当前位置:文档之家› 简易综合参数估计法在电机转子断条检测中的应用

简易综合参数估计法在电机转子断条检测中的应用

简易综合参数估计法在电机转子断条检测中的应用
简易综合参数估计法在电机转子断条检测中的应用

电动机转子笼条断裂的原因分析及预防措施

电动机转子笼条断裂的原因分析及预防措施Analyse and Prevent about B reakdow n of E lectric Mober R otor C age 廖松涛 L IAO Song2tao (江西新余发电有限责任公司,江西 新余 338002) 摘要:分析了新电公司200MW汽轮发电机组多年来高压异步电动机转子鼠笼断条原因,提出了一些预防措施。 关键词:电动机;转子;断条;预防措施 中图分类号:TM343.307.1 文献标识码:B 文章编号:1671-8380(2004)04-0022-02 1 引言 厂用电动机是火力发电厂重要的厂用电气设备之一。江西新余发电有限责任公司(以下简称新电公司)两台200MW火力发电机组自1995年、1996年相继投产以来,其厂用高、低压电动机先后发生各种故障100多台次,造成了较大的经济损失,其中一个主要的故障原因就是电动机鼠笼转子断条。本文主要分析高压异步感应电动机转子鼠笼断条故障发生的原因,进而提出了一些相应的预防措施。 2 鼠笼断条的基本特征 ①鼠笼型电机断条多发生在具有频繁,重载启动的鼠笼型电机单、双鼠笼型电机。双鼠笼电机外笼条断条最多,约占断条电机的95%以上,内笼和端环断裂的不到5%。 ②圆形笼条断条的几率大大高于矩形笼条断条的几率,约占断条总数的80%。 ③外笼条断裂时有明显的位移现象。这说明笼条在槽内松动。断条上有明显被槽壁突出的硅钢片磨损的沟槽,在伸出铁芯端笼条有明显的向上变形现象,短路环也有扭曲变形现象。 ④笼条断口多发生在与端环的焊口里侧部位,槽内断条的很少,笼条开焊多发生在笼条与端环的焊接部位。开焊后笼条在离心力作用下向外侧甩出刮伤定子造成定子线圈短路。笼条槽内断口处有明显电弧烧伤痕迹,断口两断面吻合严密,呈脆性疲劳断列性质。 ⑤断条槽的铁芯多有局部过热变色烧损现象,开焊处的端环孔周围也有过热变色及电弧烧伤痕迹。 3 转子断条原因分析 电动机转子频繁发生断条,均是转子受各种应力作用的结果,而且应力超过了笼条所能承受的极限,或是交变应力的长期作用使笼条产生疲劳。主要有以下几方面的原因。 3.1 制造工艺产生的应力和启动时交变应力 由于焊接质量不一致,引起笼条热膨胀有差异,造成笼条之间产生的较大温差。笼条上下的不均匀温升会使笼条产生向转子中心弯曲的应力,端环中强大的启动电流使之发热产生径向位移,造成笼条产生背离转子中心的弯曲应力。笼条铁芯冲孔工艺会使笼条嵌装的松紧程度不一致。当电流的相位不同,传递给端环的振动力会使端环产生扭曲,受力最大的部位仍是笼条的焊接处,而此处恰恰是鼠笼结构最薄弱点。由于热传导性能差异会使各笼条间产生不均匀的温升,因而各笼条之间将产生不同的轴向位移而使笼条产生轴向的拉应力。且使笼条产生电磁振动应力,特别是在电动机刚启动的瞬间,振动幅值达到最大值,是正常运行时50~60倍;频率为100Hz,随着转速的升高和启动电流的增加而增大。由于各应力作用点大都集中于笼条与端环的焊口附近,且每启动一次便交变一次,这样各应力的破坏作用随启动的次数的增加和温升积累而增大。 3.2 负载变化使鼠笼条产生切向交变应力 由于笼条在槽内有一定的间隙,转子铁芯和与 收稿日期:2004-03-13;修订日期:2004-07-19 22广西电力 2004年第4期

笼型异步电动机转子断条故障诊断技术

2006年第21卷第3期 电 力 学 报 Vol.21No.32006 (总第76期) JOURNAL OF ELECT RIC POWER (Sum.76) 文章编号: 1005-6548(2006)03-0310-04 笼型异步电动机转子断条故障诊断技术 安永红, 夏昌浩 (三峡大学,宜昌湖北 443002) Techniques of Broken Rotor Bar Fault Diagnosis For Squirrel Cage Induction Motor AN Yong hong, XIA Chang hao (Three Gorge University,Yichang 443002,China) 摘 要: 对笼型异步电动机转子断条故障诊断进行了研究,归纳和总结出几种方法。这些方法均由研究人员进行了仿真或实验验证,对检测笼型异步电动机的转子故障是有效的。并对各种方法进行了分析比较,指出了各自的优缺点。 关键词: 异步电动机;转子断条;故障检测 中图分类号: TM343+.3 文献标识码: A Abstract: This paper focuses on the study of bro ken rotor bar fault diagnosis for squirrel cage induc tion motor,and concludes several effective methods. All of the methods have been tested by reseachers to simulate or identify their validity in motor rotor fault analysis.This paper compares these methods and points out their advantages and disadvantages. Key Words: induction motor;broken rotor bar; fault detection 鼠笼式异步电动机的转子绕组比较坚固,但如果转子温度过高或作用在端环的离心负荷过大,可能会导致转子故障。另外,在制造过程中的某些缺陷(如铸导条或焊端环时的质量不良)也会导致电阻过高,从而引起过热。而在高温条件下,鼠笼的强度降低,鼠笼条可能出现裂纹,导致笼条伸出转子槽外而得不到转子铁芯的支撑。导条与转子槽的相对位移,连续的高温运行可引起端环和导条变形,并最终导致端环与鼠笼条的断裂[1]。 笼型异步电动机转子断条故障将导致电机出力下降,运行性能恶化,一旦发生,不仅会损坏电动机本身,而且会影响整个生产系统,甚至会危及人身安全,造成巨大的经济损失和恶劣的社会影响[2]。因此必须对其进行检测,特别是进行早期检测,早期检测系统可以在故障发生初期及时告警,有助于现场组织,安排维修,避免事故停机,具有显著经济效益。 1 转子断条故障诊断方法 笼型异步电动机转子故障的检测与诊断方法有许多种,如:磁通检测法,定子电流检测法,机械信号检测法,傅立叶变换法等。但这些方法有时很难提取转子故障特征,因此,必须寻求其它的检测与诊断方法。 1 1 基于小波变换的方法 笼型异步电动机正常运行时,定子绕组中只含 收稿日期: 2006-04-27 修回日期: 2006-09-10 作者简介: 安永红(1967-),男,湖北钟祥人,硕士研究生,小波理论及应用; 夏昌浩(1965-),男,湖北江陵人,副教授,硕士生导师,检测与自控,智能信号处理。

电动机断条故障理论分析

利用连续细化的傅里叶变换方法,通过对异步电动机稳态运行时定子电流进行分析,提出了用傅里叶变换的结果作为参考信号以抵消基波1f 分量的方法,解决了傅里叶变换时1f 分量的泄漏淹没()121f s -分量这以问题。该方法可用于电动机转子故障的在线检测,并可成功应用于嵌入式在线监测仪的研制。 三相异步电动机由于结构简单、价格低廉、运行可靠,在电力、冶金、石油、化工、机械等领域得到广泛应用。由于工作环境恶劣或者电动机频繁启动等原因,转子导条或者端环经常会发生开焊和断裂等故障。这种故障通常先有1~2根,而后发展成多根,以至出力下降,最后带不动负荷而停机。对电动机进行在线检测,提前发现电动机的故障隐患及早采取相应措施,以减少或者避免恶性故障的发生。 目前常用的转子断条在线检测方法是对稳态的定子电流信号直接进行频谱分析,根据频谱中是否存在()121f s -的附加分量来判断转子有无断条。但由于()121f s -分量的绝对幅值很小,并且异步电动机运行时转差率s 很小,频率()121f s -与1f 非常接近,用快速傅里叶变换直接作频谱分析时,基波1f 频率分量的泄漏会淹没()121f s -频率分量,因而使检测()121f s -频率分量是否存在变得非常困难。 本文采用快速傅里叶变换的方法,通过快速傅里叶变换得到电动机断条时信号的频谱,为了抵消基频50Hz 频谱图由于频谱泄漏对故障信号频谱的淹没,将电动机断条故障时的信号经自适应陷波器处理,以滤除工频50Hz 对特征分量的影响。

第一章绪论 1 引言 2 电动机转子断条故障的现状与课题意义 3 本文的主要研究方法法与研究内容 第二章电动机的结构与工作原理 2.1 电动机结构及原理分析 2.1.1 组成结构 2.1.2 转子的结构、定子的结构 2.1.3 电动机工作原理分析 2.2 电动机断条故障的原理 2.2.1转子断条原因 2.2.2转子断条常见现象 2.2.3断条原因分析 第三章快速傅里叶变换与MATLAB实现 3.1 MATLAB简介 3.2 快速傅里叶变换的数字实验 3.3 本章小结 第四章自适应陷波器原理 4.1 原理分析 4.2 基于LMS算法的MATLAB实现 4.3 用MATLAB程序实现LMS算法 4.4 本章小结 第五章电动机断条故障理论分析 5.1 电动机断条故障理论分析 5.1.1异步电动机转子断条故障时定子电流的特点 5.1.2电动机断条故障理论分析程序流程图 5.1.3理论仿真波形及其分析 5.2 理论仿真波形与分析 5.3 本章小结 参考文献 附录 致谢

笼型异步电动机转子断条故障检测方法

笼型异步电动机转子断条故障检测方法 笼型异步电动机在运行过程中,转子导条受到径向电磁力、旋转电磁力、离心力、热弯曲挠度力等交变应力的作用,加之转子制造缺陷,导致断条故障,其发生概率约为15%[1~3]。 转子断条是典型的渐进性故障,初期通常1、2根导条断裂,而后逐渐发展以至电机出力下降甚至停机。因此,必须实施转子断条故障在线检测,特别是初发性转子断条故障在线检测,这具有重要意义。 笼型异步电动机发生转子断条故障之后,在其定子电流中将出现1)21(f s ±频率的附加电流分量(s 为转差率,1f 为供电频率)[4,5],该电流分量称为边频分量。以此作为故障特征,对定子电流信号做傅立叶频谱分析即可进行转子断条故障检测。 在转子断条故障发展初期,其特征——定子电流1)21(f s ±频率分量是细小、微弱的。因此,进行转子断条故障检测,特别是早期检测必须保证高灵敏度。 另一方面,由于本身所固有的非对称、气隙偏心、转子不对中及其它因素,异步电动机即使处于正常运行状态,其定子电流中亦可能包含1)21(f s ±及其它频率分量。并且对于不同的异步电动机,情况复杂。这极易与转子断条故障初期特征相混淆,导致误判,影响故障检测可靠性。 为了解决这一问题,姜建国、汪庆生 等采用自适应滤波方法抵消定子电流1f 频率分量,以凸现转子断条故障特征——定子电流1)21(f s -频率分量,从而显著提高故障检测灵敏度 [6]。K. Abbaszadeh, J. Milimonfared, et al 应用小波分析技术处理定子电流信号,提取小波分解系数反映转子断条故障特征,据此改善故障检测灵敏度[7]。 华北电力大学业已提出卓有成效的初发性转子断条故障检测方法[8,9]:采用定子电流1)21(f s ±频率分量作为故障特征,将连续细化傅里叶变换、自适应滤波、转子齿槽谐波转差率估计、检测阈值自整定技术有机结合,高灵敏度/高可靠性地在线检测异步电动机转子断条故障。 文献[8,9]表明:应用连续细化傅里叶变换与自适应滤波技术可以保证高灵敏度地提取电机定子电流边频分量;应用转子齿槽谐波转差率估计技术可以正确判断该分量是否真正由转子断条故障所导致;应用基于样本学习的检测阈值自整定策略则可以适当设臵检测阈值,避免故障漏检与误判。 异步电动机低转差率运行(如轻载甚至空载)时,频率1)21(f s -与频率1f 非常接近,而定子电流1)21(f s -频率分量幅值远远小于1f 频率分量,因此断条特征----1)21(f s -频率分量可能被1f 频率分量的泄漏所淹没。在这种情况下,检测结果可信度欠佳。

鼠笼型异步电动机转子断条是一种常见故障

鼠笼型异步电动机转子断条是一种常见故障,断条后的异常表现: (1)接上三相电源后,机身振动且伴有噪声;电机转速降低,且随负载增加而迅速下降。(2)空载电流增加,电流表指针周期性摆动;电机转矩降低,带负荷无力,严重时无法起动。上述现象随着转子断条的增多而加剧。笼型转子断条的原因:(1)浇铸质量不佳, (2)结构设计不合理(3)起动频繁的冲击负荷(4)操作不当和违章操作,使用过程负载过大,或者转子上的感应电流分布不均匀,造成转子槽内导条烧断,铸铝多发生在槽内,而铜条多发生在与端环的联接处。(5)使用场所对电机的腐蚀。 有的电机就是这样,如果烧了从绕就必须加多线圈。槽满率太高的话就减细线径。 看电流大小而定加线圏的多少,加线圈一般是电流增加10%,线圈增加1%。 只是经验。一般也很准的。 短路环用来短路转子线圈使其线圈中的感应电动势闭合产生电流,电流形成磁场与定子旋转磁场相互作用并转起来; 若转子不短路电机就是个二次侧开路的空载变压器。 电机通电后产生一个旋转磁场,这个磁场的励磁是由电流的无功产生。旋转磁场切割转子导体产生感应电势,通过转子的短路环形成感生电流,这个电流在磁场中受力,使电动机转动。所以说三相异步电动机转子末端短路环的作用是形成感生电流的。 三相异步电动机转子铁芯开槽是为了嵌入转子绕组,定子上通常也开槽,作用也是嵌入定子绕组。而且这些槽都是斜槽,斜槽的作用如下: 电机内部有各种频率的谐波,因定子采用分布短距绕组,所以除齿谐波之外的其它频率的谐波磁势幅值均被极大程度地削弱。由于齿谐波绕组系数等于基波绕组系数,所以齿谐波磁势几乎不受影响。因为三相异步电动机的定、转子开槽,造成整个气隙圆周范围磁阻不均匀,电机运转时电磁转矩和感应电动势相应波动。转子斜槽后,形成的电磁转矩和感应电动势近似于同一根转子导条均匀分布在一段圆周范围内的平均值,能有效地削弱齿谐波磁场所产生的谐波电动势,从而削弱由这些谐波磁场引起的附加转矩,降低电磁振动和噪声。转子斜槽后虽然也会使转子感应的基波电动势减少,但一般选择的斜槽度相对于极距来说小得多,因而对电机基本性能影响很小,故中小型铸铝转子异步电动机普遍采用转子斜槽

高压电动机转子笼条断条的原因及改进方法

高压电动机转子笼条断条的原因及改进方法 1 引言 大武口发电厂锅炉辅机设备高压异步电动机自投产以来 频繁出现电动机线圈烧毁、转子笼条断条、转子熔铝等故障。故 障多发生在频繁启动且负荷大的排粉机、磨煤机及渣浆泵。仅 1993年就发生了2起因磨煤机转子熔铝致使高压电动机报废的 事故,造成了很大的经济损失。1994年利用机组大小修将该设 备转子改为铜条笼,但转子断条故障又相继发生,仅1995年统计为11次,故障率为35%,严重影响了电力生产的正常运行和 安全。 2 转子笼条断条分析 2.1 转子笼条断条现象 笼条断裂与电机负载形式及起动情况有关,大武口发电厂转子笼条断裂90%发生在起动频繁的排粉机、磨煤机和渣浆泵。从 笼条断裂部位看,大多发生在笼条与端环焊接处,如图1所示。

图1 笼条断裂部位示意图 从端环结构图看,端部转子笼条断裂如外翘时,将磨损定子端部绝缘从而引起电机烧坏。 2.2 转子笼条断条原因分析 (1) 笼条端环结构不合理,端环为整体,笼条与端环采用刚性连接,对单根笼条而言,其不能自由伸缩,易在焊接处产生应力集中。 (2) 外笼条为保证其电阻率大,其材质机械强度低,不能承受大的拉力,如焊接工艺不良,其热应力将很容易造成在端环处断条。 (3) 笼条在铁芯槽内压接不紧,运行中在离心力作用下窜动较 大。 (4) 由于电机的频繁启动,笼条在启停中加热和冷却过程反复进行,使笼条交替受力,极易被拉断或胀鼓与定子磨擦断裂。

3 转子改进方法 3.1 改进方法 利用大小修机会对锅炉辅机及除灰的5台渣浆泵的转子进行了改进,参见图2和图3。 图2 改造前笼条端环结构图及端环平面图 (1) 将原刚性悬充端环改造为两部分:指型弹性环部分和防护环部分。 (2) 与笼条连接部分改为指型弹性环部分,保证每根笼条轴向自由伸缩,以消除和减少热应力,同时消除笼条由于焊接工艺不良而产生的热应力。 (3) 增改防护环以增加转子端部笼条整体紧固力,防止笼条断后翘起刮坏定子绝缘,防护环可用磁性钢环或环氧与玻璃丝布带固 定成型的环。 (4) 将笼条镀铬加粗使笼条槽孔的间隙小于0.2 mm,减少纵向和轴向移动。

如何检测异步电动机转子笼条断裂

如何检测异步电动机转子笼条断裂 许多电动机故障的发生都是由各种原因造成的,从机械角度来看,电动机周期间歇运行、频繁起动运行都会引起绕组松动、绝缘老化、轴承磨损、振动加剧等缺陷。从电气角度看,电动机都可能受到所在电力网的各种暂态过程的影响,这些暂态过程有缓慢扰动与快速扰动之分。缓慢扰动会引起电动机过热,电力系统的电压快速变化的暂态过程,可以引起电动机绕组电位分布不均匀,导致部分绕组上的电压超过其绝缘的承受能力而损坏绝缘。电动机遇到的最严重的瞬变过程发生在起动和重新起动之际。特别是在电力工业中高压电动机反复起动,常常由于转子温度过高以及作用在笼型转子端环上的离心力过大,使笼型转子的强度降低,使转子本身在制造过程中就已存在的焊接不良等事故隐患暴露出来,在笼型转子的端环处首先可能出现笼条断裂,导致笼条伸出转子槽外,而发生扫堂现象,严重者使电动机报废,造成一定的经济损失。大型高压电动机,绕组一旦出现故障,修理起来更感困难。从环境角度来看,电动机又会遇到高温、污染,从而使电动机绝缘材料劣化等等。所以应用于电动机上的在线检测系统必须灵敏、准确地探测出电动机存在的故障和潜在故障。但有时会因外界条件变化,人为操作方法不当,产生较大误差使判断出错。所以,在使用较为先进的测试仪器时,要注意现场的具体情况和人为操作的准确度等因素,以便得到满意而准确的结果,减少不必要的劳动。 笼型异步电动机转子断条在线检测的原理

笼型异步电动机转子绕组的故障检测是比较困难的,因此,若能在转子断条故障初期检测出来并及时维修,可避免意外停机及恶性事故的发生,这对保证安全生产具有重要意义。 我们采用监测定子电流的仪器,不干扰电动机运行。电流传感系统只要把钳形电流互感器卡在电动机的次级回路上即可,电流互感器直接和一高分辨率的频谱分析仪相连,再由一微机系统将电流信号存储起来做出频谱分析。正常的异步电动机定子电流中只有与电源频率相同的电流。负载的变化将调制电流幅度的大小,产生一单脉冲。若转子电路中有故障,会在比电源频率低两倍转差率的地方产生一单脉冲。如果忽略高次谐波,定子电流只含有基波分量,频率为工频f1(50Hz),转子电流的频率为sf1,其中s为转差率,s=(n1-nn)/n1,当转子发生断条时,转子绕组出现不对称,转子电流产生的合成磁动势不再只有正转,而是出现相对于转子既有正转的磁动势又有反转的磁动势,其转速分别为+n2和-n2,即n2=n1-nn=sn1。这两个转子磁动势相对于定子的转速分别为nn+n2和nn-n2,前者在定子绕组中感应的电动势频率为 p(nn+n2)/60=pn1/60=f1 后者在定子绕组中感应的电动势频率为 p(nn-n2)/60=p(nn-sn1)/60=p(n1-sn1-sn1)/60=p(1-2s)n1/60=(1-2s)f1 式中p——电动机的极对数 nn——电动机的实际转速 n1——同步转速

设大型异步电机转子断条早期故障下的定子电流由基频

设大型异步电机转子断条早期故障下的定子电流由基频、故障特征频率分量 (幅值为基频的1%一3%)和噪声构成 ()()()()()()100sin 2501sin 2120.0055060.5sin 2120.0055058i t t t t randn n t πππππ=??+?-???++???+???++? ? 将i(t)通过Hilbert 解调并经双Hilber 滤除直流后(乘以0.06以满足A<

由时域相图得到周期为一005和505,那么10.012/rad s ωπ?=?, 20.022/rad s ωπ?=? ()()11/2k k k k ωωωωω++=+?+-?????=(0.51+0.48-0.01+0.02)×2π/2=0.5×2πrad/s 。所以f=0.5HZ,而原()i t 中的故障特征分量的频率为0.5HZ ,与故障特征频率完全吻合。由此我们可以准确有效的检测出故障特征分量的频率。由此得出利用Duffing 间歇混沌运动很容易精确检测强噪声背景下微弱故障2拭频率分量,这对异步电机转子断条早期故障的精确检测有重要的意义。 为了体现Duffing 阵列精确检测的优势,下面给出电流信号解调并去直流后的信号图及其局部频谱分析图。

由图5一8可以得知,2拭分量在频谱分析中根本上没有体现,湮没在强噪声背景下的微弱的2试故障特征分量很难运用一般的频谱分析方法进行有效准确的检测,而杜芬振子对强噪声背景下微弱周期信号的检测有其独特的优越性。为了验证Duffing阵列检测微弱信号的有效性及可靠性,利用动模实验模 了鼠笼型异步电动机的断条故障。所用电机的铭牌数据如表5一1所示。 在动模实验室测量了不同断条情况、不同负载情况下的定子电流进行分析,

相关主题
文本预览
相关文档 最新文档