当前位置:文档之家› 接地电流检测技术

接地电流检测技术

接地电流检测技术
接地电流检测技术

目录

第一节变压器铁心接地电流检测技术............................

一、变压器铁心接地电流检测概述 ................................................................................

二、变压器铁心接地电流检测基本原理 (4)

2.1变压器铁心接地基本知识 ..........................................................................................

2.2变压器铁心的接地形式 ..............................................................................................

2.3变压器铁心接地电流形成机理 ..................................................................................

2.4.变压器铁心接地电流测试设备组成及基本原理 ......................................................

三、变压器铁心接地电流检测及诊断方法 ....................................................................

3.1现行铁心接地电流检测方法 ..................................................... 错误!未定义书签。

3.2铁心接地电流的诊断标准 ..........................................................................................

3.3铁心接地电流检测的注意事项 ..................................................................................

四、典型测试案例分析 ....................................................................................................

4.1铁心电流检测发现110kV主变铁心电流过大典型案例 ..........................................

4.2铁心接地电流检测发现多点接地典型案例 ..............................................................

第二节电缆护层接地电流检测技术............. 错误!未指定书签。

一、电缆护层接地电流检测概述 ....................................................................................

二、电缆护层接地电流检测基本原理 ............................................................................

2.1电力电缆接地基本知识 ..............................................................................................

2.2电力电缆护层接地电流形成机理 ..............................................................................

2.3.电力电缆护层接地电流测试设备组成及基本原理 ..................................................

三、电缆护层接地电流检测检测及诊断方法 (1)

3.1电缆护层接地电流检测方法 ......................................................................................

3.2 电缆护层接地电流的诊断标准 .................................................................................

3.3 电缆护层接地电流检测的注意事项 (35)

四、典型测试案例分析 ....................................................................................................

4.1电缆护层接地电流检测发现110kV电缆护层保护器击穿缺陷案例 ......................

4.2电缆护层接地电流检测发现110kV交联单心电缆护层破损缺陷案例 ..................

参考文献(自动编号)..........................................

第X章接地电流检测技术(冀北公司)

在电力系统中,接地是用来保护人身及电力、电子设备安全的重要措施。通常我们将接地分为工作接地、系统接地、防雷接地、保护接地,用他们来保护不同的对象。对于大型高压电气设备,如变压器、电力电缆、避雷器等设备因其内部结构设计或运行要求,也是通过接地来实现设备正常运行的要求,这几种接地形式从目的上来说是没有什么区别的,均是通过接地导体将过电压产生的过电流通过接地装置导入大地,从而实现保护的目的,而通过接地装置流入大地的电流会因设备运行状态的改变而发生改变,所以对于接地电流的测量可以直接或间接地反映设备运行状况。接地电流测试方法简单,但是却因设备种类不同,测试数据反映的意义大不相同,因篇幅所限,本章只针对变压器铁心及电缆护层的接地电流测试进行介绍。

第一节变压器铁心接地电流检测技术

一、变压器铁心接地电流检测概述

变压器铁心是变压器内部传递、变换电磁能量的主要部件,正常运行的变压器铁心必须接地,并且只能一点接地,对变压器的事故统计分析表明,铁心事故在变压器总事故中已占到了第三位,其中大部分是铁心多点接地引起,经检查证实的240台变压器故障中46台是由于铁心多点接地问题造成的。当铁心两点或多点接地时,在铁心内部会感应出环流,该电流可达数十甚至上百安培,会引起铁心局部过热,严重时会造成铁心局部烧损,还可能使接地片熔断,导致铁心电位悬浮,产生放电性故障,严重威胁到变压器的可靠运行。目前,对于运行中变压器铁心多点接地故障的预防主要是通过对铁心接地电流的定期检测进行的,变压器铁心接地电流的检测对于变压器的

安全运行具有非常重要的意义。

例如,某型号为SFPS-120000/220的变压器,油中溶解气体分析结果表明H2和总烃高,且气体增长速率与变压器运行负荷的关系不密切,测试铁心接地电流已达16A。经停电检查发现,内部铁心接地连片过长而跨接铁心,将铁心短接近1/10,造成铁心多点接地,接地连片烧断3/4。该隐患如未及时发现和消除,接地连片烧断后可能导致铁心失去地电位,从而造成严重的事故。

又如,某热电厂一台SSZ-120000/220变压器运行中检测铁心接地电流达500mA,超过规程规定的“不大于0.1A”的要求,为了确保变压器运行安全,不得不安排停电检修,进行铁心的绝缘试验,试验结果显示铁心绝缘良好,不存在多点接地,原铁心接地电流检测结果不准确,造成误停电,该台变压器的整个启停过程共经历3天时间,造成巨大经济损失。

目前,电力运行单位对于变压器铁心接地电流检测和监测的管理中,大都采取手持式钳形电流表进行检测以及加装铁心接地电流在线检测装置等方法,这些检测方法可以及时、便捷和较为准确的检测出变压器铁心的接地电流,除此之外,一些专用的铁心接地电流检测仪器和装置也越来越多的得到了推广和应用。对运行中的变压器进行铁心接地电流的检测和监测,能够及时发现铁心多点接地引起的接地电流变化,是防范铁心多点接地故障的最直接、最有效的方法。

二、变压器铁心接地电流检测基本原理

2.1变压器铁心接地基本知识

2.1.1铁心

铁心是变压器的主要部件之一,它构成了变压器的主磁路。变压器是依据电磁感应原理来工作的,一、二次绕组之间并没有电的直接联系,只有通过铁心形成磁的联系。利用变压器铁心可获得强磁场,增强一、二次绕组间的电磁联系,减少励磁电流。为了提高导磁系数和降低铁心涡流损耗,铁心用表面涂漆的硅钢片叠成。电工硅钢片很薄,变压器上目前一般用厚度为0.23~0.35mm的硅钢片。铁心是变压器内部电磁能量转换的媒介,把一次电路的电能转为磁能,又由此磁能转变为二次电路的电能。

在结构上,夹紧装置使铁心成为一个机械上完整的结构,而且在其上面套有带绝缘的绕组,支持着引线,并几乎安装了变压器内部的所有部件。

铁心的质量在变压器各部件中最大,在干式变压器中铁心的质量占总质量的50%左右;在油浸式变压器中,铁心所占质量的比例稍有下降,约为30%。

变压器的铁心(即磁导体)一般是框形闭合结构。其中套绕组的部分称为心柱,不套绕组只起闭合磁路作用的部分称为铁轭。现代铁心的心柱和铁轭在一个平面内,即为平面式铁心,新式的立体铁心呈三角形立体排列。

2.1.2铁心的种类

铁心有两大基本结构形式,即壳式和心式。它们的主要区别在于铁心与绕组的相对位置,即绕组被铁心包围时称为壳式;铁心被绕组包围时称为心式。

心式变压器的特点是绕组包围铁心,铁心处于器身内心,故称心式或内铁心,判断的标准是总有几个绕组的一边没有铁心或铁轭。而壳式变压器的特点是铁心包围绕组,任何一个绕组的两边一定有铁心或铁轭,铁心像一个

外壳包围着绕组,故称壳式变压器或外铁式变压器。它主要用在家用视频电器或特大型变压器上,可拆成小件到现场组装成整体变压器。

一般情况下,壳式铁心是水平放置的,心式铁心是垂直放置的。大容量的心式变压器由于运输高度所限,压缩了上下铁轭的高度,以增加旁轭的办法增加磁路,但是它们仍保留心式结构的特点,因此它们虽有包围绕组的旁轭,仍属于心式结构。

2.1.3 铁心的接地形式

变压器在运行中,铁心以及固定铁心的金属结构、零件、部件等,均处在强电场中,在电场作用下,它具有较高的对地电位。如果铁心不接地,它与接地的部件、油箱等之间就会有电位差存在,在电位差的作用下,会产生断续的放电现象。另外,在绕组的周围,具有较强的磁场,铁心和零部件都处在非均匀的磁场中,它们与绕组的距离各不相等,所以各零部件被感应出来的电动势大小也各不相等,彼此之间因而也存在着电位差。铁心和金属构件上会产生悬浮电位差,电位差虽然不大,但也能击穿很小的绝缘间隙,因而也会引起持续性的微量放电,这些现象都是不允许的,而且要检查这些断续放电的部位,是非常困难的。因此,必须将铁心以及固定铁心、绕组等的金属零部件,可靠地接地,使它们与油箱同处于地电位。

铁心是由许多层硅钢片叠积而成的,如果铁心有两点或两点以上接地,则铁心中磁通变化时就会在接地回路中有感应环流。接地点越多,环流回路也越多。这些环流将引起空载损耗增大,铁心温度升高。当环流足够大时,将烧毁接地片产生故障。所以铁心必须一点接地,可靠的一点接地叫做铁心的正常接地。

所谓铁心一点接地,只是指其磁导体而言,其夹紧件不受此限。铁心片与夹紧件要绝缘的一个原因就是确保铁心一点接地。

为了防止产生较大的涡流,铁心的硅钢片相互之间是绝缘的,不可以将所有的硅钢片都接地,否则将造成较大的涡流而使铁心发热,通常铁心接地是将任意一片硅钢片接地即可。这是因为硅钢片之间虽然绝缘,但其绝缘电阻数值是很小的,不均匀的强电场和磁场,在硅钢片中感应的高压电荷,可以通过硅钢片,从接地处流向大地,将铁心的任一片硅钢片接地,那么,整个铁心也就都接地了。

对于大容量的变压器,由于其铁心直径较大,为了减少涡流损耗,常采用绝缘纸或石棉绳将铁心硅钢片隔成几组,此时铁心的正常接地必须先用适当的金属导体,将各组硅钢片联接成一个整体,再将其引出箱体与箱盖上接地线套管接牢。

2.2变压器铁心的接地形式

2.2.2正常接地的具体做法

(1)大型变压器铁心一点接地的做法

对于大型变压器通常采用将铁心的任一片硅钢片进行接地。铁心的硅钢片与上下夹件之间是用绝缘件隔开的,采用0.3mm厚的铜片插入上铁轭的任意两硅钢片之间,而铜片另一端与夹件连接,再引到箱盖上与箱上的接地小套管连接,就构成了铁心的一点接地。

对于高电压大容量的变压器铁心除按上述做法做好一点接地,引出至箱盖小套管上,以便进行接地电流的检测外,还必须做好与接地有关部件之间的绝缘加强措施,能从外部检测铁心与夹件间的绝缘状况,具体的措施和做

法如下所述。

1)高电压大容量的变压器铁心和夹件都要分别用套管引至油箱外接地,为同时确保夹件不出现两点或多点异常接地,应在垫脚与箱底之间加强绝缘措施。

2)在器身上部定位装置与油箱间同样要可靠的加强绝缘,使二者之间不能相碰,有一定绝缘间隙,否则二者相碰将造成铁心两点或多点接地。

(2)中小型变压器铁心一点接地的做法

由于中小型变压器器身和油箱之间距离较小,对于这类铁心的一点接地做法与大型变压器铁心略有不同,应在上下铁轭任两片硅钢片之间各插入一片铜片进行接地,并且要使二片铜片位置放的要对称,使之处于同电位,如插入位置不对称,可能产生电位差,造成部分硅钢片间形成局部短路,产生较大电流,引起铁心过热。

2.2.3变压器铁心的多点接地

正常运行的变压器铁心是一点接地的,此时流过铁心接地线中的电流是由于高、低压绕组对铁心存在的电容造成的。对于三相变压器,如果三相电压完全对称,理论上流过铁心接地线电流为零,但实测电流值一般在几毫安到几十毫安之间。对于单相运行的变压器,由于绕组与铁心之间的电容值很小(一般在几千pF),容抗很大,计算和实际测试表明,该电流值也在几十毫安以下。

变压器铁心在多点接地的情况下接地线中的电流值决定于故障点与正常接地点的相对位置,即短路匝中包围磁通的多少及整个回路的阻抗。当铁心出现多点接地时,在额定激磁电压下,与故障回路铰链的磁通在回路中会感

应出一个电动势,反应在接地线上就是电流的增加,此时的模型可表示为图1所示。

图1 铁心两点接地时的电压

可以认为回路铰链的磁通最大为流过铁心的总磁通的1/2,这样回路感应出的电动势也就近似等于绕组的每匝电压的1/2。对于我国目前最常采用的冷轧硅钢片而言,一般饱和磁密为 1.9~2.0T。目前设计中铁心的最大磁通密度的选取范围为1.55~1.75T。对中、小型变压器,一般为1.55~1.65T;对大型变压器,一般为1.7~1.75T。由此结合变压器的铁心几何结构可以计算得出大容量的变压器每匝电压值约为300V,故铁心多点接地回路中感应出的电动势约150 V,忽略大地和接地点的电阻,整个回路的电阻主要是由变压器铁心本体造成的,由于铁心是由涂有漆膜的硅钢片叠装组成,硅钢片的电阻与漆膜相比很小,实际上其电阻主要是由漆膜造成的,经测量其电阻值约为几十欧姆,因此在铁心多点接地回路中最大可能出现几安到几十安的电流。该故障电流会造成铁心局部过热,严重时会造成铁心局部温升增加、轻瓦斯动作,甚至会造成重瓦斯动作而跳闸的事故。长期运行会导致铁心局部烧熔,形成硅钢片间的短路故障,严重影响变压器的性能和正常工作。

2.3变压器铁心接地电流形成机理

2.3.1单相变压器

以三绕组变压器为例,铁心一点接地时,其高压、中压和低压绕组对铁心存在分布电容,这样流过铁心的电流是三绕组电流的叠加,其原理如图2所示。

图2 铁心一点接地示意图

铁心一点接地的等效电路如图3所示,其中,C C-L、C L-M、C M-H分别是铁

心与低压绕组、低压绕组与中压绕组、中压绕组与高压绕组之间的分布电容,U H、U M、U L分别为高、中、低压绕组的电压,R M是铁心硅钢片表面绝缘膜的等效电阻、C M是铁心硅钢片表面绝缘膜的等效电容、R P是铁心硅钢片的等效电阻。

图3 铁心一点接地等效电路图

高压、中压、低压绕组线圈对铁心的分布电容,可按同轴圆柱电容的公式进行计算:

式中:

H为绕组平均高度(mm);

R1为内绕组外直径(mm);

R2为外绕组内直径(mm)。

根据具体变压器的结构尺寸可得出变压器绕组对铁心的等效电容,根据我国制造的大型电力变压器典型结构进行估算,其绕组对铁心的等效电容一般为几千pF。

通常变压器铁心是由硅钢片叠装而成,每片硅钢片表面均涂有绝缘漆膜,这样整个变压器铁心可以视为硅钢片表面绝缘漆膜的电阻与电容并联后再与硅钢片的电阻串联。如硅钢片电阻率为0.5欧·米,其本身电阻可以忽略;绝缘漆膜电阻通常为几十欧姆,而其容抗为105欧姆级,则其电容也可以忽略,这样铁心的电阻可以等效为其表面绝缘漆膜的电阻。

因此,对于整个导电回路来说,回路阻抗为变压器绕组间电容的容抗与绝缘漆膜的电阻串联。因为容抗比电阻大很多,则整个回路阻抗可以视为绕组间电容的容抗值(约为几千pF),经计算可知由于电容效应流过铁心的电流一般在几十毫安以内。如我国电力行业标准DL/T 596《电力设备预防性试

验规程》中,对电力变压器要求规定:“运行中铁心接地电流一般不大于0.1A”。

2.3.2三相变压器

由于变压器铁心结构基本对称,依次算出ABC三相的铁心接地电流,如果三相电压相位完全对称且各绕组间电容完全相等,则三相叠加后接地电流理论上应该为零,即

但实际变压器在运行中,三相电压相位不可能完全对称、各绕组间电容也不可能完全相等,故实际的接地线中总会呈现出一定数值的接地电流,但是该数值会小于单相变压器的接地电流值,其测量值一般在1mA左右。2.4.变压器铁心接地电流测试设备组成及基本原理

2.4.1装置主要技术指标

?采取抗干扰措施,当空间磁场干扰小于1A时,保证测量结果达到测

量精度要求。

?测量导线直径:不小于30mm

?电流量程:AC 10 mA~5A

?电流分辨率:0.1mA

?测量精度:1%±3个字

?使用时间:一次电池充满后可连续使用4小时以上,可间断使用2~3

天。

?电池寿命:可以循环充放电500次以上

?温度范围:工作环境温度-20~45℃

?充电电源:AC220V±10%、20W

2.4.2装置硬件组成方案

装置的硬件部分主要由IO卡钳接口模块、AD采集模块、DSP数字信号处理模块以及ARM人机接口模块组成。

图4 铁心一点接地等效电路图

测量CT输出电流信号经过电流电压变换(I/V)后进行滤波以及量程(0.5A/10A)切换,输出电压信号至AD模块进行采样,补偿CT与测量CT 处理方式一样,AD转换后的数字信号由DSP模块进行处理,结果经数字滤波后得到测量结果,由ARM 控制在液晶模块显示。

三、变压器铁心接地电流检测及诊断方法

变压器铁心多点接地故障,主要表现在油色谱数据呈内部高温过热特征、空载电流变化(三相不平衡)、铁心接地电流增大、铁心对地绝缘电阻降低或为零、异响、油温异常。

变压器铁心多点接地往往引起磁路的局部高温,因此油中溶解气体分析能够间接反映问题,但由于缺陷产生的特征气体在油中的扩散需要一定时间,试验规程中油色谱取样也有一定的周期,因此往往难以迅速地发现运行中的铁心多点接地故障。另外,铁心多点接地时,低电压下的空载试验可以发现空载电流异常,铁心对地绝缘电阻试验也可以发现绝缘电阻异常,从而有效地诊断铁心是否出现多点接地的情况,但都是停电试验,仅适用于发现异常后的确诊。异响和油温异常具有偶然性,且难以判断产生原因,因此并非较为可靠的方法。

与上述方法相比,在变压器运行中进行铁心接地电流的检测和监测,可以及时发现铁心多点接地造成的接地电流变化,因此按规程周期准确地测量铁心接地电流是防范铁心多点接地故障的最简单直接的方法。

3.1现行铁心接地电流检测方法

电力运行单位在对铁心接地电流检测和监测的管理中,需要对准确性、及时性、便捷性和成本进行综合考虑。现有的变压器铁心接地电流检测方法主要有普通钳形电流表直接测试、专用铁心接地电流检测仪、变压器铁心接地电流在线监测及限流装置以及钳形电流表差值法测量。

a)普通钳形电流表直接测试

普通钳形电流表由于其体积小,使用方便、造价低而经常被用于铁心接地电流的测量,但是由于其抗干扰能力较差,并且精度往往不能满足要求,导致测试结果分散性大,不够准确。运行中的变压器周围存在的漏磁场,对铁心接地电流的测量有很大的影响,仅使用普通钳形电流表测量,没有有效的抗干扰措施,测量结果具有很大的随机性,无法准确反映和发现变压器早期缺陷,也可能误判造成不必要的停电,不能满足精益化和标准化管理的要求。

图5 普通钳形电流表测铁心接地电流原理图

图6 普通钳形电流表测铁心接地电流示意图

我国电力行业标准DL/T 596《电力设备预防性试验规程》中,对电力变压器要求规定:“运行中铁心接地电流一般不大于0.1A”。一般单相大型电力变压器正常运行情况下铁心接地电流通常为几十毫安,三相变压器由于三相电压相位基本对称,三相电流叠加后基本为零,考虑到其实际运行中的不完全对称性,正常运行的三相变压器铁心接地电流仅有1-2mA左右。然而在现场检测过程中,受到周围空间电磁场的影响,使用普通钳形电流表检测到的铁心接地电流往往在几十到几千毫安之间,如表1所示,干扰电流远大于真实的铁心接地电流,无法为铁心的运行情况提供判断依据。

表1 普通钳形电流表测得铁心接地电流值

其中L站1号主变和X站4号主变超标,停电后试验证明铁心绝缘良好,没有发生多点接地等现象,造成了不必要的停电。

b)专用铁心接地电流检测仪

目前部分生产厂家针对变压器铁心接地电流研制了专用铁心接地电流检测仪,其检测基本原理与普通钳形电流表相同,但具有更高级的功能,例如可对接地电流的波形显示和存储,可将波形数据导入计算机,对离散的采样值进行傅氏变换,得出电流的基波幅值,再进行各种分析和处理。然而采用傅氏变换的方法并不能完全去除非整次谐波分量,尤其是对于低频分量的抑制作用很差,无法通过数值处理滤除干扰。因此,专用铁心接地电流检测仪的研究重点仅放在了滤波功能的开发,在实现测量中的抗干扰功能并不理想。

c)变压器铁心接地电流在线监测及限流装置

目前系统内已有少数变压器安装了铁心接地电流在线监测及限流装置,该装置通过在铁心接地串入检测电阻实时地、准确地监测铁心接地电流能及时发现多点接地故障并报警,同时自动投切合适的限流电阻,避免事故的进一步恶化。由于此类装置的成本较高,因此目前的覆盖范围仍非常有限。

图7变压器铁心接地电流在线监测及限流装置示意图

d)钳形电流表差值法测量

由于空间磁场的随机性给接地线电流的测量带来了很大的干扰,在现场测量过程中又很难具备屏蔽空间磁场的条件,对接地电流的测量缺乏准确

性,有的运行单位通过进行两次测量的方法,第一次将钳形电流表紧靠被测接地引下线边缘,但并不钳住接地线,读取一个电流数据,该读数为漏磁场产生的干扰电流。第二次在同一位置用钳形电流表钳住接地引下线,读取第二个电流数据,该读数为铁心接地电流和漏磁通干扰电流之和,取两次读数之差为实际铁心接地电流。但是这种方法同样不够准确,因为漏磁场本身是非均匀场,两次测量的电流相位并不相同,不能仅取数值差作为铁心实际接地电流值。

综合考虑上述几种现行铁心电流检测方法,都可以满足对变压器铁心接地电流的检测,但是测量原理、精确程度以及使用要求各有侧重,因此在选择合适的测试设备时应加以考虑。于此同时,由于变压器周围存在较强的电磁场,对变压器铁心接地电流检测仪器的抗干扰性能提出了一定的要求,抗干扰性能已经成了铁心接地电流检测设备的关键技术。

3.2铁心接地电流的诊断标准

我国电力行业标准DL/T 596《电力设备预防性试验规程》中,对电力变压器要求规定:“运行中铁心接地电流一般不大于0.1A”。一般单相大型电力变压器正常运行情况下铁心接地电流通常为几十毫安,三相变压器由于三相电压相位基本对称,三相电流叠加后基本为零,考虑到其实际运行中的不完全对称性,正常运行的三相变压器铁心接地电流仅有1-2mA左右。然而在现场检测过程中,受到周围空间电磁场的影响,使用普通钳形电流表检测到的铁心接地电流往往在几十到几千毫安之间。

3.3铁心接地电流检测的注意事项

3.3.1变压器漏磁场的干扰

当变压器的绕组带电后,绕组中就会有电流流过,在铁心中会产生磁通。铁心中由于励磁电压所产生的磁通称为主磁通,通过整个铁心与高压、中压和低压绕组相交链,其大小取决于励磁电压的数值。当变压器绕组中流过负载电流时,除了通过铁心与与高压、中压和低压绕组相交链的主磁通外,还有一个少量的仅与一个绕组交链,并且主要通过空气或绝缘油闭合的漏磁通,它的大小取决于负载电流的大小。漏磁场的分布如图4所示。

图8 变压器漏磁场分布示意图

漏磁通与主磁通的区别:首先铁心的材料硅钢片有饱和现象,主磁路的磁阻通常不是常数,所建立主磁通的电流和主磁通之间是非线性关系。而漏磁通的大部分磁路都是非铁磁性材料,所以漏磁路的磁阻是常数,产生漏磁通的电流和漏磁通是线性关系,其次主磁通在一、二次绕组中都会感应电动势,二次绕组接负载时就会输出功率,而漏磁通仅在一次绕组中感应电动势,不能传递能量,但是会引起变压器箱体等部位的涡流损耗、机械力效应等。

通常在工程设计上,主磁通和漏磁通具有下列关系:

式中,%k u为变压器的阻抗电压,通常为10%~20%,sφ为漏磁通,0φ为主磁通。

图4中,变压器内部的漏磁通很难做到完全屏蔽,特别是在变压器油箱未做磁屏蔽或者磁屏蔽不合理的情况下,变压器内部的漏磁通sφ可能会通过箱体法兰等气隙处发散到箱体外部,由于气隙处的磁阻很大,可能承受90%以上的磁场压降,因此发散至变压器箱体的磁场数值仍然是较为可观的,足以对铁心引下线处的磁场带来较大畸变,造成了铁心接地电流的测量不准确,这也正是给铁心接地电流测量带来误差的最主要的原因。

3.3.2现场检测过程中易受漏磁场干扰

变压器铁心接地电流的检测过程容易受到漏磁场的干扰,因此必须选择具有较强抗干扰性能的装置进行检测,使用普通钳形电流表和具有抗干扰性能的铁心接地电流检测装置对大型变压器的铁心接地电流进行了测试,其中典型的测试结果如下所示。

某变电站1号主变

可以看出,抗干扰性能是变压器铁心接地电流检测装置的一项至关重要的技术指标。

四、典型测试案例分析

4.1铁心电流检测发现110kV主变铁心电流过大典型案例

2012年4月,国网公司某110kV变电站进行主变铁心接地电流测试时,发现主变运行铁心接地电流超过1A,超出标准值100mA,该主变型号为SZ9D-31500/110,投运于1997年6月。2012年4月,对该变压器铁心接地电流再次进行复测,电流在1.4A左右。2012年6月,主变停电,进行铁心接地回路改造,主变铁心改为引出后直接引下来接地,改造后,铁心绝缘电阻达到700MΩ,主变重新投入运行。

在2012年主变铁心接地电流巡检中发现,110kV1#主变铁心接地电流达到1.4A,远远超出标准“铁心接地电流不超过0.1A”的要求。

2012年4月27日在现场进行仔细复测,1号主变外壳(左)和主变铁

心(右)焊于槽钢上进行接地,首先对接地情况进行分析,经过人为外接地,

图9 铁心一点接地等效电路图

铁心接地电流无变化,用双臂电桥对槽钢接地进行测量,数据为5mΩ。基本判定:铁心外部接地情况良好,接地电阻符合要求。

图10 铁心一点接地等效电路图

对铁心上部瓷瓶上端进行测量,测试电流依然为1.4A。基本判定:可以排除瓷瓶存在与外壳接地造成外部多点接地的可能性。

图11 铁心一点接地等效电路图

在上述槽钢接地出测的电流也为1.4A左右,综合图中外壳接地扁铁处测的电流也为1.4A,基本分析可能铁心本身接地电流确实超过1A,并且经过主变外壳接地、槽钢接地流入主地网构成回路。

油色谱试验情况,2012年3月底油色谱数据来看,反映过热现象的特征气体CH4和C2H4数据不明显,跟以往数据相比无明显变化。

不停电现场观察发现,铁心引出线在主变顶部引出后,先接于主变顶部外壳上,再分支引到地面上接地。在现场进行铁心接地电流测试中,是把钳形电流表接于高于地面1.5米左右的铁心接地铝排上,该位置取到的电流除

了真实铁心接地电流外,还有主变外壳接地回路引入的干扰电流等。由于当时负荷限制,主变暂时不能停电,现场采取了安装串入铁心接地限流表来限制铁心接地电流,复测铁心接地电流,已经减小到0.004A。2012年6月,1号主变停电,进行铁心接地回路改造,主变铁心改为引出后直接引下接地,改造后,铁心绝缘电阻达到700MΩ,1号主变正常投入运行。

4.2铁心接地电流检测发现多点接地典型案例

2012年,国网公司某110kV变电站2号主变进行铁心接地电流测试中发现,2号主变铁心接地电流达到12.7A,严重超过标准值,经电科院复测,铁心接地电流值分别为12.9A和14.7A。

检测分析方法:

(1)油色谱试验与铁心接地电流检测

2012年分别对该变压器进行油色谱检测,数据如下:

表2 普通钳形电流表测得铁心接地电流值

数据显示,总烃、乙炔均超过注意值,且乙烯(C2H4)、甲烷(CH4)占较大比重,另经三比值法分析,故障类型为高于700℃的高温过热。结合铁心接地电流检测数值超标的情况,判断为铁心多点接地,引起的内部过热缺陷。

(2)停电处理

2号主变停电,试验人员对2号主变进行了铁心绝缘电阻测试,绝缘电阻值偏低,证明了2号主变铁心确实存在多点接地。考虑该变压器运行年限较长,可能油泥淤积在变压器底部造成多点接地,因此对铁心进行了大电流冲击。经过冲击之后,再次测量铁心绝缘电阻,出现如下现象:绝缘电阻值

开始逐渐增加,达到一定数值后,听到变压器内部有放电声,绝缘电阻值骤然下降,之后又逐渐增长重复上述过程。停电处理确定了铁心多点接地故障,且接地点不易被大电流冲断。

(3)吊罩检查

2号主变在试验大厅进行吊罩检查。经检修人员仔细检查,发现C相铁心与绕组上压板之间有一根长2cm的细铁棒,并且铁心片上有明显放电痕迹,如下图所示。

图12 铁心一点接地等效电路图

取下细铁棒后,测试铁心绝缘电阻,恢复正常。由此判断,铁心接地电流异常增大、色谱异常的原因皆由此引起。重新投运后测量铁心接地电流数值为0.9mA,无异常,铁心多点接地故障消除。

第二节电缆护层接地电流检测技术

一、电缆护层接地电流检测概述

电力电缆作为电力系统的主要传输设备,其运行状态直接影响系统的安全性。为了抑制电缆金属护层中的感应电压,电缆护层必须接地。但如果接地方式不正确,电缆外护套发生破损,或者电缆屏蔽层发生断裂破损时,电缆护层接地电流都会发生变化,将对电缆输电线路带来两大主要危害:其一是大大降低电缆输送电力的能力(约三分之一左右),其二是引起金属护套发热使主绝缘降低,缩短电缆的正常运行寿命。因此,通过对电缆护层接地电流的带电检测或在线监测可以发现安装过程中接地方式的错误、交叉互联系统中接线的错误,发现电缆护层多点接地、屏蔽层断裂等缺陷。电缆金属护层接地电流测试作为电缆状态检修的重要检测项目之一,具有重要意义。

国家电网公司状态检修试验规程将电缆护层接地电流带电检测作为电缆的日常巡检项目之一,在国网公司系统内已经实际开展多年。实践证明,电缆护层接地电流检测是检查电缆接地系统是否正常的有效手段。目前一般采用便携式大口径钳形电流表对电缆护层电流进行带电测试,也有部分单位研究并安装在线监测装置开展电缆护层接地电流的持续在线监测。

二、电缆护层接地电流检测基本原理

2.1电力电缆接地基本知识

电力安全规程规定,电气设备非带电的金属外壳都要接地,因此对于目前常用的交联聚乙烯电缆(后面简称XLPE电缆)的铝包或金属屏蔽层都要接地。通常,35kV及以下电压等级的电缆大多数是三心电缆,一般都采用两端接地方式,这是因为这些电缆在正常运行中,流过三个线心的电流总和为零,在铝包或金属屏蔽层外基本上没有磁链,因此在铝包或金属屏蔽层两端基本上没有感应电压,采用两端接地方式不会有感应电流流过铝包或金属

单相接地电容电流试验施工安全措施.docx

单相接地电容电流试验施工安全措施 安全技术措施 措施名称:单相接地电容电流试验施工安全措施编制单位:保运区 持用单位:保运区 编制日期:XXX年X月X日

审批记录 主持人:措施名称:单相接地电容电流试验施工安全措施 签名日期 编制人 施工单位 区负责人 安监处 安全生产信息中心 审批单位 机电科 机电副总 总工程师 审批意见

单相接地电容电流试验施工安全措施 一、概述 根据《煤矿安全规程》第 453 条规定:矿井 6000V及以上高压电网,必须采取措施限制单相接地电容电流,生产矿井不超过 20A,新建矿井不超 过 10A。位确保我矿供电系统符合本要求,计划对 35K 变电所进行单相接地电容电流试验。为保证试验安全高效进行,特编此安全技术措施。 二、施工组织 施工时间: 2017 年月日 施工地点: 35KV变电所 施工负责人: 安全责任人: 三、施工前准备 1、认真组织参加施工的所有人员学习本安全技术措施,了解施工步骤 及施工中应注意的安全事项; 2、准备好个人工具及劳保用品,验电笔,绝缘手套,绝缘靴; 3、在 6KV两段母线上各准备一台备用开关柜; 4、确认母联柜处于断开位置,6KV两段母线处于分列运行状态。 四、施工步骤 1、施工负责人与各重要车间、变电所和各局扇司机联系好,确保人员 已全部到位,汇报矿安全生产信息中心,申请开始进行试验; 2、对 6KVⅠ回路进行测试,选用柜号为6137 柜。将断路器摇至实验位置,经放电、验电完毕后,将实验设备接到开关柜负荷侧 A 相。

3、将 6137 柜断路器摇至工作位置,按照试验人员要求,将断路器合闸,试验进行 5s 左右,断开断路器。 4、实验完毕后,将6137 柜断路器摇至实验位置,放电、验电,拆除连接线,确认无误后,将开关柜恢复至实验前状态。 5、对 6KVⅡ回路进行测试,选用柜号为6236 柜。将断路器摇至实验位置,经放电、验电完毕后,将实验设备接到开关柜负荷侧 A 相。 6、将 6236 柜断路器摇至工作位置,按照试验人员要求,将断路器合闸,试验进行 5s 左右,断开断路器。 7、实验完毕后,将6236 柜断路器摇至实验位置,放电、验电,拆除连接线,确认无误后,将开关柜恢复至实验前状态。 五、安全注意事项 1、施工前向施工人员详细贯彻本措施。 2、指定专人联系、专人指挥。 3、施工期间,各重要车间及采区变电所、局扇位置必须设专人看护, 确保实验期间出现掉电能够及时送电。 4、严格执行两票制度。 5、本措施未尽事项参照《煤矿安全规程》。

变压器的铁芯为什么要接地

变压器的铁芯为什么要接地

变压器的铁芯为什么要接地? 电力变压器正常运行时,铁芯必须有一点可靠接地。若没有接地,则铁芯对地的悬浮电压,会造成铁芯对地断续性击穿放电,铁芯一点接地后消除了形成铁芯悬浮电位的可能。但当铁芯出现两点以上接地时,铁芯间的不均匀电位就会在接地点之间形成环流,并造成铁芯多点接地发热故障。变压器的铁芯接地故障会造成铁芯局部过热,严重时,铁芯局部温升增加,轻瓦斯动作,甚至将会造成重瓦斯动作而跳闸的事故。烧熔的局部铁芯形成铁芯片间的短路故障,使铁损变大,严重影响变压器的性能和正常工作,以至必须更换铁芯硅钢片加以修复。所以变压器不允许多点接地只能有且只有一点接地。 瓦斯保护的保护范围是什么? 范围包括: 1)变压器内部的多相短路。 2)匝间短路,绕组与铁芯或外壳短路。 3)铁芯故障。 4)油面下将或漏油。 5)分接开关接触不良或导线焊接不牢固 主变差动与瓦斯保护的作用有哪些区别? 1、主变差动保护是按循环电流原理设计制造的,而瓦斯保护是根据变压器内部故障时会产生或分解出气体这一特点设计制造的。 2、差动保护为变压器的主保护,瓦斯保护为变压器内部故障时的主保护。 3、保护范围不同: A差动保护:1)主变引出线及变压器线圈发生多相短路。 2)单相严重的匝间短路。 3)在大电流接地系统中保护线圈及引出线上的接地故障。 B瓦斯保护:1)变压器内部多相短路。 2)匝间短路,匝间与铁芯或外及短路。 3)铁芯故障(发热烧损)。 4)油面下将或漏油。 5)分接开关接触不良或导线焊接不良。 主变冷却器故障如何处理? 1、当冷却器I、II段工作电源失去时,发出“#1、#2电源故障“信号,主变冷却器全停跳闸回路接通,应立即汇报调度,停用该套保护 2、运行中发生I、II段工作电源切换失败时,“冷却器全停”亮,这时主变冷却器全停跳闸回路接通,应立即汇报调度停用该套保护,并迅速进行手动切换,如是KM1、KM2故障,不能强励磁。 3、当冷却器回路其中任何一路故障,将故障一路冷却器回路隔离 不符合并列运行条件的变压器并列运行会产生什么后果?

变压器铁芯接地电流在线监测装置技术规范

Q/CSG 中国南方电网有限责任公司企业标准 中国南方电网有限责任公司发布

Q/ CSG XXXXX.X-2013 目次 前言...................................................................................................................................................................... II 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 4 技术要求 (1) 5 试验项目及要求 (2) 6 检验规则 (3) 7 标志、包装、运输、储存 (4) I

Q/ CSG XXXXX.X-2013 II 前言 为规范输变电设备在线监测系统的规划、设计、建设和运行管理,统一技术标准,促进在线监测 技术的应用,提高电网的运行可靠性,特制定本标准。 本标准由中国南方电网有限责任公司生产技术部提出、归口并解释。 本标准起草单位:广东电网公司电力科学研究院。 本标准主要起草人: 本标准由中国南方电网有限责任公司标准化委员会批准。 本标准自XXXX年XX月XX日起实施。 执行中的问题和意见,请及时反馈给南方电网公司生产技术部。

Q/ CSG XXXXX.X-2013 变压器铁芯接地电流在线监测装置技术规范 1范围 本标准规定了变压器铁芯接地电流在线监测装置的范围、术语、使用条件、技术要求、试验、备品备件、标志、包装、运输、贮存要求等,可作为产品的研制、生产、检验和现场测试的依据。 本标准适用于110kV及以上电压等级的变压器铁芯接地电流在线监测装置的生产、检测、使用和维修。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB 191 包装储运图示标志 GB/T 2423 电工电子产品环境试验 GB/T 16927.1 高电压试验技术第一部分:一般试验要求 GB/T 16927.2 高电压试验技术第二部分:测量系统 GB/T 17626.1 电磁兼容试验和测量技术抗扰度试验总论 DL 393-2010 输变电设备状态检修试验规程 Q/CSG XXXX 变电设备在线监测系统通用技术规范 3术语和定义 下列术语和定义适用于本标准。 3.1变压器铁芯接地电流在线监测装置 安装在高压设备附近,用于变压器铁芯接地电流特征量连续实时监测的装置。一般由传感器、数据采集和处理模块、通讯控制模块等组成。 4技术要求 4.1通用技术要求 变压器铁芯接地电流在线监测装置的基本功能、绝缘性能、电磁兼容性能、环境性能、机械性能要求、外壳防护性能、连续通电性能、可靠性及外观和结构等通用技术要求应满足《变电设备在线监测装置通用技术规范》。 4.2接入安全性要求 1

中性点不接地系统发生单相接地时向量分析

中性点不接地系统单相接地时的向量分析 为了熟悉不接地电网的零序保护,需要首先熟悉这类电网发生单相接地故障时电压、电流零序分量的特点。下面着重介绍单相接地时稳态电容电流的特点。下面图a示出最简单的中性点不接地网,图中表示负荷是断开的,因为单相接地时三相的相线电压和负荷电流仍然对称,所以不考虑负荷电流,不会影响分析的结果。 正常运行情况下,各相对地有相同的电容 C(用集中参数表示), 在相电压的作用下,每相都有一超前电压90°的电容电流流入地中,并三相电容电流之和为零,中性点对地无电压,因为电容电流很小,其在线路上产生的电压降可以忽略不计,故可以认为各相电压均与各相电势相等,电压、电流向量图如图b所示。 发生单相(例如A相)金属性接地时,若忽略较小的电容电流

产生的电压降,则电网中各处故障相的对地电压都变为零。于是A 相对地电容被短接,只有B 相和C 相对地电容中还存在电流,此时 中性点对地电压上升为相电压(-a E ),非故障相的对地电压变为线 间电压(升高 3 倍),其向量关系图如下图c 。 这时三相对地电压可分别写为:A U ' =0,B U ' =BA U =A B E E -= 3A E 0 150j e -,C U ' =CA U =C E -A E = 3A E 0 150j e ,由于相电压和电容电流的 对称性已破坏,因而出现了零序电压和零序电流,因为A U ' =0,所以 零序电压0 3U =B U ' +C U ' =-3A E ,即等于故障相正常电势的三倍,则相位与之相反。在B U ' 和C U ' 的作用下,在两非故障相及其对地电容中出现超前电压90°的电流, B I = C B jX U -' =B U ' 0 jWC , C I = C C jX U -' =C U ' jWC ,其有效值为B I +C I = 3X U WC ,X U 为相电压的有效 值,从故障点流回的电流即零序电流为:0 3I =-(B I +C I )=-(B U ' +C U ' )0jWC 。式中负号表示零序电流与通常规定的电流方向相反,因 为B U ' +C U ' =-3A E ,所以故障点的零序电流有效值为0 3I =3X U 0 WC ,

电容电流测试报告

XZZNDQAQ-2014-019 某某煤矿集团西风井35kV变电所6kV电网单相接地电容电流测试报告 徐州智能电气安全研究所 二〇一四年四月

编写:审核:审批:

1. 测量方案 1.1. 测量原理 电网对地电容电流常用的测量方法有:单相直接接地测量法、单相经电阻接地测量法、附加电容测量法和注入法等。其中单相直接接地测量法属于直接测量方法,其它属于间接测量方法。本次测试采用单相经电阻接地测量法,该方法有简单、易实施、测试过程安全、测量精度高、测试时间短、对电网冲击小等优点,并且适用于中性点非有效接地系统各种中性点接地形式,具体原理如下。 R 图1-1 中性点不接地电网绝缘参数测量模型 上图为中性点不接地电网的绝缘参数测量模型,C 、r 分别为各相对地电容和绝缘电阻。考虑到试验的安全性,采用电网单相经电阻接地的方法,电网的一相经接地电阻和电流表接地。接地电阻R 根据电网类型一般在500~1000Ω范围选取,接地电流控制在几安培范围,测量必要的参数,即可求出电网单相直接接地时的接地电流。 电网单相接地电流是电网对地总的零序电流之和,理论推导可知,不管是直接接地,还是经过电阻接地,电网对地总的零序电流(接地电流)是同零序电压成正比关系。因此,测量出电网单相经电阻接地时的零序电压,就能得到单相电网直接接地的电流。其计算公式是: 2 02 l E R U I I U (1-1) 式中:I E 为电网单相直接接地电流 U l2为电压互感器二次线电压 U 02为电网单相经电阻接地时的二次零序电压 I R 为电网单相经电阻接地的电流 因此,只要测得电网的二次线电压、零序电压、单相经电阻接地时电阻流过

第十八章_接地电流检测技术

第十八章接地电流检测技术(冀北公司) 在电力系统中,接地是用来保护人身及电力、电子设备安全的重要措施。通常我们将接地分为工作接地、系统接地、防雷接地、保护接地,用他们来保护不同的对象。对于大型高压电气设备,如变压器、电力电缆、避雷器等设备因其内部结构设计或运行要求,也通过接地实现设备正常运行的要求,这几种接地形式从目的上来说是没有什么区别的,均是通过接地导体将过电压产生的过电流通过接地装置导入大地,从而实现保护的目的,而通过接地装置流入大地的电流会因设备运行状态的改变而发生改变,所以对于接地电流的测量可以直接或间接地反映设备运行状况。接地电流测试方法简单,但是却因设备种类不同,测试数据反映的意义大不相同,本章只针对变压器铁芯及电缆护层的接地电流测试进行介绍。 第一节变压器铁芯接地电流检测技术 一、变压器铁芯接地电流检测概述 变压器铁心是变压器内部传递、变换电磁能量的主要部件,正常运行的变压器铁心必须接地,并且只能一点接地,对变压器的故障统计分析表明,铁心故障在变压器总故障中已占到了第三位,其中大部分是铁心多点接地引起,经检查证实的240台变压器故障中46台是由于铁心多点接地问题造成的。当铁心两点或多点接地时,在铁心内部会感应出环流,该电流可达数十甚至上百安培,会引起铁心局部过热,严重时会造成铁心局部烧损,还可能使接地片熔断,导致铁心电位悬浮,产生放电性故障,严重威胁到变压器的可靠运行。目前,对于运行中变压器铁心多点接地故障的预防主要是通过对铁心接地电流的定期检测进行的,变压器铁心接地电流的检测对于变压器的安全运行具有非常重要的意义。 例如,某型号为SFPS-120000/220的变压器,油中溶解气体分析结果表明H2和总烃高,且气体增长速率与变压器运行负荷的关系不密切,测试铁心接地电流已达16A。经停电检查发现,内部铁心接地连片过长而跨接铁心,将铁心短接近1/10,造成铁心多点接地,接地连片烧断3/4。该隐患如未及时发现和消除,接地连片烧断后可能导致铁心失去地电位,从而造成严重的故障。 二、变压器铁心接地电流检测基本原理 (一)变压器铁心接地基本知识 1.铁心 铁心是变压器的主要部件之一,它构成了变压器的主磁路。变压器是依据电磁感应原理来工作的,一、二次绕组之间并没有电的直接联系,只有通过铁心形成磁的联系。利用变压器铁心可获得强磁场,增强一、二次绕组间的电磁联系,减少励磁电流。为了提高导磁系数和降低铁心涡流损耗,铁心用表面涂漆的硅钢片叠成。电工硅钢片很薄,变压器上目前一般用厚度为0.23~0.35mm的硅钢片。铁心是变压器内部电磁能量转换的媒介,把一次电路的电能转为磁能,又由此磁能转变为二次电路的电能。 在结构上,夹紧装置使铁心成为一个机械上完整的结构,而且在其上面套有带绝缘的绕组,支持着引线,并几乎安装了变压器内部的所有部件。 铁心有两大基本结构形式,即壳式和心式。它们的主要区别在于铁心与绕组的相对位置,即绕组被铁心包围时称为壳式;铁心被绕组包围时称为心式。 2.铁心的接地形式 变压器在运行中,铁心以及固定铁心的金属结构、零件、部件等,均处在强电场中,在电场作用下,它具有较高的对地电位。如果铁心不接地,它与接地的部件、油箱等之间就

铁心接地电流装置说明书

铁心接地电流监测装置 说 明 书 哈尔滨国力电气有限公司

1.产品简介 正常运行的变压器铁心一点接地,铁心接地电流在0-100mA之内,如果有两点或者两点以上同时接地,则铁心与大地之间将形成电流回路,最大电流可达到几十安培,将会造成铁心局部过热甚至烧毁,造成一定的经济损失。引发变压器故障的原因有多种,并且变压器的故障类型也有多种,据有关统计资料表明,因铁心绝缘问题造成的故障比例占变压器各类故障的第三位。 我们公司根据各种铁心接地故障,借鉴国外先进监测技术,结合国内具体情况,有针对性的研究开发了ECM-701系列产品。 ECM-701型产品采用穿心式电流变送器,在不断开接地铜排的条件下,在线监测铁心接地电流,既可以就地显示接地电流数据,也可以通过RS485、61850等通讯规约实现数据远传。 2.产品特点 (1)安装方便,无需打断铜排安装; (2)既可以就地显示监测数据,又可以通过RS485和61850通讯规约与远方通讯:(3)可带报警功能,报警值可根据用户要求设定; (4)对外可输出4-20mA模拟量信号,供仪表及其他监测单元使用。 3.系统组成及工作原理 ECM-701铁心接地电流监测装置主要由传感器、信号传输电缆及监测处理单元三部分组成。 工作原理:铁心传感器(电流变送器)将监测的电流以4-20mA信号形式通过传输电缆传到监测单元,监测单元对信号进行处理、显示,并可以通过RS485和61850规约与远方进行数据通讯。

工作环境温度:-25℃-50℃ 供电要求:AC220V 50HZ 通讯要求:RS485或61850通 讯规约 量程:0-1A 分辨率:1mA 传感器电源:DC24V (监测单元提供) 5. 安装说明 铁心接地电流在线监测装置安装方便,只需要在铁心接地铜排合适位置预留安装支架即可。 现场安装时,从铜排连接处,将传感器固定在安装支架上,并保证铜排从中穿过而无接触。 6.注意事项 在调试、运行过程中发现异常问题,请及时联系厂家。

变电站线路单相接地故障处理及典型案例分析(扫描版)

变电站线路单相接地故障处理及典型案例分析 [摘要] 在大电流接地系统中,线路单相接地故障在电力系统故障中占有很大比例.本文通过对某地区工典型故障案例进行分析,介绍了处理方法,并对相关的知识点进行阐述,为现场运行人员正确判断和分析事故原因提供了借鉴。 [关键词]大电流接地系统;小电流接地系统;判断;分析 我国电压等级在110kV 及其以上的系统均为大电流接地系统,在大电流接地系统中,线路单相接地故障在电力系统故障中占有很大的比例,造成单相故障的原因有很多,如雷击、瓷瓶闪落、导线断线引起接地、导线对树枝放电、山火等。线路单相接地故障分为瞬时性故障和永久性故障两种,对于架空线路一般配有重合闸,正常情况下如果是瞬时性故障,则重合闸会启动重合成功;如果是永久性故障将会出现重合于永久性故障再次跳闸而不再重合。 为帮助运行人员正确判断和分析大电流接地系统线路单相瞬时性故障,本案例选取了某地区一典型的220kV线路单相瞬时接地故障,并对相关的知识点进行分析。 说明,此案例分析以FHS变电站为主。 本案例分析的知识点: (1)大电流接地系统与小电流接地系统的概念。 (2)单相瞬时性接地故障的判断与分析。 (3)单相瞬时性接地故障的处理方法。 (4)保护动作信号分析。 (5)单相重合闸分析。 (6)单相重合闸动作时限选择分析。 (7)录波图信息分析。 (8)微机打印报告信息分析。 一、大电流接地系统、小电流接地系统的概念 在我国,电力系统中性点接地方式有三种: (1)中性点直接接地方式。 (2)中性点经消弧线圈接地方式。 (3)中性点不接地方式。 110kV及以上电网的中性点均采用中性点直接接地方式。 中性点直接接地系统(包括经小阻抗接地的系统)发生单相接地故障时,接地短路电流很大,所以这种系统称为大电流接地系统。采用中性点不接地或经消弧线圈接地的系统,当某一相发生接地故障时,由于不能构成短路回路,接地故障电流往往比负荷电流小得多,所以这种系统称为小电流接地系统。 大电流接地系统与小电流接地系统的划分标准是依据系统的零序电抗X0与正序电抗X1的比值X0/X1。 我国规定:凡是X0/X1≤4~5的系统属于大接地电流系统,X0/X1>4~5的系统则属于小接地电流系统。事故涉及的线路及保护配置图事故涉及的线路和保护配置如图2-1所示,两变电站之间为双回线,线路长度为66.76km。

电力电缆护层接地电流故障分析方法

电力电缆护层接地电流故障分析方法 发表时间:2018-01-26T18:23:49.060Z 来源:《电力设备》2017年第28期作者:王子韬 [导读] 摘要:当前社会技术飞速发展,电力技术也在不断的演变,同时全球的用电量也在不断的增加,我们国家已经成为了一个用电大国,因此对于用电安全提出了更高的要求,而电力电缆的护层接地电流故障是电力系统中常见的故障之一。 (呼和浩特供电局内蒙古呼和浩特 010000) 摘要:当前社会技术飞速发展,电力技术也在不断的演变,同时全球的用电量也在不断的增加,我们国家已经成为了一个用电大国,因此对于用电安全提出了更高的要求,而电力电缆的护层接地电流故障是电力系统中常见的故障之一。当线路出现故障的时候,我们应该对其进行检修和维护,否则就可能会影响电力的正常使用。在这个电缆的使用过程中,我们可以借助故障检测的方式对线路的故障点进行分析,准确定位,进行最快的检修。避免造成更多的损失,全面提高电力系统的安全性。 关键词:电力电缆;护层接地电流;故障分析 引言 我们国家正在全面的对电网进行改造,同时国家也给予了大力支持,改革的进度也十分迅速。但是在这个改造的过程中,很多电力方面的问题也逐渐显露出来。一般情况下高压电力电缆通常选择单芯电缆来作为主要的材料,因为单芯电缆的一端可以接地,同时将电压释放出来。对于金属屏蔽的问题可以有效的躲避开,避免意外的金属环流情况发生,同时还能够有效的解决电力电缆护层传输过程中的电流故障。通常在多点接地的时候,我们会选择能够承受高电压,而且出现护层现象能够进行承担的单心电缆。因为电缆的质量和安装直接影响到用电的安全,如果质量出现问题、安装出现遗漏或者是原来的高压线路老化,这些都能够影响电力电缆的安全,甚至是引发事故。 一、电力电缆中护层接地电流故障的原因 在电缆实际运行的过程中,出现单相的接地电流故障主要原因是以下几种情况:(1)导线出现断线情况,落地了;(2)导线的绝缘子被击穿;(3)导线和树木进行接触,导致了树木短路;(4)配电的变压器,其高压的绕组出现单相绝缘被击穿或接地现象;(5)由雷击或者是其他原因导致的线路接地故障。前三种是导致线路故障的主要原因。 当线路出现接地故障时,线路会产生谐波电压,此电压的大小是正常电压的几倍,一旦不能够及时的进行处理,那么就会对外部造成危害。首先接地电流故障有可能会导致电气火灾的发生,其次,接地故障时产生的接地电流会对来往的行人以及巡视人员造成不必要的伤害,甚至会引起死亡事故。而且出现线路故障接地的情况时,会影响线路的供电,对用户的用电稳定情况造成影响,进而给电力公司也造成不必要的损失。 二、护层接地电流计算方法 我们通过对型号为XLPE一1×400mm2的110kV交联电缆进行分析:相关的参数主要是:绝缘层的直径是65。8毫米;绝缘屏蔽层的直径是68.8毫米;电缆的直径为24。1毫米,电缆的屏蔽层直径是26.6毫米;衬带层的直径是73毫米;金属护套层的直径是85毫米;PVC的外护套层直径是95毫米。 一旦交叉互联的单元当中,出现一个接头断开,那么这个在接头两侧的金属护壳就会处于悬空状态,我们把导体屏蔽以及绝缘屏蔽,还有金属护套和石墨外电极之间形成的两个电容值分别设为同轴柱形的Cl和Q,那么C1和Q就会形成一个电容的分压器,在电容极板上,金属护层与每一个点位值都相等,接电压U2是Cl、Q的线芯电压Un的分压。 我们把XIPE的介电常数取值为£r.=2.3,PVC相对介质常数是£r.=5.5,我们假设电缆的外电极完好同时做好了充分接地,可这样可以计算出金属护层的电压u2: C1=2π×£l×£0[l/In(R2/R1)]=2π×2.3×8.85[l/In(32.9/13.3)]=1411(pF) C2=2π×£2×£0[1/In(R4/R3)]=2π×5.5×8.85[1/In(47.5/42..5)] =27501(pF) U2=U0C1/(Cl+C2)=64×103×[1411/(1411+27501)]=3121(V) 通过计算我们得出电缆的金属护层接地电流的监测十分重要,如果发现不够及时,不仅会损坏设备,同时也会影响维护人员的生命安全。 三、针对电缆护层接地电流在线监测手段 (一)分析护层的绝缘检测手段 首先,通常是借助断电模式对电力电缆进行检测和分析,之后再通过护层的绝缘电阻对线路的故障点进行检测。另外一种方法就是钳形的电流模式,主要指借助于测量层的循环电流对线路进行监测和分析,找到故障点。现在,随着技术的不断进步和发展,电力电缆的传输线路安全性也越来越高,在高压电缆中物理方面的电源故障也比较少见了。面对我们现在的复杂环境以及电力电缆的故障现象,已经无法用传统的手动测量方式来解决电缆护层的电流故障问题。我们举例来算计一下,某电力局有69条环形的高压电缆埋在地下,想要完成这些电缆的铺设,需要安装100多个直接的接地箱,还得安装100个叉连接地箱,这些箱子通常是放在塔中以及连接井内,面对这样大数量的箱体,传统的检测技术会耗费大量的物力、人力以及财力。因此,我们需要研究一个智能护套绝缘检测系统,借助于这套先进的系统,可以有效的检测和排除故障,同时还可以防患于未然。 (二)监测电力电缆的护层方法 2。1在线监测局部放电的方法 本文所说的局部放电实际上就是在电缆的绝缘护层上打孔,之后进行信号放电,这样的微孔放电技术可以作为高压电缆的在线监测方式,同时也比较方便。我们对过对绝缘介质外信号频率的差别来判断电缆的故障问题。当放电的信号频率在300KHz以上时,电信号就会处于电缆的屏蔽层,所以高频率的电信号会与电缆外屏蔽的电流互感器产生耦合,之后借助于超声波i数对局部放电的电缆进行监测。在一段电缆中,声信号的传输速度是比较缓慢的,因此外边的噪声信号也会比较少,同时对于电缆来说局部放电可以在现场进行检测。 2。2在线监测接地电流的方法 通常我们会觉得大于110kV的电压用到的电缆就是高压电缆,电缆我们一般采用单芯电缆,但是用单芯电缆的话,在金属护层与线芯之间会产生一种铰链的磁力线现象,此现象对线缆的感应电压会造成影响。为了能够避免这些意外的出现,我们需要进行接地操作对

6-35kV中性点不接地系统电容电流测试方案

米易供电公司中性点不接地系统 电容电流测试方案 根据DL/T620—1997《交流电气装置过电压保护绝缘配合》规定:由水泥或金属杆构成的6kV—10kV和所有35kV 中性点不接地系统发生单相接地故障时其电容电流应小于10A,6kV—10kV电缆构成的系统其电容电流应小于30A,否则应采用消弧线圈接地方式。四川省电力公司技术监督重点也强调要加强电容电流的测试。根据公司实际情况选取XXX 个别点进行测试,掌握这些变电站发生单相接地时电容电流的大小,为不符合要求的系统提供改造科技依据。为保证测试的安全进行,特制定本方案。 一、测试方法: 采用“金属直接接和间接地测试”,该方法能直接测量系统发生单相接地故障后的实际电容电流,真实反映了在该方式运行下系统的运行情况。 步骤:选取变电站母线任一出线,断开断路器,断开母线和线路侧刀闸,在开关任一相下端用接地用接地线可靠接地,测量用钳形表挂在接地线上。合上母线刀闸,断路器,读取测试数据分析,断路开断路器,拉开母刀测试线束。取下接地线和钳形表,合上线刀和母刀,合上断路器恢复出线运行(若无备用断路器,则退出任一出线或电容器组,拉开

线刀,测试结束恢复出线运行)。 测试接线图如下: 二、测试变电站: 根据变电站电容电流估算,确定XXXX站为测试点: XX站10kv母线分列运行,1M、3M分别测试。 XXX站并列运行,测试一次。 三、测试时注意事项: 必须在天气较好的情况下进行测试,测试过程中在一相接地读取测试数据时,非接地两相的电压升高至线电压,有可能危害非接地相的绝缘薄弱处,形成两相接地短路故障,造成线路停电。为此现场应作好10kV、35kV设备绝缘检查工作,保证断路器的准确跳闸试验(保护的灵敏性、可靠性等),同时考虑投入后备保护问题。 测试时接地线和地网必须接地良好,以免产生弧光接地过电压。 测试时测量表计应放在绝缘垫上,人员远离测量线和接地点,满足安规规定安全距离的要求。

变压器铁芯接地电流

铁芯多点接地故障处理探讨 (一)临时应急处理。 运行中发现变压器铁芯多点接地故障后,为保证设备的安全,均需停电进行吊罩检查和处理。但对于系统暂不允许停役检查的,可采用在外引铁芯接地回路上串接电阻的临时应急措施,以限制铁芯接地回路的环流,防止故障的进一步恶化。 如上面讲到的莆美变220KV#1主变,由于当时系统用电紧张,暂不具备停役吊罩处理的条件,我们就采用了串接电阻的临时措施。在串接电阻前,分别对铁芯接地回路的环流和开路电压进行了测量,分别为7.2A和25.5V,为使环流限制在500mA以下,串接了750Ω的电阻。串接电阻后,测得的色谱数据列于表2。对表2数据进行观察,自2000年11月15日串接电阻后,直至12月16日,总烃含量有所上升,这是由于故障点气体还未完全扩散所致。随着时间的推移,总烃数据就开始下降。对2001年5月7日的数据进行热点温度估算为746℃左右,发热点温度已有所下降。可知,串接电阻后,故障已得到有效控制。(二)吊罩检查。 吊开钟罩,对变压器铁芯可能接地的部位进行重点检查,是目前国内用得较为普遍的处理方法。为了减少变压器器身在空气中的暴露时间,使检查工作有的放矢,一般在解开铁芯与夹件等连接片后,进行如下检查试验: a.测量空心螺杆对铁芯的绝缘; b.检查各间隙、槽部有无螺帽、硅钢片废料等金属物; c.对铁芯底部看不到的地方用铁丝进行清理; d.对各间隙进行油冲洗或氮气冲吹清理。 对于杂物引起的接地故障,一般进行上述检查后,均能发现故障点,并消除接地故障。2001年5月18日,在对莆美变220KV#1主变大修时,用直接检查法查找铁芯多点接地故障处。钟罩吊开之后,先用1000V兆欧表测量铁芯绝缘电阻,其阻值仍为零。由于铁芯夹件绝缘电阻良好,说明故障点就在下节油箱与铁芯之间。因为该台变压器为槽式油箱结构,在现场不可能把铁芯从油箱中吊出,所以只能沿油箱长、短轴各个方向仔细查找故障点。由于油箱与夹件过小,只好采用小镜片反光照射及手措、拉刮等方法来查找故障点。经过反复查找,在变压器下节油箱中的隐蔽处发现有一金属小钢线挂在铁芯与下节油箱之间,金属小钢线有烧焦的痕迹。取出该金属小钢线后,再摇绝缘,铁芯对地绝缘电阻达到7500ΜΩ,可见,接地故障已削除。 (三)电容放电冲击排除法。 对于那些由铁芯毛刺、铁锈和焊渣的积聚引起的接地故障,吊罩直接检查处理往往无法取得明显效果,因要消除故障需要烧掉毛刺,这时,可用电容放电冲击法,其方法是:备一50μF左右的电容,用输出电压大约为600-1000V的直流电压发生器对电容充电,等电容器完全充电后,利用电容器对变压器故障点放电,此时变压器四周要有专人颁布在各个可疑点处,仔细倾听异常响声和是否有异物冒烟。当电容器对铁芯接地引线放电时,若有听到响声,并发现青烟逸出,这就证明该处为变压器铁芯多点接地故障处。如此反复进行几次,再用1000V兆欧表测量铁芯绝缘电阻,当放电后测得的绝缘电阻值明显合格时,即证明该变压器的多点接地故障已处理好。采用上述方法处理铁芯多点接地,应当注意加电压的仪表、设备及人身的安全。 (四)五、几点体会 (一)变压器铁芯的接地故障,会造成铁芯的局部过热。此时,从变压器油色谱分析判断,为“高于700高温范围的过热性故障”,并同时具有铁芯对地电阻为零或很低及铁芯接地回路有环流等特征。 (二)在变压器铁芯接地回路串接限流电阻作为应急措施是可行的。但应注

论配电电缆接地电流在线监测的意义

论配电电缆接地电流在线监测的意义 李题印1,崔金栋2,杜昆儒2 (1.浙江省供电公司余杭供电局,浙江杭州 311100;2.东北电力大学经济管理学院,吉林吉林 132012)摘 要:配电电缆在输电安全方面的重要性日益突出,在线监测成为大势所趋。但由于配电电缆多是中低压电缆,其主要以埋设为主,对其监测尤为困难。文章阐述了配电电缆接地监测的误区,并给出了具体的解决方案,拟提高对于电缆监控的科学性和自动化程度。 关键词:配电电缆;监控设备;电动势;在线监测 doi:10.3969/j.issn.1006-8554.2012.11.024 0 引言 目前,对于高压输电缆线中接地电流监测的作用已被大家所共识。高压输电缆线多采用单芯电缆,如果排列不当或者外围绝缘体包装发生损坏,就会引发事故,从而影响电力的安全生产。目前,接地电流监测的研究多集中在高压输电缆线上,研究成果较多,其应用效果也不错。 城市配电电力多采用10kV电压输送,缆线多采用三芯电力缆线。三芯电缆由三股电缆互相缠绕而成,每一个横截面在理论上都是一个品字形排列,其互感电动势理论之和为0,互感电流也应为0。其与单芯电缆相比,接地电流在线监测的意义并不是很明显,因此,各个供电公司对于配电电缆接地铠装的电流监测并不普及,只是在例行检查的时候才拿欧姆表测试一下,作为安全检查的一个项目。 1 传统认识的误区 1.1 铠装可以代替接地线 铠装电缆的钢铠,本身有两种作用。一是增加了机械强度,保护电缆不受外力冲击损坏和鼠咬,是地埋电缆的首选;二是钢铠可以做接地保护(但不可以接零,这是因为内部的电缆有专用的接零导线),可以有效地防止钢铠外皮的感应电压顺利导入大地。所以很多研究者和使用者认为铠装可以代替接地线。 实际上,铠装电缆不可能做成专用的接地电缆,因为专用的接地线需要一定的接地面积,况且还要铺设木炭和咸盐,其作用就是降低大地的接触电阻和增加导电的能力。而且,咸盐会对铁类制品有严重的腐蚀作用,所以铠装电缆的外皮不可以做专用的接地使用,只能在专用的接地上接入铠装电缆的外皮而已。 1.2 铠装接地电流为0 35k V及以下电压等级的电缆都采用两端接地方式,这是因为这些电缆大多数是三芯电缆,在正常运行中,流过三个线芯的电流总和为零,在铝包或金属屏蔽层外基本上没有磁链,也就基本上没有感应电压,所以两端接地后不会有感应电流流过铝包或金属屏蔽层。 配电电力缆线中传送的一般是三相交流电,三相交流电源就是由三个频率和振幅相同,而在相位上相差1/3周期,波形为正弦波的电源组成。三股导线在正常情况下任何切面都是一个品字形,其互感电动势矢量之和为0,因此电流也为0,这就是人们判断其接地电流为0的理论基础。如图1所示,理想情况下三股导线的电动势矢量和,及Ea、Eb和Ec的电动势 矢量和互相抵消。 图1 三芯电缆理想电动势矢量图 实际上,现有的绞线技术不可能保证每一个纵切面都是120 的品字排列,任何一条线的松动或者改变都使电动势的矢量和不为0,其作用到钢铠上就会产生接地电流。 1.3 铠装接地电流监测意义不大 铠装接地电流一般在正常情况下,多为几十毫安,对生产和人身并无多大影响,很多人便认为铠装接地电流监测的意义不大,浪费人力、物力、财力去做这件事情不值,在线监测更是没有必要。 实际上,配电网中钢铠接地电流的监测非常有意义,其可以有效地反应电缆负载的情况,如果三股导线负载差距较大或者发生某一根或者某两根出现事故时,都能有效地反应到接地电流上,其电流值在正常情况下会保持在一个小范围、小数值的变动范围,如果突然剧烈波动或者增大意味着事故的发生或者输电负荷的波动。 同时,接地电流的监测还可以反映电缆绝缘层的老化情况。由于三芯电力缆线长期暴露在空气中,绝缘层被氧化,久而久之就会发生老化,从而使接地电流长周期地持续增加。电缆绝缘性能的好坏对供电系统连续运行具有重要意义。 另外,配电电缆多以埋设为主,地下环境比较潮湿,导致 41 技术与市场技术研发第19卷第11期2012年

浅谈矿井接地电容电流测试及其补偿

浅谈矿井接地电容电流测试及其补偿 发表时间:2019-09-17T11:14:29.927Z 来源:《电力设备》2019年第7期作者:黄奇1 贾宝田2 李楠2 [导读] 摘要:介绍了6KV中性点不接地系统中电容电流过大的危害,并采用偏置电容法测试接地电容电流,阐述了新型消弧线圈自动跟踪补偿装置的组成及特点。 (铁法煤业(集团)有限责任公司供电部辽宁铁岭 112700) 摘要:介绍了6KV中性点不接地系统中电容电流过大的危害,并采用偏置电容法测试接地电容电流,阐述了新型消弧线圈自动跟踪补偿装置的组成及特点。 关键词:接地电容电流;新型消弧线圈自动跟踪补偿装置 引言 在矿井供电系统6kV中性点不接地系统(小电流接地系统)中:当一相发生金属性接地故障时,接地相对地电位为零,其它两相对地电位比接地前升高倍,一般情况下,当发生单相金属性接地故障时,流过故障点的短路电流仅为全部线路接地电容电流之和其值并不大,发出接地信号,值班人员可在2小时内选择和排除接地故障,保证连续不间断供电。根据《煤矿安全规程》第434条规定“矿井高压电网的单相接地电容电流不得超过20A,否则,必须采取限制措施”。 1、单相接地电容电流的危害 矿区供电系统的配电线路以电缆为主,6kV出线总长度增加,对地电容较大时,单相接地电流就不容忽视。单相接地电容电流过大的对矿区供电产生很大的危害,主要体现在以下方面: 1)线路发生接地时,接地点电弧不能自行熄灭,出现间歇性电弧接地时,产生弧光接地过电压,这种过电压可达相电压的3-5倍或更高,它不仅击穿电网中的绝缘薄弱环节,还造成用电设备、电缆、变压器等绝缘老化,缩短使用寿命,而且对整个电网绝缘都有很大的危害。 2)产生的接地电容电流流入接地网后由于接地电阻的原因,使整个接地电网电压升高,危害人身安全。 3)在雷雨季节,配电网对地电容电流增大后,会提高单相接地引起的短路跳闸事故。 4)入井电缆发生接地或者发生相间短路,产生的接地电弧还会直接引起火灾,甚至直接引起可燃气体、煤尘爆炸。 2、单相接地电容电流的测试 为了更好的掌握矿井变电所接地电容电流的情况,我们采用了偏置电容法进行间接测量。单相接地电容电流测定接线如图1所示,选用高压6 kV并联补偿电容器,容量20~40kvar,电流表选用0.5级的0~5A交流或交直流电流表,电压表选用可测交流的0.5级0~30V的一只,串接电容器的连接导线应选用截面积不小于15mm2 的铜芯电缆,测量开口三角电压,0~150V的二只。图2中的PT 为变电所6kV 母线三相五柱电压互感器。接好线后,备用开关柜送电, 分别测量出A、B、C在单独串联电容器时,流过偏置电容的电流为IA、IB、IC取平均值I’;同时读取6KV电压互感器二次侧开口三角相电压Uao、Ubo、Uco取平均值U’’与PT二次侧的电压继电器的相电压值UA、UB、UC取平均值U’。 图1 偏置电容法测量原理图 图2 PT变电所6KV母线三相五柱式电压互感器 根据测量数据通过公式Id= I’计算出变电所6KV接地电容电流值。测量应注意以下事项:

JBTA变压器铁芯接地电流在线监测系统

JBTA变压器铁芯接地电流在线监测系统 (固定安装型)使用说明书 1 概述 变压器运行时,经常出现因铁芯绝缘不良造成的故障,铁芯绝缘不良或多点接地时,形成金属性短路接地,会产生较大的放电脉冲,可由高频信号局放监测发现。有时也会出现不稳定短路接地,但绝缘两点接地故障时,便形成工频短路电流。因此利用检测接地电流工频分量来判断铁芯绝缘是否正常相当有效。注:DL/T 596-1996《电力设备预防性试验导则》中规定:铁芯绝缘正常时,接地电流不大于0.1A。 上述情况也可用在线监测铁芯接地电流量的方法,来判断其内部绝缘的劣化,可起到故障早期预报的作用。JBTA变压器铁芯接地电流在线测量系统就是采用此原理,采用电测法,在不改变原设备接线的情况下,将信号取样点选择在变压器铁芯接地引出线处,使用特制的线圈制作的高灵敏度传感器。直接测量,并显示变压器运行状态下,接地电流值。 该产品应用本公司专利技术:高压电流传感器专利号:ZL02224998.2 2 主要技术指标 2.1 测量内容:运行变压器铁芯或夹件接地电流值(A)。 2.2 仪器组成:信号采集器、智能集中器(铁芯和夹件采集数据显示, 历史数据查询、通讯(RS232)数据上传、光示信号节点控制)。 2.3 测量范围:0~1.999A、精度1级。 2.4 使用条件①户内、户外、在线测量 ②环境温度-20~60℃ ③环境湿度< 80% 2.5 测量传感器内窗:700×15 2.6 稳定工作时间3分钟 2.7 工作电源:220V AC;50Hz;功耗:10W 2.8 外型:见机箱图;重量1.9 Kg ;

2.9 安装:见安装图 3 箱内面板布置说明: (1)RS232插座。(2)电源开关。(3)液晶显示。(4)触摸键盘。 4 以上接线端子定义见7.2集中器接线说明: 主视图 箱体内面板

小电流接地系统接地故障分析知识讲解

小电流接地系统 单相接地故障分析与检测 为了提高供电可靠性,配电网中一般采取变压器中性点不接地或经消弧线圈和高阻抗接地方式,这样当某一相发生接地故障时,由于不能构成短路回路,接地故障电流往往比负荷电流小得多,因而这种系统被称为小电流接地系统。 小电流接地系统中单相接地故障是一种常见的临时性故障,当该故障发生时,由于故障点的电流很小,且三相之间的线电压仍保持对称,对负荷设备的供电没有影响,所以允许系统内的设备短时运行,一般情况下可运行1-2个小时而不必跳闸,从而提高了供电的可靠性。但一相发生接地,导致其他两相的对地电压升高为相电压的倍,这样会对设备的绝缘造成威胁,若不及时处理可能会发展为绝缘破坏、两相短路,弧光放电,引起去系统过压。然而当系统发生单相接地故障时,由于构不成回路,接地电流是分布电容电流,数值比负荷电流小得多,故障特征不明显,因此接地故障检测仍是一项世界难题,很多技术有待克服。 单相接地故障分析 当任意两个导体之间隔着绝缘介质时会形成电容,因此在简单电网中,中性 ,在相电压作用下,点不接地系统正常运行时,各相线路对地有相同的对地电容C 每相都有一个超前于相电压900的对地电容电流流入地中,然而由于电容的大小与电容极板面积成正比而与极板距离成反比,所以线路的对地电容,特别是架空线路对地电容很小,容抗很大,对地电容电流很小。 系统正常运行时,如图1,由于三相相电压U A、U B、U C是对称的,三相对地电容电流I co.A、I co.B、I co.C也是平衡的,因此,三相的对地电容电流矢量和为0,没有电流流向大地,每相对地电压就等于相电压。

图1中性点不接地电力系统电路图与矢量图 当系统中某一相出现接地故障后,假设C相接地,如图2所示,相当于在C 相的对地电容中并联了一个大电阻,由于故障电流I C没有返回电源的通路,只能通过另外两项非故障A、B相线路的对地电容返回电源。此时C相线路的对地电压为U C’ = U CD = 0,而A相对地线电压即U A’ = U AD = U AC = -U CA = -U C∠-300 = U B∠-900,而B相对地线电压即U B’ = U BC = U B∠-300,则U A’和U B’相差600。非故障相中流向故障点的电容电流I AC= U A’jwC0,I BC= U B’jwC0,且I AC、I BC超前U A’和U B’ 900,I AC、I BC大小相等为I co.A之间相差600。 图2中性点不接地电力系统发生C相接地故障电路图与矢量图由此可见,C相接地时,不接地的A、B两相对地电压U A’和U B’由原来的相电压升高到线电压,即值升高到原来的倍,相位由原来的相差1200变为相差600。此时,从接地点流回的电流I C应为A、B两相的对地电容电流之和,即I C = I AC + I BC。

10~35kV电网单相接地电容电流的新测试法

10~35kV电网单相接地电容电流的新测试法程治盐城供电局(224002) 一、测试电容电流的必要性 10~35kV电网中性点一般采用不直接接地的方式。若发生单相接地电 容电流过大时,故障点的电弧不易熄灭,可能产生间歇性弧光过电压而损坏设备。故《过电压保护设计技术规程》规定,对35kV电网若接地电弧线圈,以抑制单相接地弧光过电压的产生。接地电容电流是选择消弧线圈补偿电流的唯一依据。现介绍一种分相接入电容法来测接地电容电流,供参考。 二、分相接入电容测试法原理 不接地系统中的每条线路,对地都存在着分布电容,并用集中电容c0代替,由于三相电路对称,对地电容基本相等,故三相线路可视为对称电路,2即 c=c=c=c;E=Eq=Ea,E=U现将外加电容c接入A相上,利用等值电ABC0ABcAφcf 源定理,可将其转化成由等值电势和等值内阻串联的简单电路。为求c上f的电压,可将c作为负荷,将其余部分作为电源画出其等值电路图(见图1)。 f 1.先计算等效电源内阻抗Z。 将U、U、U短接,由于电压恒定,即相当于电源内阻抗为零,显然从ABC?c两端(H)看进去,其Z为: fO0 后的电压U’。C断开后,三相电容组成一个对称的星形2.求断开ctHOf

负载,则电容器中性点O’和电源中性点O重合,故开路电压U’=E=U。HOAφ由于开路电压和内阻均已求出,利用等值电源定理画出其等值电路(见图 2)。 3.计算系统电容电流 由于外加电容c接入后,流过此电容的电流即可测出,同时由于三相不对f 称,在P开口三角处即可测出中性点位移电压U’的大小。从图2可看出,此TOO电路相当于c与3c和电源E串联电路,此时流过c的电流为: f0f 由于流过c、3c的电流同相,故U’与U’同相见图3: f0OOAO 由于知道了3c两端的电压,知道了流过c的电流:故 0f

相关主题
文本预览
相关文档 最新文档