当前位置:文档之家› 商用车车架工艺技术与材料开发

商用车车架工艺技术与材料开发

商用车车架工艺技术与材料开发
商用车车架工艺技术与材料开发

商用车车架工艺技术与材料开发

发表时间:2017-04-11T16:12:15.410Z 来源:《基层建设》2017年1期作者:蓝军

[导读] 本文主要对商用车车架工艺技术与材料开发进行分析探讨。

东风柳州汽车有限公司广西柳州 545001

摘要:近年来,得益于国家政策的扶持和国内市场的旺盛需求,我国汽车工业发展极为迅速,同时汽车也消耗了大量的不可再生能源。因此,减少能源消耗,降低制造及使用成本成为了各汽车制造厂家的重点研究课题。汽车发展要求的轻量化、智能化、节能、舒适、安全和环保等离不开汽车新材料的开发,而汽车材料的开发又与汽车工艺技术的发展是密不可分的。基于此,本文主要对商用车车架工艺技术与材料开发进行分析探讨。

关键词:商用车车架;工艺技术;材料开发

1、前言

虽然这几年国内的钢铁行业也推出了一些适用于商用车车架高强度钢板如590、610、700MPa和超细晶粒钢等钢种,但并未在汽车制造企业大应用,制约的不仅是新材料价格,还有钢铁企业对汽车材料品种定位与商用车车架的工艺技术发展不同步。由此可见,钢铁企业的新材料开发必须依托汽业行业,而汽车行业也只有通过与钢铁企业合作共同开发出具有优良性能、低成本的新材料才能满足汽车高性能、轻化、低成本、节能和环保的要求。

2、商用车车架工艺技术——轻量化工艺

汽车轻量化的主要途径:一是采用比如高强度钢板、铝合金、镁合金和新型复合材料等强度更高、质量更轻的新型轻量化材料;二是应用以CAE为基础的现代结构优化技术设计汽车各零部件的结构,使结构部件薄壁化、中空化、小型化以及对零部件进行结构形状变更等,以实现最大限度地减轻零部件的质量。

2.1高强度材料替代轻量化

采用高强度材料替代进行轻量化是最简单的也是大家最容易想到的轻量化方法,它仅需将原有普通材料更换为高强度材料,同时减薄或减小零件尺寸,在保证强度等同于原结构的前提下实现轻量化设计。商用车车架因整车布置及各系统零部件安装的需要,目前采用的基本是边梁式梯形结构车架,另外为了减少工艺生产难度,所以其各零部件的结构也会设计得尽可能简单。因此在车架纵梁和车架整体结构方面,商用车车架无法像乘用车那样可以设计为中空或其他更有利于轻量化的结构。更多的便是通过将车架总成上的各零部件采用高强度钢板替代原来的普通钢板进行减薄设计实现轻量化。

2.2优化车架结构轻量化

优化车架结构进行轻量化,是指在不更换原有零件的材料,通过以CAE为基础的现代结构优化技术设计手段,在保证车架强度和刚度的前提下,对车架的结构形状进行改变,取消对车架强度和刚度无贡献或贡献小的零件,减薄或缩小尺寸实现轻量化。如以前的商用车车架普遍采用双层大梁,通过优化分析,可以设计为单层大梁,根据不同工况需要适当对车架做局部加强,以保证车架总成的强度和刚度和原车架相当。采用高强度材料替代和通过CAE分析优化车架结构两种方法是目前车架轻量化采用最多、也是最有效的方法,效果也是非常明显的。这两种方法在实际工作中应该是相辅相成,共同使用才能更大地挖掘出车架轻量化的空间,才能保证优化后的车架可靠。在上述轻量化方法的基础上,通过细化扩展,借助先进的设计优化软件,业界学者及汽车设计工程师们提出了很多的轻量化设计方法,开展了大量的车架轻量化设计工作,为车架的轻量化提供了大量的参考理论依据。

3、商用车车架材料开发分析

3.1高强度钢板的发展

目前国内已经批量生产高强度热轧钢板为700MPa级钢板,800MPa级及以上强度的高强度热轧钢板处于小批试用阶段,主要用在工程机械产品上,在商用车车架上暂时还无厂家试用。特别是900MPa以上的材料金相组织为“贝氏体+马氏体”(900MPa以下的材料为铁素体析出强化+贝氏体),其延伸率较低,在10%左右,不适用于成型件,一般需采用焊接形式形成构件。因目前的热轧技术已经基本做到极限,如果要再进一步提高抗拉强度,需要进行热处理,这样会导致钢材成本大幅增加。随着钢材强度的提高,加工难度也会变大,对设备能力的要求也有所提高,因此需要调整设计方案和制造工艺,如设计上将零件厚度减薄。

3.2高强度钢的成型能力

(1)传统的车架纵梁成型工艺

传统的车架纵梁成型工艺主要为模具冲压成型,其具有生产效率高、质量稳定的特点,适用于单一品种的大批量生产,特别是可以进行双梁合压成型。其采用的压力机吨位较大,一般在3000t以上。压力机有油压机和机械式压力机两种,机械式压力机效率高;油压机成型过程中保压时间比机械式压力机稍长,对比同等吨位机械式压力机,具有成型后回弹少,质量更稳定的优点。因此,过去通常采用的机械式压力机逐步被油压机所替代。图,1为亚洲最大的6300t机械式压力机。

(2)车架纵梁的辊压成型工艺

辊压成型是与模具成型完全不同的纵梁生产工艺,辊压成型是辊轮在做旋转运动把纵梁带动向前的同时将纵梁逐步弯曲成型。其具有生产效率高,产品质量稳定,零件长度可以随时调整等优点。国内的辊压线在生产不同纵梁高度(即槽型宽度)时,需要更换辊轮,而更换辊轮和调试的时间较长。目前国外的辊压成型线通过伺服电机控制可在极短时间内完成产品料厚、槽宽和长度等参数的设置转换,且成型质量稳定,但设备非常昂贵,投入较大。如重汽采用了意大利Stam公司的辊压线。

对于高强度板,采用传统的成型工艺会因设备压力问题导致无法采用双梁合压。因此传统的生产工艺必须要进行改造以满足高强度板的成型能力要求,如采用辊压成型或采用单压工艺(即纵梁和纵梁加强板分别成型后再组合)。同时,冲孔和剪切设备也需要相应升级冲头和刀具,采用强度更高、耐磨性更好的材料所制作的冲头和刀具。若采用更高强度的钢板,上述工艺问题会更为严重,所以,车架的生产工艺也将会是未来几年内制约向更高强度钢板发展的重要因素之一。

4、结语

车架的结构性能影响着整车的正常行驶,所以车架轻量化必须在满足一定的强度和刚度的条件下进行。材料开发是现代汽车工业的重点课题,也是汽车工业长远发展的有力保障。

【CN109823399A】一种商用车车架总成【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910226410.0 (22)申请日 2019.03.25 (71)申请人 湖北三环专用汽车有限公司 地址 442000 湖北省十堰市张湾区东环路 123号 (72)发明人 许丽娟 梁伟 赵永振 燕飞  李阳雪 宋显义 李豪 代飞  胡健 于远超 王伟龙 侯国栋  冯广慧 梁智发 曹磊 周文明  陈双峰 喻伟业 王宇海 刘富祥  周椿 甘宇 陈文静 叶鸿志  李伟  (74)专利代理机构 十堰博迪专利事务所 42110 代理人 高良军 (51)Int.Cl.B62D 21/02(2006.01)B62D 21/09(2006.01) (54)发明名称一种商用车车架总成(57)摘要本发明公开了一种商用车车架总成,包括左、右纵梁,左、右纵梁的截面为U型且开口朝内设置,左、右纵梁之间通过多个横梁连为一体,左、右纵梁的前端腹面外侧上固定有向左、右纵梁前端延伸设置的左、右外翻边梁,第一横梁总成两端分别安装在左、右外翻边梁的前端下方;左、右外翻边梁的截面呈U型结构且开口向外设置,与左、右纵梁的腹面外侧背靠背固定连接,左、右外翻边梁腹面外侧之间的空腔构成散热器舱,第一横梁总成通过其两端的安装支座与左、右外翻边梁的腹面外侧和下翼面连接。本发明在不大幅提升成本的情况下,通过加宽车架散热器舱处的宽度,为散热器在Y方向增加了设计空间,使该车架可以匹配相对同级别车型更大马力的 发动机。权利要求书1页 说明书2页 附图1页CN 109823399 A 2019.05.31 C N 109823399 A

商用车车架工艺技术与材料开发

商用车车架工艺技术与材料开发 发表时间:2017-04-11T16:12:15.410Z 来源:《基层建设》2017年1期作者:蓝军 [导读] 本文主要对商用车车架工艺技术与材料开发进行分析探讨。 东风柳州汽车有限公司广西柳州 545001 摘要:近年来,得益于国家政策的扶持和国内市场的旺盛需求,我国汽车工业发展极为迅速,同时汽车也消耗了大量的不可再生能源。因此,减少能源消耗,降低制造及使用成本成为了各汽车制造厂家的重点研究课题。汽车发展要求的轻量化、智能化、节能、舒适、安全和环保等离不开汽车新材料的开发,而汽车材料的开发又与汽车工艺技术的发展是密不可分的。基于此,本文主要对商用车车架工艺技术与材料开发进行分析探讨。 关键词:商用车车架;工艺技术;材料开发 1、前言 虽然这几年国内的钢铁行业也推出了一些适用于商用车车架高强度钢板如590、610、700MPa和超细晶粒钢等钢种,但并未在汽车制造企业大应用,制约的不仅是新材料价格,还有钢铁企业对汽车材料品种定位与商用车车架的工艺技术发展不同步。由此可见,钢铁企业的新材料开发必须依托汽业行业,而汽车行业也只有通过与钢铁企业合作共同开发出具有优良性能、低成本的新材料才能满足汽车高性能、轻化、低成本、节能和环保的要求。 2、商用车车架工艺技术——轻量化工艺 汽车轻量化的主要途径:一是采用比如高强度钢板、铝合金、镁合金和新型复合材料等强度更高、质量更轻的新型轻量化材料;二是应用以CAE为基础的现代结构优化技术设计汽车各零部件的结构,使结构部件薄壁化、中空化、小型化以及对零部件进行结构形状变更等,以实现最大限度地减轻零部件的质量。 2.1高强度材料替代轻量化 采用高强度材料替代进行轻量化是最简单的也是大家最容易想到的轻量化方法,它仅需将原有普通材料更换为高强度材料,同时减薄或减小零件尺寸,在保证强度等同于原结构的前提下实现轻量化设计。商用车车架因整车布置及各系统零部件安装的需要,目前采用的基本是边梁式梯形结构车架,另外为了减少工艺生产难度,所以其各零部件的结构也会设计得尽可能简单。因此在车架纵梁和车架整体结构方面,商用车车架无法像乘用车那样可以设计为中空或其他更有利于轻量化的结构。更多的便是通过将车架总成上的各零部件采用高强度钢板替代原来的普通钢板进行减薄设计实现轻量化。 2.2优化车架结构轻量化 优化车架结构进行轻量化,是指在不更换原有零件的材料,通过以CAE为基础的现代结构优化技术设计手段,在保证车架强度和刚度的前提下,对车架的结构形状进行改变,取消对车架强度和刚度无贡献或贡献小的零件,减薄或缩小尺寸实现轻量化。如以前的商用车车架普遍采用双层大梁,通过优化分析,可以设计为单层大梁,根据不同工况需要适当对车架做局部加强,以保证车架总成的强度和刚度和原车架相当。采用高强度材料替代和通过CAE分析优化车架结构两种方法是目前车架轻量化采用最多、也是最有效的方法,效果也是非常明显的。这两种方法在实际工作中应该是相辅相成,共同使用才能更大地挖掘出车架轻量化的空间,才能保证优化后的车架可靠。在上述轻量化方法的基础上,通过细化扩展,借助先进的设计优化软件,业界学者及汽车设计工程师们提出了很多的轻量化设计方法,开展了大量的车架轻量化设计工作,为车架的轻量化提供了大量的参考理论依据。 3、商用车车架材料开发分析 3.1高强度钢板的发展 目前国内已经批量生产高强度热轧钢板为700MPa级钢板,800MPa级及以上强度的高强度热轧钢板处于小批试用阶段,主要用在工程机械产品上,在商用车车架上暂时还无厂家试用。特别是900MPa以上的材料金相组织为“贝氏体+马氏体”(900MPa以下的材料为铁素体析出强化+贝氏体),其延伸率较低,在10%左右,不适用于成型件,一般需采用焊接形式形成构件。因目前的热轧技术已经基本做到极限,如果要再进一步提高抗拉强度,需要进行热处理,这样会导致钢材成本大幅增加。随着钢材强度的提高,加工难度也会变大,对设备能力的要求也有所提高,因此需要调整设计方案和制造工艺,如设计上将零件厚度减薄。 3.2高强度钢的成型能力 (1)传统的车架纵梁成型工艺 传统的车架纵梁成型工艺主要为模具冲压成型,其具有生产效率高、质量稳定的特点,适用于单一品种的大批量生产,特别是可以进行双梁合压成型。其采用的压力机吨位较大,一般在3000t以上。压力机有油压机和机械式压力机两种,机械式压力机效率高;油压机成型过程中保压时间比机械式压力机稍长,对比同等吨位机械式压力机,具有成型后回弹少,质量更稳定的优点。因此,过去通常采用的机械式压力机逐步被油压机所替代。图,1为亚洲最大的6300t机械式压力机。 (2)车架纵梁的辊压成型工艺 辊压成型是与模具成型完全不同的纵梁生产工艺,辊压成型是辊轮在做旋转运动把纵梁带动向前的同时将纵梁逐步弯曲成型。其具有生产效率高,产品质量稳定,零件长度可以随时调整等优点。国内的辊压线在生产不同纵梁高度(即槽型宽度)时,需要更换辊轮,而更换辊轮和调试的时间较长。目前国外的辊压成型线通过伺服电机控制可在极短时间内完成产品料厚、槽宽和长度等参数的设置转换,且成型质量稳定,但设备非常昂贵,投入较大。如重汽采用了意大利Stam公司的辊压线。 对于高强度板,采用传统的成型工艺会因设备压力问题导致无法采用双梁合压。因此传统的生产工艺必须要进行改造以满足高强度板的成型能力要求,如采用辊压成型或采用单压工艺(即纵梁和纵梁加强板分别成型后再组合)。同时,冲孔和剪切设备也需要相应升级冲头和刀具,采用强度更高、耐磨性更好的材料所制作的冲头和刀具。若采用更高强度的钢板,上述工艺问题会更为严重,所以,车架的生产工艺也将会是未来几年内制约向更高强度钢板发展的重要因素之一。 4、结语 车架的结构性能影响着整车的正常行驶,所以车架轻量化必须在满足一定的强度和刚度的条件下进行。材料开发是现代汽车工业的重点课题,也是汽车工业长远发展的有力保障。

浅析重型商用车车架轻量化技术的发展及应用

浅析重型商用车车架轻量化技术的发展及应用 东风柳州汽车有限公司  姓名:周友明 学号:P12020121  0 引言 随着经济的快速发展,环境污染和能源短缺问题越来越明显,而汽车数量的增加更使这些问题日益严重。因而,轻型、节能、环保、安全、舒适、低成本成为各汽车制造厂家追求的目标。2009年备受世界瞩目的哥本哈根会议在全球掀起一股热烈的“哥本哈根”环保风,“低碳经济”已成为社会各界最为关注的热门词汇[1]。近年来,得益于国家政策的扶持和国内市场的旺盛需求,我国汽车工业发展极为迅速,同时汽车也消耗了大量的不可再生能源,使一些地区出现了大面积的汽油、柴油和天然气等能源相对不足的现象,对人们的日常生活和农工业生产带来了很大的影响,对经济的发展产生了直接限制作用,所以节能减排已成为汽车工业界目前有待解决的重大问题,尤其是节能和环保更是关系到人类的可持续发展。因此,推进汽车的节能环保显得尤为重要。 1 商用车车架轻量化的意义 目前,我国商用车保有量占全部汽车保有量的23%左右,而燃油消耗占到整个汽车用油量的70%[2],其中重型商用车的耗油量又占全部商用车耗油量的70%以上。因此,汽车节能降耗重点就是要抓重型商用车的节能降耗。轻量化技术是提高汽车燃油经济性、减少尾气排放、节约材料消耗的有效手段。根据国外的研究数据表明,汽车整车质量每降低100公斤,百公里油耗可降低0.3~0.6升;汽车整车质量每减重10%,油耗可降低5%~8%[3]。国内通过试验对比分析,某典型重型商用车减轻自重的10%,可以降低油耗4.75%[4]。另外,轻量化对环保也很有好处,车辆每减轻100公斤,CO 排放量可减少约5g/km[5]。同时,轻量化可 2 减少原材料消耗,降低零件成本,增加企业的收益。因此,轻量化对于消费者、企业以及社会环境都是有益的。 对载货汽车来说,轻量化不但减轻了自身质量还提高了载质量利用系数(汽车最大承载质量与汽车整备质量之比),这是一个综合衡量轻量化的系数,也是

重型商用车车架

重型商用车车架纵梁制造技术的研究与应用 一、前言 近几年,随着我国西部大开发和整体国民经济的快速发展及高速公路通车里程的不断增加,重型商用车出现俏销局面,由于国内汽车制造厂一直以生产中型车和轻型车为主,面对新的机遇,各制造厂家积极调整产品结构,以适应市场的变化。生产重型车首先要解决的是底盘问题,底盘中,车架纵梁是关键的零件之一,是制约车架总成质量和能力的瓶颈。我公司作为国内主要三大重型商用车生产厂之一,近两年也推出多种市场热销的重型车,这些新车型的车架纵梁都是全新结构设计,复杂程度及加工难度比以往车架纵梁都大,而且原有模具加工无法利用。在这些新车型车架纵梁的生产准备过程中,如采用常规工艺和常规模具设计方案,不仅不能适应目前市场经济条件下的“多品种、小批量、多批次”的生产方式,而且投入成本很高,准备周期也很长,难以适应产品和市场的变化。在参考国内、外纵梁制造技术和结合自身实际情况的基础上,我们将柔性化制造技术作为目标,一次规划,分期实施具体项目,逐步形成具有企业特色的车架纵梁柔性化制造体系。 二、重型商用车车架纵梁的产品特征 重型商用车车架纵梁普遍采用双梁结构,纵梁与加强梁料厚匹配目前国内主要有:“7+5”、“7+7”、“8+5”、“8+7”等几种。与中型商用车车架纵梁相比,主要变化是“加强、加长、加宽”等,产品特征如下: 材料:高强度钢板16MnL,抗拉强度σb在510~610MPa,甚至更高。 结构:双大梁结构,即纵梁+加强梁 料厚:纵梁:7.0mm,8.0mm 加强梁:5.0mm,7.0mm 断面尺寸:280mm,300mm,甚至更大 长度:5600~11500mm 车架宽度: 780~850mm 纵梁和横梁连接方式:国内产品以翼面连接为主,采用铆钉铆接。 国外产品以腹面连接为主,采用高强度螺栓连接。 纵梁类型:通常有以下几种类型(见图一)

商用车车架纵梁成形工艺浅析

商用车车架纵梁成形工艺浅析 发表时间:2020-04-10T02:02:48.098Z 来源:《科技新时代》2020年1期作者:张钧泰 [导读] 冲压工艺是纵梁生产的一种传统工艺方式,通过大吨位压力机和大型纵梁模具进行生产,冲压工艺特点是生产效率高,质量稳定,适用于单一品种的大批量生产[1]。 东风柳州汽车有限公司广西柳州 545006 摘要:近年来,根据市场与客户对商用车提出的更高要求,整车对其装配基础—车架总成主要零件纵梁的质量有了更高的要求。本文将从纵梁成形的过程出发,通过分析纵梁成形的各个步骤,简述影响纵梁成形的影响因素,梳理并采取相应的措施对成形工艺进行优化。 关键词:成形;工艺;优化;措施 引言 冲压工艺是纵梁生产的一种传统工艺方式,通过大吨位压力机和大型纵梁模具进行生产,冲压工艺特点是生产效率高,质量稳定,适用于单一品种的大批量生产[1]。本文将通过分析纵梁成形的各个步骤即纵梁平板料在模具中的变化过程,探究压形的影响因素及改进措施。 1、纵梁成形中板料变化的过程分析 1.1板料粗定位 操作者使用撬棍使板料工艺孔与顶出器(压料板)避让孔大致对齐的过程。要求板料虚拟中心线与板料上工艺孔中心线的差距≤10,板料工艺孔与顶出器避开孔的中心轴线偏移≤10。 1.2上下模具定位 在板料在成形前,模具导柱有效导向部分进入导套的过程。上模导柱的轴线与下模导套的轴线偏差值应<0.18mm;导正销进入板料工艺孔前(或压料杆预压紧前),导柱进入导套的有效导向部位长度应>30mm。若导柱和导套间的间隙过大,造成凸、凹模具间隙不均匀,翼面孔及开口尺寸超差;导柱过短,没有达到有效导向长度(导柱与导套重合长度<30mm),导向部件失效。 1.3板料精定位 模具导柱进入导套后,凸模活动至模具导正销有效部分插入板料工艺孔的过程。上模导正销的轴线与板料工艺孔中心线偏差小于 0.15mm。板料孔位置度超差将导致成零件抱紧导正销,出料困难。 1.4板料压紧定位 模具导正销插入板料后,压料杆压紧板料的过程。顶出器需有足够的支撑力,压料杆应有足够的压紧力,使板料与模具间的摩擦力足以克服外力对板料的影响。压紧力不足时,板料容易发生窜动,纵梁翼面孔精度超差,见图一。 1.5成形过程 板料在凸模、压料杆与顶出器压紧下,进入模腔的过程。压力机液压垫提供的压力不足时,上模和顶出器不能与板料贴紧,板料可在模具中窜动,纵梁腹面平面度超差,产生龟背,见图二。 1.6模具校正弯曲、出料: 纵梁在冲压行程结束时收到模具的校正,弯曲力急剧增大,减少板料回弹的过程,称为校正弯曲。成形后,纵梁的开口尺寸应为理论尺寸A(-1,+2),见图三。纵梁在足够的顶出力下顺利出料,内凹≤10mm,无因卸料困难造成的外凹现象。

相关主题
文本预览
相关文档 最新文档