当前位置:文档之家› 材料力学在工程中的一些应用

材料力学在工程中的一些应用

材料力学在工程中的一些应用
材料力学在工程中的一些应用

材料力学在工程中的一些应用

一、材料属性

讲到材料力学与工程,首先说说材料属性。材料在工程中常用的属性主要有:

1、密度 (与结构自重和地震荷载有关)

2、弹性模量E (指的是材料在单位长度、单位截面面积下受到单位轴向力时的轴向变形量)

3、强度f(材料的承受能力)

4、泊松比v(指的是材料在受轴向力时,材料的横向变形/材料的轴向变形)

5、剪切模量G (指的是材料在单位长度、单位截面面积下受到单位剪切力时的侧向变形量)

二、截面的主要属性

对于杆件来说,都有截面,不同的截面就会有不同的截面属性,在工程中用到的截面属性主要有:

1、惯性矩I (惯性矩×弹性模量=截面的抗弯刚度)

2、抵抗矩W [截面所受的弯拒÷(抵抗矩×塑向发展系数)=截面所受的最大弯曲应力]

3、截面面积A

4、面积矩(截面静矩)S

5、抗扭惯性矩I k

6、抗扭抵抗矩W k

7、回转半径i (长细比=长度/回转半径)

截面属性有很多软件都可以直接计算出来,在这里就不作太多的介绍,下面讲一下在CAD中怎么求得这些截面属性。

1、在CAD中等比例绘制截面(如下图)

2、把绘制好的截面建成面域,点工具——查询——查询面域特性,可以看到如下图的结果

但是此时的截面特性是相对于原点的值,与我们要的结果不同

3、看到上面的属性里有质心坐标,我们把CAD的坐标移动到质心上(如下图)

4、重新点工具——查询——查询面域特性,可以看到如下图的结果

现在的属性就是截面相对与截面形心的正确值了,但是上面只有截面面积、惯性矩、回转半径等属性。

5、抵抗矩的求法

X轴向的抵抗矩W

x =I

x

/Y轴方向的边界离质心的距离

Y轴向的抵抗矩W

y =I

y

/X轴方向的边界离质心的距离

(同一轴向上求出来的结果分为正负方向,计算时取小值)

6、面积矩的求法

求X轴的面积矩,先把画好的截面沿X轴切掉一半去(如下图)

接着建立面域,点工具——查询——查询面域特性,可以看到如下图的结果

X轴正方向上的面积矩S=剩下这一半的面积(1441.3752)×质心离X轴的距离(72.6567)(其它方向上的面积矩求法相同)

7、抗扭惯性矩I

k 与抗扭抵抗矩W

k

在静力计算手侧上给出了一些比较规则的截面的计算

公式,这里就不作列举了。

三、材料的受力形式

材料的受力主要分为:

1、轴向力(轴拉力、轴压力)

2、剪切力

3、弯拒

4、扭拒

四、力与材料和截面之间的关系

1、受轴向力时 轴向应力A

N

=σ (压应力、拉应力) N ——轴压力、轴拉力

A ——截面面积 轴向挠度EA

N s =

E ——材料的弹性模量

2、受弯矩时 弯曲应力W

M

λσ= M ——截面所受的弯矩 λ——塑向发展系数,一般取1.05

W ——抵抗矩 弯曲挠度?=

x Md EI s M ____1 (具体算法请看结构力学上册中的图乘法)

M

_____——单位荷载下的弯拒 M ——所受荷载的弯拒

注:在受到均布荷载q 时的几种结构中的最大玩拒与最大挠度:

1、简支梁 q M = s =

2、固支梁 q M = s =

3、悬臂梁

q q

3、受剪切力时

剪切应力 x

x x y y t I S V =τ y

y y x x t I S V =τ

(适用于矩形截面与类矩形截面,如幕墙的铝立柱、铝横梁、钢方通、工字钢、槽钢、H 型钢、角钢、T 型钢)

式中y x V V ,——x 、y 方向上的剪力 y x S S ,——x 、y 方向上的截面面积矩 y x I I ,——x 、y 方向上的惯性矩 y x t t ,——x 、y 方向上的腹板截面总宽度

4、受扭矩时 最大扭转剪切应力k k

W M =τ

k M ——截面所受扭拒

k W ——截面的扭转抵抗拒 扭转角度?=l x k k

d GI M 0?

k I ——抗扭惯性矩

G ——剪切模量 l ——扭转点离固定点的距离

工程力学_静力学与材料力学课后习题答案

1-1试画出以下各题中圆柱或圆盘的受力图。与其它物体接触处的摩擦力均略去。 解: 1-2 试画出以下各题中AB 杆的受力图。 (a) B (b) (c) (d) A (e) A (a) (b) A (c) A (d) A (e) (c) (a)

解: 1-3 试画出以下各题中AB 梁的受力图。 解: (e) B B (a) B (b) (c) F B (a) (c) F (b) (d) (e) F

1-4 试画出以下各题中指定物体的受力图。 (a) 拱ABCD ;(b) 半拱AB 部分;(c) 踏板AB ;(d) 杠杆AB ;(e) 方板ABCD ;(f) 节点B 。 解: (d) D (e) F Bx (a) (b) (c) (d) D (e) W (f) (a) D (b) B (c) B F D F

1-5 试画出以下各题中指定物体的受力图。 (a) 结点A,结点B;(b) 圆柱A和B及整体;(c) 半拱AB,半拱BC及整体;(d) 杠杆AB,切刀CEF及整体;(e) 秤杆AB,秤盘架BCD及整体。 解:(a) (b) (c) (d) AT F BA F (b) (e)

(c) (d) (e) C A A C ’C D D B

2-2 杆AC 、BC 在C 处铰接,另一端均与墙面铰接,如图所示,F 1和F 2作用在销钉C 上, F 1=445 N ,F 2=535 N ,不计杆重,试求两杆所受的力。 解:(1) 取节点C 为研究对象,画受力图,注意AC 、BC 都为二力杆, (2) 列平衡方程: 1 214 0 sin 60053 0 cos6005207 164 o y AC o x BC AC AC BC F F F F F F F F F N F N =?+-==?--=∴==∑∑ AC 与BC 两杆均受拉。 2-3 水平力F 作用在刚架的B 点,如图所示。如不计刚架重量,试求支座A 和D 处的约束 力。 解:(1) 取整体ABCD 为研究对象,受力分析如图,画封闭的力三角形: (2) F 1 F F D F F A F D

【完整版】材料力学在工程实际中的应用

材料力学在工程实际中的应用 材料力学是研究材料在各种外力作用下产生的应变、应力、强度、稳定和导致各种材料破坏的极限。而研究材料力学在工程实际中的应用,将会直接给我们在进一步的学习中提供一个现实的模型。 材料力学在生活中的应用十分广泛。大到机械中的各种机器建筑中的各个结构小到生活中的塑料食品包装很小的日用品。各种物件都要符合它的强度、刚度、稳定性要求才能够安全、正常工作所以材料力学就显得尤为重要。生活中机械常用的连接件如铆钉、键、销钉、螺栓等的变形属于剪切变形在设计时应主要考虑其剪切应力。汽车的传动轴、转向轴、水轮机的主轴等发生的变形属于扭转变形。火车轴、起重机大梁的变形均属于弯曲变形。有些杆件在设计时必须同时考虑几个方面的变形如车床主轴工作时同时发生扭转,弯曲及压缩三种基本变形钻穿立柱同时发生拉伸与弯曲两张变形。 说到材料力学,我们首先应该了解它的属性。材料力学在工程中常用的属性主要有: 1.密度ρ:密度与结构自重和地震荷载有关。 2.弹性模量E:指的是材料在在单位长度、单位截面面积下受到单位轴向力时的轴向变形量。 3.强度f:材料的承受能力。 4.泊松比v:指的是材料在受轴向力时,材料的横向变形或材料的轴向变形。

5.剪切模量G:指的是材料在单位长度、单位截面面积下受到单位剪切力时的侧向变形量。 材料力学研究的主要问题是杆件的强度、刚度和稳定性问题,因此,制成杆件的物体就应该是变性固体,而不能像理论力学中那样认为是钢体。变形固体中的变形就成为它的主要基本性质之一,必须予以重视。 例如,在土建、水利工程中,组成水闸闸门或桥梁的个别杆件的变形会影响到整个闸门或桥梁的稳固,基础的刚度会影响到大型坝体内的应力分布;在机电设备中,机床主轴的变形过大就不能保证机床对工作的加工精度,电机轴的变形过大就会使电机的转子与定子相撞,使电机不能正常运转,甚至损坏等等。因此,在材料力学中我们必须把组成杆件的各种固体看做是变性固体,固体之所以发生变形,是由于在外力作用下,组成固体的各微粒的相对位置会发生改变的缘故。在材料力学中,我们要着重研究这种外力和变形之间的关系。大多数变形固体具有在外力作用下发生变形,但在外力除去后又能立刻恢复其原有形状和尺寸大小的特性,我们把变形固体的这种基本性质成为弹性,把具有这种弹性性质的变形固体成为完全弹性体。若变性固体的变形在外力除去后只能恢复其中一部分,这样的固体成为部分弹性体,部分弹性体的形变可分为两部分;一部分是随着外力除去而消失的变形,成为弹性变形;而另一部分是在外力除去后仍不能消失的变形成为塑性变形。严格的说,自然界中并没有完全弹性体,一般的变

机械工程材料习题 金属材料与热处理 工程材料 试题答案

机械工程材料习题金属材料及热处理工程材料试题答案 复习思考题1 1.写出下列力学性能符号所代表的力学性能指标的名称和含义。Akv、ψ、δ5 、σb 、σ0.2 、σs 、σe、σ 500、HRC、HV、σ-1、σ、HBS、HBW、E。 2.钢的刚度为20.7×104MPa,铝的刚度为6.9×104MPa。问直径为2.5mm,长12cm 的钢丝在承受450N的拉力作用时产生的弹性变形量(Δl)是多少?若是将钢丝改成同样长度的铝丝,在承受作用力不变、产生的弹性变形量(Δl)也不变的情况下,铝丝的直径应是多少? 3.某钢棒需承受14000N的轴向拉力,加上安全系数允许承受的最大应力为 140MPa。问钢棒最小直径应是多少?若钢棒长度为60mm、E=210000MPa,则钢棒的弹性变形量(Δl)是多少? 4.试比较布氏、洛氏、维氏硬度的特点,指出各自最适用的范围。下列几种工件的硬度适宜哪种硬度法测量:淬硬的钢件、灰铸铁毛坯件、硬质合金刀片、渗氮处理后的钢件表面渗氮层的硬度。 5.若工件刚度太低易出现什么问题?若是刚度可以而弹性极限太低易出现什么问题? 6.指出下列硬度值表示方法上的错误。12HRC~15HRC、800HBS、58HRC~62HRC、550N/mm2HBW、70HRC~75HRC、200N/mm2HBS。 7.判断下列说法是否正确,并说出理由。 (1)材料塑性、韧性愈差则材料脆性愈大。 (2)屈强比大的材料作零件安全可靠性高。 (3)材料愈易产生弹性变形其刚度愈小。 (4)伸长率的测值与试样长短有关,δ5>δ10 (5)冲击韧度与试验温度无关。 (6)材料综合性能好,是指各力学性能指标都是最大的。 (7)材料的强度与塑性只要化学成分一定,就不变了。 复习思考题2 1.解释下列名词:晶格、晶胞、晶粒、晶界、晶面、晶向、合金、相、固溶体、金属化合物、固溶强化、第二相弥散强化、组元。 2.金属的常见晶格有哪三种?说出名称并画图示之。 4.为什么单晶体有各向异性,而多晶体的金属通常没有各向异性? 5.什么叫晶体缺陷?晶体中可能有哪些晶体缺陷?它们的存在有何实际意义? 6.固态合金中固溶体相有哪两种? 7.固溶体的溶解度取决于哪些因素?复习思考题3 复习思考题3 1.概念: 过冷、过冷度、平衡状态、合金、相图、匀晶转变、共晶转变细晶强化、枝晶偏析、变质处理。 2.金属结晶的动力学条件和热力学条件是什么? 3.铸锭是否一定要有三种晶区?柱状晶的长大如何抑制? 4.合金结晶中可能出现的偏析应如何控制使之尽量减小? 5.本书图3-lOPb-Sn合金相图。 7.固溶体合金和共晶合金其力学性能和工艺性能各有什么特点?

材料力学行为及性能

绪论§0.1 工程材料 工程材料分类(按其应用分) ?结构材料 依靠其力学性能得以发展和应用的材料。 ?功能材料 利用物质的声、光、电、磁、化学乃至生物性能得以发展和应用的材料。 (本课程所研究和讲述的重点在第一种,尤其是结构材料中的金属材料) §0.2 力学性能 材料抵抗外加载荷(不仅指外力和能量的作用,而且还包括环境因素例如温度、介质、加载速率等的影响)所引起的变形和断裂的能力。 §0.3 研究内容 研究材料在外力作用下的变形、断裂和寿命。 ?弹性 材料在外力作用下保持固有形状和尺寸的能力;以及在外力去除后恢复固有形状和尺寸的能力。 ?塑性 材料在外力作用下发生永久不可逆变形的能力。 ?强度 材料对塑性变形和断裂的抗力。 ?寿命 材料在外力的长期和重复作用下,或在外力和环境因素的复合作用下,抵抗失效的能力(时间长短)。 (以上只是定性地说明这些力学性能,如果要定量地说明它就必须用一些力学参量(应力、应变、应力场强度因子等)来表示这些力学性能。 如果我们说某材料的力学性能好,就是指这些力学参量的值高或低,所以人们通常将力学参量的临界值或规定值称为材料的力学性能指标。声学材料:隔音层光学材料:玻璃,镜片 电学材料:金属导线,电子元器件 磁学材料:磁头、磁卡 化学材料:高分子材料催化剂 生物材料:人工关节、人工骨骼 生活中常指后者

如:强度指标、塑性指标、韧性指标) 具体研究涉及的内容: ?材料(包括金属材料和非金属材料)在不同形式外力作用下,或者外力、温度、环境等因素的共同作用下,发生变 形、损伤和断裂的过程、机理和力学模型; ?评定力学性能的各项指标的意义(物理意义和工程实用意义)、各指标间的相互关系以及具体的测试技术; ?研究力学性能指标机理、影响因素以及改善或提高这些力学性能指标的方法和途径。 (注:材料力学性能的影响因素 内因:化学成分、组织结构、冶金质量、残余应力、表面和内部缺陷。 外因:载荷性质、载荷谱、应力状态、温度、环境介质等。) §0.4学习和研究材料力学性能的目的和意义 机械和工程结构的设计,应当达到所要求的性能,并且在规定的服役期内安全可靠地运行,同时也要具有经济性,即低的设计、制造和维修费用。 ①达到使用要求;②安全性;③经济性 然而,各种机械和结构零部件的使用条件各不相同,因而要选用不同的的材料制成零件,也需要采用不同的工艺手段来完成零件的实际制作。而材料的力学性能及其评定指标,是结构设计时选用材料、制订加工工艺的主要依据,也是评价结构质量的主要依据。 ?在零部件使用中,要求材料具有高的变形和断裂抗力,使零部件在受外力作用时能保持设计所要求的外形和尺寸, 并保证在服役期内安全地运行; ?在零部件的生产过程中,则要求材料具有优良的可加工性。 (例如,在金属的塑性成形中,要求材料具有优良的塑性和低的塑性变形抗力) 对于学生,必须具有材料力学性能方面的知识,以便在研究新材料和改善材料的过程中,能根据材料的使用要求,选用合适的现有材料或研制新材料,制订合适的加工工艺。 §0.5研究方法 ?理论分析 ?试验测定

工程力学材料力学答案-第十章

10-1 试计算图示各梁指定截面(标有细线者)的剪力与弯矩。 解:(a) (1) 取A +截面左段研究,其受力如图; 由平衡关系求内力 0SA A F F M ++== (2) 求C 截面内力; 取C 截面左段研究,其受力如图; 由平衡关系求内力 2 SC C Fl F F M == (3) 求B -截面内力 截开B -截面,研究左段,其受力如图; 由平衡关系求内力 SB B F F M Fl == q B (d) (b) (a) SA+ M A+ SC M C A SB M B

(b) (1) 求A 、B 处约束反力 e A B M R R l == (2) 求A +截面内力; 取A +截面左段研究,其受力如图; e SA A A e M F R M M l ++=-=- = (3) 求C 截面内力; 取C 截面左段研究,其受力如图; 22 e e SC A A e A M M l F R M M R l +=-=- =-?= (4) 求B 截面内力; 取B 截面右段研究,其受力如图; 0e SB B B M F R M l =-=- = (c) (1) 求A 、B 处约束反力 e M A+ M C B R B M B

A B Fb Fa R R a b a b = =++ (2) 求A +截面内力; 取A +截面左段研究,其受力如图; 0SA A A Fb F R M a b ++== =+ (3) 求C -截面内力; 取C -截面左段研究,其受力如图; SC A C A Fb Fab F R M R a a b a b --== =?=++ (4) 求C +截面内力; 取C +截面右段研究,其受力如图; SC B C B Fa Fab F R M R b a b a b ++=-=- =?=++ (5) 求B -截面内力; 取B -截面右段研究,其受力如图; 0SB B B Fa F R M a b --=-=- =+ (d) (1) 求A +截面内力 取A +截面右段研究,其受力如图; A R SA+ M A+ R A SC- M C- B R B M C+ B R B M q B M

材料力学在工程实际中的应用

材料力学在工程实际中的应用材料力学是研究材料在各种外力作用下产生的应变、应力、强度、 稳定和导致各种材料破坏的极限。而研究材料力学在工程实际中的应用,将会直接给我们在进一步的学习中提供一个现实的模型。 材料力学在生活中的应用十分广泛。大到机械中的各种机器建筑中 的各个结构小到生活中的塑料食品包装很小的日用品。各种物件都要 符合它的强度、刚度、稳定性要求才能够安全、正常工作所以材料力 学就显得尤为重要。生活中机械常用的连接件如铆钉、键、销钉、螺 栓等的变形属于剪切变形在设计时应主要考虑其剪切应力。汽车的传 动轴、转向轴、水轮机的主轴等发生的变形属于扭转变形。火车轴、 起重机大梁的变形均属于弯曲变形。有些杆件在设计时必须同时考虑 几个方面的变形如车床主轴工作时同时发生扭转,弯曲及压缩三种基 本变形钻穿立柱同时发生拉伸与弯曲两张变形。 说到材料力学,我们首先应该了解它的属性。材料力学在工程中常 用的属性主要有: :密度与结构自重和地震荷载有关。 2.弹性模量E:指的是材料在在单位长度、单位截面面积下受到单位轴向力时的轴向变形量。 3.强度f :材料的承受能力。 4.泊松比v:指的是材料在受轴向力时,材料的横向变形或材料的轴

向变形。

5. 剪切模量G :指的是材料在单位长度、单位截面面积下受到单位剪 切力时的侧向变形量。 材料力学研究的主要问题是杆件的强度、 冈肢和稳定性问题, 制成杆件的物体就应该是变性固体,而不能像理论力学中那样认为是 钢体。变形 固体中的变形就成为它的主要基本性质之一,必须予以重 视。 例如,在土建、水利工程中,组成水闸闸门或桥梁的个别杆件的变 形会影响到整个闸门或桥梁的稳固,基础的刚度会影响到大型坝体内 的应力分布;在机电设备中,机床主轴的变形过大就不能保证机床对 工作的加工精度,电机轴的变形过大就会使电机的转子与定子相撞, 使电机不能正常运转,甚至损坏等等。因此,在材料力学中我们必须 把组成杆件的各种固体看做是变性固体,固体之所以发生变形,是由 于在外力作用下,组成固体的各微粒的相对位置会发生改变的缘故。 在材料力学中,我们要着重研究这种外力和变形之间的关系。大多数 变形固体具有在外力作用下发生变形,但在外力除去后又能立刻恢复 其原有形状和尺寸大小的特性,我们把变形固体的这种基本性质成为 弹性,把具有这种弹性性质的变形固体成为完全弹性体。若变性固体 体,部分弹性体的形变可分为两部分;一部分是随着外力除去而消失 的变形,成为弹性变形;而另一部分是在外力除去后仍不能消失的变 形成为塑性变形。严格的说,自然界中并没有完全弹性体,一般的变 性固体在外力作用下,总会是既有弹性变形也有塑性变形。不过,实 验指出,像金属、木材等常用建筑材料,当所受的外力不超过某一限 度时,可看成是完全弹性体。为了能采用理论的方法对变形固体进行 分析和研究,从而得到比较通用的结论。 总而言之,杆件要能正常工作,必须同时满足以下三方面的要求: (1) 不会发生破坏,即杆件必须具有足够的强度。 (2) 不产生过大变形,发生的变形能限制在正常工作许可的范围以 内。即杆件必须具有足够的强度 (3) 不失稳,杆件在其原有形状下的平衡应保持为稳定的平衡,即 杆件必须具有足够的稳定性。 这三方面的要求统称为构件的承载能力。一般来说,在设计每一杆 件时,应同 因此, 的变形在外力除去后只能恢复其中 部分,这样的固体成为部分弹性

《工程材料力学性能》1231231321321321课后答案

第一章材料单向静拉伸载荷下的力学性能 一、解释下列名词 包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限(σP)或屈服强度(σS)增加;反向加载时弹性极限(σP)或屈服强度(σS)降低的现象。 度。是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。(一)影响屈服强度的内因素 1.金属本性和晶格类型(结合键、晶体结构) 单晶的屈服强度从理论上说是使位错开始运动的临界切应力,其值与位错运动所受到的阻力(晶格阻力--派拉力、位错运动交互作用产生的阻力)决定。 派拉力: 位错交互作用力 (a是与晶体本性、位错结构分布相关的比例系数,L是位错间距。) 2.晶粒大小和亚结构 晶粒小→晶界多(阻碍位错运动)→位错塞积→提供应力→位错开动→产生宏观塑性变形。 晶粒减小将增加位错运动阻碍的数目,减小晶粒内位错塞积群的长度,使屈服强度降低(细晶强化)。 屈服强度与晶粒大小的关系:霍尔-派奇(Hall-Petch) σs= σi+kyd-1/2 3.溶质元素 加入溶质原子→(间隙或置换型)固溶体→(溶质原子与溶剂原子半径不一样)产生晶格畸变→产生畸变应力场→与位错应力场交互运动→使位错受阻→提高屈服强度(固溶强化)。 4.第二相(弥散强化,沉淀强化)

不可变形第二相:提高位错线张力→绕过第二相→留下位错环→两质点间距变小→流变应力增大。 不可变形第二相:位错切过(产生界面能),使之与机体一起产生变形,提高了屈服强度。 弥散强化:第二相质点弥散分布在基体中起到的强化作用。 沉淀强化:第二相质点经过固溶后沉淀析出起到的强化作用。 (二)影响屈服强度的外因素 1.温度:一般的规律是温度升高,屈服强度降低。原因:派拉力属于短程力,对温度十分敏感。 2.应变速率:应变速率大,强度增加。σε,t= C1(ε)m 3.应力状态:切应力分量越大,越有利于塑性变形,屈服强度越低。 缺口效应:试样中“缺口”的存在,使得试样的应力状态发生变化,从而影响材料的力学性能的现象。 9.细晶强化能强化金属又不降低塑性。 10.韧性断裂与脆性断裂的区别。为什么脆性断裂更加危险?韧性断裂:是断裂前产生明显宏观塑性变形的断裂 特征:断裂面一般平行于最大切应力与主应力成45度角。 断口成纤维状(塑变中微裂纹扩展和连接),灰暗色(反光能力弱)。 断口三要素:纤维区、放射区、剪切唇这三个区域的比例关系与材料韧断性能有关。 塑性好,放射线粗大 塑性差,放射线变细乃至消失。 脆性断裂:断裂前基本不发生塑性变形的,突发的断裂。 特征:断裂面与正应力垂直,断口平齐而光滑,呈放射状或结晶状。 注意:脆性断裂也产生微量塑性变形。 断面收缩率小于5%为脆性断裂,大于5%为韧性断裂。 。 第二章金属在其他静载荷下的力学性能 一、解释下列名词:

工程力学材料力学部分习题答案

工程力学材料力学部分习题答案

b2.9 题图2.9所示中段开槽的杆件,两端受轴向载荷P 的作用,试计算截面1-1和2-2上的应力。已知:P = 140kN ,b = 200mm ,b 0 = 100mm ,t = 4mm 。 题图2.9 解:(1) 计算杆的轴力 kN 14021===P N N (2) 计算横截面的面积 21m m 8004200=?=?=t b A 202mm 4004)100200()(=?-=?-=t b b A (3) 计算正应力 MPa 1758001000140111=?== A N σ MPa 350400 1000 140222=?== A N σ (注:本题的目的是说明在一段轴力相同的杆件内,横截面面积小的截面为该段 的危险截面) 2.10 横截面面积A=2cm 2的杆受轴向拉伸,力P=10kN ,求其法线与轴向成30°的及45°斜截面上的应力ασ及ατ,并问m ax τ发生在哪一个截面? 解:(1) 计算杆的轴力 kN 10==P N (2) 计算横截面上的正应力 MPa 50100 2100010=??==A N σ (3) 计算斜截面上的应力 MPa 5.37235030cos 2 230 =??? ? ???==ο ο σσ

MPa 6.212 3250)302 sin(2 30=?= ?= οο σ τ MPa 25225045cos 2 245 =??? ? ???==οο σσ MPa 2512 50 )452 sin(2 45=?= ?= οο σ τ (4) m ax τ发生的截面 ∵ 0)2cos(==ασα τα d d 取得极值 ∴ 0)2cos(=α 因此:2 2π α= , ο454 == π α 故:m ax τ发生在其法线与轴向成45°的截面上。 (注:本题的结果告诉我们,如果拉压杆处横截面的正应力,就可以计算该处任意方向截面的正应力和剪应力。对于拉压杆而言,最大剪应力发生在其法线与轴向成45°的截面上,最大正应力发生在横截面上,横截面上剪应力为零) 2.17 题图2.17所示阶梯直杆AC ,P =10kN ,l 1=l 2=400mm ,A 1=2A 2=100mm 2,E =200GPa 。试计算杆AC 的轴向变形Δl 。 题图2.17 解:(1) 计算直杆各段的轴力及画轴力图 kN 101==P N (拉) kN 102-=-=P N (压)

材料力学在工程实际中的应用

材料力学在工程实际中的应用

材料力学在工程实际中的应用 材料力学是研究材料在各种外力作用下产生的应变、应力、强度、稳定和导致各种材料破坏的极限。而研究材料力学在工程实际中的应用,将会直接给我们在进一步的学习中提供一个现实的模型。 材料力学在生活中的应用十分广泛。大到机械中的各种机器建筑中的各个结构小到生活中的塑料食品包装很小的日用品。各种物件都要符合它的强度、刚度、稳定性要求才能够安全、正常工作所以材料力学就显得尤为重要。生活中机械常用的连接件如铆钉、键、销钉、螺栓等的变形属于剪切变形在设计时应主要考虑其剪切应力。汽车的传动轴、转向轴、水轮机的主轴等发生的变形属于扭转变形。火车轴、起重机大梁的变形均属于弯曲变形。有些杆件在设计时必须同时考虑几个方面的变形如车床主轴工作时同时发生扭转,弯曲及压缩三种基本变形钻穿立柱同时发生拉伸与弯曲两张变形。 说到材料力学,我们首先应该了解它的属性。材料力学在工程中常用的属性主要有: 1.密度ρ:密度与结构自重和地震荷载有关。 2.弹性模量E:指的是材料在在单位长度、单位截面面积下受到单位轴向力时的轴向变形量。 3.强度f:材料的承受能力。 4.泊松比v:指的是材料在受轴向力时,材料的横向变形或材料的轴向变形。

性固体在外力作用下,总会是既有弹性变形也有塑性变形。不过,实验指出,像金属、木材等常用建筑材料,当所受的外力不超过某一限度时,可看成是完全弹性体。为了能采用理论的方法对变形固体进行分析和研究,从而得到比较通用的结论。 总而言之,杆件要能正常工作,必须同时满足以下三方面的要求:(1)不会发生破坏,即杆件必须具有足够的强度。 (2)不产生过大变形,发生的变形能限制在正常工作许可的范围以内。即杆件必须具有足够的强度 (3)不失稳,杆件在其原有形状下的平衡应保持为稳定的平衡,即杆件必须具有足够的稳定性。 这三方面的要求统称为构件的承载能力。一般来说,在设计每一杆件时,应同时考虑到以上三方面的要求,但对某些具体的杆件来说,有事往往只需考虑其中的某一主要方面的要求(例如稳定性为主),当这些主要方面的要求满足了,其它两个次要方面的要求也就自动地得到满足。当设计的杆件能满足上述三方面的要求时,就可认为设计是安全的,杆件能够正常工作。 其次,材料力学在工程实际中的应用时非常多的,例如在铁路和桥梁等等上。 1976年7月28日发生在中国唐山,震级为M7.8级的地震,造成了大面积公路、铁路、桥梁普遍倒塌或者严重损坏,据有关部门专家对这次地震的分析,桥梁破坏主要集中在新进建造的桥梁,主要原因有

工程材料力学性能-第2版答案 束德林

《工程材料力学性能》束德林课后答案 机械工业出版社 2008第2版 第一章单向静拉伸力学性能 1、解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。

9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等 2、 说明下列力学性能指标的意义。 答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指 数 【P15】 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对 组织不敏感的力学性能指标? 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格

工程材料力学性能答案

工程材料力学性能答案1111111111111111111111111111111111111 1111111111111111111111111111111111111 111111 决定金属屈服强度的因素有哪 些?12 内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。外在因素:温度、应变速率和应力状态。试举出几种能显著强化金属而又不降低其塑性的方法。固溶强化、形变硬化、细晶强化试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?21韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。何谓拉伸断口三要素?影响宏观拉伸断口性态的

因素有哪些?答:宏观断口呈杯锥形,纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化?断裂强度与抗拉强度有何区别?抗拉强度是试样断裂前所承受的最大工程应力,记为σb;拉伸断裂时的真应力称为断裂强度记为σf; 两者之间有经验关系:σf = σb (1+ψ);脆性材料的抗拉强度就是断裂强度;对于塑性材料,于出现颈缩两者并不相等。裂纹扩展受哪些因素支配?答:裂纹形核前均需有塑性变形;位错运动受阻,在一定条件下便会形成裂纹。2222222222222222222222222222222222 2222222222222222222222222222222222 2222 试综合比较单向拉伸、压缩、弯曲及扭转试验的特点和应用范围。答:单向拉伸试验的特点及应用:单向拉伸的应力状态较硬,一般用于塑性变形

【完整版】:力学在土木工程中的应用

力学在土木工程中的应用 1:力学基本内容: 力学是用数学方法研究机械运动的学科。“力学”一词译自英语mechanics源于希腊语一机械,因为机械运动是由力引起的.mechanics在19世纪5O年代作为研究力的作用的学科名词传人中国后沿用至今。 力学是一门基础科学,它所阐明的规律带有普遍的性质.为许多工程技术提供理论基础。力学又是一门技术科学,为许多工程技术提供设计原理,计算方法,试验手段.力学和工程学的结合促使工程力学各个分支的形成和发展.力学按研究对象可划分为固体力学、流体力学和一般力学三个分支.固体力学和流体力学通常采用连续介质模型来研究;余下的部分则组成一般力学.属于固体力学的有弹性力学、塑性力学,近期出现的散体力学、断裂力学等;流体力学由早期的水力学和水动力学两个分支汇合而成,并衍生出空气动力学、多相流体力学、渗流力学、非牛顿流体力学等;力学间的交叉又产生粘弹性理论、流变学、气动弹性力学等分支. 力学在工程技术方面的应用结果则形成了工程力学或应用力学的各种分支,诸如材料力学、结构力学、土力学、岩石力学、爆炸力学、复合材料力学、天体力学、物理力学、等离子体动力学、电流体动力学、磁流体力学、热弹性力学、生物力学、生物流变学、地质力学、地球动力学、地球流体力学、理性力学、计算力学等等. 2:土木是力学应用最早的工程领域之一. 2.1土木工程专业本科教学中涉及到的力学内容

包括理论力学、材料力学、结构力学、弹性力学、土力学、岩石力学等几大固体力学学科. 理论力学与大学物理中有关内容相衔接,主要探讨作用力对物体的外效应(物体运动的改变) ,研究的是刚体,是各门力学的基础.其他力学研究的均为变形体(本科要求线性弹性体),研究力系的简化和平衡,点和刚体运动学和复合运动以及质点动力学的一般理论和方法. 材料力学:主要探讨作用力对物体的内效应(物体形状的改变),研究杆件的拉压弯剪扭变形特点,对其进行强度、刚度及稳定性分析计算.结构力学:在理论力学和材料力学基础上进一步研究分析计算杆件结构体系的基本原理和方法,了解各类结构受力性能. 弹性力学:研究用各种精确及近似解法计算弹性体(主要要求实体结构) 在外力作用下的应力、应变和位移. 土力学:研究地基应力、变形、挡土墙和土坡等稳定计算原理和计算方法.岩石力学:研究岩石地基、边坡和地下工程等的稳定性分析方法及其基本设计方法. 2.2土木工程专业之力学可分为两大类,即“结构力学类”和“弹性力学类”. “弹性力学类”的思维方式类似于高等数学体系的建构,由微单元体(高等数学为微分体)人手分析,基本不引入(也难以引入)计算假设,计算思想和理论具有普适特征.在此基础上引入某些针对岩土材料的计算假设则构建了土力学和岩石力学.“结构力学类”(包括理论、材料学和结构力学)则具有更强烈的工程特征,其简化的模型是质点或杆件,在力学体系建立之前就给出了诸

工程材料力学性能习题答案模板

《工程材料力学性能》课后答案 机械工业出版社第2版 第一章单向静拉伸力学性能 1、解释下列名词。 1弹性比功: 金属材料吸收弹性变形功的能力, 一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性: 金属材料在弹性范围内快速加载或卸载后, 随时间延长产生附加弹性应变的现象称为滞弹性, 也就是应变落后于应力的现象。 3.循环韧性: 金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.包申格效应: 金属材料经过预先加载产生少量塑性变形, 卸载后再同向加载, 规定残余伸长应力增加; 反向加载, 规定残余伸长应力降低的现象。 5.解理刻面: 这种大致以晶粒大小为单位的解理面称为解理刻面。6.塑性: 金属材料断裂前发生不可逆永久( 塑性) 变形的能力。 韧性: 指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶: 当解理裂纹与螺型位错相遇时, 便形成一个高度为b 的台阶。 8.河流花样: 解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。

9.解理面: 是金属材料在一定条件下, 当外加正应力达到一定数值 后, 以极快速率沿一定晶体学平面产生的穿晶断裂, 因与大理石断 裂类似, 故称此种晶体学平面为解理面。 10.穿晶断裂: 穿晶断裂的裂纹穿过晶内, 能够是韧性断裂, 也能够 是脆性断裂。 沿晶断裂: 裂纹沿晶界扩展, 多数是脆性断裂。 11.韧脆转变: 具有一定韧性的金属材料当低于某一温度点时, 冲击 吸收功明显下降, 断裂方式由原来的韧性断裂变为脆性断裂, 这种 现象称为韧脆转变 12.弹性不完整性: 理想的弹性体是不存在的, 多数工程材料弹性 变形时, 可能出现加载线与卸载线不重合、应变滞后于应力变化等 现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、 弹性后效、弹性滞后和循环韧性等 2、说明下列力学性能指标的意义。 答: E弹性模量G切变模量 σ规定残余伸长应力2.0σ屈服强 r 度 δ金属材料拉伸时最大应力下的总伸长率n 应变硬化指数gt 【P15】 3、金属的弹性模量主要取决于什么因素? 为什么说它是一个对组 织不敏感的力学性能指标? 答: 主要决定于原子本性和晶格类型。合金化、热处理、冷塑 性变形等能够改变金属材料的组织形态和晶粒大小, 可是不改 变金属原子的本性和晶格类型。组织虽然改变了, 原子的本性和

工程材料力学性能

工程材料力学性能 工程材料力学性能 第一章、金属在单向静拉伸载荷下的力学性能 一、名词解释 ?弹性比功又称弹性比能、应变比能,表示金属材料吸收弹性变形功的功能。一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 ?循环韧性:金属材料在交变载荷(震动)下吸收不可逆变形功的能力,称为金属的循环韧性,也叫金属的内耗。 ?包申格效应:金属材料经过预先加载产生多少塑性变形(残余应力为1%~4%),卸载后再同向加载,规定残余伸长应力(弹性极限或屈服强度)增加;反向加载,规定残余伸长应力降低(特别是弹性极限在反向加载时几乎降低到零)的现象,称为包申格效应。 ?塑性:指金属材料断裂前发生塑性变形(不可逆永久变形)的能力。金属材料断裂前所产生的塑性变形由均匀塑性变形和集中塑性变形两部分构成。 ?韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力,或指材料抵抗裂纹扩展的能力。 ?脆性:脆性相对于塑性而言,一般指材料未发生塑性变形而断裂的趋势。 ?解理面:因解理断裂与大理石断裂类似,故称此种晶体学平面为解理面。 ?解理刻面:实际的解理断裂断口是由许多大致相当于晶粒大小的解理面集合而成的,这种大致以晶粒大小为单位的解理面称为解理刻面。 ?解理台阶:解理裂纹与螺型位错相交而形成的具有一定高度的台阶称为解理台阶。

?河流花样解理台阶沿裂纹前段滑动而相互汇合,同号台阶相互汇合长大。当汇合台阶高度足够大时,便成为了河流花样。 ?穿晶断裂与沿晶断裂:多晶体金属断裂时,裂纹扩展的路径可能是不同的。裂纹穿过晶内的断裂为穿晶断裂;裂纹沿晶界扩展的断裂为沿晶断裂。穿晶断裂和沿晶断裂有时候可以同时发生。 二、下列力学性能指标的的意义 ?E(G):弹性模量,表示的是材料在弹性范围内应力和应变之比; ?σr:规定残余伸长应力,表示试样卸除拉伸力后,其标距部分的残余伸长达到规定的原始标距百分比时的应力;常用σ0.2表示材料的规定残余延伸率为0.2%时的应力,称为屈服强度;σs:屈服点,表示呈屈服现象的金属材料拉伸时,试样在外力不断增加(保持恒定)仍能继续伸长时的应力称为屈服点。 ?σb:抗拉强度,表示韧性金属材料的实际承载能力; ?n:应变硬化指数,反映了金属材料抵抗均匀塑性变形的能力,是表征金属材料应变硬化行为的性能指标; ?δ:断后伸长率,表示试样拉断后标距的伸长与原始标距的百分比; ?δgt:金属材料拉伸时最大力下的总伸长率(最大均匀塑性变形); ?ψ:断面收缩率,表示试样拉断后缩颈处横截面积的最大缩减量与原始横截面积的百分比。 三、问答题 ?金属的弹性模量主要取决于什么因素,为何说它是一个对组织不敏感的力学性能指标, 答:由于弹性变形是原子间距在外来作用下可逆变化的结果,应力与应变关系实际上是原子间作用力与原子间距的关系。所以,弹性模量与原子间作用力有关,与原子间距也有一定关系。原子间作用力决定于金属原子本性和晶格类型,故弹性模量也主要决定于金属原子本性

江大工程材料力学性能习题解答

第一章 1、弹性变形的实质是什么?答:金属晶格中原子自平衡位置产生可逆位移的反映。 2、弹性模量E的物理意义?E是一个特殊的力性指标,表现在哪里? 答:材料在弹性变形阶段,其应力和应变成正比例关系(即符合胡克定律),其比例系数称为弹性模量。E=Z / &。弹性模量可视为衡量材料产生弹性变形难易程度的指标,其值越大,使材料发生一定弹性变形的应力也越大,即材料刚度越大,亦即在一定应力作用下,发生弹性变形越小。弹性模量E是指材料在外力作用下产生单位弹性变形所需要的应力。它是反映材料抵抗弹性变形能力的指标,相当于普通弹簧中的刚度。特殊表现:金属材料的E是一个对组织不敏感的力 学性能指标,温度、加载速率等外在因素对其影响不大,E主要决定于金属原子 本性和晶格类型。 3、比例极限、弹性极限、屈服极限有何异同? 答:比例极限:应力应变曲线符合线性关系的最高应力(应力与应变成正比关系的最大应力);弹性极限:试样由弹性变形过渡到弹-塑性变形时的应力;屈服极限:开始发生均匀塑性变形时的应力。 4、什么是滞弹性?举例说明滞弹性的应用? 答:滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象。应用:精密传感元件选择滞弹性低的材料。 5、内耗、循环韧性、包申格效应? 答:内耗:金属材料在在弹性区内加载交变载荷(振动)时吸收不可逆变形功的能力;循环韧性:? ??塑性区内???;包申格效应:金属材料经过预先加 载产生少量塑性变形(残余应变为1%~4%),卸载后再同向加载,规定残余伸长应力(弹性极限或屈服极限)增加,反向加载,规定残余伸长应力(特别是弹性极限在反向加载时几乎降低到零)的现象。 6、什么是屈服强度?如何确定屈服强度? 答:屈服强度Z s :开始产生塑性变形时的应力。对于屈服现象明显的材料,以下屈服点对应的应力为屈服强度;对于屈服现象不明显的材料,以产生0.2%残 余变形的应力为其屈服强度。 7、屈服强度的影响因素有哪些? 答:内因:①金属本性及晶格类型(位错密度增加,晶格阻力增加,屈服强度随之提高)②晶粒大小和亚结构(细晶强化)③溶质元素(固溶强化)④第二相(弥散强化和沉淀强化);外因:①温度(一般,升高温度,金属材料的屈服强度降低)②应变速率(应变速率硬化)③应力状态(切应力分量越大,越有利于塑性变形,屈服强度则越低)。 8、屈服强度的实际意义?答:屈服强度是金属材料重要的力学性能,它是工程上从静强度角度选择韧性材料的基本依据,是建立屈服判据的重要指标,钢的屈服强度对工艺性能也有重要影响,降低屈服强度有利于材料冷成形加工和改善焊接性能。 9、静力韧度的物理意义。答:金属材料在静拉伸时单位体积材料断裂前所吸收的功定义为静力韧度,它是强度和塑性的综合指标。 10、真实应力应变曲线与工程应力应变曲线有何不同?有何意义?真实应力应 变曲线的关键点是哪个点?答:工程应力应变曲线上的应力和应变是用试样标距部分原始截面积和原始标距长度来度量的,往往不能真实反映或度量应变;真实应力应变曲线则代表瞬时的应力和应变,更为合理,可以叠加,可以不记中间加载历史,只需知道试样的初始长度和最终长度。工程〉真实。关键点是B点,B点前是均匀塑性变形,后是颈缩阶

工程材料力学行为

作业习题>>第一章材料单向静拉伸载荷下的力学性能 一、解释下列名词 滞弹性:在外加载荷作用下,应变落后于应力现象。 静力韧度:材料在静拉伸时单位体积材科从变形到断裂所消耗的功。 弹性极限:试样加载后再卸裁,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。 比例极限:应力—应变曲线上符合线性关系的最高应力。 二、金属的弹性模量主要取决于什么?为什么说它是一个对结构不敏感的力学姓能? 答案:金属的弹性模量主要取决于金属键的本性和原子间的结合力,而材料的成分和组织对它的影响不大,所以说它是一个对组织不敏感的性能指标,这是弹性模量在性能上的主要特点。改变材料的成分和组织会对材料的强度(如屈服强度、抗拉强度)有显著影响,但对材料的刚度影响不大。 三、什么是包辛格效应,如何解释,它有什么实际意义? 答案:包辛格效应就是指原先经过变形,然后在反向加载时弹性极限或屈服强度降低的现象。特别是弹性极限在反向加载时几乎下降到零,这说明在反向加载时塑性变形立即开始了。 包辛格效应可以用位错理论解释。第一,在原先加载变形时,位错源在滑移面上产生的位错遇到障碍,塞积后便产生了背应力,这背应力反作用于位错源,当背应力(取决于塞积时产生的应力集中)足够大时,可使位错源停止开动。背应力是一种长程(晶粒或位错胞尺寸范围)内应力,是金属基体平均内应力的度量。因为预变形时位错运动的方向和背应力的方向相反,而当反向加载时位错运动的方向与原来的方向相反了,和背应力方向一致,背应力帮助位错运动,塑性变形容易了,于是,经过预变形再反向加载,其屈服强度就降低了。这一般被认为是产生包辛格效应的主要原因。其次,在反向加载时,在滑移面上产生的位错与预变形的位错异号,要引起异号位错消毁,这也会引起材料的软化,屈服强度的降低。 实际意义:在工程应用上,首先是材料加工成型工艺需要考虑包辛格效应。其次,包辛格效应大的材料,内应力较大。另外包辛格效应和材料的疲劳强度也有密切关系,在高周疲劳中,包辛格效应小的疲劳寿命高,而包辛格效应大的,由于疲劳软化也较严重,对高周疲劳寿命不利。 作业习题>>第二章金属在其他静载荷下的力学性能 一、解释下列名词: (1)应力状态软性系数——材料最大且盈利与最大正赢利的比值,记为α。 (2)缺口效应——缺口材料在静载荷作用下,缺口截面上的应力状态发生的变化。 (3)缺口敏感度——金属材料的缺口敏感性指标,用缺口试样的抗拉强度与等截面尺寸光滑试样的抗拉强度的比值表示。 (4)布氏硬度——用钢球或硬质合金球作为压头,采用单位面积所承受的试验力计算而得的硬度。 (5)洛氏硬度——采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度所表示的硬度。 (6)维氏硬度——以两相对面夹角为136。的金刚石四棱锥作压头,采用单位面积所承受的试验力计算而得的硬度。 (7)努氏硬度——采用两个对面角不等的四棱锥金刚石压头,由试验力除以压痕投影面积得到的硬度。 (8)肖氏硬度——采动载荷试验法,根据重锤回跳高度表证的金属硬度。 (9)里氏硬度——采动载荷试验法,根据重锤回跳速度表证的金属硬度。

相关主题
文本预览
相关文档 最新文档