当前位置:文档之家› 化工原理课程设计——换热器的设计.(精选)

化工原理课程设计——换热器的设计.(精选)

化工原理课程设计——换热器的设计.(精选)
化工原理课程设计——换热器的设计.(精选)

中南大学《化工原理》课程设计说明书

题目:煤油冷却器的设计

学院:化学化工学院

班级:化工0802

学号: 1505080802

姓名: ******

指导教师:邱运仁

时间:2010年9月

目录

§一.任务书 (2)

1.1.题目

1.2.任务及操作条件

1.3.列管式换热器的选择与核算

§二.概述 (3)

2.1.换热器概述

2.2.固定管板式换热器

2.3.设计背景及设计要求

§三.热量设计 (5)

3.1.初选换热器的类型

3.2.管程安排(流动空间的选择)及流速确定

3.3.确定物性数据

3.4.计算总传热系数

3.5.计算传热面积

§四. 机械结构设计 (9)

4.1.管径和管内流速

4.2.管程数和传热管数

4.3.平均传热温差校正及壳程数

4.4.壳程内径及换热管选型汇总

4.4.折流板

4.6.接管

4.7.壁厚的确定、封头

4.8.管板

4.9.换热管

4.10.分程隔板

4.11拉杆

4.12.换热管与管板的连接

4.13.防冲板或导流筒的选择、鞍式支座的示意图(BI型)

4.14.膨胀节的设定讨论

§五.换热器核算 (21)

5.1.热量核算

5.2.压力降核算

§六.管束振动 (25)

6.1.换热器的振动

6.2.流体诱发换热器管束振动机理

6.3.换热器管束振动的计算

6.4.振动的防止与有效利用

§七. 设计结果表汇 (28)

§八.参考文献 (29)

§附:化工原理课程设计之心得体会 (30)

§一.化工原理课程设计任务书

1.1.题目

煤油冷却器的设计

1.2.任务及操作条件

1.2.1处理能力:40t/h 煤油

1.2.2.设备形式:列管式换热器

1.2.3.操作条件

(1).煤油:入口温度160℃,出口温度60℃

(2).冷却介质:循环水,入口温度17℃,出口温度30℃

(3).允许压强降:管程不大于0.1MPa,壳程不大于40KPa

(4).煤油定性温度下的物性数据ρ=825kg/m3,黏度7.15×10-4Pa.s,比热容2.2kJ/(kg.℃),导热系数0.14W/(m.℃)

1.3.列管式换热器的选择与核算

1.3.1.传热计算

1.3.

2.管、壳程流体阻力计算

1.3.3.管板厚度计算

1.3.4.膨胀节计算

1.3.5.管束振动

1.3.6.管壳式换热器零部件结构

§二.概述

2.1.换热器概述

换热器是化工、炼油工业中普遍应用的典型的工艺设备。在化工厂,换热器的费用约占总费用的10%~20%,在炼油厂约占总费用35%~40%。换热器在其他部门如动力、原子能、冶金、食品、交通、环保、家电等也有着广泛的应用。因此,设计和选择得到使用、高效的换热器对降低设备的造价和操作费用具有十分重要的作用。

在不同温度的流体间传递热能的装置称为热交换器,即简称换热器,是将热流体的部分热量传递给冷流体的设备。

换热器的类型按传热方式的不同可分为:混合式、蓄热式和间壁式。其中间壁式换热器应用最广泛,如表2-1所示。

表2-1 传热器的结构分类

釜式壳体上部有个蒸发空间用于再沸、蒸煮

双套管式

结构比较复杂,主要用于高温高压场合和固定床反应器

套管式

能逆流操作,用于传热面积较小的冷却器、冷凝器或预

热器

螺旋管式

沉浸式用于管内流体的冷却、冷凝或管外流体的加热

喷淋式只用于管内流体的冷却或冷凝

板式

拆洗方便,传热面能调整,主要用于粘性较大的液体间

换热

螺旋板式

可进行严格的逆流操作,有自洁的作用,可用做回收低

温热能

伞板式结构紧凑,拆洗方便,通道较小、易堵,要求流体干净

板壳式板束类似于管束,可抽出清洗检修,压力不能太高混合式适用于允许换热流体之间直接接触

蓄热式

换热过程分阶段交替进行,适用于从高温炉气中回收热

能的场合

2.2.固定管板式

因设计需要,下面简单介绍一下固定管板式换热器。

固定管板式即两端管板和壳体连结成一体,因此它具有结构简单造价低廉的优点。但是由于壳程不易检修和清洗,因此壳方流体应是较为洁净且不易结垢的物料。当两流体的温度差较大时,应考虑热补偿。有具有补偿圈(或称膨胀节)的固定板式换热器,即在外壳的适当部位焊上一个补偿圈,当外壳和管束的热膨胀程度不同时,补偿圈发生弹性变形(拉伸或压缩),以适应外壳和管束的不同的热膨胀程度。这种热补偿方法简单,但不宜用于两流体温度差太大(不大于70℃)和壳方流体压强过高(一般不高于600kPa)的场合。

1-挡板 2-补偿圈 3-放气嘴

图2.2.1.固定管板式换热器的示意图

2.3.设计要求

完善的换热器在设计和选型时应满足以下各项基本要求:

(1)合理地实现所规定的工艺条件:可以从:①增大传热系数②提高平均温差③妥善布置传热面等三个方面具体着手。

(2)安全可靠

换热器是压力容器,在进行强度、刚度、温差应力以及疲劳寿命计算时,应遵循我国《钢

制石油化工压力容器设计规定》和《钢制管壳式换热器设计规定》等有关规定与标准。 (3)有利于安装操作与维修

直立设备的安装费往往低于水平或倾斜的设备。设备与部件应便于运输与拆卸,在厂房移动时不会受到楼梯、梁、柱的妨碍,根据需要可添置气、液排放口,检查孔与敷设保温层。 (4)经济合理

评价换热器的最终指标是:在一定时间内(通常1年内的)固定费用(设备的购置费、安装费等)与操作费(动力费、清洗费、维修费)等的总和为最小。在设计或选型时,如果有几种换热器都能完成生产任务的需要,这一标准就尤为重要了。

§三.热量设计

3.4.计算总传热系数 3.4.2.热流量

以热介质煤油为计算标准算它所需要被提走的热量:

Q=m s1c p1(T 1-T 2)=40000x2.2x(160-60)=8800kJ/h=2444.4kw

3.4.3.平均传热温差

计算两流体的平均传热温差 暂时按单壳程、多管程计算。 逆流时,我们有

煤油:160℃→60℃ 水: 30℃←17℃ 从而,

130-43ln(130/43)

=78.6

'

m t =

而此时,我们有:

30-17160-17

t 2-t 1

T 1-T 2

=

=

13

143

=0.091P=

t 2-t 1

=

=

R=

T 1-T 2160-6030-17

10013

=7.69

式中:

21,T T ——热流体(煤油)的进出口温度,℃; 21t t ,——冷流体(自来水)的进出口温度,℃;

R 2+1R-1

ln

1-PR

1-P ln

2-P(1+R-

2-P(1+R+R 2+1R 2+1)

)

ψ=

7.692+17.69-1

1-0.0911-0.091x7.69

2-0.091X(1+7.69-2-0.091X(1+7.69+

7.692+1

ln

ln

7.692+1

=0.961

ψ>0.9符合要求

则平均传热推动力:△t m=△t m,逆×ψ=0.961x78.6=75.5℃

3.4.4.冷却水用量

由以上的计算结果以及已知条件,很容易算得:

Qc=

)

(12t t C Q

pc =8800000/[4.185x(30-17) ]=161750㎏/h

3.1.初选换热器的类型

两流体的温度变化情况如下:

(1)煤油:入口温度160℃,出口温度60℃;

(2)冷却介质:自来水,入口温度17℃,出口温度30℃;

该换热器用循环冷却自来水进行冷却,冬季操作时,其进口温度会降低,考略到这一因素,估计所需换热器的管壁温度和壳体温度之差较大,需考虑热膨胀的影响,故从安全方便考虑可以采用带有膨胀节的管板式换热器 3.3.确定物性数据

定性温度:对于一般气体和水等低黏度流体,其定性温度可取流体进出口温度的平均值。 壳程流体(煤油)的定性温度为:T= (160+60)/2=110℃ 管程流体(水)的定性温度为:t=(30+17)/2=23.5℃

在定性温度下,分别查取管程和壳程流体(冷却水和煤油)的物性参数,见下表:

3.2.管程安排(流动空间的选择)及流速确定

已知两流体允许压强降分别不大于0.1MPa,40kPa ;两流体分别为煤油和水。与煤油相比,水的对流传热系数一般较大。由于循环冷却水较易结垢,若其流速太低,将会加快污垢增长速度,使换热器的热流量下降,考虑到散热降温方面的因素,应使循环自来水走管程,而使煤油走壳程。

由上表,我们初步选用Φ25×2.5的碳钢管,则管内径d i =25-2.5×2=20mm 管内流速取u i =1.6m/s,从管内体积流量为:

νi =n (π/4) ×0.022×1.6×36300=161750/997.3=162.6m 3/h

解得n=90

传热面积:A=n πd 。L=24444.4×103/(350×75.5)=92.5㎡ 可以求得单程管长L=92.5/3.14×0.025)=13.09m

若选用4.5m 长的管,需要4管程,则一台换热器的总管数为4×90=360根.查化学工业出版社第三版谭天恩主编的?化工原理?附录十九,可以初步确定换热

对表中的数据进行核算:

①每程的管数n 1 =n/Np=422÷4=110.5,管程流通面积s i =(π/4) ×0.022×110.5=0.03471㎡与表中的数据0.0347㎡相符的很好

②传热面积 A=πd 0 Ln=3.14×0.025×4.5×442=156.2㎡稍大于表中152.7㎡,这是由于管长的一部分需用于在管板上固定管子,应以表中的值为准 ③由于换热管是组合式排列,除在分程板两侧采用正方形排列外,大部分地方采用的是正三角形排列,故中心排管数可以按照正三角形排列的形式计算: 中心排管数 n c ≈1.1n =1.1×442=24>23 阻力的计算 ⒈管程

① 流速 u i =si

vi

3600=0347.036002

.162x =1.3m/s

② 雷诺数 Re i =μρi i d u i =2

02

.03.9973.1??=28032﹥2000

流动形式为湍流

由ε/d=0.005 Re i =28032 带入经验公式λ=0.1(ε/d+ 68/Re ) 可得λi =0.03238

③管内的阻力损失 △P i =λi i

d l

(u i 2i ρ)/2=0.03238×4.5×1.32×997.3÷0.02÷2=6139.6Pa

回弯阻力损失 △Pr=3×(u i 2i ρ) /2=3×1.3 2×997.3÷2=2528.2Pa

则管程内总压降为:Pt=(△P i +△Pr)FtNsNp=(6139.6+2528.2) ×1.4×4=48539.7Pa =48.54KPa <0.1MPa

故壳程的压降满足题目中的要求 ⒉壳程 取折流挡板间距为 h=0.2m

①计算截面积 S 0 =h(D-n c d 0 =0.2(0.8-24×0.025)=0.04㎡

②计算流速 u 0 =

825

04.0360040000

??=0.34m/s

③雷诺数的计算 Re 0 = μ

ρ0

00d u =0.025×0.34×825÷(3×310-)=2338

Re 0>500

④摩擦系数f 0 = 5.0/( Re 0228.0)=5.0÷2338228.0=0.85

⑤则折流挡板数 N B =h

l

-1=4.5÷0.2-1=22

⑥管束的损失△P 1=Ff 0n c (N B +1) (u 020ρ)=0.5×0.85×24×(22+1)×825×0.34 2÷2= 11187Pa

⑦缺口损失△P 2=N B (3.5-

D h 2)(u 020ρ)/2=22×(3.5-8

.02.02?)﹙825×0.34 2)/2

=3147Pa

则壳程损失△Ps=△P 1+△P 2=11187+3147=14334=14.3KPa <40KPa 即壳程的压降也满足题意

综上核算初步认为所选的换热器适用

3.4.5.总传热系数K

总传热系数的经验值见表3-4,有关手册中也列有其他情况下的总传热系数经验值,可供设计时参考。选择时,除要考虑流体的物性和操作条件外,还应考虑换热器的类型。

表3-4 总传热系数的选择

1).管程传热系数: Re i =28032 Pr i =

388.6606

.010925.010185.433=???=-i

i

p u c λ

N u i =

=0.0234.08.04.08

.0388.628032023.0Pr Re

??=

=174.58℃

αi =0.0234

.08.0)()(i

i p i i i i i i u c u d d λμρλ

= N u i (

di i λ)=174.58×(02

.0606.0)=5289.9 W/m 2?℃ 2).壳程传热系数:

假设壳程的传热系数是: o α=500 W/m 2

?℃ 污垢热阻: R si =0.000344m 2

℃/W

R so =0.000172 m 2℃/W

管壁的导热系数: λ=45 m 2

℃/W

管壁厚度: b=0.0025 内外平均厚度: dm=0.0225

在下面的公式中,以外管为基准,代入以上数据得:

o

so i o i o si i i o R d bd d d R d d K αλα1

1

++++=

=1÷(

02.08.5289025.0?+0.000344×02.0025.0+4502.0025.00025.0??+0.000172+500

1

)

=320W/m 2

?℃

3.5计算传热面积

由以上的计算数据,代入下面的公式,计算传热面积:

23

2.1015

.75320102444.4'm K Q A tm =??=?=

与换热器列出的传热面积A=152.7比较有 7

.1522

.1017.152-有近34%的裕度,从阻力损失和传

热面积来看所选的换热器适用。

§四. 机械结构设计

4.1.管径和管内流速

换热器中最常用的管径有φ19mm ×2mm 和φ25mm ×2.5mm 。小直径的管子可以承受更大的压力,而且管壁较薄;同时,对于相同的壳径,可排列较多的管子,因此单位体积的传热面积更大,单位传热面积的金属耗量更少。所以,在管程结垢不很严重以及允许压力降较高的情况下,采用φ19mm ×2mm 直径的管子更为合理。如果管程走的是易结垢的流体,则应常用较大直径的管子。

标准管子的长度常用的有1500mm ,2000mm ,2500mm ,3000m,4500,5000,6000m,7500mm,9000m 等。换热器的换热管长度与公称直径之比一般为4—25,常用的为6—10

选用Φ25×2.5的碳钢管,管长4.5m,速取ui=1.3m/s

4.2.管程数和传热管数

根据传热管的内径和流速,可以确定单程传热系数:

n s =

)(1204.1195.002.0785.0)

9943600/(7.670564

2

2根≈=???=i

i u d V π 按单程计算,所需传热管的长度是:

m n d S L s o 4.11120

025.014.3107

=??==

π

若按单程管计算,传热管过长,宜采用多管程结构,可见取传热管长l=6m ,则该传热管程数为:

(管程)2

2

4

.11≈==

l L N p 则传热管的总根数为:

N=N p ×n s =2×120=240(根) 4.3.平均传热温差校正及壳程数

由前面的计算已求得,按单壳程、多管程计算,逆流时:

'm t ?==-----30

4040140ln

)

3040()40140(39.1℃

而此时,我们有: P=

09.03014030

401112=--=--t T t t

R=

1030

4040

1401221=--=--t t T T

由图4-19(参见天津大学出版社的《化工原理(上册修订版)》233页)可查得:

t ?ψ=0.82﹥0.8,所以,修正后的传热温度差为:

m t ?= 'm t ?t ?ψ=39.1×0.82=32℃

于是,校正后的平均传热温差是32℃,壳程数为单程,管程数为2。

4.4.壳程内径及换热管选型汇总 4.4.1壳体内径

采用多管程(2管程)结构,

D=a (b-1)+2e

式中 D ——壳体内径,mm ; a ——管心距,mm ;

b ——横过管束中心线的管数,管子按正三角形排列:b =1.1n ;管子按正方形排列:b =1.19n ,n 为换热器的总管数;

e ——管束中心线上最外层管中心到壳体内壁的距离,一般取e=(1~1.5)d 0。壳径的计算值应圆整到最接近部颁标准尺寸,见表4.5。

所以,代入数据我们有: D=32*18+2*(1.0~1.5)*25 =626~651mm 取D=600mm

4.4.2.换热管的选型汇总

根据以上的计算可以得到如下的计算结果: DN,mm 600 管程数 2 壳程数 1 管子规格 25*2.5 管子根数 240 中心排管数 19 管程流通面积,m 2

0.03768

换热面积,m2100

换热器长度,mm 6000

通过查表,可以发现下面的结构尺寸的换热器和所需的比较接近,故而选择该种换热器:DN,mm 600

管程数 2

壳程数 1

管子规格25*2.5

管子根数232

中心排管数16

管程流通面积,m20.0364

换热面积,m2107.5

换热器长度,mm 6000

4.5.折流板

设置折流板的目的是为了提高流速,增加湍动,改善传热,在卧式换热器中还起支撑管束的作用。常用的有弓形折流板(图1-20)和圆盘-圆环形折流板(图1-21),弓形折流板又分为单弓形[图1-20(a)]、双弓形[图1-20(b)]、三重弓形[图1-20(c)]等几种形式。

单弓形折流板用得最多,弓形缺口的高度h为壳体公称直径Dg的15%~45%,最好是20%,见图1-22(a);在卧式冷凝器中,折流板底部开一90°的缺口,见图1-22(b)。高度为15~20mm,供停工排除残液用;在某些冷凝器中需要保留一部分过冷凝液使凝液泵具有正的吸入压头,这时可采用带堰的折流板,见图1-22(c)。

在大直径的换热器中,如折流板的间距较大,流体绕到折流板背后接近壳体处,会有一部分液体停滞起来,形成对传热不利的“死区”。为了消除这种弊病,宜采用双弓形折流板或三弓形折流板。

从传热的观点考虑,有些换热器(如冷凝器)不需要设置折流板。但为了增加换热器的刚度,防止管子振动,实际仍然需要设置一定数量的支承板,其形状与尺寸均按折流板一样来处理。折流板与支承板一般均借助于长拉杆通过焊接或定距管来保持板间的距离,其结构形式可参见图1-23。

由于换热器是功用不同,以及壳程介质的流量、粘度等不同,折流板间距也不同,其系列为:100mm,150mm,200mm,300mm,450mm,600mm,800mm,1000mm。

允许的最小折流板间距为壳体内径的20%或50mm,取其中较大值。允许的最大折流板间距与管径和壳体直径有关,当换热器内流体无相变时,其最大折流板间距不得大于壳体内径,否则流体流向就会与管子平行而不是垂直于管子,从而使传热膜系数降低。

折流板外径与壳体之间的间隙越小,壳程流体介质由此泄漏的量越少,即减少了流体的短路,使传热系数提高,但间隙过小,给制造安装带来困难,增加设备成本,故此间隙要求适宜。

折流板厚度与壳体直径和折流板间距有关,见表5.5.1所列数据。

表5.5.1. 折流板厚度/ mm

壳体公称内

/mm

相邻两折流板间距/mm

≤300 300~450 450~600 600~750 >750

支承板厚度一般不应小于表5.5.2(左)中所列数据。

支承板允许不支承的最大间距可参考表5.5.2(右)所列数据。

表4.6.3支承板厚度以及支承板允许不支承的最大间距

高度为:

h=160mm

取折流板间距B=0.3D ,则: B=0.3×650=195mm 可取B=200mm

因而查表可得:折流板厚度为5mm ,支承板厚度为8mm ,支承板允许不支承最大间距为1800mm 。

折流板数N B =

(块)折流板间距传热管长291200

6000

=-=

折流板圆缺面水平装配。

4.6.接管

4.6.1.壳程流体进出口时接管

取接管内油品流速为u=1.0m/s 则接管内径为:

d=

m u V 074.00

.114.3)

8253600/(1262644=???=π 所以,取标准管的内径为80mm 。

查表得,PN<4.0MPa 的接管外伸长度为150mm 。 4.6.2.管程流体进出口时的接管

取接管内循环水流速u=1.5m/s ,则接管内径: d=

m 15.05

.114.3)

9943600/(7.670564=???

取标准管径为150mm 。

查表得,查表得,PN<6.4MPa 的接管外伸长度为200mm 。 4.6.3.接管最小位置 换热器设计之中,为了使换热面积得以充分利用,壳程流体进出口接管应尽量靠近两端的管板,而管箱的进出口尽量靠近管箱法兰,从而减轻设备重量。所以,壳程和管程接管的最小位置的计算就显得很必要了。

1).壳程接管位置的最小尺寸

所设计的为带补强圈的壳程接管,则壳程接管位置的最小尺寸L 1可用如下公式计算:

L 1≧

C b

D H

+-+)4(2

式子中:H D ——补强圈的外圈直径,mm

b ——管板厚度,mm C ——补强圈外缘至管板与壳体焊缝之间的距离,mm 。而且,C ≧4S 且C ≧32,S 为壳体厚度。

经计算易得,壳程接管位置的最小尺寸为:120mm 。 2). 管程接管位置的最小尺寸

所设计的为带补强圈的管程接管,则管程接管位置的最小尺寸L 2可用如下公式计算:

L 2≧

C b

D H

+-+)4(2

式子中:H D ——补强圈的外圈直径,mm

b ——管板厚度,mm C ——补强圈外缘至管板与壳体焊缝之间的距离,mm 。而且,C ≧4S 且C ≧32,S 为壳体厚度。

经计算易得,管程接管位置的最小尺寸为:140mm 。

4.7.壁厚的确定、封头 4.7.1.壁厚

查GB151-99P21表8得圆筒厚度为:8 mm

查JB/T4737-95,椭圆形封头与圆筒厚度相等,即8mm 4.7.2.椭圆形封头 示意图如下:

查表可得其尺寸数据,见下表

公称直径DN (mm )

曲面高度1h (mm )

直边高度

2h (mm )

碳钢厚度

δ(mm ) 内表面积 A 2

m 容积 V 2

m 质量 m kg 600

150

25

8

0.4374

0.0353

27.47

4.8.管板

管板除了与管子和壳体等连接外,还是换热器中的一个重要的受压器件。 4.8.1.管板结构尺寸 查(《化工单元设备设计》P25-27)得固定管板式换热器的管板的主要尺寸:

公称直径 D 1D

3D

4D

b c d 螺栓孔数 600

730

690

598

645

36

10

23

28

4.8.2在固定管板式换热器中,管板与壳体的连接均采用焊接的方法。由于管板兼作法兰与不兼作法兰的区别因而结构各异,前者的结构见图1-15,其中图1-15(a )形式是在管板上开槽,壳体嵌入后进行焊接,壳体对中容易,施焊方便,适合于压力不高、物料危害性不高的场合;如果压力较高,设备直径较大,管板较厚时,可采用图1-15(b )形式,其焊接时较难调整。

4.8.3.管板厚度

管板在换热器的制造成本中占有相当大的比重,管板设计与管板上的孔数、孔径、孔间距、开孔方式以及管子的连接方式有关,其计算过程较为复杂,而且从不同角度出发计算出的管板厚度往往相差很大。一般浮头式换热器受力较小,其厚度只要满足密封性即可。对于胀接的管板,考虑胀接刚度的要求,其最小厚度可按表4.8选用。考虑到腐蚀裕量,以及有足够的厚度能防止接头的松脱、泄露和引起振动等原因,建议最小厚度应大于20mm 。

表4.8. 管板的最小厚度 换热器管子外径0d /mm

≤25 32 38 57 管板厚度/mm

30d /4

22

25

32

换热管的外径为25mm ,因而管板厚度取为30d /4=18.75,取上述的最小厚度20mm 。

4.9.换热管

4.9.1.换热管的规格及尺寸偏差

材料

换热管标准

管子规格

高精度、较高精度偏差 外径,mm

厚度,mm 外径偏差,mm

壁厚偏差,mm

碳钢 GB/TB8163 ≧14~30

2~2.5

±0.2

+12% 低合金钢

GB9948

-10%

4.9.2.传热管排列和分程方法

管子在管板上的排列方式最常用的为图1-9所示的(a )、(b )、(c )、(d )四种,即正三角形排列(排列角为30°)、同心圆排列、正方形排列(排列角为90°)、转角正方形排列(排列角为45°)。当管程为多程时,则需采取组合排列,图1-10为二管程时管小组合排列的方式之一。

正三角形的排列方式可在同样的管板面积上排列最多的管数,故用的最为普遍,但管外不易机械清洗。为了便于清洗管子外表面上的污垢,可采用正方形与转角正方形排列的管束。在小直径的换热器中,常用同心圆排列,在相同直径的管板上所排列的管数比按正三角形排 列还多。

图4.4.管子在管板上的排列方式和组合排列示意图

采用组合排列法,即每程均按正三角形排列,隔板两侧采用正方形排列。

换热管的中心距经查表可得:(mm ) 换热管外径d

换热管中心距

分程隔板槽两侧相邻管的中心距

25

32

44

4.9.3横过管束中心线的管数

n c =()根194.1824019.119.1≈==N

4.9.4.布管限定圆

布管限定圆为管束的最外层换热管中心圆直径,固定管板式换热器的布管限定圆如下可得:

d m =D i -2b 3=600-2*8=584mm

式子中,D i ——筒体内直径,mm

b3——大小为0.25d,且大于8mm

4.10.分程隔板

4.10.1分程隔板尺寸

公称直径

DN/mm 隔板最小厚度

/mm 碳素钢

600 8

4.10.2.管子和分程隔板的连接

分程隔板有单层和双层两种,单层隔板与管板的密封结构如图1-18所示,隔板的密封面宽度最小为(S+2)mm。隔板材料与封头材料相同。双层隔板的结构见图1-19,双层隔板具有隔热空间,可防止热流短路。

4.11拉杆

4.11.1.拉杆的直径与数量

各种换热器的直径和拉杆数,可参见下表选用。

表5.11.1拉杆直径和拉杆数

壳体直径/mm 拉杆直径/mm 最少拉杆数壳体直径/mm 拉杆直径/mm 最少拉杆

200~250 10 4 1100 12 8

273,400,500,600 12 4

>1250 12 10

800,1000 12 6 经查表易得,拉杆数为为4,直径为12

4.11.2.连接与尺寸

拉杆示意图如下所示:

经查表,拉杆尺寸如下:

拉杆公称直径

n

d/mm

基本尺寸

拉杆直径d/mm a L/mm b L/mm b/mm

12 4 12 15 ≧50 2.0

拉杆孔示意图如下所示:

12

n

d mm

=,

2

1.5 1.51218

n

l d mm

==?=

4.12.换热管与管板的连接

管子与管板的连接是管壳式换热器制造中最主要的问题。对于固定管板换热器,除要求连接处保证良好的密封性外,还要求接合处能承受一定的轴向力,避免管子从管板中拉脱。

管子与管板的连接方法主要是胀接和焊接。胀接是靠管子的变形来达到密封和压紧的一种机械连接方法,如图1-13所示。当温度升高时,材料的刚性下降,热膨胀应力增大,可能引起接头的脱落或松动,发生泄露。一般认为焊接比胀接更能保证严密性。对于碳钢或低合金钢,温度在300℃以上,蠕变会造成胀接残余应力减小,一般采用焊接。

焊接接口的形式见图1-14。图1-14(a)的结构是常用的一种;为了减少管口处的流体阻力或避免立式换热器在管板上方滞留的液体,可采用图1-14(b)的结构;为了不使小直径管子被熔融的金属堵住管口,则可改成图1-14(c)的结构;图1-14(d)的形式适用于易产生热裂纹的材料,但加工量大。

胀接和焊接方法各有优缺点,在有些情况下,如对高温高压换热器,管子与管板的连接处,在操作时受到反复热变形、热冲击、腐蚀与流体压力的作用,很容易遭到破坏,仅单独采用胀接或焊接都难以解决问题,如果采用胀焊结合的方法,不仅能提高连接处的抗疲劳性能,还可消除应力腐蚀和间隙腐蚀,提高使用寿命。目前胀焊结合的方法已得到比较广泛的应用。

换热管规格 外径?壁厚/mm 换热管最小伸出长度

最小坡口深度

3

l /mm 1

l /mm

25?2.5

1.5

2

4.13.防冲板或导流筒的选择、鞍式支座的示意图(BI 型)

4.13.1. 防冲板或导流筒的选择

因为水u<=3.0m/s ,煤油流量 2

2

2

./2230128925.1825s m kg V <=?=ρ,所以管程和壳程都不设防冲板或导流筒。 4.13.2.鞍式支座(BI 型):

化工原理课程设计任务书 zong (修复的)共32页

2012年 06月 工业背景及工艺流程 乙醛是无色、有刺激性气味的液体,密度比水小,沸点20.8℃,易挥

发、易燃烧且能和水、乙醇、乙醚、氯仿等互溶,因其分子中具有羰基,反应能力很强,容易发生氧化,缩合,环化,聚合及许多类型加成反应。乙醛也是一种重要的烃类衍生物在合成工业有机化工产品上也是一种重要的中间体。其本身几乎没有直接的用途,完全取决于市场对它的下游产品的需求及下游产品对生产路线的选择,主要用于醋酸、醋酐、醋酸乙烯等重要的基本有机化工产品,也用于制备丁醇、异丁醇、季戊四醇等产品。这些产品广泛应用于纺织、医药、塑料、化纤、染料、香料和食品等工业。 国内乙醛生产方法有乙烯氧化法、乙醇氧化法和乙炔氧化法三种技术路线。工业上生产乙醛的原料最初采用乙炔,以后又先后发展了乙醇和乙烯路线。乙炔水化法成本高,因其催化剂——汞盐的污染难以处理等致命缺点,现以基本被淘汰。乙醇氧化或脱氢法制乙醛虽有技术成熟,不需要特殊设备,投资省,上马快等优点,但成本高于乙烯直接氧化法。乙烯直接氧化法制乙醛。由于其原料乙烯来源丰富而价廉,加之反应条件温和,选择性好,收率高,工艺流程简单及“三废”处理容易等突出优点,深受世界各国重视,发展非常迅速,现以成为许多国家生产乙醛的主要方法。 精馏方案的确定: 精馏塔流程的确定; 塔型的选择; 操作压力的选定; 进料状态选定; 加热方式等

所选方案必须: (1)满足工艺要求; (2)操作平稳、易于调节; (3)经济合理; (4)生产安全。 包括:流程的确定;塔型的选择;操作压力的选定;进料状态选定;加热方式等 操作压力选择 ●精馏可在常压、加压或减压下进行。 ●沸点低、常压下为气态的物料必须选用加压精馏;热敏性、高沸点 物料常用减压精馏。 进料状态的选择 ●一般将料液预热到泡点或接近泡点后送入塔内。这样可使: ● (1)塔的操作比较容易控制; ● (2)精馏段和提馏段的上升蒸汽量相近,塔径相似,设计制造比 较方便。 加热方式: ●(1)间接蒸汽加热 ●(2)直接蒸汽加热 ●适用场合:待分离物系为某轻组分和水的混合物。 ●优点:可省去再沸器;并可利用压力较低的蒸汽进行加热。操作 费用和设备费用均可降低。

化工原理课程设计样板

课程设计 课程名称化工原理课程设计 题目名称热水泠却器的设计 专业班级XX级食品科学与工程(X)学生姓名XXXX 学号XXXXXXXX 指导教师 二O一年月日

锯齿形板式热水冷却器的设计任务书一、设计题目: 锯齿形板式热水冷却器的设计 二、设计参数: (1)处理能力:7.3×104t/Y热水 (2)设备型式:锯齿形板式热水冷却器 (3)操作条件: 1、热水:入口温度80℃,出口温度60℃。 2、冷却介质:循环水,入口温度30℃,出口温度40℃。 3、允许压降:不大于105Pa。 4、每年按330天,每天按24小时连续运行。 5、建厂地址:蚌埠地区。

目录 1 概述 (1) 1. 1 换热器简介 (1) 1. 2 设计方案简介 (2) 1. 3 确定设计方案 (2) 1. 3. 1 设计流程图 (3) 1. 3. 2 工艺流程简图 (4) 1. 3. 3 换热器选型 (4) 1. 4 符号说明 (4) 2 锯齿形板式热水冷却器的工艺计算 (5) 2.1 确定物性数据 (5) 2.1.1 计算定性温度 (5) 2.1.2 计算热负荷 (6) 2. 1. 3 计算平均温差 (6) 2. 1. 4 初估换热面积及初选板型 (6) 2. 1. 5 核算总传热系数K (7) 2. 1. 6 计算传热面积S (9) 2. 1. 7 压降计算 (10) 2.2 锯齿形板式热水冷却器主要技术参数和计算结果 (10) 3 课程设计评述 (11) 参考文献 (12) 附录 (13)

1 概述 1.1 换热器简介 换热器,是将热流体的部分热量传递给冷流体的设备,又称热交换器。换热器是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛,日常生活中取暖用的暖气散热片、汽轮机装置中的凝汽器和航天火箭上的油冷却器等,都是换热器。它的主要功能是保证工艺过程对介质所要求的特定温度,同时也是提高能源利用率的主要设备之一。换热器种类很多,若按换热器传热面积形状和结构可分为管式换热器和特殊形式换热器。由于生产规模、物料的性质、传热的要求等各一相同,故换热器的类型很多,特点不一、可根据生产工艺要求进行选择。 1.2 设计方案简介 根据设计要求:用入口温度30 ℃,出口温度40℃的循环水冷却热水(热水的入口温度80℃,出口温度60℃),通过传热量、阻力损失传热系数、传热面积的计算,并结合经验值确定换热器的工艺尺寸、设备型号、规模选定,然后通过计算来确定各工艺尺寸是否符合要求,符合要求后完成工艺流程图和设备主体条件图,进而完成设计体系。 设计要求:选择一台适宜的锯齿形换热器并进行核算。下图中左面的为板式换热器外形,右边的是板式换热器工作原理图。

化工原理课程设计

绪论 1.1换热器在工业中的应用 换热器在工、农业的各领域应用十分广泛,在日常生活中传热设备也随处可见,是不可或缺的工艺设备之一。因此换热设备的研究备受世界各国政府及研究机构的高度重视,在全世界第一次能源危机爆发以来,各国都在下大力量寻找新的能源及在节约能源上研究新途径。在研究投入大、人力资源配备足的情况下,一批具有代表性的高效换热器和强化元件诞生。随着研究的深入,工业应用取得了令人瞩目的成就,得到了大量的回报,如板翅式换热器、大型板壳式换热器和强化沸腾的表面多孔管、T型翅片管、强化冷凝的螺纹管、锯齿管等都得到了国际传热界专家的首肯,社会效益非常显著,大大缓解了能源的紧张情况。 换热器是一种实现物料之间热量传递的节能设备,是在石油、化工、石油化工、冶金、电力、轻工、食品等行业普遍应用的一种工艺设备。在炼油、化工装置中换热器占总设备数量的40%左右,占总投资的30%-45%。近年来随着节能技术的发展,应用领域不断扩大,利用换热器进行高温和低温热能回收带来了显著的经济效益。 随着环境保护要求的提高,近年来加氢装置的需求越来越多,如加氢裂化,煤油加氢,汽油、柴油加氢和乳化油加氢装置等建设量增加,所需的高温、高压换热器数量随之加大。螺纹锁紧环换热器、Ω密封环换热器、金属垫圈式换热器、蜜蜂盖板式换热器技术发展越来越快,不仅在承温、承压上满足装置运行要求,而且在传热与动力消耗上发展较快,同时亦适用于乙烯裂解、化肥中合成氨、聚合和天然等场合,可满足承压高达35MPa,承温达700℃的使用要求。在这些场合,换热器占有的投资占50%以上。 1.2换热器的研究现状 20世纪80年代以来,换热器技术飞速发展,带来了能源利用率的提高。各种新型、高效换热器的相继开发与应用带来了巨大的社会经济效益,市场经济的发展、私有化比例的加大,降低成本已成为企业追求的最终目标。因而节能设备的研究与开发备受瞩目。能源的日趋紧张、全球环境气温的不断升高、环境保护要求的提高和换热器及空冷式换热器及高温、高压换热器带来了日益广阔的应用前景。在地热、太阳能、核能、余热回收、风能的利用上,各国政府都加大了投入资金力度。 国内各研究机构和高等院校研究成果不断推陈出新,在强化传热元件方面华南理工

化工课程设计小结

化工原理课程设计小结 随着毕业日子的到来,课程设计也接近了尾声。经过几周的奋战我的课程设计终于完成了。在没有做课程设计以前觉得课程设计只是对这几年来所学知识的单纯总结,但是通过这次做课程设计发现自己的看法有点太片面。课程设计不仅是对前面所学知识的一种检验,而且也是对自己能力的一种提高。通过这次课程设计使我明白了自己原来知识还比较欠缺。自己要学习的东西还太多,以前老是觉得自己什么东西都会,什么东西都懂,有点眼高手低。通过这次课程设计,我才明白学习是一个长期积累的过程,在以后的工作、生活中都应该不断的学习,努力提高自己知识和综合素质。 在这次课程设计中也使我们的同学关系更进一步了,同学之间互相帮助,有什么不懂的大家在一起商量,听听不同的看法对我们更好的理解知识,所以在这里非常感谢帮助我的同学。 我的心得也就这么多了,总之,不管学会的还是学不会的的确觉得困难比较多,真是万事开头难,不知道如何入手。最后终于做完了有种如释重负的感觉。此外,还得出一个结论:知识必须通过应用才能实现其价值!有些东西以为学会了,但真正到用的时候才发现是两回事,所以我认为只有到真正会用的时候才是真的学会了。 在此要感谢我们的指导老师罗老师、朱老师和李老师对我们悉心的指导,感谢老师们给我们的帮助。在设计过程中,我通过查阅大量有关资料,与同学交流经验和自学,并向老师请教等方式,使自己学到了不少知识,也经历了不少艰辛,但收获同样巨大。在整个设计中我懂得了许多东西,也培养了我独立工作的能力,树立了对自己工作能力的信心,相信会对今后的学习工作生活有非常重要的影响。而且大大提高了动手的能力,使我充分体会到了在创造过程中探索的艰难和成功时的喜悦。虽然这个设计做的也不太好,但是在设计过程中所学到的东西是这次课程设计的最大收获和财富,使我终身受益。 课程设计报告主要包括以下几个方面. 1.封面(根据自己的个性设计)2.目录3.主界面(介绍这次设计的课题、人员、目标、任务、人员分工)4.主要过程(要告诉别人你的这个作品该怎么用)5.程序流程图(用图来表示主要过程)6.核心源程序(你觉得这个作品它具备的主要功能是什么,就将实现这个功能的代码给COPY下来)7.主要函数(你程序代码里用的函数中你觉得重要的或是难的)8.心得9.附录(你完成这次课程设计参考的书,这个可以多写一点,以示用心认真) 我第一次做课程设计时写报告就是这么写的.你参考参考.希望能对你有些帮助

最新17-18化工原理课程设计任务题目40+40+40-doc

化工原理课程设计任务书示例一 1 设计题目分离苯―甲苯混合液的浮阀板式精馏塔工艺设计 2 设计参数 (1)设计规模:苯――甲苯混合液处理量________t/a (2)生产制度:年开工300天,每天三班8小时连续生产 (3)原料组成:苯含量为40%(质量百分率,下同) (4)进料状况:热状况参数q为_________ (5)分离要求:塔顶苯含量不低于_____%,塔底苯含量不大于_____% (6)建厂地区:大气压为760mmHg、自来水年平均温度为20℃的某地 3 设计要求和工作量 (1)完成设计说明书一份 (2)完成主体精馏塔工艺条件图一张(A1) (3)完成带控制点的工艺流程简图(A2) 4 设计说明书主要内容(参考) 中文摘要,关键词 第一章综述 1.精馏原理及其在工业生产中的应用 2.精馏操作对塔设备的要求(生产能力、效率、流动阻力、操作弹性、结构、造价和工艺特性等) 3.常用板式塔类型及本设计的选型

4.本设计所选塔的特性 第二章工艺条件的确定和说明 1.确定操作压力 2.确定进料状态 3.确定加热剂和加热方式 4.确定冷却剂及其进出、口温度 第三章流程的确定和说明(附以流程简图) 1.流程的说明 2.设置各设备的原因(精馏设备、物料的储存和输送、必要的检测手段、操作中的调节和重要参数的控制、热能利用) 第四章精馏塔的设计计算 1.物料衡算 2.回流比的确定 3.板块数的确定 4.汽液负荷计算(将结果进行列表) 5.精馏塔工艺尺寸计算(塔高塔径溢流装置塔板布置及浮阀数目与排列) 6.塔板流动性能校核(液沫夹带量校核、塔板阻力校核、降液管液泛校核、液体在降液管中停留时间校核以及严重漏液校核) 7.塔板负荷性能图 8.主要工艺接管尺寸的计算和选取(进料管、回流管、釜液出口管、塔顶蒸汽管、塔底蒸汽管、人孔等) 9.塔顶冷凝器/冷却器的热负荷

2017化工课程设计心得体会范文

2017化工课程设计心得体会范文 2017化工课程设计心得体会范文一 化工原理课程设计是综合运用化工原理及相关基础知识的实践性教学环节。设计过程中指导教师指引学生在设计过程中既要考虑理论上的可行性,还要考虑生产上的安全性和经济合理性。通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法。 本次化工原理课程设计历时两周,是上大学以来第一次独立的工业化设计。从老师以及学长那里了解到化工原理课程设计是培养我们化工设计能力的重要教学环节,通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画出工艺流程、塔板结构等图形;在设计过程中不仅要考虑理论上的可行性,还要考虑生产上的安全性和经济合理性。由于第一次接触课程设计,起初心里充满了新鲜感和期待,因为自我认为在大学里学到的东西终于可以加以实践了。可是当老师把任务书发到手里是却是一头雾水,完全不知所措。可是在这短短的三周里,从开始的一无所知,到同学讨论,再进行整个流程的计算,再到对工业材料上的选取论证和后期的程序的编写以及流程图的绘制等过程的培养,我真切感受到了理论与实践相结合中的种种困难,也体会到了利用所学的有限的理论知识去解决实际中各种问题的不易。我的课程设计题目是苯――氯苯筛板式精馏塔设计图。在开始时,我们不知道如何下手,虽然有课程设计书作为参

考,但其书上的计算步骤与我们自己的计算步骤有少许差异,在这些差异面前,我们显得有些不知所措,通过查阅《化工原理》,《化工工艺设计手册》,《物理化学》,《化工原理课程设计》等书籍,以及在网上搜索到的理论和经验数据。我们慢慢地找到了符合自己的实验数据。并逐渐建立了自己的模版和计算过程。在这三周中给我印象最深的是我们这些“非泡点一族”在计算进料热状况参数q时,没有任何参考模板,完全靠自己捉摸思考。起初大家都是不知所措,待冷静下来,我们仔细结合上课老师讲的内容,一步一步的讨论演算,经大家一下午的不懈努力,终于把q算出来了。还有就是我们在设计换热器部分,在试差的过程中,我们大部分人都是经历了几乎一天多的时间才选出了合适的换热器型号,现在还清楚的记得我试差成功后那激动的心情,因为我尝到了自己在付出很多后那种成功的喜悦,因为这些都是我们的“血泪史”的见证哈。 在此感谢我们的杜治平老师.,老师严谨细致、一丝不苟的作风一直是我工作、学习中的榜样;老师循循善诱的教导和不拘一格的思路给予我无尽的启迪;这次课程设计的细节和每个数据,都离不开老师您的细心指导。而您开朗的个性和宽容的态度,帮助我能够很顺利的完成了这次课程设计。同时感谢同组的同学们,谢谢你们对我的帮助和支持,让我感受到同学的友谊。由于本人的设计能力有限,在设计过程中难免出现错误,恳请老师们多多指教,我十分乐意接受你们的批评与指正,本人将万分感谢。 2017化工课程设计心得体会范文二

化工原理课程设计简易步骤

《化工原理》课程设计说明书 设计题目 学生姓名 指导老师 学院 专业班级 完成时间

目录 1.设计任务书……………………………………………() 2.设计方案的确定与工艺流程的说明…………………() 3.精馏塔的物料衡算……………………………………() 4.塔板数的确定………………………………………() 5.精馏段操作工艺条件及相关物性数据的计算………() 6.精馏段的汽液负荷计算………………………………() 7.精馏段塔体主要工艺尺寸的计算…………………() 8.精馏段塔板主要工艺尺寸的计算…………………………() 9.精馏段塔高的计算…………………………………() 10.精馏段塔板的流体力学验算…………………………() 11.精馏段塔板的汽液负荷性能图………………………() 12.精馏段计算结果汇总………………………………() 13.设计评述……………………………………………() 14.参考文献………………………………………………() 15.附件……………………………………………………() 附件1:附图1精馏工艺流程图………………………() 附件2:附图2降液管参数图……………………………()附件3:附图3塔板布孔图………………………………()

板式塔设计简易步骤 一、 设计方案的确定及工艺流程的说明 对塔型板型、工艺流程、加料状态、塔顶蒸汽冷凝方式、塔釜加热方式等进行说明,并 绘制工艺流程图。(图可附在后面) 二、 精馏塔物料衡算:见教材P270 计算出F 、D 、W ,单位:kmol/h 三、 塔板数的确定 1. 汽液相平衡数据: 查资料或计算确定相平衡数据,并绘制t-x-y 图。 2. 确定回流比: 先求出最小回流比:P 266。再确定适宜回流比:P 268。 3. 确定理论板数 逐板法或梯级图解法(塔顶采用全凝器)计算理论板层数,并确定加料板位置:P 257-258。(逐板法需先计算相对挥发度) 确定精馏段理论板数N 1、提馏段理论板数N 2 4. 确定实际板数: 估算塔板效率:P 285。(①需知全塔平均温度,可由 t-x-y 图确定塔顶、塔底温度,或通过试差确定塔顶、塔底温度,再取算术平均值。②需知相对挥发度,可由安托因方程求平均温度下的饱和蒸汽压,再按理想溶液计算。) 由塔板效率计算精馏段、提馏段的实际板层数N 1’,N 2’:P 284式6-67。 四、 精馏段操作工艺条件及相关物性数据的计算 1. 操作压力m p :取2 F D m p p p += 2. 精馏段平均温度m t :查t-x-y 图确定塔顶、进料板温度,再取平均值。或由泡点方程试差法确定塔顶、进料板温度。 3. 平均摩尔质量M Vm 、M Lm :由P 8式0-27分别计算塔顶、进料板处的摩尔质量,再分别 取两处的算术平均值。汽相的摩尔分率查t-x-y 图。 4. 平均密度Vm ρ、Lm ρ: Lm ρ:用P 13式1-7分别计算塔顶、进料板处液相密度,再 取算术平均值。m Vm m Vm T R M p ??= ρ 5. 液体表面张力m σ:由B B A A m x x σσσ+=分别计算塔顶mD σ与进料板mF σ,再取 平均值。 6. 液体粘度m μ:与表面张力的计算类似。 五、 精馏段汽液负荷(Vs 、Ls )计算 V=(R+1)D L=RD

化工原理课程设计

安阳工学院课程设计说明书 课程名称:化工原理课程设计 设计题目:列管式换热器 院系:化学与环境工程学院 学生姓名:赵安顺 学号:201005020025 专业班级:应用化学一班 指导教师:路有昌

列 设计一台列管式换热器 一、设计任务及操作条件 (1)处理能力 2.5×105 t/a热水 (2)设备型式列管式换热器 (3)操作条件 ①热水:入口温度80℃,出口温度60℃. ②冷却介质:循环水,入口温度32℃,出口温度40℃. ③允许压降:不大于105Pa. ④每年按300天计算,每天24小时连续运行. 二、设计要求及内容 (1)根据换热任务和有关要求确认设计方案; (2)初步确认换热器的结构和尺寸; (3)核算换热器的传热面积和流体阻力; (4)确认换热器的工艺结构. 摘要:通过对列管式换热器的设计,首先要确定设计的方案,选择合适的计算步骤。查得计算中用到的各种数据,对该换热器的传热系数传热面积工艺结构尺寸等等要进行核算,与要设计的目标进行对照是否能满足要求,最终确定换热器的结构尺寸为设计图纸做好准备和参考,来完成本次课程设计。 关键词:标准方案核算结构尺寸

目录 一.概述 (4) 二.方案的设计与拟定 (4) 三.设计计算 (8) 3.1确定设计方案 (9) 3.1.1选择换热器的类型 (9) 3.1.2流动空间及管子的确定 (9) 3.2确定物性数据 (9) 3.3初选换热器规格 (10) 3.3.1热流量 (10) 3.3.2冷却水用量 (10) 3.3.3平均温度差 (10) 3.3.4换热器规格 (11) 3.4核算总传热系数 (11) 3.4.1计算管程传热系数 (11) 3.4.2 计算壳程传热系数 (12) 3.4.3 确定污垢热阻 (13) 3.3.4 总传热系数 (13) 3.5计算压强降 (14) 3.5.1计算管程压强降 (14) 3.5.2计算壳程压强降 (14)

化工原理课程设计样本

成绩 化工原理课程设计 设计说明书 设计题目:万吨/年苯—甲苯连续精馏装置工艺设计 。 姓名陈端 班级化工07-2班 学号 006 】 完成日期 2009-10-30 指导教师梁伯行

化工原理课程设计任务书 (化工07-1,2,3,4适用) 一、设计说明书题目: — (万吨/年) 苯 - 甲苯连续精馏装置工艺设计说明书 二、设计任务及条件 (1).处理量: (3000+本班学号×300) Kg/h (每年生产时间按7200小时计); (2). 进料热状况参数:( 2班)为, (3). 进料组成: ( 2班) 含苯为25%(质量百分数), (4).塔底产品含苯不大于2%(质量百分数); (5). 塔顶产品中含苯为99%(质量百分数)。 装置加热介质为过热水蒸汽(温度及压力由常识自行指定), 装置冷却介质为25℃的清水或35℃的循环清水。 三、【 四、设计说明书目录(主要内容) 要求 1)前言(说明设计题目设计进程及自认达到的目的), 2)装置工艺流程(附图) 及工艺流程说明 3)装置物料衡算 4)精馏塔工艺操作参数确定 5)适宜回流比下理论塔板数及实际塔板数计算 6)精馏塔主要结构尺寸的确定 7)精馏塔最大负荷截面处T-1型浮阀塔板结构尺寸的确定 8)、 9)装置热衡算初算确定全凝器、再沸器型号及其他换热器型号 10)装置配管及机泵选型 11)适宜回流比经济评价验算(不少于3个回流比比较) 12)精馏塔主要工艺和主要结构尺寸参数设计结果汇总及评价 13)附图 : 装置工艺流程图、装置布置图、精馏塔结构简图(手绘图)。 五、经济指标及参考书目 1)6000元/(平方米塔壁)(塔径~乘, 塔径~乘, 塔径以上乘, 2)4500元/(平方米塔板), 3)# 4)4000元/(平方米传热面积), 5)16元/(吨新鲜水), 8元/(吨循环水), 6)250元/(吨加热水蒸汽), 设备使用年限10年, 7)装置主要固定资产年折旧率为10% , 银行借贷平均年利息%。 8)夏清陈常贵主编《化工原理》(上. 下) 册修订本【M】天津; 天津大学 出版社2005 9)贾绍文《化工原理课程设计》【M】天津; 天津大学出版社2002

化工原理课程设计——换热器的设计

中南大学《化工原理》课程设计说明书 题目:煤油冷却器的设计 学院:化学化工学院 班级:化工0802 学号: 1505080802 姓名: ****** 指导教师:邱运仁 时间:2010年9月

目录 §一.任务书 (2) 1.1.题目 1.2.任务及操作条件 1.3.列管式换热器的选择与核算 §二.概述 (3) 2.1.换热器概述 2.2.固定管板式换热器 2.3.设计背景及设计要求 §三.热量设计 (5) 3.1.初选换热器的类型 3.2.管程安排(流动空间的选择)及流速确定 3.3.确定物性数据 3.4.计算总传热系数 3.5.计算传热面积 §四. 机械结构设计 (9) 4.1.管径和管内流速 4.2.管程数和传热管数 4.3.平均传热温差校正及壳程数 4.4.壳程内径及换热管选型汇总 4.4.折流板 4.6.接管 4.7.壁厚的确定、封头 4.8.管板 4.9.换热管 4.10.分程隔板 4.11拉杆 4.12.换热管与管板的连接 4.13.防冲板或导流筒的选择、鞍式支座的示意图(BI型) 4.14.膨胀节的设定讨论 §五.换热器核算 (21) 5.1.热量核算 5.2.压力降核算 §六.管束振动 (25) 6.1.换热器的振动 6.2.流体诱发换热器管束振动机理 6.3.换热器管束振动的计算 6.4.振动的防止与有效利用 §七. 设计结果表汇 (28) §八.参考文献 (29) §附:化工原理课程设计之心得体会 (30)

§一.化工原理课程设计任务书 1.1.题目 煤油冷却器的设计 1.2.任务及操作条件 1.2.1处理能力:40t/h 煤油 1.2.2.设备形式:列管式换热器 1.2.3.操作条件 (1).煤油:入口温度160℃,出口温度60℃ (2).冷却介质:循环水,入口温度17℃,出口温度30℃ (3).允许压强降:管程不大于0.1MPa,壳程不大于40KPa (4).煤油定性温度下的物性数据ρ=825kg/m3,黏度7.15×10-4Pa.s,比热容2.2kJ/(kg.℃),导热系数0.14W/(m.℃) 1.3.列管式换热器的选择与核算 1.3.1.传热计算 1.3. 2.管、壳程流体阻力计算 1.3.3.管板厚度计算 1.3.4.膨胀节计算 1.3.5.管束振动 1.3.6.管壳式换热器零部件结构 §二.概述 2.1.换热器概述 换热器是化工、炼油工业中普遍应用的典型的工艺设备。在化工厂,换热器的费用约占总费用的10%~20%,在炼油厂约占总费用35%~40%。换热器在其他部门如动力、原子能、冶金、食品、交通、环保、家电等也有着广泛的应用。因此,设计和选择得到使用、高效的换热器对降低设备的造价和操作费用具有十分重要的作用。 在不同温度的流体间传递热能的装置称为热交换器,即简称换热器,是将热流体的部分热量传递给冷流体的设备。 换热器的类型按传热方式的不同可分为:混合式、蓄热式和间壁式。其中间壁式换热器应用最广泛,如表2-1所示。 表2-1 传热器的结构分类

化工原理课程设计任务书

(封面) XXXXXXX学院 化工原理课程设计任务书 题目: 院(系): 专业班级: 学生姓名: 指导老师: 时间:年月日

目录 1、工艺生产流程线 (4) 2、流程及方案的说明和论证 (4) 3、换热器的设计计算及说明 (5) 4、计算校核 (6) 5、设计结果概要表 (9) 6、设计评价及讨论 (11) 参考文献 (11) 附图:主体设备结构图和花版设计图

化工原理课程设计任务书 一、设计题目:列管式换热器设计。 二、设计任务:将自选物料用河水冷却至生产工艺所要求的温度。 /d; 三、设计条件:1.处理能力:G=29*300 t 物料 2. 冷却器用河水为冷却介质,考虑广州地区可取进口水温度为 20~30℃; 3.允许压降:不大于105 Pa; 4.传热面积安全系数5~15%; 5.每年按330天计,每天24小时连续运行。 四、设计要求:1.对确定的工艺流程进行简要论述; 2.物料衡算、热量衡算; 3.确定列管式换热器的主要结构尺寸; 4.计算阻力; 5.选择适宜的列管式换热器并进行核算; 6.用Autocad绘制列管式冷却器的结构图(3号图纸)、花板布 置图(4号图纸)。 7.编写设计说明书(包括:①封面;②目录;③设计题目(任务 书);④流程示意图;⑤流程及方案的说明和论证;⑥设计计 算及说明(包括校核);⑦主体设备结构图;⑧设计结果概要 表;⑨对设计的评价及问题讨论;⑩参考文献。) 备注:参考文献格式: 期刊格式为:作者姓名.出版年.论文题目.刊物名称.卷号(期号):起止页码 专著格式为:作者姓名.出版年.专著书名.出版社名.起止页码 例:潘继红等.管壳式换热器的分析和计算.北京:科学出版社,1996,70~90 陈之瑞,张志耘.桦木科植物叶表皮的研究.植物分类学报,1991,29(2):127~135 1.工艺生产流程: 物料通过奶泵被送入冷却器后,经管盖进行多次往返方向的流动。冷却后由出料管流出,不合格的物料由回流阀送回冷却器重新冷却,直至符合要求。经过处理的河水由冷却器的进口管流入,由出口管流出,其与牛奶进行逆流交换热量。 牛奶灭菌后温度高达110~115℃,然后进行第一阶段的冷却,冷却到均质温度55~75℃,而后进行均质。无菌均质后,牛奶经过第二阶段的冷却,最终由冷却水冷却至所需的出口温度。本实验所设计的就是第一阶段冷却的列管式换热器。

化工原理课程设计范例

专业:化学工程与工艺 班级:黔化升061 姓名:唐尚奎 指导教师:王瑾老师 设计时间: 2007年1月 前言 在化学工业和石油工业中广泛应用的诸如吸收、解吸、精馏、萃取等单元操作中,气液传质设备必不可少。塔设备就是使气液成两相通过精密接触达到相际传质和传热目的的气液传质设备之一。 塔设备一般分为级间接触式和连续接触式两大类。前者的代表是板式塔,后者的代表则为填料塔,在各种塔型中,当前应用最广泛的是筛板塔与浮阀塔。 筛板塔在十九世纪初已应用与工业装置上,但由于对筛板的流体力学研究很少,被认为操作不易掌握,没有被广泛采用。五十年代来,由于工业生产实践,对筛板塔作了较充分的研究并且经过了大量的工业生产实践,形成了较完善的设计方法。筛板塔和泡罩塔相比较具有下列特点:生产能力大于10.5%,板效率提高产量15%左右;而压降可降低30%左右;另外筛板塔结构简单,消耗金属少,塔板的造价可减少40%左右;安装容易,也便于清理检修。本次设计就是针对水乙醇体系,而进行的常压二元筛板精馏塔的设计及其辅助设备的选型。由于此次设计时间紧张,本人水平有限,难免有遗漏谬误之处,恳切希望各位老师指出,以便订正。 目录 一、设计任务 二、方案选定 三、总体设计计算-------------------------------05 3.1气液平衡数据------------------------------ 05 3.2物料衡算------------------------------------- 05 3.3操作线及塔板计算------------------------- 06 3.4全塔Et%和Np的计算----------------------06 四、混合参数计算--------------------------------07 4.1混合参数计算--------------------------------07 4.2塔径计算--------------------------------------08 4.3塔板详细计算-------------------------------10 4.4校核-------------------------------------------12 4.5负荷性能图----------------------------------14 五、筛板塔数据汇总-----------------------------16 5.1全塔数据-------------------------------------16 5.2精馏段和提馏段的数据-------------------17 六、讨论与优化-----------------------------------18 6.1讨论-------------------------------------------18 6.2优化--------------------------------------------18

化工原理课程设计

《化工原理》课程设计报告精馏塔设计 学院 专业 班级 学号 姓名 指导教师

目录 苯-氯苯分离过程板式精馏塔设计任务 (3) 一.设计题目 (3) 二.操作条件 (3) 三.塔设备型式 (3) 四.工作日 (3) 五.厂址 (3) 六.设计内容 (3) 设计方案 (4) 一.工艺流程 (4) 二.操作压力 (4) 三.进料热状态 (4) 四.加热方式 (4) 精馏塔工艺计算书 (5) 一.全塔的物料衡算 (5) 二.理论塔板数的确定 (5) 三.实际塔板数的确定 (7) 四.精馏塔工艺条件及相关物性数据的计算 (8) 五.塔体工艺尺寸设计 (10) 六.塔板工艺尺寸设计 (12) 七.塔板流体力学检验 (14) 八.塔板负荷性能图 (17) 九.接管尺寸计算 (19) 十.附属设备计算 (21) 设计结果一览表 (24) 设计总结 (26) 参考文献 (26)

苯-氯苯精馏塔的工艺设计 苯-氯苯分离过程精馏塔设计任务 一.设计题目 设计一座苯-氯苯连续精馏塔,要求年产纯度为%的氯苯140000t,塔顶馏出液中含氯苯不高于%。原料液中含氯苯为22%(以上均为质量%)。 二.操作条件 1.塔顶压强自选; 2.进料热状况自选; 3.回流比自选; 4.塔底加热蒸汽压强自选; 5.单板压降不大于; 三.塔板类型 板式塔或填料塔。 四.工作日 每年300天,每天24小时连续运行。 五.厂址 厂址为天津地区。 六.设计内容 1.设计方案的确定及流程说明 2. 精馏塔的物料衡算; 3.塔板数的确定; 4.精馏塔的工艺条件及有关物性数据的计算; 5.精馏塔主要工艺尺寸;

化工设计课程学习总结范文三篇

化工设计课程学习总结范文三篇 化工设计课程学习总结范文三篇 本学期顺利完成了化学工程与工艺专业共100名同学的化工原 理课程设计,总体来看学生的工艺计算、过程设计及绘图等专业能力得到了真正有效的提高,可以较好地把理论学习中的分散知识点和实际生产操作有机结合起来,得到较为合理的设计成果,达到了课程综合训练的目的,提高了学生分析和解决化工实际问题的能力。同时,在设计过程中也存在者一些共性的问题,主要表现在: 一、设计中存在的问题 1.设计过程缺乏工程意识。 学生在做课程设计时所设计的结果没有与生产实际需要作参考,只是为了纯粹计算为设计,缺乏对问题的工程概念的解决方法。 2.学生对单元设备概念不强。 对化工制图、设备元件、材料与标准不熟悉,依葫芦画瓢的不 在少数,没有达到课程设计与实际结合、强化“工程”概念的目的。

绘图能力欠缺,如:带控制点工艺流程图图幅设置、比例及线型选取、文字、尺寸标注以及设备、仪表、管件表示等绘制不规范。 3.物性参数选择以及计算。 在化工原理课程设计工程中首要的问题就是物性参数选择以及 计算,然而学生该开始并不清楚需要计算哪些物性参数以及如何计算。这对这些问题,指导老师应在开课之初给学生讲一下每个单元操作所需的物性参数,每个物性参数查取方法以及混合物系物性参数的计算方法,还有如何确定体系的定性温度。 二、解决措施 1.加强工程意识。 设计过程中鼓励学生多做深层次思考,综合考虑经济性、实用性、安全可靠性和先进性,强化学生综合和创新能力的培养;引导学生积极查阅资料和复习有关教科书,学会正确使用标准和规范,强化学生的工程实践能力。为了增强学生的工程意识提出以下措施:一是在化工原理课程讲述过程中应加强对学生工程意识的培养,让同学明确什么是工程概念,比如:理论上的正确性,技术上的可行性,操作上的安全性,经济上的合理性,了解工程问题的计算方法。比如试差

化工原理课程设计换热器设计

化工原理 课 程 设 计 设计任务:换热器 班级:13级化学工程与工艺(3)班 姓名:魏苗苗 学号:90 目录 化工原理课程设计任务书 (2) 设计概述 (3) 试算并初选换热器规格 (6) 1. 流体流动途径的确定 (6)

2. 物性参数及其选型 (6) 3. 计算热负荷及冷却水流量 (7) 4. 计算两流体的平均温度差 (7) 5. 初选换热器的规格 (7) 工艺计算 (10) 1. 核算总传热系数 (10) 2. 核算压强降 (13) 设计结果一览表 (16) 经验公式 (16) 设备及工艺流程图 (17) 设计评述 (17)

参考文献 (18) 化工原理课程设计任务书 一、设计题目: 设计一台换热器 二、操作条件:1、苯:入口温度80℃,出口温度40℃。 2、冷却介质:循环水,入口温度℃。 3、允许压强降:不大于50kPa。 4、每年按300天计,每天24小时连续运行。 三、设备型式:管壳式换热器 四、处理能力:109000吨/年苯 五、设计要求: 1、选定管壳式换热器的种类和工艺流程。 2、管壳式换热器的工艺计算和主要的工艺尺寸的设计。 3、设计结果概要或设计结果一览表。

4、设备简图。(要求按比例画出主要结构及尺寸) 5、对本设计的评述及有关问题的讨论。 六、附表: 1.设计概述 热量传递的概念与意义 热量传递的概念 热量传Array递是指由于 温度差引起 的能量转移, 简称传热。由 热力学第二 定律可知,在 自然界中凡 是有温差存 在时,热就必 然从高温处 传递到低温 处,因此传热

是自然界和工程技术领域中极普遍的一种传递现象。 化学工业与热传递的关系 化学工业与传热的关系密切。这是因为化工生产中的很多过程和单元操作,多需要进行加热和冷却,例如:化学反应通常要在一定的温度进行,为了达到并保持一定温度,就需要向反应器输入或输出热量;又如在蒸发、蒸馏、干燥等单元操作中,都要向这些设备输入或输出热量。此外,化工设备的保温,生产过程中热能的合理利用以及废热的回收利用等都涉及到传热的问题,由此可见;传热过程普遍的存在于化工生产中,且具有极其重要的作用。总之,无论是在能源,宇航,化工,动力,冶金,机械,建筑等工业部门,还是在农业,环境等部门中都涉及到许多有关传热的问题。 应予指出,热力学和传热学既有区别又有联系。热力学不研究引起传热的机理和传热的快慢,它仅研究物质的平衡状态,确定系统由一个平衡状态变成另一个平衡状态所需的总能量;而传热学研究能量的传递速率,因此可以认为传热学是热力学的扩展。 传热的基本方式 根据载热介质的不同,热传递有三种基本方式: 热传导(又称导热)物体各部分之间不发生相对位移,仅借分子、原子和自由电子等微观粒子的热运动而引起的热量传递称为热传导。热传导的条件是系统两部分之间存在温度差。

化工原理课程设计计算示例

化工原理壳程设计计算示例 一浮阀塔工艺设计计算示例 拟设计一生产酒精的板式精馏塔。来自原料工段的乙醇-水溶液的处理量为48000吨/年,乙醇含量为35%(质量分率)原料温度为45℃。 设计要求:塔顶产品的乙醇含量不小于90%(质量分率),塔底料液的乙醇含量不大于0.5%。 一、塔形选择及操作条件的确定 1.塔形:选用浮阀塔 2.操作条件: 操作压力:常压;其中塔顶:1.013×105Pa 塔底:[1.013×105+N(265~530)Pa] 进料状态:饱和液体进料 加热方式:用直接水蒸气加热 热能利用:拟采用釜残液加热原料液 二、工艺流程

三、有关工艺计算 首先,根据题目要求,将各组成要求由质量分率转换为摩尔分率,其后由 2 3971.1/H O kg m ρ=,3735/kg m ρ=乙醇 参考资料(一),查出相应泡点温度及计算平均分子量。 同理求得0.779D x = 0.0002 W x = (1)0.17646(10.176)1822.3/f f f M x M x M kg kmol =+-=?+-?=乙醇水 同理求得:39.81/D M kg kmol =,18.1/D M kg kmol = 1. 最小回流比及操作回流比的确定 由于是泡点进料,x q =x f =0.174过点e(0.174,0.174)作x=0.174直线与平衡线交与点d ,由点d 可以读得y q =0.516,因此, min(1)0.7790.516 0.7690.5160.174 D q q q x y R y x --= = =-- 又过点a (0.779,0.779)作平衡线的切线,可得切点g 由切点g 可读得' 0.55q x =,' 0.678q y =,

《化工原理》课程设计实践教学总结

《化工原理》课程设计实践教学总结 摘要:化工原理课程设计是综合运用化工原理及相关基础知识的实践性教学环节。设计过程中指导教师指引学生在设计过程中既要考虑理论上的可行性,还要考虑生产上的安全性和经济合理性。通过课程设计使学生初步掌握化工设计的基础知识、设计原则及方法。 关键词:化工原理;课程设计;实践;可行性 中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2014)22-0205-02 《化工原理》是化学工程与工艺专业的必修专业课程之一,理论课之后国内大部分高校的本科人才培养计划中安排了实践教学环节――《化工原理》课程设计。我们学校的化学工程与工艺专业培养计划也如此。《化工原理》课程设计是培养化工专业学生综合运用所学的理论知识,树立正确的设计思想,解决常规化工设计中一些实际问题的一项重要的实践教学。其出发点是通过课程设计提高学生搜集资料、查阅文献、计算机辅助绘图、分析与思考解决实际生产问题等能力。笔者从事了3届的课程设计教学,从中总结了许多宝贵的经验和教学方法,以期提高教学效果。现将笔者的教学体会作一介绍。 一、课程设计题目应具有普遍性、代表性

我校化学工程与工艺专业的《化工原理》课程设计一般为二周时间。课程设计基本要求是通过这一设计过程使每个学生都受到一定程度的训练,使将来在不同岗位就业的学生都能受益,都能解决这类工程的实际问题,并可以举一反三。所以课程设计的选题需要我们指导老师慎重,尽量选择化工行业中最普遍且最具代表性的单元操作进行设计。根据以往的教学的经验,题目的选取应从以下几个方面考虑: 1.课程设计题目尽可能接近实际生产,截取现有的某化工项目中的某一操作单元为设计模型,比如某合成氨厂的传热单元的设计,流体输送过程中离心泵的设计,管壳式换热器等等。这样学生在课程设计过程中有参照体系,不至于出现不合理的偏差。 2.课程设计题目应该围绕着常见的化工操作单元进行展开,比如我们都知道在讲授《化工原理》理论知识时其中的单元操作有流体输送、传热、精馏、吸收、萃取等等。一个课程设计题目应该包括2~3个常见的单元操作,从而实现某一简单的化工任务。 3.课程设计题目中涉及的物质尽可能常见易得。因为完成虚拟的生产任务过程中需要这些物质的物性参数进行核算,常见易得的物质能够降低学生在查阅参数方面的工作量。比如,如果我们设计分离任务尽量选择苯-甲苯,或甲醇-水等这样的体系,因为这些混合体系的参数大部分工具

化工原理课程设计模板123

目录 第一章前言 (1) 1.1 精馏及精馏流 (1) 1.2 精馏的分类 (2) 1.3精馏操作的特点 (2) 1.3.1沸点升高 (2) 1.3.2物料的工艺特性 (2) 1.3.3节约能源 (2) 1.4 相关符号说明 (4) 1.5相关物性参数 (6) 1.5.1苯和甲苯的物理参数............................... .6 第二章设计任务书. (7) 第三章设计内容 (8) 3.1设计方案的确定及工艺流程的说明 (8) 3.2全塔的物料衡算 (8) 3.2.1原料液及塔顶底产品含苯的摩尔分率 (8) 3.2.2原料液及塔顶底产品的平均摩尔质量 (8) 3.2.3料液及塔顶底产品的摩尔流率 (9) 3.3塔板数的确定 (9) 3.3.1平衡曲线的绘制 (9) 3.4塔的精馏段操作工艺条件及计算 (12) 3.4.1平均压强p m (12) 12 3.4.2平均温度t m..................................... M (13) 3.4.3平均分子量 m 3.4.4 液体的平均粘度和液相平均表面张力 (14) 3.5 精馏塔的塔体工艺尺寸计算 (16)

3.5.1塔径的计算 (16) 3.5.2精馏塔有效高度的计算 (18) 3.6塔板工艺结构尺寸的设计与计算 (18) 3.6.1溢流装置计算 (18) 3.6.2塔板布置 (19) 3.6.3气象通过塔板压降的计算 (21) 3.7塔板负荷性能图 ................................ ..23 3.7.1漏液线 (23) 3.7.2 雾沫夹带线 (23) 3.7.3 液相负荷下限线 (24) 3.7.4 液相负荷上限线 (24) 3.7.5液泛线 (25) 第四章附属设备的选型及计算 (27) 4.1接管——进料管 (27) 4.2法兰 (27) 4.3筒体与封头 (27) 4.4 人孔 (28) 4.5热量衡算 (28) 参考文献 (31) 课程设计心得 (32)

相关主题
文本预览
相关文档 最新文档