当前位置:文档之家› 低氮氧化物分级燃烧技术

低氮氧化物分级燃烧技术

低氮氧化物分级燃烧技术
低氮氧化物分级燃烧技术

低氮氧化物分级燃烧技术

一、氮氧化物的危害及排放标准

1.1、氮氧化物的危害

在燃料的燃烧过程中,氮氧化物的生成是燃烧反应的一部份:燃烧生成的氮氧化物主要是NO和NO2,统称为NOx。大气中的NOx溶于水后会生成为硝酸雨,酸雨会对环境带来广泛的危害,造成巨大的经济损失,如:腐蚀建筑物和工业设备;破坏露天的文物古迹;损坏植物叶面,导致森林死亡;使湖泊中鱼虾死亡;破坏土壤成分,使农作物减产甚至死亡;饮用酸化物造成的地下水,对人体有害。同样的酸浓度下硝酸雨对树木和农作物的损害是硫酸雨的1倍。NOx还对人的身体健康有直接损害,NOx浓度越大其毒性越强,因为它易于动物血液中的血色素结合,造成血液缺氧而引起中枢神经麻痹。

NOx经太阳紫外线照射与汽车尾气中的碳氢化合物同时存在时,能生成一种浅蓝色的有毒物质硝基化合物会形成光化学烟雾。城市光化学烟雾是指含有碳氢化合物和氮氧化物等一次污染物的城市大气,由于阳光辐射则发生化学反应所产生的生成物与反应物的特殊混合雾。光化学烟雾对人体有很大的刺激性和毒害作用。它刺激人的眼、鼻、气管和肺等器官,产生眼红流泪、气喘咳嗽等症状,长期慢性危害使肺机能减退、支气管发炎,甚至发展成癌。严重时可使人头晕胸痛,恶心呕吐,手足抽搐,血压下降,昏迷致死。光化学烟雾可导致成千上万人受害或死亡,还可使植物褪掉绿色、改变颜色,造成叶伤、叶落、花落和果落,直到减产或绝收。此外,还可使家畜发病率增高,使橡胶制品龟裂老化、腐蚀金属、损坏各种器物、材料和建筑物等。由于城市里氮氧化物和烃类排放量较大以及特有的气候条件,所以容易形成光化学烟雾。

1.2、氮氧化物的排放标准

2000年,我国氮氧化物排放量约为1177万吨,其中约63%源于燃煤。按照目前的排放控制水平,到2020年我国氮氧化物排放量将达到2363一2914万吨,超过美国成为第一大氮氧化物排放国。控制氮氧化物排放的问题已是刻不容缓。

2011年7月29日,国家环保总局发布新版《火电厂大气污染物排放标准》,以下简称“新标准”。新标准适用于使用单台出力65t/h 以上除层燃炉、抛煤机炉外的燃煤发电锅炉;各种容量的煤粉发电锅炉;单台出力65t/h 以上燃油、燃气发电锅

炉;各种容量的燃气轮机组的火电厂;单台出力65t/h 以上采用煤矸石、生物质、油页岩、石油焦等燃料的发电锅炉。

新标准中污染物排放控制要求:

(1)自2014 年7 月 1 日起,现有火力发电锅炉及燃气轮机组执行表 1 规定的烟尘、二氧化硫、氮氧化物和烟气黑度排放限值。

(2)自2012 年 1 月 1 日起,新建火力发电锅炉及燃气轮机组执行表 1 规定的烟尘、二氧化硫、氮氧化物和烟气黑度排放限值。

表1:

火力发电锅炉及燃气轮机组大气污染物排放浓度限值

单位:mg/m3(烟气黑度除外)

二、低NOx优化燃烧技术的分类及比较

为了实现清洁燃烧,目前降低燃烧中NO、排放污染的技术措施可分为两大类:一类是炉内脱氮,另一类是尾部脱氮。

2.1、炉内脱氮

炉内脱氮就是采用各种燃烧技术手段来控制燃烧过程中NOx的生成,又称低NOx燃烧技术,下表给出了现有几种典型炉内脱氮技术的比较。

表2:

2.2、尾部脱氮

尾部脱氮又称烟气净化技术,即把尾部烟气中已经生成的氮氧化物还原或吸附,从而降低NOx排放。烟气脱氮的处理方法可分为:催化还原法、液体吸收法和吸附法三大类。

催化还原法是在催化剂作用下,利用还原剂将NOx还原为无害的N2。这种方法虽然投资和运转费用高,且需消耗氨和燃料,但由于对NOx效率很高,设备紧凑,故在国外得到了广泛应用,催化还原法可分为选择性非催化还原法和选择性催化还原法相比,设备简单、运转资金少,是一种有吸引力的技术。

液体吸收法是用水或者其他溶液吸收烟气中的NOx。该法工艺简单,能够以硝酸盐等形式回收N进行综合利用,但是吸收效率不高。

吸附法是用吸附剂对烟气中的NOx进行吸附,然后在一定条件下使被吸附的NOx脱附回收,同时吸附剂再生。此法的NOx脱除率非常高,并且能回收利用。但一次性投资很高。

炉内脱氮与尾部脱氮相比,具有应用广泛、结构简单、经济有效等优点。表2中各种低NOx燃烧技术是降低燃煤锅炉NOx排放最主要也是比较成熟的技术措施。一般情况下,这些措施最多能达到50%的脱除率。当要进一步提高脱除率时,就要考虑采用尾部烟气脱氮的技术措施,SCR和SNCR法能大幅度地把NOx排放量降低到200mg/m3,但它的设备昂贵、运行费用很高。

根据我国发展现状和当前经济实力还不雄厚的国情,以及相对宽松的国家标准CB13223一2003,在今后相当长一段时间内,我国更适合发展投资少、效果也比较显著的炉内脱氮技术。即使采用烟气净化技术,同时采用低NOx燃煤技术来控制燃烧过程NOx的产生,以尽可能降低化设备的运行和维护费用。

表2中各炉内脱氮技术又以燃料分级效率较高。燃料再燃技术是有效的降低NOx排放的措施,早在1980年日本的三菱公司就将天然气再燃技术应用于实际锅炉,NOx排放减少50%以上。美国能源部的“洁净煤技术”计划也包括再燃技术,其示范项目分别采用煤或天然气作为再燃燃料,NOx排放减少30%到70%。在日本、

美国、欧洲再燃技术大量应用于新建电站锅炉和已有电站锅炉的改造,在商业运行中取得良好的环境效益和经济效益。在我国燃料再燃烧技术研究和应用起步较晚,主要是因为我国过去对环保的要求较低,另一方面则是出于技术经济上的考虑。进入90年代,我国严重缺电局面开始缓和,大气污染日益严重,1994年全国85个大中城市中NOx超标的城市就有30个,占35%。1998年对全国322个省控城市量监测结果分析,NOx年日平均值范围在0.006一0.152mg/m3,全国平均为0.037mg/m3,治理大气污染成为十分迫切的任务。随着环保要求的不断提高,研究适应我国国情的低成本的再燃低NOx燃烧技术具有良好的前景。

三、分级燃烧原理

抑制NOx 的生成可采取的措施有:

1、降低锅炉峰值温度,将燃烧区的煤粉量降低。

2、降低氧浓度(即降低过量空气系数),将部分二次风管堵住。

3、由于要保证锅炉的出力,可将部分煤粉和空气从锅炉上部投入,这样就控制了燃烧火焰中心区域助燃空气的数量,缩短燃烧产物在高温火焰区的停留时间,避免了高温和高氧浓度的同时存在。

4、在炉膛中设立再燃区,利用在主燃区中燃烧生成的烃根CHi和未完全燃烧产物CO、H2、C和CnHm等,将NO的还原成N2。

如示意图1所示。

图1 分级燃烧原理图

将80%~85%的燃料送入主燃区,燃料在主燃区燃烧生成NOx ,15%~20%的燃料送入再燃区,再燃区过量空气系数小于 1.0(α<1.0),具有很强的还原性气氛,在主燃区生成的NOx被还原;再燃区不仅能够还原已经生成的NOx,而且还抑制了新的NOx 生成;在燃尽区供给一定量的空气(称为燃尽风),保证从再燃区出来的未完全燃烧产物燃尽。根据超细煤粉再燃低NOx燃烧技术原理和前期的研究结果,将整个炉膛燃烧区划分为主燃区、再燃区和燃尽区。各区域出口过量空气系数目标值为:主燃区出口α=0.9~1.0,再燃区出口α=0.8~0.9,燃尽区出口α=1.167。锅炉主、再燃区均以锅炉实际燃用煤为燃料,主燃区燃烧80%~90%的浓煤粉,再燃区喷入10%~20%的超细化煤粉作为再燃燃料。

超细煤粉是指粒径小于43μm的煤粉,根据有关研究,这个尺度的煤粉有与雾化燃油相同的燃烧特性。在工程应用中,可以用浓淡分离器从常规煤粉中分离。四、分级燃烧的技术特点

1、优异的低负荷不投油稳燃能力

该设计的理念之一是建立煤粉早期浓缩着火,为此公司开发了高效浓淡分离装置、两层浓浓、淡淡一次风合用一层一次风室,中间完全分隔的一次风煤粉燃烧器、周界齿形的煤粉燃烧喷嘴,同时一次风煤粉反切射流技术,极大地提高锅炉的不投油低负荷稳燃能力。根据设计和校核煤种的着火特性,选用合适的煤粉浓缩比、煤粉喷嘴、和浓一次风反切角度,在煤种允许的变化范围内确保煤粉及时着火稳燃,并且燃烧器状态良好。

2、优异的煤粉高效燃尽、防结渣及高温腐蚀的特性

首先,高浓度煤粉的早期着火提高了燃烧效率;同时通过在炉膛的不同高度布置底部二次风、偏置二次风、上部OFA 和空间分离的S-OFA,将炉膛分成三个相对独立的部分:燃烧区,NOx还原区和燃尽区。在每个区域合理的控制各自的过量空气系数,这种改进的空气分级方法通过优化每个区域的过量空气系数,在有效降低NOx 排放的同时能最大限度地提高燃烧效率;第三,通过燃烧器区域的刚性偏置二次风,在炉膛壁面附近形成低煤粉浓度的氧化区,避免了炉膛结渣和高温腐蚀的发生。第四,本技术将煤粉浓淡分离,所有浓一次风煤粉都布置在了燃烧区域下部,相当于提高了煤粉燃尽高度及NOx还原高度,有利于提高锅炉燃烧效率及降低NOx 的排放水平。

3、超低的NOx燃烧排放特性

分级燃烧技术的最突出特点是超低NOx燃烧特性,在保证稳燃高效的前提下,通过采用高效浓淡分离技术、空间燃烧分级技术、一次风逆向射流等手段不仅保证煤粉早着火,稳定燃烧,通过采用上下、左右可调燃尽风喷口技术,实现炉内按需供风和降低炉膛出口烟温偏差,更重要的是实现了锅炉超低NOx的燃烧排放。

4、优异的小油点火稳燃能力。

该设计采用公司经过了大量工业应用的煤粉气化小油燃烧点火技术,在第一层的浓、淡一次风的煤粉燃烧器中布置了小油点火装置,可以在锅炉冷态以及热态启

动时完全不投入大油枪,极大地降低了锅炉的启动和在更低负荷下的稳燃油耗。

5、分离燃尽风SOAF还具有较好的降低炉膛出口烟温偏差特性

采用空间空气的分级燃烧技术不仅是降低NOx排放、提高煤粉燃尽率的重要手段,同时采用对SOFA的水平摆动调整,更有助于降低炉膛出口两侧烟温偏差而导致的过热器及再热器壁温偏差的作用

6、五大技术特点保证锅炉改造后大幅提高锅炉运行经济性

CEE超低NOx燃烧技术无任何运行成本,它不仅实现锅炉的超低NOx排放,同时实现了锅炉高效稳燃、防结渣、防高温腐蚀、低负荷不投油稳燃、锅炉小油点火稳燃的特性,扩大了锅炉的煤种适应性等功能,在工业化应用中取得了优异的效果。

五、改造方案(烟煤)

下面以典型的300MW四角切圆燃烧锅炉为例介绍基于分级燃烧技术的CEE低氮燃烧技术:

整个燃烧系统的各喷嘴布置示意见图2所示。

图2. 锅炉燃烧系统各喷嘴布置示

图3 CEE 燃烧技术的炉膛纵向空间 燃烧组织示意图

首先,采用在各煤粉管道中布置的的旋风分离器对一次风煤粉进行浓淡分离,两个浓浓、淡淡的一次风煤粉进入一个一次风室,构成一个一室两层的煤粉燃烧器。从下往上,一次风煤粉喷嘴依次为:两室四层浓浓一次风、一层浓淡一次风、两层淡淡一次风,见图2所示。

第二,将燃烧区域分成上下三个区域,下部为由两层四室浓一次风构成的主燃烧稳燃区,中部为两层四室的淡一次风构成的NOx 还原区,顶部为由在主燃烧区上部布置的两层分离SOFA 构成的燃尽区,见图3所示。

第三,在炉膛燃烧区域的水平截面,一次风喷嘴射流反切,在每层浓一次风喷嘴上部布置一层刚性的偏置二次风,这样构成了在炉膛中央的高浓度煤粉、高温、低氧的主燃烧区,在炉膛壁面附近构成了低煤粉浓度、低温、高过量空气系数的氧化区;同时SOFA 燃尽风喷嘴反切,并可水平、上下摆动,调节炉膛出口火焰温度和避免炉膛出口两侧烟温偏差,见图3、图4、图5所示。

第四,一次风煤粉燃烧器采用齿形低NOx 煤粉喷嘴,见图4所示。

该结构类似于图5 CEE 主燃烧器区域炉膛水平截面燃烧组织示意图

WR宽调节比燃烧器,但采用了本公司的摆动配合结构,减少了煤粉喷嘴的周界风设计,而在煤粉喷嘴上下两侧各增加了一层二次风。

第五,在最下层的浓一次风和淡一次风燃烧器布置小油点火装置,以保证冷热态锅炉启动的少油点火启动,以及实现锅炉非正常的超低负荷(低于的30%MCR)的节油稳燃。

六、CEE超低NOx燃烧系统技术特点

CEE技术的最突出特点是超低NOx燃烧特性,在保证稳燃高效的前提下,通过采用高效浓淡分离技术、空间燃烧分级技术、一次风逆向射流等手段不仅保证煤粉早着火,稳定燃烧,通过采用上下、左右可调燃尽风喷口技术,实现炉内按需供风和降低炉膛出口烟温偏差,更重要的是实现了锅炉超低NOx的燃烧排放。它包含了两大核心技术特点:

(一)、纵向空间的三区分布

在距主燃烧器区顶部约3米以上,布布置了三层SOFA燃尽风,约占总风量的25%左右,它首先保证了主燃烧器区与高位燃尽风之间有足够的还原高度,是降低燃料型及热力型NOx的主要手段;同时,所有燃尽风喷口均设计为可上下左右摆动喷口,实现按需靶向送风及调整锅炉出口烟温偏差。

将主燃烧区分成上下两个浓淡燃烧空间,对于300MW锅炉的五层煤粉燃烧器,下部布置两室四层的浓一次风煤粉低NOx齿形燃烧器,中间为第三室的浓淡上下分离低NOx齿形煤粉燃烧器,上部为两室四层的淡一次风煤粉低NOx齿形燃烧器,上下四室八层的浓、淡煤粉喷嘴都可以分层独立调节。一次风煤粉全部采用公司开发的管道型高效低阻力旋风分离器,分离后浓淡比为8:2(质量浓度比),阻力约200Pa左右。

这样在主燃烧区域,构成的下部四层浓煤粉燃烧器组成具有高着火稳燃特性的主燃烧区,保证占锅炉80%左右的煤粉的下部整体集中布置,对着火燃尽有利,运行时通过调整可以适当降低此区域的过量空气系数,此区域炉温达到较高水平,在缺氧的状态下,NOx还原物大量析出,进入主燃烧区上部,还原已生成的NOx,运行时此区域过量空气系数在1.0左右,保证锅炉炉膛主燃烧区足够高的温度水平。

该技术在炉膛纵向空间上构成了大空间尺度的燃料上下浓淡分级燃烧、空气分级燃烧特性,对于降低煤粉燃烧的燃料型NOx形成和热力型NOx形成具有极其明

显的效果。

(二)、燃烧区域水平截面的两区分布

在主燃烧区域,本技术将所有浓、淡一次风射流采用反切布置,同时在两层一次风之间,布置一层刚性偏置二次风射流,其余主燃烧器二次风维持原切圆射流角度不变。

该设计在炉膛水平截面上形成了特性截然不同的中心区与近壁区燃烧空间分布。浓、淡一次风反切使一次风煤粉气流逆向冲进上游来的高温烟气,使煤粉在此区域着火燃烧,对稳燃及燃尽相当有利。有利于在炉膛主燃烧器区域组织一个高煤粉浓度、高温、低氧的燃烧核心区。同时,在较低的过量空气系数下,燃料型NOx 的生成会得到有效抑制,较低的燃烧温度可在根本上抑制温度型NOx的产生,从而达到炉内燃烧低NOx的目标。

七、CEE超低NOx燃烧系统技术改造指标

1. 锅炉额定负荷下,锅炉的效率大于94%,飞灰含碳量小于2%;

2. 锅炉额定负荷下,锅炉NOx排放量为150~180 mg/Nm3;在BMCR负荷下,NOx排放量低于180mg/Nm3;

3. 相比于改造前,锅炉启动的节油率达到80%以上;

4. 炉膛不结渣,无高温腐蚀情况发生;

5. 锅炉最低不投油稳燃负荷为35%MCR;

6. 炉膛出口两侧烟温偏差减小15℃,各受热面受热均匀,受热面壁温正常;

7. 一次风煤粉燃烧器更换寿命4年以上;

低氮分级燃烧技术的介绍

低氮分级燃烧技术 一.低NO x优化燃烧技术的分类及比较 为了实现清洁燃烧,目前降低燃烧中NO、排放污染的技术措施可分为两大类:一类是炉脱氮,另一类是尾部脱氮。 1.1炉脱氮 炉脱氮就是采用各种燃烧技术手段来控制燃烧过程中NO x的生成,又称低NO x 燃烧技术,下表给出了现有几种典型炉脱氮技术的比较。 表2

1.2尾部脱氮 尾部脱氮又称烟气净化技术,即把尾部烟气中已经生成的氮氧化物还原或吸附,从而降低NO x排放。烟气脱氮的处理方法可分为:催化还原法、液体吸收法和吸附法三大类。 催化还原法是在催化剂作用下,利用还原剂将NO x还原为无害的N2。这种方法虽然投资和运转费用高,且需消耗氨和燃料,但由于对NO x效率很高,设备紧凑,故在国外得到了广泛应用,催化还原法可分为选择性非催化还原法和选择性催化还原法相比,设备简单、运转资金少,是一种有吸引力的技术。 液体吸收法是用水或者其他溶液吸收烟气中的NO x。该法工艺简单,能够以硝酸盐等形式回收N进行综合利用,但是吸收效率不高。 吸附法是用吸附剂对烟气中的NO x进行吸附,然后在一定条件下使被吸附的NO x脱附回收,同时吸附剂再生。此法的NO x脱除率非常高,并且能回收利用。但一次性投资很高。 炉脱氮与尾部脱氮相比,具有应用广泛、结构简单、经济有效等优点。表2中各种低NO x燃烧技术是降低燃煤锅炉NO x排放最主要也是比较成熟的技术措施。一般情况下,这些措施最多能达到50%的脱除率。当要进一步提高脱除率时,就要考虑采用尾部烟气脱氮的技术措施,SCR和SNCR法能大幅度地把NO x排放量降低到200mg/m3,但它的设备昂贵、运行费用很高。 根据我国发展现状和当前经济实力还不雄厚的国情,以及相对宽松的国家标准CB13223一2003,在今后相当长一段时间,我国更适合发展投资少、效果也比较显著的炉脱氮技术。即使采用烟气净化技术,同时采用低NO x燃煤技术来控制燃烧过程NO x的产生,以尽可能降低化设备的运行和维护费用。

低氮燃烧的原理教学内容

低氮燃烧的原理

氮氧化物的生成与温度有密切的关系,一般火焰温度越高,氮氧化物的生成越多,反之亦然,这也是流化床炉得以环保的原因之一。低氮燃烧器一般把一次风分成浓淡两股,浓相在内,更靠近火焰中心;淡相在外,贴近水冷壁。浓相在内着火时,火焰温度相对较高,但是氧气比相对较少,故生成的氮氧化物的几率相对减少;淡相在外,氧气比相对较大,但由于距火焰高温区域较远,温度相对较低,故氮氧化物的生成也不会很多。 根据氮氧化合物生成机理,影响氮氧化合物生成量的因素主要有火焰温度、燃烧器区段氧浓度、燃烧产物在高温区停留时间和煤的特性,而降低氮氧化合物生成量的途径主要有两个方面:降低火焰温度,防止局部高温;降低过量空气系数和氧浓度,使煤粉在缺氧的条件下燃烧。 简介:用改变燃烧条件的方法来降低NOx的排放,统称为低NOx燃烧技术。在各种降低NOx排放的技术中,低NOx燃烧技术采用最广、相对简单、经济并且有效。 关键字:燃烧条件 NOx NOx燃烧技术低NOx燃烧器 用改变燃烧条件的方法来降低NOx的排放,统称为低NOx燃烧技术。在各种降低NOx排放的技术中,低NOx燃烧技术采用最广、相对简单、经济并且有效。 目前主要有以下几种: 1 低过量空气燃烧

使燃烧过程尽可能在接近理论空气量的条件下进行,随着烟气中过量氧的减少,可以抑制NOx的生成。这是一种最简单的降低NOx排放的方法。一般可降低NOx排放15-20%。但如炉内氧浓度过低(3%以下),会造成浓度急剧增加,增加化学不完全燃烧热损失,引起飞灰含碳量增加,燃烧效率下降。因此在锅炉设计和运行时,应选取最合理的过量空气系数。 2 空气分级燃烧 基本原理是将燃料的燃烧过程分阶段完成。在第一阶段,将从主燃烧器供入炉膛的空气量减少到总燃烧空气量的70-75%(相当于理论空气量的80%),使燃料先在缺氧的富燃料燃烧条件下燃烧。此时第一级燃烧区内过量空气系数α<1,因而降低了燃烧区内的燃烧速度和温度水平。因此,不但延迟了燃烧过程,而且在还原性气氛中降低了生成NOx的反应率,抑制了NOx在这一燃烧中的生成量。为了完成全部燃烧过程,完全燃烧所需的其余空气则通过布置在主燃烧器上方的专门空气喷口OFA(over fire air)――称为"火上风"喷口送入炉膛,与第一级燃烧区在"贫氧燃烧"条件下所产生的烟气混合,在α>1的条件下完成全部燃烧过程。由于整个燃烧过程所需空气是分两级供入炉内,故称为空气分级燃烧法。 这一方法弥补了简单的低过量空气燃烧的缺点。在第一级燃烧区内的过量空气系数越小,抑制NOx的生成效果越好,但不完全燃烧产物越多,导致燃烧效率降低、引起结渣和腐蚀的可能性越大。因此为保证既能减少NOx的排放,又保证锅炉燃烧的经济性和可*性,必须正确组织空气分级燃烧过程。

低氮燃烧器运行探讨

低氮燃烧器运行调整探讨 0绪论 根据锅炉烟气氮氧化合物生成机理,影响氮氧化合物生成量的因素主要有火焰温度、燃烧器区段氧浓度、燃烧产物在高温区停留时间和煤的特性,而降低氮氧化合物生成量的途径主要有两个方面:降低火焰温度,防止局部高温;降低过量空气系数和氧浓度,使煤粉在缺氧的条件下燃烧。 在各种降低NOx排放的技术中,低NOx燃烧技术采用最广、相对简单、经济并且有效。目前主要有以下几种形式:低过量空气燃烧、空气分级燃烧、燃料分级燃烧、烟气再循环。空气分级低氮燃烧技术是目前应用最广泛的低NOx燃烧技术,其主要原理是将燃烧所需的部分空气,一般称之为“分离燃尽风(SOFA)”,从炉膛上部送入,使锅炉的主燃烧器区域处于还原性气氛并在主燃烧器与SOFA燃烧器之间形成一段“还原区”,抑制NOx的生成并还原已生成的NOx,降低锅炉氮氧化物的排放。采用空气分级低NOx燃烧技术改造之后,炉膛的温度场分布将会发生较大变化,主要表现为主燃区温度降低,火焰中心上移。我公司低氮燃烧器改造也主要采用了空气分级技术。1低氮燃烧器对锅炉运行的影响 从很多电厂低氮燃烧器改造情况来看,普遍存在汽温(尤其是再热汽温)偏低,飞灰可燃物偏大的情况。主要受影响因素是锅炉的设

计情况及燃用煤质。通过燃烧调整、二次风配比、SOFA风配比,部分厂汽温参数基本达到了设计值,飞灰可燃物有明显降低。 低氮燃烧器改造后,炉内温度场的变化将会对炉膛出口烟温及汽温特性产生较大影响。这主要表现在以下两个方面: 1)纯从燃烧角度来讲,锅炉采用空气分级低氮燃烧技术改造之后,燃烧延迟,火焰中心上移,炉膛出口烟温上升,锅炉的过热汽温、再热汽温上升。 2)锅炉采用空气分级低氮燃烧技术改造之后,主燃区的温度下降较多,炉内温度分布更加均匀。水冷壁的沾污结渣情况会有很大改善,炉内水冷壁吸热增强,炉膛出口烟温下降,锅炉的过热汽温、再热汽温下降。 锅炉低氮燃烧改造之后的汽温特性变化情况主要受以上两个因素影响,哪个因素的影响占主导地位主要取决于锅炉的设计情况及燃用煤质情况。 从各厂空气分级低氮燃烧器运行情况来看,采用设计煤种,随着分离燃尽风(SOFA)风量的增加,主燃区过量空气系数降低,过热器温升、再热器温升均有较大增加。 2我公司低氮燃烧器的运行调整 我公司低氮燃烧器投运以来,主要问题有汽温偏低及甲乙侧汽温偏差大、飞灰可燃物偏大。从运行调整情况来看,建议从以下方面考虑:

低氮燃烧的原理

氮氧化物的生成与温度有密切的关系,一般火焰温度越高,氮氧化物的生成越多,反之亦然,这也是流化床炉得以环保的原因之一。低氮燃烧器一般把一次风分成浓淡两股,浓相在内,更靠近火焰中心;淡相在外,贴近水冷壁。浓相在内着火时,火焰温度相对较高,但是氧气比相对较少,故生成的氮氧化物的几率相对减少;淡相在外,氧气比相对较大,但由于距火焰高温区域较远,温度相对较低,故氮氧化物的生成也不会很多。 根据氮氧化合物生成机理,影响氮氧化合物生成量的因素主要有火焰温度、燃烧器区段氧浓度、燃烧产物在高温区停留时间和煤的特性,而降低氮氧化合物生成量的途径主要有两个方面:降低火焰温度,防止局部高温;降低过量空气系数和氧浓度,使煤粉在缺氧的条件下燃烧。 简介:用改变燃烧条件的方法来降低NOx的排放,统称为低NOx燃烧技术。在各种降低NOx排放的技术中,低NOx燃烧技术采用最广、相对简单、经济并且有效。 关键字:燃烧条件NOx燃烧技术低NOx燃烧器 用改变燃烧条件的方法来降低NOx的排放,统称为低NOx燃烧技术。在各种降低NOx排放的技术中,低NOx燃烧技术采用最广、相对简单、经济并且有效。

目前主要有以下几种: 1 低过量空气燃烧 使燃烧过程尽可能在接近理论空气量的条件下进行,随着烟气中过量氧的减少,可以抑制NOx的生成。这是一种最简单的降低NOx排放的方法。一般可降低NOx排放15-20%。但如炉内氧浓度过低(3%以下),会造成浓度急剧增加,增加化学不完全燃烧热损失,引起飞灰含碳量增加,燃烧效率下降。因此在锅炉设计和运行时,应选取最合理的过量空气系数。 2 空气分级燃烧 基本原理是将燃料的燃烧过程分阶段完成。在第一阶段,将从主燃烧器供入炉膛的空气量减少到总燃烧空气量的70-75%(相当于理论空气量的80%),使燃料先在缺氧的富燃料燃烧条件下燃烧。此时第一级燃烧区内过量空气系数α<1,因而降低了燃烧区内的燃烧速度和温度水平。因此,不但延迟了燃烧过程,而且在还原性气氛中降低了生成NOx的反应率,抑制了NOx在这一燃烧中的生成量。为了完成全部燃烧过程,完全燃烧所需的其余空气则通过布置在主燃烧器上方的专门空气喷口OFA(over fire air)――称为"火上风"喷口送入炉膛,与第一级燃烧区在"贫氧燃烧"条件下所产生的烟气混合,在α>1

低氮燃烧技术

低氮燃烧技术 1 水泥窑炉系统NO X形成机理大致介绍 2 现有低氮燃烧技术大致介绍 3 低氮燃烧技术的效果 4 改变燃料物化性能 5 提高生料易烧性 6、新型干法水泥应对脱硝的相应措施 1、水泥窑炉系统NO X形成机理大致介绍 1.1NO X的生成机理 窑炉内产生的NO X主要有三种形式,高温下N2与O2反应生成的热力型NO X、燃料中的固定氮生成的燃料型NO X、低温火焰下由于含碳自由基的存在生成的瞬时型NO X. 1.2热力型NO X:由于是燃烧反应的高温使得空气中的N2与O2直接反应而产生的,以煤为主要燃料的系统中,热力型NO X为辅。 一般燃烧过程中N2的含量变化不大,根据泽里多维奇机理,影响热力型NOX 生成量的主要因素有温度、氧含量、和反应时间。 热力型NOX产生过程是强的吸热反应,温度成为热力型NOX生成最显著影响因素。研究显示,温度在1500K以下时,NO生成速度很小,几乎不生成热力型NO,1800K以下时,NO生成量极少,大于1800K时,NO生成速度每100K约增加6-7倍。 温度在1500K以上时,NO2会快速分解为NO,在小于1500K时,NO将转变为NO2,一般废气中NO2占NO X的5-10%,排入大气中NO最终生成NO2,所以在计算环境影响量时,还是以NO2来计算。 可以说,窑炉内的温度及燃烧火焰的最高温度是影响热力型NO X生成量的一个重要指标,也最终决定了热力型NO X的最大生成量。因此,在窑炉设计中,尽量降低窑炉内的温度并减少可能产生的高温区域,特别是流场变化等原因而产生的局部高温区。燃烧器设计中,要具备相对均匀的燃烧区域来保证燃料的燃烧,降低火焰的最高温度。这些都是有效降低热力型NO X的有效办法。

海螺白马山低氮分级燃烧技术脱氮效率达30

海螺白马山低氮分级燃烧技术脱氮效率达30% 纯阅读来源:安徽海螺集团白马山水泥厂崔少俊发布日期:2015-01-20 通过对缩口尺寸、撒料板角度、分解炉燃烧器角度、新增三次风管尺寸等关键部位数据进行技改后,经过分级燃烧脱氮和精细化操作的摸索,现生产线产量稳定,质量受控,脱氮效率达到30%以上,达到了明显的环保减排目的。 摘要:通过对缩口尺寸、撒料板角度、分解炉燃烧器角度、新增三次风管尺寸等关键部位数据进行技改后,经过分级燃烧脱氮和精细化操作的摸索,现生产线产量稳定,质量受控,脱氮效率达到30%以上,达到了明显的环保减排目的。 0 前言 为响应《国家环境保护“十二五”规划》中把氮氧化物降低10%的“十二五”目标值,2012年12月26日,海螺(295.04元/吨,-0.14%)集团白马山水泥厂5000t/d生产线脱氮技改项目正式启动,于2013年1月11日改造结束。 技改前,我公司参与了优化设计;技改过程中,则进行实时跟踪监控,严格按图纸施工,以确保技改后缩口尺寸、撒料板角

度、分解炉燃烧器角度、新增三次风管尺寸等关键部位数据与图纸相符合。技改后,经过分级燃烧脱氮和精细化操作的摸索,现生产线产量稳定,质量受控,脱氮效率达到30%以上,达到了明显的环保减排目的。 1 技改方案 白马山5000t/d新型干法线的窑尾系统采用了GDC预热分解系统。如何保持和发挥CDC预热分解的优势,同时又充分满足低氮分级燃烧的需求,成为技改的关键。图1为CDC分解炉脱氮改造示意图。 水泥熟料生产过程中,燃料燃烧产生的NOx,主要由燃料型NOx、热力型NOx,两种类型。其中燃料型NOx是由燃料和原料中的氮氧化物反应生成;热力型NOx主要是由在温度高于1 500℃时,空气中的N2和O2反应而生成。回转窑中烧成带火焰温度高达1 500℃以上,除产生燃料型NO X外,大量助燃空气中的氮在高温下被氧化产生大量的热力型NOx。分解炉

低氮燃烧技术

低氮燃烧技术 Prepared on 24 November 2020

燃煤锅炉的低NO x燃烧技术NO x是对N2O、NO2、NO、N2O5以及PAN等氮氧化物的统称。在煤的燃 烧过程中,NO x生成物主要是NO和NO2,其中尤以NO是最为重要。实验表明,常规燃煤锅炉中NO生成量占NO x总量的90%以上,NO2只是在高温烟气 在急速冷却时由部分NO转化生成的。N2O之所以引起关注,是由于其在低温 燃烧的流化床锅炉中有较高的排放量,同是与地球变暖现象有关,对于N2O的生成和抑制的内容我们将结合流化床燃烧技术进行介绍。 因此在本章的讨论中,NO x即可以理解为NO和NO2。 一、燃煤锅炉NO x的生成机理 根据NO x中氮的来源及生成途径,燃煤锅炉中NO x的生成机理可以分为三类:即热力型、燃料型和快速型,在这三者中,又以燃料型为主。它们各自的生成量和炉膛温度的关系如图3-1所示。试验表明,燃煤过程生成的NO x中NO 占总量的90%,NO2只占5%~10%。 1、热力型NO x 热力型NO x是参与燃烧的空气中的氮在高温下氧化产生的,其生成过程是 一个不分支的链式反应,又称为捷里多维奇(Zeldovich)机理 →(3-1) O O2 2 O+ + → N N NO (3-2) 2 → N+ + NO O O (3-3) 2 如考虑下列反应 → +(3-4) N+ OH NO H 则称为扩大的捷里多维奇机理。由于N≡N三键键能很高,因此空气中的氮非常稳定,在室温下,几乎没有NO x生成。但随着温度的升高,根据阿仑尼乌斯(Arrhenius)定律,化学反应速率按指数规律迅速增加。实验表明,当温度超 过1200℃时,已经有少量的NO x生成,在超过1500℃后,温度每增加100℃,反应速率将增加6~7倍,NO x的生成量也有明显的增加,如图3-1所示。 但总体上来说,热力型NO x的反应速度要比燃烧反应慢,而且温度对其生 成起着决定性的影响。对于煤的燃烧过程,通常热力型NO x不是主要的,可以

低氮分级燃烧技术介绍

低氮分级燃烧技术介绍 Prepared on 22 November 2020

低氮分级燃烧技术 一.低NO x优化燃烧技术的分类及比较 为了实现清洁燃烧,目前降低燃烧中NO、排放污染的技术措施可分为两大类:一类是炉内脱氮,另一类是尾部脱氮。 炉内脱氮 炉内脱氮就是采用各种燃烧技术手段来控制燃烧过程中NO x的生成,又称低NO x燃烧技术,下表给出了现有几种典型炉内脱氮技术的比较。 表2

尾部脱氮 尾部脱氮又称烟气净化技术,即把尾部烟气中已经生成的氮氧化物还原或吸附,从而降低NO x排放。烟气脱氮的处理方法可分为:催化还原法、液体吸收法和吸附法三大类。 催化还原法是在催化剂作用下,利用还原剂将NO x还原为无害的N2。这种方法虽然投资和运转费用高,且需消耗氨和燃料,但由于对NO x效率很高,设备紧凑,故在国外得到了广泛应用,催化还原法可分为选择性非催化还原法和选择性催化还原法相比,设备简单、运转资金少,是一种有吸引力的技术。 液体吸收法是用水或者其他溶液吸收烟气中的NO x。该法工艺简单,能够以硝酸盐等形式回收N进行综合利用,但是吸收效率不高。 吸附法是用吸附剂对烟气中的NO x进行吸附,然后在一定条件下使被吸附的NO x脱附回收,同时吸附剂再生。此法的NO x脱除率非常高,并且能回收利用。但一次性投资很高。 炉内脱氮与尾部脱氮相比,具有应用广泛、结构简单、经济有效等优点。表2中各种低NO x燃烧技术是降低燃煤锅炉NO x排放最主要也是比较成熟的技术措施。一般情况下,这些措施最多能达到50%的脱除率。当要进一步提高脱除率时,就要考虑采用尾部烟气脱氮的技术措施,SCR和SNCR法能大幅度地把NO x排放量降低到200mg/m3,但它的设备昂贵、运行费用很高。 根据我国发展现状和当前经济实力还不雄厚的国情,以及相对宽松的国家标准CB13223一2003,在今后相当长一段时间内,我国更适合发展投资少、效

低氮燃烧技术

燃煤锅炉的低NO x 燃烧技术 NO x 是对N 2O 、NO 2、NO 、N 2O 5以及PAN 等氮氧化物的统称。在煤的燃烧过程中,NO x 生成物主要是NO 和NO 2,其中尤以NO 是最为重要。实验表明,常规燃煤锅炉中NO 生成量占NO x 总量的90%以上,NO 2只是在高温烟气在急速冷却时由部分NO 转化生成 的。N 2O 之所以引起关注,是由于其在低温燃烧的流化床锅炉中有较高的排放量,同 是与地球变暖现象有关,对于N 2O 的生成和抑制的内容我们将结合流化床燃烧技术 进行介绍。 因此在本章的讨论中,NO x 即可以理解为NO 和NO 2。 一、燃煤锅炉NO x 的生成机理 根据NO x 中氮的来源及生成途径,燃煤锅炉中NO x 的生成机理可以分为三类: 即热力型、燃料型和快速型,在这三者中,又以燃料型为主。它们各自的生成量和炉膛温度的关系如图3-1所示。试验表明,燃煤过程生成的NO x 中NO 占总量的90%,NO 2只占5%~10%。 1、热力型NO x 热力型NO x 是参与燃烧的空气中的氮在高温下氧化产生的,其生成过程是一个不分支的链式反应,又称为捷里多维奇(Zeldovich )机理 O O 22 (3-1)

(3-2) N → + NO O+ N 2 (3-3) + → NO O O N+ 2 如考虑下列反应 → N+ +(3-4) OH NO H 则称为扩大的捷里多维奇机理。由于N≡N三键键能很高,因此空气中的氮非常稳定,在室温下,几乎没有NO x生成。但随着温度的升高,根据阿仑尼乌斯(Arrhenius)定律,化学反应速率按指数规律迅速增加。实验表明,当温度超过1200℃时,已经有少量的NO x生成,在超过1500℃后,温度每增加100℃,反应速率将增加6~7倍,NO x的生成量也有明显的增加,如图3-1所示。 但总体上来说,热力型NO x的反应速度要比燃烧反应慢,而且温度对其生成起着决定性的影响。对于煤的燃烧过程,通常热力型NO x不是主要的,可以不予考虑。一般来说通过降低火焰温度、控制氧浓度以及缩短煤在高温区的停留时间可以抑制热力型NO x的生成。 2、快速型NO x 快速型NO x中的氮的来源也是空气中的氮,但它是遵循一条不同于捷里多维奇机理的途径而快速生成的。其生成机理十分复杂,如图3-2所示。 通常认为快速型NO x是由燃烧过程中的形成活跃的中间产物CH 与空气中的氮反 i 应形成HCN、NH和N等,再进一步氧化而形成的。在煤的燃烧过程中,煤炭挥发分

低氮氧化物分级燃烧技术

低氮氧化物分级燃烧技术

一、氮氧化物的危害及排放标准 1.1、氮氧化物的危害 在燃料的燃烧过程中,氮氧化物的生成是燃烧反应的一部份:燃烧生成的氮氧化物主要是NO和NO2,统称为NOx。大气中的NOx溶于水后会生成为硝酸雨,酸雨会对环境带来广泛的危害,造成巨大的经济损失,如:腐蚀建筑物和工业设备;破坏露天的文物古迹;损坏植物叶面,导致森林死亡;使湖泊中鱼虾死亡;破坏土壤成分,使农作物减产甚至死亡;饮用酸化物造成的地下水,对人体有害。同样的酸浓度下硝酸雨对树木和农作物的损害是硫酸雨的1倍。NOx还对人的身体健康有直接损害,NOx浓度越大其毒性越强,因为它易于动物血液中的血色素结合,造成血液缺氧而引起中枢神经麻痹。 NOx经太阳紫外线照射与汽车尾气中的碳氢化合物同时存在时,能生成一种浅蓝色的有毒物质硝基化合物会形成光化学烟雾。城市光化学烟雾是指含有碳氢化合物和氮氧化物等一次污染物的城市大气,由于阳光辐射则发生化学反应所产生的生成物与反应物的特殊混合雾。光化学烟雾对人体有很大的刺激性和毒害作用。它刺激人的眼、鼻、气管和肺等器官,产生眼红流泪、气喘咳嗽等症状,长期慢性危害使肺机能减退、支气管发炎,甚至发展成癌。严重时可使人头晕胸痛,恶心呕吐,手足抽搐,血压下降,昏迷致死。光化学烟雾可导致成千上万人受害或死亡,还可使植物褪掉绿色、改变颜色,造成叶伤、叶落、花落和果落,直到减产或绝收。此外,还可使家畜发病率增高,使橡胶制品龟裂老化、腐蚀金属、损坏各种器物、材料和建筑物等。由于城市里氮氧化物和烃类排放量较大以及特有的气候条件,所以容易形成光化学烟雾。 1.2、氮氧化物的排放标准 2000年,我国氮氧化物排放量约为1177万吨,其中约63%源于燃煤。按照目前的排放控制水平,到2020年我国氮氧化物排放量将达到2363一2914万吨,超过美国成为第一大氮氧化物排放国。控制氮氧化物排放的问题已是刻不容缓。 2011年7月29日,国家环保总局发布新版《火电厂大气污染物排放标准》,以下简称“新标准”。新标准适用于使用单台出力65t/h 以上除层燃炉、抛煤机炉外的燃煤发电锅炉;各种容量的煤粉发电锅炉;单台出力65t/h 以上燃油、燃气发电锅

低氮氧化燃烧简介资料

低氮氧化物分级燃烧技术 大唐节能科技有限公司 2010年

公司简介 大唐节能科技有限公司是中国大唐集团为响应国家节约能源、发展循环经济、建设资源节约型、环境友好型社会的号召,而建立的科技公司之一。旨在通过在节能领域的技术研发、设备制造、项目开发、确保在技能领域技术资源的集中、专业化管理,利用科学技术优势和技术创新,把节能公司建设成为国内一流、国际领先的高科技型企业。 作为中国大唐集团科技创新体系中的一个重要组成部分 “大唐节能科技”的使命是组织、开发、推广: 节能环保新技术 新能源技术 电力行业高新技术

一. 氮氧化物的危害及排放标准 1.1氮氧化物的危害 在燃料的燃烧过程中,氮氧化物的生成是燃烧反应的一部份:燃烧生成的氮氧化物主要是NO和NO2,统称为NOx。大气中的NOx溶于水后会生成为硝酸雨,酸雨会对环境带来广泛的危害,造成巨大的经济损失,如:腐蚀建筑物和工业设备;破坏露天的文物古迹;损坏植物叶面,导致森林死亡;使湖泊中鱼虾死亡;破坏土壤成分,使农作物减产甚至死亡;饮用酸化物造成的地下水,对人体有害。同样的酸浓度下硝酸雨对树木和农作物的损害是硫酸雨的1倍。NOx还对人的身体健康有直接损害,NOx浓度越大其毒性越强,因为它易于动物血液中的血色素结合,造成血液缺氧而引起中枢神经麻痹。 NOx经太阳紫外线照射与汽车尾气中的碳氢化合物同时存在时,能生成一种浅蓝色的有毒物质硝基化合物会形成光化学烟雾。城市光化学烟雾是指含有碳氢化合物和氮氧化物等一次污染物的城市大气,由于阳光辐射则发生化学反应所产生的生成物与反应物的特殊混合雾。光化学烟雾对人体有很大的刺激性和毒害作用。它刺激人的眼、鼻、气管和肺等器官,产生眼红流泪、气喘咳嗽等症状,长期慢性危害使肺机能减退、支气管发炎,甚至发展成癌。严重时可使人头晕胸痛,恶心呕吐,手足抽搐,血压下降,昏迷致死。光化学烟雾可导致成千上万人受害或死亡,还可使植物褪掉绿色、改变颜色,造成叶伤、叶落、花落和果落,直到减产或绝收。此外,还可使家畜发病率增高,使橡胶制品龟裂老化、腐蚀金属、损坏各种器物、材料和建筑物等。由于城市里氮氧化物和烃类排放量较大以及特有的气候条件,所以容易形成光化学烟雾。 1.2氮氧化物的排放标准 2000年,我国氮氧化物排放量约为1177万吨,其中约63%源于燃煤。按照目前的排放控制水平,到2020年我国氮氧化物排放量将达到2363一2914万吨,超过美国成为第一大氮氧化物排放国。控制氮氧化物排放的问题已是刻不容缓。

低氮燃烧炉内脱硝技术介绍

低氮燃烧炉内脱硝技术介绍 低NOx燃烧方案 NO系列低NOx燃烬风系统是LPAmina公司的核心技术,主要由NO30、NO50、NO70三大方案组成。低NOx系统基于空气分级原理,通过增加燃烬风系统降低NOx排放量,同时兼顾强化燃烧、进步燃烧效率,防止结渣、高温腐蚀,优化机组性能等。我们针对不同客户情况,使用相应的燃烧布置方案。尽可能的保存原结构,保持锅炉运行参数不发生变化,实现改造的有效性和经济性。 低NOx方案的制定以对机组的全面了解和正确分析为条件,它涉及对机组设计、运行的数据的广泛采集和对比验证,方案设计基于公道有效的机组信息,采用计算流体力学模拟软件,并结合综合模拟试验,对机组改造前后的情况进行比对,保证改造的有效性,经济性和可靠性。 针对不同锅炉的低NOx解决方案 LPAmina根据客户需求提供一系列的低NOx解决方案。在美国有25%的电厂采用了我们的技术,应用在四角切圆、墙式燃炉和W火焰等形式的锅炉项目上,机组大小从50MW到1000MW。我们的方案基于对整个燃烧系统的评估,通常会包括燃烧器改造、增加OFA或SOFA等,达到降低NOx,减少结渣,进步锅炉效率的目的。 四角切圆炉解决方案 LPAmina提供三种方案帮助客户降低NOx。NO30方案保持原有风箱高度,压缩主燃烧区,尽可能利用原有OFA喷口。如锅炉没有OFA喷口,就需要改造现有风箱,转移一部分空气到顶部喷口。主风箱的顶二次风及上层煤粉喷口位置通常被用来安装新的OFA喷口。在这种情况下,主要是通过减少主燃烧区的氧气量达到减少燃料型NOx的目的。

NO50方案采用了火上风(SOFA)技术。在实验室和实际应用中均已证实:SOFA喷口与主燃烧区域间隔较远,能够很大程度上减少NOx的天生。NO30方案相对简单,由于它的OFA流量小,间隔主燃烧区近,降低NOx的能力有限,而NO50方案,间隔增加,风量增加,减少NOx 的能力也有较大的进步。由于SOFA风与主燃烧区域分离,使得主燃烧区处于富燃料状态,这将有利于燃料型NOx转化成N2成分。同时,分级燃烧避免了炉内局部温度过高,这样也有利于减少热力型NOx的天生。 NO70方案综合了NO30和NO50,NO70能够最大程度上进行空气分级,是降低NOx最有效的方法。 墙式锅炉解决方案 No70R低氮燃烧器应用于燃煤或煤油混燃的墙式燃炉。在全世界安装使用超过2000支。同四角切圆锅炉解决方案相同,No70R燃烧器在垂直和水平方向产生分级燃烧效果。通过使用专利的文丘里喷口和低旋分配器,可以有效降低NOx。在喷口中心一次风聚集,形成富燃料区域,当通过分配器后,煤粉流被叶片分成四股,这些煤粉流螺旋状进进炉膛,产生煤粉与二次风的逐步混合。二次风依次通过挡板、燃烧器筒身及导流板进进炉膛,在燃烧器出口形成富燃料区,能有效降低燃料型NOx,同时降低了火焰的峰值温度,使得热力型NOx减少。 产品特性: 降低NOx:单独使用NO70R低氮燃烧器最高可降低50%的NOx排放,配合使用SOFA系统,效果可达70%; 对UBC的影响:基本不会对UBC和锅炉效率产生影响; 两个独立通道控制气流,低旋分配器产生的分股气流能很好的保持风/粉比。 能有效降低燃料型NOx,同时降低了火焰的峰值温度,使得热力型NOx减少。

低氮燃烧及改造

低氮燃烧及改造 广东电网公司电力科学研究院 2009年9月

目录1 低氮燃烧的必要性 1.1 NOx生成类型 1.2 低NOx控制方法 1.3 低氮燃烧必要性 2 低氮燃烧的调整技术 2.1 基本原理 2.2 低氧燃烧技术 2.3 分级配风技术 2.4 配煤掺烧技术 3 低氮燃烧改造 3.1 低NOx燃烧器 3.2 空气分级的燃烧器布置 3.3 烟煤锅炉低氮燃烧系统改造实例3.4 无烟煤锅炉低氮燃烧改造要点

1.1 NOx生成类型 ?氮氧化物是化石燃料与空气在高温燃烧时产生的,包括NOx (一氧化氮(NO)、二氧化氮(NO2) )、氧化二氮(N2O)等。在氮氧化物中,NO占有90%以上,二氧化氮占5%-10%。 ?NOX按生成机理的不同分为三类:热力型、快速型和燃料型,其中燃料型占60%~95%。 ?研究表明,煤中氮几乎全部以有机物的形式存在。形态主要 是吡咯型、吡啶型和季氮,其中吡咯型氮和吡啶型氮是煤中氮的主要存在形式。

1.1 NOx 生成类型 ?热力型氮:空气中氮在高温下氧化产生 O NO O N N NO N O N O N O +?++?++?+22222 2222 1 2NO O NO NO O N ?+?+在高温下总生成式为

1.1 NOx生成类型 ?快速型氮: 在碳氢化合物燃料燃烧在燃料过浓时,由于燃料挥发物中碳氢化合物高温分解生成的CH自由基可以和空气中氮气反应生成HCN和N,再进一步与氧气作用以极快的速度生成。

1.1 NOx 生成类型 ?燃料型氮:由燃料中氮化合物在燃烧中氧化而成。 煤燃烧中的氮化学 还原 挥发分氮 原煤氮 HCN 残余焦炭氮 N 2 NO 碳黑氮 NH 3 焦炭氮 N 2O 一次热解 二次热解 氧化 还原 煤氮的反应路线取决于氮的赋存形态及其所处的反应环境!

低氮燃烧技术

低氮燃烧技术 Last revision date: 13 December 2020.

? 低NOx燃烧技术简介 一概述: 用改变燃烧条件的方法来降低NOx的排放,统称为低NOx燃烧技术。在各种降低NOx排放的技术中,低NOx燃烧技术采用最广、相对简单、经济并且有效。 二低NOx燃烧技术方法: 1、空气分级燃烧 空气分级法是将燃烧用的空气分阶段送入,进行“缺氧燃烧”和“富氧燃尽”,使其避开温度过高和大过剩空气系数同时出现,降低NOx的生成。 在“缺氧燃烧”阶段,由于氧气浓度较低,燃料的燃烧速度和温度降低,抑制了热力型NOx生成;由于不能完全燃烧,部分中间产物如HCN和NH3会将部分已生成的NOx还原成N2,从而抑制了燃料NOx的排放;然后在将燃烧所需空气的剩下部分以二次风形式送入,即“富氧燃尽”阶段,虽然空气量多,但此阶段的温度已经降低,新生成的NOx量十分有限,因此总体上NOx的排放量明显减少。 2、燃料分级燃烧 燃料分级法是把燃料分为两股或多股燃料流,这些燃料流经过三个燃烧区发生燃烧反应。 把80%-85%的燃料送入主燃烧区进行富氧燃烧,余下15%-20%经主燃烧器上部送入再燃烧区,在空气系数小于1的条件下进行缺氧燃烧,主燃烧区产生的NOx被还原,从而减少NOx的排放量;为减少不完全燃烧需加空气进行燃尽。 3、烟气再循环燃烧 烟气再循环法是在锅炉的空气预热器前抽取一部分低温烟气直接送入炉膛,或渗入一次或二次风中,降低氧浓度、火焰温度,使NOx的生成受到抑制,降低NOx的排放。 将部分低温烟气直接送入炉内或与空气(一次风或与二次风)混合后送入炉内,因烟气的吸热和对氧浓度的稀释作用,会降低燃烧速度和炉内温度,因而减少了热力型NOx。 三低NOx燃烧器 根据上述低NOx燃烧技术,我公司引进开发出以下型号的低NOx燃烧器: 1、HDRB型低NOx燃烧器; 2、HHT-NR型低NOx燃烧器; 3、HXCL型低NOx燃烧器; 4、HWS型低NOx燃烧器;

低氮燃烧器

沙角B电厂锅炉低氮燃烧器改造技术交流会 会议纪要 编号:ZLZ/KZP/ZHS/21/00 时间:2012年4月19日10:00 ~11:00 4月20日10:00 ~12:00, 13:00~16:20 地点:行政楼二楼会议室 主持人:朱林忠 与会者:集团:李凌阳 电厂:王鼎斐、陈德雄、李新强、匡真平、朱兴根、郑群华、黄忠明、李国洪、周华松ABT:单杰锋等2人 国电龙高科(哈尔滨工业大学):孙悦、孙绍增、李争起等 中节环立为:熊亚东等 会议纪要: 4月19日在行政楼二楼会议室与国电龙高科(哈工大)工程人员进行技术交流,会议由电厂总工程师朱林忠主持。 龙高科提出在投标前为了更多地了解掌握B厂燃烧器数据,需要对燃烧器着火温度状况进行在线测试,希望临时拆除部分燃烧器中心筒部件。 经讨论,电厂同意临时拆除1号炉RA1、RA3燃烧器油枪,用于着火距离的测量。由效率部协调,机械、运行、策划安排配合。 4月20日在行政楼二楼会议室举行了电厂锅炉低氮燃烧器改造交流会,参与技术交流会的三家低氮燃烧器改造专业公司分别是ABT公司、国电龙高科(哈工大)、中节环立为(武汉)能源技术有限公司,现将会议有关内容纪要如下: 一、 ABT公司 1.1 ABT低NOx燃烧器技术特点: ·采用剧烈燃烧方式降低污染物、未燃尽碳、CO和结渣; ·剧烈燃烧,高亮度火焰,近着火点,喉部着火; ·提高火焰稳定性和低负荷稳燃能力;

·依靠燃烧器降低NOx,炉膛不深度分级。 1.2采用煤粉平衡器减少燃烧器内部煤粉和空气的不均匀,控制煤粉管道间以及不同燃烧器 之间煤粉和空气的分布。 1.3 燃尽风可设置可调喷口,可不更换水冷壁管子。 1.4 ABT对利港电厂项目作了介绍。利港电厂#1炉采用ABT提供的燃烧系统,改造后满负荷 下NOx排放由改造前的约1200 mg/Nm3下降至约400 mg/Nm3,对锅炉两侧金属温度偏差降低也有一定作用,飞灰含碳量有所升高。 二、哈工大--北京国电龙高科环境工程有限公司 2.1哈工大(中心给粉)径向浓淡旋流煤粉燃烧技术特点: ·径向浓淡分离一次风。在一次风喷口之前管道内,采用经过详细研究和优化煤粉浓缩装置。 煤粉与气流惯性分离,形成浓、淡煤粉气流浓度偏析,浓煤粉内层送入高温回流区燃烧。 采用多通道双调风二次风布置。 ·浓淡燃烧器具有一次风着火早、火焰稳定性强特点,与燃尽风供入相配合,对于改造锅炉将使炉膛火焰燃烧中心适中,主燃烧器区上部采用高位燃尽风喷口,高速气流喷出方式采用中心直流风和外层旋流风组合的方式。调整两种风比例,可有效控制燃尽风和炉内气流混合均匀度,减少炉膛左右侧出口烟温偏差,有效控制出口烟温。 2.2 燃尽风喷口布置原则:煤粉颗粒由主燃区至燃尽区需大于最小停留时间;同时考虑现场布 置条件,确定距离燃烧器最上层燃烧器中心距离。 2.3哈工大技术人员针对我厂的燃煤状况、燃烧器运行状况和NOx排放规律,对锅炉进行了燃 烧调整和下层燃烧器回流区温度测量,并对实验数据进行分析、归纳,得出现燃烧器的运行和NOx排放规律,认为二号炉改造存在超温、飞灰含碳量高的问题主要是燃烧着火延迟,导致火焰上移。 2.4哈工大介绍了改造业绩情况 大唐国际乌沙山发电厂3号 600 MW超临界机组低氮燃烧技术改造项目,NOx排放 < 200 mg/m3;大唐国际托克托发电厂3号 600 MW超临界机组低氮燃烧技术改造项目, NOx排放< 240 mg/m3;改造后没有出现超温、减温水量增加、飞灰含碳量高的问题。正在实施项目:乌沙山电厂600MW机组#1、2、4炉、宁德发电厂600MW机组#3、4炉、托克托电厂600MW机组#5、6、7、8炉、马莲台发电厂330MW机组#1、2炉,北仑电厂600MW机组#3

低氮燃烧器分类

低氮燃烧器分类 燃烧器是工业炉的重要设备,它保证燃料稳定着火燃烧和燃料的完全燃烧等过程,因此,要抑制 NOx 的生成量就必须从燃烧器入手。根据降低 NOx 的燃烧技术,低氮氧化物燃烧器大致分为以下六大类: 第一.阶段燃烧器 根据分级燃烧原理设计的阶段燃烧器,使燃料与空气分段混合燃烧,由于燃烧偏离理论当量比,故可 降低 NOx

的生成。 第二.自身再循环燃烧器 一种是利用助燃空气的压头,把部分燃烧烟气吸回,进入燃烧器,与空气混合燃烧。由于烟气再循环, 燃烧烟气的热容量大,燃烧温度降低, NOx 减少。 低氮燃烧器、防磨护瓦、中心筒、风帽

有需要的可联系我 另一种自身再循环燃烧器是把部分烟气直接在燃烧器内进入再循环,并加入燃烧过程,此种燃烧器有 抑制氧化氮和节能双重效果。 第三.浓淡型燃烧器 其原理是使一部分燃料作过浓燃烧,另一部分燃料作过淡燃烧,但整体上空气量保持不变。由于两部 分都在偏离化学当量比下燃烧,因而

都很低,这种燃烧又称为偏离燃烧或非化学当量燃烧。 第四.分割火焰型燃烧器 其原理是把一个火焰分成数个小火焰,由于小火焰散热面积大,火焰温度较低,使“热反应 NO”有所 下降。此外,火焰小缩短了氧、氮等气体在火焰中的停留时间,对“热反应NO”和“燃料 NO”都有明显的 抑制作用。

第五.混合促进型燃烧器 烟气在高温区停留时间是影响 NOx 生成量的主要因素之一,改善燃烧与空气的混合,能够使火焰面的厚度减薄,在燃烧负荷不变的情况下,烟气在火焰面即高温区内停留时间缩短,因而使 NOx 的生成量降低。 混合促进型燃烧器就是按照这种原理设计的。

空气分级低氮燃烧改造技术对锅炉汽温特性影响研究

空气分级低氮燃烧改造技术对锅炉汽温特性影响研究 肖琨张建文乌晓江边宝周文龙张翔陈飞陈楠郑路 (上海锅炉厂有限公司技术部) 摘要:燃煤锅炉采用空气分级低氮燃烧技术改造后,炉内温度场分布发生较大变化,从而对锅炉的汽温特性产生较大影响。本文以某600MW亚临界锅炉为对象,通过数值模拟及现场实验手段,对锅炉采用空气分级低氮燃烧技术改造后的汽温特性进行了研究,并对改造后锅炉调整汽温的手段进行了探讨。 关键词:燃煤锅炉空气分级低氮改造汽温特性 0 前言 2011年7月29日,《火力发电厂大气污染物排放标准》(GB13223-2011)发布。新标准进一步收紧了燃煤锅炉NOx排放限值。这意味着未来一段时间内将有大量的锅炉进行脱硝改造。低氮燃烧技术是一种常用的脱硝技术,其建设及运行成本较低,是燃煤锅炉进行脱硝改造的首选技术。空气分级低氮燃烧技术是目前应用最广泛的低NOx燃烧技术,其主要原理是将燃烧所需的部分空气,一般称之为“分离燃尽风(Separated Over Fire Air,SOFA)”,从炉膛上部送入,使锅炉的主燃烧器区域处于还原性气氛并在主燃烧器与SOFA 燃烧器之间形成一段“还原区”,抑制NOx的生成并还原已生成的NOx,降低锅炉氮氧化物的排放。采用空气分级低NOx燃烧技术改造之后,炉膛的温度场分布将会发生较大变化,主要表现为主燃区温度降低,火焰中心上移。 锅炉的过热汽温、再热汽温是机组运行的重要参数,对机组的经济性有重要影响。炉膛内温度场分布的变化将影响炉膛出口烟温进而改变锅炉的过热汽温、再热汽温特性。本文以一台600MW亚临界锅炉为研究对象,通过数值模拟及现场试验手段对其空气分级低氮燃烧改造之后的汽温特性进行了研究。该600MW锅炉为上海锅炉厂有限公司本世纪初生产的亚临界锅炉,2011年底采用上海锅炉厂有限公司自主开发的高级复合空气分级技术进行了低氮燃烧器改造。其设计煤种为神华煤,其煤质的主要参数如表1所示。该煤种的主要特点为挥发份高、燃尽性好,灰熔点较低,结渣性较强。 表1:对象锅炉设计煤种特性参数 全水分 (Mt, %)干燥无灰基 挥发份(Vdaf, %)收到基灰分

等离子低氮燃烧技术特点及其应用分析

等离子低氮燃烧技术特点及其应用分析 伴随着我国火力发电行业的快速发展,火电厂氮氧化物的排放量迅速增加。等离子低氮燃烧技术,是在煤粉锅炉等离子体点火及稳燃技术基础上发展起来的一种全新概念的低氮燃烧技术。该技术可以在不降低锅炉效率的前提下,大幅度降低锅炉NOx的排放。对等离子低氮燃烧的技术特点进行了概述,介绍了其在电厂中的应用情况,并对其降低SCR脱硝成本进行了分析。 标签:等离子低氮燃烧技术;特点;应用分析 引言 《火电厂大气污染物排放标准》(GB13223-2011)要求新建机组NOx排放低于100mg/Nm3。目前,NOx排放的技术措施按作用位置可分为两大类:第一类称为炉内脱硝,其特征是通过各种技术手段,控制燃烧过程来降低NOx的排放;第二类是尾部脱硝,又称为烟气净化技术,其特征是把尾部烟气中已经生成的NOx还原[1]。电站锅炉大多采用低氮燃烧技术+烟气脱硝方式降低NOx的排放,但低氮燃烧技术又存在不同,NOx排放浓度差别也很大。 1 等离子低氮燃烧技术的特点 等离子低氮燃烧技术,是在煤粉锅炉等离子体点火及稳燃技术基础上发展起来的一种全新概念的低氮燃烧技术。煤粉锅炉等离子体点火及稳燃技术利用温度很高的等离子体在燃烧器内直接点燃煤粉,可以节约大量的锅炉启动用油。采用该技术的等离子体煤粉燃烧器在实现煤粉内燃的同时,与现在主流的空气整体分级燃烧、燃料分级燃烧等低氮燃烧技术相结合,可以在不降低锅炉效率的前提下,大幅度降低氮氧化物的排放。 等离子低氮燃烧器降低NOx排放的主要原因在于可以使空气分级、燃料分级等措施“深度到位”,从而实现了与常规低氮燃烧技术相比,具有较高脱硝性能和较好的安全经济性[2]。其降低NOx排放的主要原理如下: (1)深度分级送风与低氧燃烧过程。全炉空气送入量和送入方式,采用了多点、多区、多角度送风,且可控制不同区段有不同的掺混率。高度方向上,下自底部二次风口,上至顶部燃尽风采用多组多喷口小流量的设计原则。在水平方向相对独立的近壁区射流,实现了沿炉体高度逐步掺混,优于各类偏转二次风方式。全炉燃烧过程均采用了低于常规燃烧过程的氧量(视燃煤与炉型而定)。 (2)扩大了还原气氛区和还原燃烧区。在高度方向上以一次风粉为中心组织了双还原区。它弥补了二维分布煤质和NOx针对性相关不足(如难燃煤后期混合差飞灰可燃物高),总体上加大了还原量和抑制焦炭NOx产生。在主燃烧区由于变异风粉布置型式,使煤粉较快析出挥发份和着火,迅速进入浓相区实现了部分NOx分解还原,加大了火焰内还原NOx的比重。在两个主燃烧区上方布置

低氮燃烧技术

引言 我国能源构成以煤炭为主,消耗量占一次能源消费量的76%左右。随着经济的快速发展,煤耗的增加,燃煤造成的大气污染日趋严重,特别是燃煤烟气中的氮氧化物(NO x),是大气污染的主要污染物之一。 氮氧化物NO x会破坏臭氧层,从而改变紫外线到达地面的强度;臭氧层的变化还会引起气候的变化,进而影响到整个生态环境;空气中的氮氧化物NO x还是产生酸雨的重要来源,酸雨对生态环境的影响已经广为人知,它使得土壤和水源酸化,影响农作物的生长;现代科学也已经证实人类许多疾病的产生也与空气中氮氧化物NO x有着直接的关系。 在大气污染控制方面,氮氧化物NO x控制技术研究和应用是目前继二氧化硫控制技术后的又一重要研究课题,其中氮氧化物NO x的生成机理对氮氧化物NO x控制技术的发展有着重要的意义。世界发达国家对氮氧化物NO x污染的研究起步较早,已有相应的控制技术在工业上得到应用。我国对大气污染特别是对氮氧化物NO x的研究开始的时间不长,与世界发达国家的水平还有一定的差距,特别是在工业应用方面,我国才刚刚起步,因此高效的氮氧化物NO x控制技术以及其在工业上的广泛应用将对我国大气污染的控制起到重要的作用。 我国NO x排放量目前已超过一千万吨,城市大气中NO x污染也十分严重,并存在着发生光化学烟雾的危险。随着国民经济发展、人口增长、城市化进程的加快,未来中国NOX排放量将继续稳步增长。若不采取进一步的排放控制措施,到2020年,中国NOX排放总量将可能达到2363-2914万t,超过美国成为世界第一大NOX排放国。到2030年,火力发电贡献率将达45%左右,交通运输贡献率超过30%。 我国对NO x排放和污染的控制已开始提到议事日程,1995年修订的《大气法》中已明确提 出“企业应当逐步对燃煤产生的氮氧化物采取控制的措施”,目前实施的“一控双达标”中也要求重点城市环境空气氮氧化物浓度2000年要达标。但目前均未对NO x排放总量控制和污染源达标排放提出要求,“一控双达标”对NO x是不配套的。因此,应制订并完善污染源排放NO x标

相关主题
文本预览
相关文档 最新文档