁群算法在机器人路径规划中的适应能力. 本文通过对蚁群算法的研究以及解决几实际路径规划问题,得出了蚁群算法是有其可行性和优越性的,说明了该算法可以在众多优化领域中得到广泛的应用. 2 蚁群算法 蚁群算法(ant colony optimization),又称蚂蚁算法,简称ACO.是由Dorigom、Maniezzov、Colorni等人在1992年所发表的论文提出的,其灵感来源于蚂蚁在寻找食物中发现路径的行为.它是一种模拟进化算法,通过人工模拟蚂蚁觅食过程,即个体间的信息交流与合作不断排除不适合的路途,最终寻找到从蚁穴到食物源的最短路径. 2.1 蚁群算法的基本原理 蚂蚁在搜寻食物过程中总能找到一条从蚁穴到到食物的最优路径,这是因为蚂蚁在搜寻路径上释放一种特殊的信息素.当它们遇到一个还没有被走过的路口时,会随机的选择一条路径,而选择的路径与信息素的浓度有关,同时在该路径上它们也会释放自己的信息素.路径越短,信息素浓度越大;反正路径越长信息素堆积的越少.则过一段时间蚂蚁选择信息素浓度高的路径的概率越来越大,而其它路径随着蚂蚁越来越少的选择信息素浓度逐渐减小,这一就形成了一个正反馈现象,最终指导整个蚁群找到从蚁穴到食物源的最短路径. 2.2 蚁群算法的数学模型 2.2.1 问题的描述

(完整word版)基于蚁群算法的路径规划

MATLAB 实现基于蚁群算法的机器人路径规划 1、问题描述 移动机器人路径规划是机器人学的一个重要研究领域。它要求机器人依据某个或某些优化原则(如最小能量消耗,最短行走路线,最短行走时间等),在其工作空间中找到一条从起 始状态到目标状态的能避开障碍物的最优路径。机器人路径规划问题可以建模为一个有约束的优化问题,都要完成路径规划、定位和避障等任务。 2 算法理论 蚁群算法(Ant Colony Algorithm ,ACA ),最初是由意大利学者Dorigo M. 博士于1991 年首次提出,其本质是一个复杂的智能系统,且具有较强的鲁棒性,优良的分布式计算机制等优点。该算法经过十多年的发展,已被广大的科学研究人员应用于各种问题的研究,如旅行商问题,二次规划问题,生产调度问题等。但是算法本身性能的评价等算法理论研究方面进展较慢。 Dorigo 提出了精英蚁群模型(EAS ),在这一模型中信息素更新按照得到当前最优解的蚂蚁所构造的解来进行,但这样的策略往往使进化变得缓慢,并不能取得较好的效果。次年Dorigo 博士给出改进模型(ACS ),文中改进了转移概率模型,并且应用了全局搜索与局部搜索策略,来得进行深度搜索。 Stützle 与Hoos 给出了最大-最小蚂蚁系统(MAX-MINAS ),所谓最大-最小即是为信息素设定上限与下限,设定上限避免搜索陷入局部最优,设定下限鼓励深度搜索。蚂蚁作为一个生物个体其自身的能力是十分有限的,比如蚂蚁个体是没有视觉的,蚂蚁自身体积又是那么渺小,但是由这些能力有限的蚂蚁组成的蚁群却可以做出超越个体蚂蚁能力的超常行为。蚂蚁没有视觉却可以寻觅食物,蚂蚁体积渺小而蚁群却可以搬运比它们个体大十倍甚至百倍的昆虫。这些都说明蚂蚁群体内部的某种机制使得它们具有了群体智能,可以做到蚂蚁个体无法实现的事情。经过生物学家的长时间观察发现,蚂蚁是通过分泌于空间中的信息素进行信息交流,进而实现群体行为的。 下面简要介绍蚁群通过信息素的交流找到最短路径的简化实例。如图2-1 所示,AE 之间有两条路ABCDE 与ABHDE ,其中AB ,DE,HD,HB 的长度为1,BC,CD 长度为0.5,并且,假设路上信息素浓度为0,且各个蚂蚁行进速度相同,单位时间所走的长度为1,每个单位时间内在走过路径上留下的信息素的量也相同。当t=0 时,从A 点,E 点同时各有30 只蚂蚁从该点出发。当t=1,从A 点出发的蚂蚁走到B 点时,由于两条路BH 与BC 上的信息素浓度相同,所以蚂蚁以相同的概率选择BH 与BC ,这样就有15 只蚂蚁选择走BH,有15 只蚂蚁选择走BC 。同样的从E 点出发的蚂蚁走到D 点,分别有15 只蚂蚁选择DH 和DC。当t=2 时,选择BC 与DC 的蚂蚁分别走过了BCD 和DCB ,而选择BH 与DH 的蚂蚁都走到了H 点。所有的蚂蚁都在所走过的路上留下了相同浓度的信息素,那么路径BCD 上的信息素的浓度是路径BHD 上信息素浓度的两倍,这样若再次有蚂蚁选择走BC 和BH 时,或选择走DC 与DH 时,都会以较大的概率选择信息素浓度高的一边。这样的过程反复进行下去,最短的路径上走过的蚂蚁较多,留下的信息素也越多,蚁群这样就可以找到一条较短的路。这就是它们群体智能的体现。 蚁群算法就是模拟蚂蚁觅食过程中可以找到最短的路的行为过程设计的一种仿生算法。在用蚁群算法求解组合优化问题时,首先要将组合优化问题表达成与信息素相关的规范形式,然后各个蚂蚁独立地根据局部的信息素进行决策构造解,并根据解的优劣更新周围的信息素,这样的过程反复的进行即可求出组合优化问题的优化解。 归结蚁群算法有如下特点: (1)分布式计算:各个蚂蚁独立地构造解,当有蚂蚁个体构造的解较差时,并不会影响整体的求解结果。这使得算法具有较强的适应性; (2)自组织性:系统学中自组织性就是系统的组织指令是来自系统的内部。同样的蚁群算法中的各个蚂蚁的决策是根据系统内部信息素的分布进行的。这使得算法具有较强的鲁棒性; (3)正反馈机制与负反馈机制结合:若某部分空间上分布的信息素越多,那么在这个空间上走过的蚂蚁也就越多;走过的蚂蚁越多,在那个空间上留下的信息素也就越多,这就是存在的正反馈机制。但蚁群算法中解的构造是通过计算转移概率实现的,也就是说构造解的时候可以接受退化解,这限制了正反馈机制,

粒子群蚁群算法路径优化算法

粒子群算法(PSO)和遗传算法(GA)都是优化算法,都力图在自然特性的基础上模拟个体种群的适应性,它们都采用一定的变换规则通过搜索空间求解。 PSO和GA的相同点: (1)都属于仿生算法。PSO主要模拟鸟类觅食、人类认知等社会行为而提出;GA主要借用生物进化中“适者生存”的规律。 (2)都属于全局优化方法。两种算法都是在解空间随机产生初始种群,因而算法在全局的解空间进行搜索,且将搜索重点集中在性能高的部分。 (3)都属于随机搜索算法。都是通过随机优化方法更新种群和搜索最优点。PSO中认知项和社会项前都加有随机数;而GA的遗传操作均属随机操作。 (4)都隐含并行性。搜索过程是从问题解的一个集合开始的,而不是从单个个体开始,具有隐含并行搜索特性,从而减小了陷入局部极小的可能性。并且由于这种并行性,易在并行计算机上实现,以提高算法性能和效率。 (5)根据个体的适配信息进行搜索,因此不受函数约束条件的限制,如连续性、可导性等。 (6)对高维复杂问题,往往会遇到早熟收敛和收敛性能差的缺点,都无法保证收敛到最优点。PSO和GA不同点 (1)PSO有记忆,好的解的知识所有粒子都保存,而GA没有记忆,以前的知识随着种群的改变被破坏。 (2)在GA算法中,染色体之间相互共享信息,所以整个种群的移动是比较均匀地向最优区域移动。PSO中的粒子仅仅通过当前搜索到最优点进行共享信息,所以很大程度上这是一种单项信息共享机制,整个搜索更新过程是跟随当前最优解的过程。在大多数情况下,所有粒子可能比遗传算法中的进化个体以更快速度收敛于最优解。 (3)GA的编码技术和遗传操作比较简单,而PSO相对于GA,不需要编码,没有交叉和变异操作,粒子只是通过内部速度进行更新,因此原理更简单、参数更少、实现更容易。(4)在收敛性方面,GA己经有了较成熟的收敛性分析方法,并且可对收敛速度进行估计;而PSO这方面的研究还比较薄弱。尽管已经有简化确定性版本的收敛性分析,但将确定性向随机性的转化尚需进一步研究。 (5)在应用方面,PSO算法主要应用于连续问题,包括神经网络训练和函数优化等,而GA 除了连续问题之外,还可应用于离散问题,比如TSP问题、货郎担问题、工作车间调度等。

蚁群优化算法

蚁群优化算法ACO 一、蚁群算法的背景信息 蚁群优化算法(ACO)是一种模拟蚂蚁觅食行为的模拟优化算法,它是由意大利学者Dorigo M等人于1991年首先提出,之后,又系统研究了蚁群算法的基本原理和数学模型,并结合TSP优化问题与遗传算法、禁忌搜索算法、模拟退火算法、爬山法等进行了仿真实验比较,为蚁群算法的发展奠定了基础,并引起了全世界学者的关注与研究 蚁群算法是一种基于种群的启发式仿生进化系统。蚁群算法最早成功应用于解决著名的旅行商问题(TSP),该算法采用了分布式正反馈并行计算机制,易于与其他方法结合,而且具有较强的鲁棒性。 二、蚁群算法的原理[1] 蚁群算法是对自然界蚂蚁的寻径方式进行模似而得出的一种仿生算法。蚂蚁在运动过程中,能够在它所经过的路径上留下一种称之为外激素(pheromone)的物质进行信息传递,而且蚂蚁在运动过程中能够感知这种物质,并以此指导自己的运动方向,因此由大量蚂蚁组成的蚁群集体行为便表现出一种信息正反馈现象:某一路径上走过的蚂蚁越多,则后来者选择该路径的概率就越大。 基本的ACO模型由下面三个公式描述: 式(2-1)、式(2-2)和式(2-3)中:m为蚂蚁个数;n为迭代次数;i为蚂蚁所在位置;j为蚂蚁可以到达的置;为蚂蚁可以到达位置的集合;为启发性信息

,这里为由i到j的路径的能见度,即;为目标函数,这里为两点间欧氏(Euclidean)距离;为由i到j的路径的信息素强度;为蚂蚁k由i到j的路径上留下的信息素数量;为路径权;为启发性信息的权;为路径上信息素数量的蒸发系数;Q为信息素质量系数;为蚂蚁k从位置i移动到位置j的转移概率。 三、改进的蚁群算法[3] 蚁群算法具有如下一些优点:①通用性较强,能够解决很多可以转换为连通图结构的路径优化问题;②同时具有正负反馈的特点,通过正反馈特点利用局部解构造全局解,通过负反馈特点也就是信息素的挥发来避免算法陷入局部最优; ③有间接通讯和自组织的特点,蚂蚁之间并没有直接联系,而是通过路径上的信息素来进行间接的信息传递,自组织性使得群体的力量能够解决问题。 但是,基本蚁群算法也存在一些缺点:①从蚁群算法的复杂度来看,该算法与其他算法相比,所需要的搜索时间较长;②该算法在搜索进行到一定程度以后,容易出现所有蚂蚁所发现的解完全一致这种“停滞现象”,使得搜索空间受到限制 3.1基于遗传学的改进蚁群算法研究 该文献[2]提出的算法弥补了基本蚁群算法中“容易陷入停滞状态”和“盲目随机搜索”的不足。文献中提出的解决办法是在每一次迭代搜索后,都把当前解和最优解进行交叉变异,这样既能搜索更大的解空间,又能使系统陷入局部最优后跳出停滞状态。 这种基于遗传学的蚁群算法(G-蚁群算法)的基本思想是在以蚁群算法为主体的基础上引入遗传算法的思想,目的是让蚁群算法经过迭代产生遗传算法所需的初始种群数据,提高种群数据的多样性。然后,遗传算法经过选择、交叉和变异操作,将处理后的数据交由蚁群算法模块进行判断处理,若满足结束条件则退出系统,否则重新进行迭代操作。 该文献中的交叉操作采用了Davis提出的OX交叉算子,即按照交叉概率Pc进行交叉操作,通过一个亲体中挑选出的子序列路径作为后代相对位置的子序列,变异操作以变异概率Pm执行变异操作,在子代序列路径中随机选择两点进行变异操作,在交叉变异操作结束后,判断当前解是否满足收敛条件,若满足收敛条件则更新当前最优解,返回蚁群算法程序,执行下一次的迭代操作。若不满足收敛条件则继续进行遗传算法的交叉变异操作。

蚁群优化算法的JAVA实现

蚁群优化算法的JAVA实现 一、蚁群算法简介 蚁群算法是群智能算法的一种,所谓的群智能是一种由无智能或简单智能的个体通过任何形式的聚集协同而表现出智能行为,它为在没有集中控制且不提供全局模型的前提下寻找复杂的分布式问题求解方案提供了基础,比如常见的蚂蚁觅食,大雁南飞等行为。蚁群算法是模拟自然界中蚂蚁觅食的一种随机搜索算法,由Dorigo等人于1991年在第一届欧洲人工生命会议上提出[1] 。 二、蚁群算法的生物原理 通过观察发现,蚁群在觅食的时候,总能找到一条从蚁巢到食物之间的一条最短的路径。这个现象引起了生物学家的注意,根据研究,原来是蚂蚁在行进的过程中,会分泌一种化学物质——信息素,而蚂蚁在行进时,总是倾向于选择信息素浓度比较高的路线。这样,在蚁巢和食物之间假如有多条路径,初始的时候,每条路径上都会有蚂蚁爬过,但是随着时间的推迟,单位时间内最短的那条路上爬过的蚂蚁数量会比较多,释放的信息素就相对来说比较多,那么以后蚂蚁选择的时候会大部分都选择信息素比较多的路径,从而会把最短路径找出来。 蚁群算法正是模拟这种蚁群觅食的原理,构造人工蚂蚁,用来求解许多组合优化问题。 有关蚁群算法的详细信息,可参考[2]——[5]。 三、蚁群算法的JAVA实现 我个人认为利用JAVA编写一些计算密集型的算法不是一个好的选择。本身一些算法是要要求高效率的,但是我感觉JAVA语言的性能不够,所以编写算法最好用c,其次也可以用c++。当然,这仅是一家之言,欢迎拍砖。 四、算法说明 算法以求解TSP问题为例,用来演示ACO的框架。 算法设定了两个类,一个是ACO,用来处理文件信息的读入,信息素的更新,路径的计算等;另一个是ant,即蚂蚁的信息。 算法中用到的数据,可以从TSPLib 上面下载,使用的是对称TSP数据,为了简化算法的代码,下载下来的数据需要做一个简单处理,即把TSP文件中除去城市节点信息部分之外的内容都删除掉,然后在文件首插入一行,写入此文件包含的城市的数目,以att48.tsp为例,下载下来的文件内容如下:

相关主题
文本预览
相关文档 最新文档