当前位置:文档之家› 初等数论中蕴含的数学思想

初等数论中蕴含的数学思想

初等数论中蕴含的数学思想
初等数论中蕴含的数学思想

初等数论中蕴含的数学思想

摘要:通过对初等数论中的某些问题的解决思路的总结概括,以及对其中重要定理或引理的证明过程的回顾,探讨了数论中蕴含的几类数学思想方法,即:转化、整体、配对、群论思想方法及整数矩阵在初等数论中的应用。

关键字:初等数论;数学思想方法;整除

Mathematical Thinking in Elementary Number Theory

Abstract:By elementary number theory problems in some of the ideas summed up. And we review the proof process of some important theorems or lemmas. It is discussed that several mathematics thought way in Elementary theory. That is, conversion, overall, matching materials, groups and group representations thinking method and integer matrix in the application of elementary number theory.

Key words: elementary theory ,mathematical way of thinking,division

数论,这门古老而又常新的学科既是典型的纯粹数学,又是日益得到广泛应用的新“应用数学”.

在数论中,初等数论是以整除理论为基础,研究整数性质和方程(组)整数解的一门数学学科,是一门古老的数学分支.它展示着近代数学中最典型、最基本的概念、思想、方法和技巧.目前,初等数论在计算机科学、代数编码、密码学、组合数学、计算方法等领域内得到了广泛的应用,成为计算机科学等相关专业不可缺少的数学基础.

数论的魅力在于它可以适合小孩到老人,只要有算术基础的人均可以研究数论.初等数论貌似简单,但真正掌握并非易事,它的内容严谨简洁,方法奇巧多变,其中蕴含了丰富的数学思想方法.本文以初等数论中重要的定理的证明为据,配以具体的数论问题,谈谈初等数论中蕴含的转化、整体、归纳、群论思想方法及整数矩阵在初等数论中的应用. 1 转化思想方法

转化是一种常用的数学思想方法.转化是指问题之间的相互转化,或者将问题的一种形式转化为另一种形式,或者把复杂问题转化成较简单问题、将陌生问题转化为已解决或熟悉的问题[1].通过恰当的化归转化不仅能够顺利地解决原问题,而且有助于培养学生科学的思维习惯.

整除是数论中的基本概念,此问题是数论中比较简单的一种类型.有时我们需要判断几个分式的和是一个整数,这样直接求其是整数比较困难,因而常常化为整除问题解决.

例1 证明对于任意整数n ,数6

233

2n n n ++是整数.

证明 ()

()()216

1

326623232++=++=++n n n n n n n n n

又由于两个连续整数的乘积是2的倍数,三个连续整数的乘积是3的倍数,并且()13,2=,所以有

()()21|2++n n n 和()()21|3++n n n ()()21|6++n n n

即6

233

2n n n ++是整数.

从历史上来看,不定方程问题的求解是推动数论发展的最主要课题.有的不定方程问题直接求解或证明比较困难,因而常常转化为整除问题解决.

例2(第35届美国中学数学竞赛题)满足联立方程

?

?

?=+=+2344

bc ac bc ab 的正整数()c b a ,,的组数是() ()A 0 ()B 1 ()C 2 ()D 3 ()E 4 解(质因数分解法)由方程23=+bc ac 得 ()23123?==+c b a .

a ,

b ,

c 为整数,1=c 且23=+b a .将c 和b a -=23代入方程44=+bc ab

()4423=+-b b b ,即()()0222=--b b ,21=b ,222=b .从而得211=a ,12=a .故满

足联立方程是正整数组()c b a ,,有两个,即()1,2,21和()1,22,1,应选()C .

这说明数学问题上的许多问题,都可以转化为整除问题.另外,整除问题也可以转化为其它问题.我们知道同余理论是初等数论的核心,有时整除问题转化为同余问题解决,思路更清晰、自然、计算更简洁.

例3 试判断282726

197319721971

++能被3整除吗? 解 ()3mod 01971≡,()3mod 11972≡,()3mod 21973≡,

()

()3mod 21019731972197128272628

2726++≡++ ()

()3mod 2119731972197128282726+≡++

()3mod 1421428≡=, ()

()3mod 22128≡+

282726

197319721971

++不能被3整除. 2 整体化思想方法

Euler 定理[2] 1m >,()1,=m a ,则()()m m mod 1a ≡φ.

这是初等数论的一个基本定理,有着广泛的应用.其证明如下:

若()m r r φ,,,r 21 是模m 的一个简化剩余系,则()m ar ar ar φ,,,21 也是模m 的一个简化剩余

系,于是()()()()()()

()()m r r r a

ar ar ar r r m m m m mod r 212121φφφφ ≡≡,即证.

Euler 定理的证明虽然十分简单,但其中包含了初等数论中常用的一个解题方法,即“整体思想”. 整体化思想方法,就是把单个对象始终放在整体对象构成的系统中加以考虑,通过系统对象之间的整体联系或整体特征,寻求原问题的解决途径[3].

在解题过程中,常常运用这一种思路:以完全剩余系为例,即m a a a ,,,21 及1,2, ,

1m -为模m 的两个完全剩余系,则i a 恰与1,2, ,1m -中的某一数同余,于是∑=n

i i a 1

∑-=1

1

m i i 同余,由此找到证明的途径.

例4 设n a a a 、、、 21和n b b b 、、、 21分别是模n 的

n |2,求证:

n n b a b a b a +++、、、 2211不是模n 的一组完全剩余系.

证明 假设()i i b a +,n i ,,2,1 =是模n 的一组完全剩余系.n a a a 、、、 21是模n 的一组完全剩余系,则:

()()n n n n n n i a n i n

i i mod 2222121

1

1-≡-≡-≡=∑∑-==

同理有:()n n

b n

i i mod 2

1

-

≡∑=. ()()()n n n b a n

i i mod 0mod ≡≡+∑.

又()i i b a +,n i ,,2,1 =也是模n 的一组完全剩余系,则有: ()()n n

n b a n

i i mod 22≡≡

+∑,又n n <<2

0,矛盾!证毕. 例5 设整数2≥n ,证明:

()()n n i n i n i ?2

1

1

,1=

∑=≤≤,即在数列n ,,

2,1中,与n 互素的正整数之和是()n n ?2

1

.

证明 设在n ,,

2,1中与n 互素的()n ?个整数是()n a a a ?,,,21 ,()1,=n a i ()()n i n a i ?≤≤-≤≤1,11则()1,=-n a n i ()()n i n a n i ?≤≤-≤-≤1,11,因此,集合

(){}n

a a a ?,,,2

1

与(){}n

a n a n a n ?---,,,2

1

都是由n i ,,2,1 =中与n 互素的整数组成,即这

两个集合中的元素完全相同,所以

()()()()()n n a n a n a n a a a ??-++-+-=+++ 2121 从而()()()n n a a a n ??=+++ 212 因此()()n n a a a n ??2

1

21=+++ ,即证. 3 配对思想方法

配对思想方法,就是将整体对象中的满足某种特性的对象进行组合配对,再利用配对后的特性解决原问题[1].

定义[2] 欧拉函数()a ?是定义在正整数集上的函数,()a ?等于序列

12,1,0-a ,,

中与a 互素的正整数的个数. 定义[2] 在模m 的每个互素剩余类r C ()()1,,10=-≤≤m r m r 中任取一数r a ,则 所有的数r a ()()1,,10=-≤≤m r m r 所组成的集,叫做模m 的一个简化 剩余系.

定义[2] 在()m ?个与模m 互素的剩余类中各取一个数,称这()m ?个数为模m 的简化剩余系.

例6 设p 是素数,证明:()()p p mod 1!1-≡-. 证明 当3,2=p 时结论显然成立,不妨设素数5≥p .

对于23,2-p ,,

中的每个整数a ,都存在唯一的整数k ,()22-≤≤p k ,使得()p ka mod 1≡ ()1 因此,整数23,2-p ,,

可以两两配对使得上式()1成立,于是有 ()()p p mod 1232≡-???

从而()()()()p p p p p mod 111221!1-≡-≡-?-???=-

此题的结论称为Wilson 定理,其证明过程蕴含了“配对”的思想方法. 例7 求证:4,8,16,28,32,44,52,56是模15的简化剩余系.

证明 在142,1,0,,

中与15互素的数有8个:14131187421,,,,,,,,所以()815=?.因此与模15互素的剩余类为14131187421,,,,,,,K K K K K K K K .又()15mod 44≡,()15mod 88≡,

()15mod 116≡,()15mod 1328≡,()15mod 232≡,()15mod 1444≡,()15mod 752≡,()15mod 1156≡,

44K ∈,88K ∈,116K ∈,1328K ∈,232K ∈,1444K ∈,752K ∈,1156K ∈,所以4,8,16,28,32,44,52,56是模15的简化剩余系.

例如下面的简单事实都是配对的基础:

()1若d 是正整数n 的正因数,则d 与d n 同为正整数n 的正因数.

()2二次剩余定理的证明.

例8 若p 为素数,()4mod 1≡p ,证明01

1=?

??

?

??∑-=p r p r ,其中???? ??p r 是r 对模p 的Legendre 符号.

证明:()4mod 1≡p ,11=?

???

??-p ,于是???? ??=???? ??-p r p r p .因此,r 与r p -同为模p 的平方剩余或同为平方非剩余.令14+=n p ,则对模p 而言有n 2个平方剩余及n 2个平方非剩余.据此,对任一r ()11-≤≤p r ,将r 与r p -配对,则n 2个平方剩余可配成n 对,n 2个平方非剩余也可配成n 对,故

01

1=-=???

?

??∑-=np np p r p r .

值得注意的是,配对思想方法实质上是通过配对把局部补成整体的一种方法,因此也可以说是整体化思想的一种变形.数论解题中运用整体化的思想方法较为普遍,体现了数论解题思维的灵活性,利用整体化思想方法或配对思想,可以另辟蹊径获得巧妙简捷的解(证)题效果. 4 群论思想方法

数论的问题以其抽象且难度大而著称,而抽象恰恰也是近世代数的最大特点.近世代数思想方法一直都被用到数论问题的处理中.下面我们通过对初等数论的定理的证明来介绍群论的思想方法在数论中的应用[4].

Fermat 定理 设p 是一个素数且a 是一个不能被p 整除的自然数,那么()p a p mod 11≡-. 证明 考虑模p 的非零剩余组成的乘法群{}

1,,2,1-=p G .若a 是一个不能被p 整除的自然数,则()

11

1==--p p a a .所以 ()p a p mod 11≡-.

5 矩阵的思想方法

初等数论课本上,利用整数初等变换,仅研究了两个整数的最大公约数和最小公倍数的问题,略显不够深入.再此基础上,我们可以通过构造整数矩阵,一矩阵的整数的初等变换为工具,得到了求m ()2>m 个整数的最大公约数与最小公倍数的方法[5]

.

利用初等变换求整数的最大公约数 命题 设

()d

a a a n = ,,21,则存在可逆矩阵

()n

m ij a A ?=,使得

[][]00,,21 d

A a a a n =()2≥n .

证明 ()1当2=n 时,可设021>>a a ,由辗转相除法知:

1111r a q a +=,210a r << 2122r r q a +=,120r r << ……

m m m m r r q r +=--12,10-<

于是,令??????-??????-??????-??????-=+121110110

110110m m q q q q A 则[][]021

d A a a =,命题成立;

()2假定k n =()2≥k 时,命题成立.则当1+=k n 时,由假定知,存在k 阶可逆方阵k k A ?,

使得:[][]001132

d A a a a k k k =?+,其中()1321,,+=k a a a d ,从而有

[][]00001

1111132

1

d a A a a a a k k k k k =??

?

?

?????+

又由()1知,存在二阶可逆方阵22?A ,使得[][]02211d

A d a =?.

其中 ()()12111,,,+==k a a a d a d ,

于是令()()??

?

???????

??=-?--?????121122

21100001

k k k k k k k E A A A ,则[][]00421 d A a a a = 即当1+=k n 时,命题成立;由归纳法原理知,当2≥n 时,命题成立.(证毕)

推 论 设n a a a ,,,21 , 为不全为0的整数,则存在Z 上的n 阶可逆矩阵B ,使

()()0,0,,,2

1

d B a a a =.

且d 是n a a a ,,,21 的最大公因数,B 是一些初等矩阵的乘积.

B 的求法如下:将()n a a a ,,21下面写一个n 阶单位矩阵,构成一个()n n ?+1矩阵,再对

A 施行初等变换,当A 的第一行变成()0,,0, d 时,则下面的单位阵变化成了

B .

即:???

??

?

??

????????=10001000121 n a a a A ???→?初等行变换???????

?????????nn n n n n b b b b b b b b b d

21

222

21

1121100 例9求40,38,72的最大公因数.

解 作矩阵????????????---+?+-?????????????---+-?+-??????????

???=10042012191002

)3()2()1()2()19()1(1002110014382)3()2()2()1()1()2(100010001723840A 所以()272,38,40=

初等数论解题过程中除了以上探讨的整体化、配对、化归、群论思想方法,还涉及其他的思想方法(如:环论思想,构造思想,分类思想及模方法在素数判断中的应用等).值得注意的是,初等数论解(证)题往往是多种思想方法相互交织、渗透、化归的综合应用过程.

如:在例2中,首先是将问题化为()23123?==+c b a ,在a ,b ,c 均为整数的情况下,只有1=c ,进而简化了问题,再运用代入法解决该题.

初等数论中蕴含了丰富的数学思想方法,其知识结构和数学思想方法形成一个经纬交织,融会贯通的知识网络,需要我们去挖掘、揭示.因此在初等数论的教学过程中,应充分利用教材和习题的教育功能,注重展示解决问题的思路、思维过程,体现解决问题策略与方法的多样性,引导沟通知识间的内在联系,突出问题的背景和思想方法的阐述,注重思想方法的总结、提炼,把数学知识和相关数学思想方法有机联系起来,使学生从整体上把握初等数论的理论体系,理解数学思想方法的内涵,开阔思维视野,健全认知结构.

参考文献

[1]王丹华,杨海文.初等数论中蕴涵的数学思想方法[J].井冈山学院学报.2007.04.13(4):11-13.

[2]张文鹏.初等数论[M].西安:陕西师范大学出版设,2007.4.(1): 54-56.

[3]王丹华,杨海文等.初等数论[M].北京:北京航空航天大学出版社,2008.3.(1):65-66.

[4]张清,唐再良.近世代数思想方法在数论中的应用[J].绵阳师范学院学报,2007,26

(5):12-14.

[5]陈碧琴.矩阵初等变换在初等数论中的应用[J].南通工学院学报.2004.3.3(1):01-04.

[6] 闵嗣鹤,严士健.初等数论[M].北京:高等教育出版社,2003.12.(3):08-15.

初等数论《完全平方数》 习题集(1)

初等数论《完全平方数》习题集(1) 一完全平方数 自然数 N 1 2 3 4 5 6 7 8 9 10 11 12 13 …完全平方数 N2 1 4 9 16 25 36 49 64 81 100 121 144 169 … 二完全平方数的特征 1 末位数字为:0、1、4、5、6、9的,可能是完全平方数,如 100 81 64 225 36 169等等。但有的不是完全平方数,如 200 181 464 325 56 189 等等。 2 末位数为:2、3、7、8的整数,肯定不是完全平方数。如22222、12 3 167 38 等等, 3 偶数的平方是4N型的偶数。个位数字是偶数0、 4 、6,十位数字有奇有偶。 它们只能是 00 04 24 44 64 84、16 36 56 76 96 4 奇数的平方是4N+1型的奇数。个位数字是奇数1、9 ,十位数字有奇有偶。即只能是 01 21 41 81 09 29 49 69 89 5 尾数为25的数,可能是完全平方数。如225 625等等, 但有的不是完全平方数,如125 325 7125等等。 6 3k或3k+1型的数,可能是完全平方数。如144=3×48 、121=3×40+1等, 但有的不是完全平方数,如156 =52×3、244=81×3+1等等。

7 完全平方数的数字之和,只能是0,1,4,7,9。数字和是2,3,5,6,8的,肯定不是 完全平方数。 8 如果质数p能整除A,但p的平方不能整除A,则A不是完全平方数。如: 7︱196 49︱ 196 A=196 是完全平方数 7︱119 49ト119 A=119 不是完全平方数 9 相邻整数的平方数之间,不可能有别的平方数。如72=49、82=64之间,不 可能有别的平方数。 总之,以上的判别法,只判别可能是完全平方数,但不能肯定是完全平方数。 实质上只适合判别非完全平方数。 10 判别完全平方数的必要充份条件是:因数一定是偶次方,因数个数一定是奇 数。最直接的方法是质因数分解。例如144=122=24×32 11 平方差公式:X2-Y2=(X-Y)(X+Y) 12 完全平方和公式:(X+Y)2=X2+2XY+Y2 13 完全平方差公式:(X-Y)2= X2-2XY+Y2 14 p=4n+1型的素数,都能表示为两个整数的平方和,如n=7时,p=29=22+52等等 p=4n+3型的素数,不能表示为两个整数的平方和,如n=7时,p=31≠x2+y2等等 15 两个奇数的平方和,一定不是完全平方数。如32+52=34≠y2、92+152=306≠y2等等 15 两个质数的平方和,一定不是完全平方数。如22+32=13≠x2 、 32+52=34≠y2等等 可见,两个质数的平方和,可能是质数,也可能是合数,但肯定不是完全平方数。 17拉格朗日四平方和定理:任何一个正整数都可以表示为不超过四个整数的平方之和。

初等数论练习题及答案

初等数论练习题一 一、填空题 1、τ(2420)=27;?(2420)=_880_ 2、设a ,n 是大于1的整数,若a n -1是质数,则a=_2. 3、模9的绝对最小完全剩余系是_{-4,-3,-2,-1,0,1,2,3,4}. 4、同余方程9x+12≡0(mod 37)的解是x ≡11(mod 37)。 5、不定方程18x-23y=100的通解是x=900+23t ,y=700+18t t ∈Z 。. 6、分母是正整数m 的既约真分数的个数为_?(m )_。 7 8、??? ??10365 =-1。 9、若p 是素数,则同余方程x p - 1 ≡1(mod p )的解数为二、计算题 1、解同余方程:3x 2+11x -20≡0 (mod 105)。 解:因105 = 3?5?7, 同余方程3x 2+11x -20≡0 (mod 3)的解为x ≡1 (mod 3), 同余方程3x 2+11x -38 ≡0 (mod 5)的解为x ≡0,3 (mod 5), 同余方程3x 2+11x -20≡0 (mod 7)的解为x ≡2,6 (mod 7), 故原同余方程有4解。 作同余方程组:x ≡b 1 (mod 3),x ≡b 2 (mod 5),x ≡b 3 (mod 7), 其中b 1 = 1,b 2 = 0,3,b 3 = 2,6, 由孙子定理得原同余方程的解为x ≡13,55,58,100 (mod 105)。 2、判断同余方程x 2≡42(mod 107)是否有解? 11074217 271071107713231071107311072107 710731072107732107422110721721107213)(=∴-=-=-==-=-=-==??≡-?--?-)()()()(),()()()(),()())()(( )(解: 故同余方程x 2≡42(mod 107)有解。 3、求(127156+34)28除以111的最小非负余数。

高中数学竞赛辅导初等数论不定方程

不定方程 不定方程是指未知数的个数多于方程的个数,且未知数的取值范围是受某些限制(如整数、正整数或有理数)的方程.不定方程是数论的一个重要课题,也是一个非常困难和复杂的课题. 1.几类不定方程 (1)一次不定方程 在不定方程和不定方程组中,最简单的不定方程是整系数方程 )0,0(,0≠>=++b a c by ax 通常称之为二元一次不定方程.一次不定方程解的情况有如下 定理. 定理一:二元一次不定方程c b a c by ax ,,,=+为整数.有整数解的充分必要条件是c b a |),(. 定理二:若00,,1),(y x b a 且=为①之一解,则方程①全部解为at y y bt x x -=+=00,. (t 为整数)。 (2)沛尔)(pell 方程 形如12 2 =-dy x (*d N ∈,d 不是完全平方数)的方程称为沛尔方程. 能够证明它一定有无穷多组正整数解;又设),(11y x 为该方程的正整数解),(y x 中使d y x +最小的 解,则其的全部正整数解由111111111[()()]2)()] n n n n n n x x x y x x ?=+-?? ??=-?? (1,2,3, n =)给 出. ①只要有解),(11y x ,就可以由通解公式给出方程的无穷多组解. ②n n y x , 满足的关系:1(n n x y x y +=+;112 11222n n n n n n x x x x y x y y ----=-?? =-? , (3)勾股方程2 2 2 z y x =+ 这里只讨论勾股方程的正整数解,只需讨论满足1),(=y x 的解,此时易知z y x ,,实际上两两互素. 这种z y x ,,两两互素的正整数解),,(z y x 称为方程的本原解,也称为本原的勾股数。容易看出y x ,一奇一偶,无妨设y 为偶数,下面的结果勾股方程的全部本原解通解公式。 定理三:方程2 2 2 z y x =+满足1),(=y x ,2|y 的全部正整数解),,(z y x 可表为 2222,2,b a z ab y b a x +==-=,其中,b a ,是满足b a b a ,,0>>一奇一偶,且

(新)极限思想在小学数学教学中的渗透

极限思想在小学数学教学中的渗透-小学数学论文-教育期刊 网 极限思想在小学数学教学中的渗透 浙江湖州市织里镇轧村小学(313008)陆小琴 极限思想作为社会实践的产物,在近代数学中有着极其重要的地位,它主要是通过极限概念分析和解决数学问题,由于其本身固有的思维功能,在现代数学中有着广泛的应用,更是微积分的基本思想。 一、数学教学中融合极限思想 小学数学作为小学生的启蒙学科,正确教学方法的运用有利于学生在以后高等数学中顺利学习。这就要求教师在教学中融合极限思想,使学生养成良好的思维惯式。 如在四年级下册中有关循环小数的学习中,我首先在黑板中写出1与3两个数相除,运算得出结果为0.333……,以此为基准,得出循环小数概念,即在小数点后某一位开始依次不断重复出现的前一个或一节数字的十进制无限小数,叫做循环小数。随后,我再提出“0.999……是否等于1”的问题,学生普遍认为:无论小数点后的9的数量如何增加,它也只能无限接近于1,但始终不等于1。于是,我以代数法进行证明: 假设x=0.999…… 10x=9.999…… 10x-x=9.999……-0.999…… 即9x=9,所以x=1。 这种在教授新的知识点中融合极限思想的教学方法,能够使学生在脑海中对无限

等概念形成较为直观的印象,并由此加深记忆。 二、数学概念推导中渗透极限思想 数学公式、定理和概念是学生解答题目的前提和关键,但是数学概念和公式定理通常短小精悍,这是小学数学教学中的难题。而在数学概念中渗透极限思想不仅能够加深学生对数学概念的理解,还能够激发学生学习数学的兴趣。 如小学六年级“平面图形的周长和面积”一章中,一般学生需要记住周长和面积的公式,但是公式过于抽象化,容易造成学生不求甚解,生搬硬套。例如在对圆的面积公式进行推导时,以小组为单位,我让学生把一个圆形纸片进行数次对折,并讨论:圆形纸片在对折过程中有什么变化规律。学生在对折过程中发现圆在进行对折后越来越接近于三角形。当把圆形展开后,学生更加惊讶地发现:折痕把一个完整的圆分成了无数个等腰三角形,而且三角形的腰长与圆形的半径是相等的。通过计算三角形的周长和面积,学生最终自己得出了圆形的周长和面积,并且利用这一极限规律,推导出了整个圆形的面积公式。随后,我引导学生对圆形进行剪裁组合。学生发现,把圆形沿折痕进行剪裁后,就可以把圆转化为长方形、梯形等。这样,学生独自推导出的公式自然会深深印在脑海中。 随后,在进行第二单元“圆柱和圆锥”的学习时,不同于平面图形的学习,这里要求学生具有空间想象能力。因此在进行圆柱体积公式推导时,我引导学生在观察有限分割的基础上,建立起无限分割的想象,并通过图形分割拼合的变化趋势,最终想象出图形的最终形态。在教学中,我把学生分成几个小组,要求学生对圆柱体模型进行自主切割拼合,并进行小组成果汇报。有的学生发现,圆柱的底面是一个圆形,那把它平均分成无数份,最终可以拼合成一个长方形,而圆柱体就变成了一个长方体,由此可以得出:圆柱的体积=底面积×高。另外也有学生从

初等数论作业

《初等数论》作业 第一次作业: 一、单项选择题 1、=),0(b ( ). A b B b - C b D 0 2、如果a b ,b a ,则( ). A b a = B b a -= C b a ≤ D b a ±= 3、如果1),(=b a ,则),(b a ab +=( ). A a B b C 1 D b a + 4、小于30的素数的个数( ). A 10 B 9 C 8 D 7 5、大于10且小于30的素数有( ). A 4个 B 5个 C 6个 D 7个 6、如果n 3,n 5,则15()n . A 整除 B 不整除 C 等于 D 不一定 7、在整数中正素数的个数( ). A 有1个 B 有限多 C 无限多 D 不一定 二、计算题 1、求24871与3468的最大公因数? 2、求[24871,3468]=? 3、求[136,221,391]=? 三、证明题 1、如果b a ,是两个整数,0 b ,则存在唯一的整数对r q ,,使得r bq a +=,其中b r ≤0. 2、证明对于任意整数n ,数6 233 2n n n + +是整数. 3、任意一个n 位数121a a a a n n -与其按逆字码排列得到的数n n a a a a 121- 的差必是9的倍数. 4、证明相邻两个偶数的乘积是8的倍数. 第二次作业 一、单项选择题 1、如果( A ),则不定方程c by ax =+有解. A c b a ),( B ),(b a c C c a D a b a ),( 2、不定方程210231525=+y x (A ). A 有解 B 无解 C 有正数解 D 有负数解 二、求解不定方程 1、144219=+y x . 解:因为(9,21)=3,1443,所以有解; 化简得4873=+y x ;

竞赛数学中的初等数论(精华版)

《竞赛数学中的初等数论》 贾广素编著 2006-8-21

序 言 数论是竞赛数学中最重要的一部分,特别是在1991年,IMO 在中国举行,国际上戏称那一年为数论年,因为6道IMO 试题中有5道与数论有关。 数论的魅力在于它可以适合小孩到老头,只要有算术基础的人均可以研究数论――在前几年还盛传广东的一位农民数学爱好者证明了哥德巴赫猜想,当然,这一谣言最终被澄清了。可是这也说明了最难的数论问题,适合于任何人去研究。 初等数论最基础的理论在于整除,由它可以演化出许多数论定理。做数论题,其实只要整除理论即可,然而要很快地解决数论问题,则要我们多见识,以及学习大量的解题技巧。这里我们介绍一下数论中必需的一个内容:对于N r q N b a ∈?∈?,,,,满足r bq a +=,其中b r <≤0。 除了在题目上选择我们努力做到精挑细选,在内容的安排上我们也尽量做到讲解详尽,明白。相信通过对本书学习,您可以对数论有一个大致的了解。希望我们共同学习,相互交流,在学习交流中,共同提高。 编者:贾广素 2006-8-21于山东济宁

第一节 整数的p 进位制及其应用 正整数有无穷多个,为了用有限个数字符号表示出无限多个正整数,人们发明了进位制, 这是一种位值记数法。进位制的创立体现了有限与无限的对立统一关系,近几年来,国内与 国际竞赛中关于“整数的进位制”有较多的体现,比如处理数字问题、处理整除问题及处理 数列问题等等。在本节,我们着重介绍进位制及其广泛的应用。 基础知识 给定一个m 位的正整数A ,其各位上的数字分别记为021,,,a a a m m --,则此数可以简记为:021a a a A m m --=(其中01≠-m a )。 由于我们所研究的整数通常是十进制的,因此A 可以表示成10的1-m 次多项式,即 012211101010a a a a A m m m m +?++?+?=---- ,其中1,,2,1},9,,2,1,0{-=∈m i a i 且 01≠-m a ,像这种10的多项式表示的数常常简记为10021)(a a a A m m --=。在我们的日常 生活中,通常将下标10省略不写,并且连括号也不用,记作021a a a A m m --=,以后我们 所讲述的数字,若没有指明记数式的基,我们都认为它是十进制的数字。但是随着计算机的 普及,整数的表示除了用十进制外,还常常用二进制、八进制甚至十六进制来表示。特别是 现代社会人们越来越显示出对二进制的兴趣,究其原因,主要是二进制只使用0与1这两种 数学符号,可以分别表示两种对立状态、或对立的性质、或对立的判断,所以二进制除了是 一种记数方法以外,它还是一种十分有效的数学工具,可以用来解决许多数学问题。 为了具备一般性,我们给出正整数A 的p 进制表示: 012211a p a p a p a A m m m m +?++?+?=---- ,其中1,,2,1},1,,2,1,0{-=-∈m i p a i 且 01≠-m a 。而m 仍然为十进制数字,简记为p m m a a a A )(021 --=。 典例分析 例1.将一个十进制数字2004(若没有指明,我们也认为是十进制的数字)转化成二进制与 八进制,并将其表示成多项式形式。 分析与解答 分析:用2作为除数(若化为p 进位制就以p 作为除数),除2004商1002,余数为0;再 用2作为除数,除1002商501余数为0;如此继续下去,起到商为0为止。所得的各次余 数按从左到右的顺序排列出来,便得到所化出的二进位制的数。 解:

论初等数论与小学数学的关系

论初等数论与小学数学的关系 ——“同余”在小学数学教学中的应用姓名:胡燕尔班级:070214 学号:15 刚翻开人教版大学本科小学教育专业教材《初等数论》的目录,许多在校本科小学教育专业的学生,包括我都存在这样的感觉,那就是觉得这些是再简单不过的内容:整除、质数与合数、最大公约数与最小公倍数、同余等等,这些内容在我们读小学的时候都已经学习过,似乎觉得没有必要再去研究,直到接触学习了这门课程,才扭转了我们的看法。 初等数论是小学教育专业,尤其是理科方向学生的必修专业课程,也是从事小学数学教学的老师的进修课程。其中包括整数的整除性、同余、同余方程、不定方程、不定方程、简单连分数几方面的知识。这些方面的内容在符合了小学数学教师应具有的教学思维外,也有利于学习者积累从事小学数学教育工作必备的能力与知识。 有人说:“数学是思维的体操,科学的王冠,数论是王冠上的明珠。”这颗明珠在小学数学中早已是熠熠闪光——我们小学所学习到的数论内容主要包含以下几类: 整除问题:(1)整除的性质;(2)数的整除特征(小升初常考内容) 余数问题:(1)带余除式的运用被除数=除数×商+余数.(余数总比除数小)(2)同余的性质和运用 奇偶问题:(1)奇偶与加减运算;(2)奇偶与乘除运算 质数合数:重点是质因数的分解 约数倍数:(1)最大公约最小公倍两大定理(2)约数个数决定法则可见,初等数论的应用与小学数学教育事业是息息相关的。对于初等数论,我学到的也只是九牛一毛,谈不上有什么有建设性的问题,只能粗略地谈谈初等数论中的核心内容——同余,并通过其在初等数论在小学数学中的应用来说明两者的关系。 同余是由德国数学家高斯首先提出并系统地进行研究的,它是初等数论的核心部分。其中蕴含大量的数论所特有的思想、概念和方法,它的出现使数论成为一个独立的数学分支的标志。在这一内容中包括其性质,剩余类与剩余系,欧拉

数学中的极限思想及其应用.

摘要:本文对数学极限思想在解题中的应用进行了诠释,详细介绍了数学极限思想在几类数学问题中的应用,如在数列中的应用、在立体几何中的应用、在函数中的应用、在三角函数中的应用、在不等式中的应用和在平面几何中的应用,并在例题中比较了数学极限思想与一般解法在解题中的不同。灵活地运用极限思想解题,可以避开抽象、复杂的运算,优化解题过程、降低解题难度。极限思想有利于培养学生从运动、变化的观点看待并解决问题。 关键词:极限思想,应用 Abstract: In this paper, the application of the limit idea in solving problems is explained. What’s more, the applications in several mathematic problems, such as the application in series of numbers, the application in solid geometry, the application in function, the application in trigonometric function, the application in inequalities, the application in plane geometry are introduced in detail. The mathematic limit idea is compared with a common solution in a example, showing their differences in solving a problem. Solving problem by applying the limit idea can avoid abstract and complex operation, optimize the process of solving problem and reduce difficulty of solving problem. Students will benefit from the limit idea, treating and resolving problems from views of the movement and the change. Keywords:the limit idea,application

2013年春_西南大学《初等数论》作业及答案(共4次_已整理)

2013年春西南大学《初等数论》作业及答案(共4次,已整理) 第一次作业 1、设n,m为整数,如果3整除n,3整除m,则9()mn。 A:整除 B:不整除 C:等于 D:小于 正确答案:A 得分:10 2、整数6的正约数的个数是()。 A:1 B:2 C:3 D:4 正确答案:D 得分:10 3、如果5|n ,7|n,则35()n 。 A:不整除 B:等于 C:不一定 D:整除 正确答案:D 得分:10 4、如果a|b,b|a ,则()。 A:a=b B:a=-b C:a=b或a=-b D:a,b的关系无法确定 正确答案:C 得分:10 5、360与200的最大公约数是()。 A:10 B:20 C:30 D:40 正确答案:D 得分:10 6、如果a|b,b|c,则()。 A:a=c B:a=-c C:a|c D:c|a

正确答案:C 得分:10 7、1到20之间的素数是()。 A:1,2,3,5,7,11,13,17,19 B:2,3,5,7,11,13,17,19 C:1,2,4,5,10,20 D:2,3,5,7,12,13,15,17 正确答案:B 得分:10 8、若a,b均为偶数,则a + b为()。 A:偶数 B:奇数 C:正整数 D:负整数 正确答案:A 得分:10 9、下面的()是模12的一个简化剩余系。 A:0,1,5,11 B:25,27,13,-1 C:1,5,7,11 D:1,-1,2,-2 正确答案:C 得分:10 10、下面的()是模4的一个完全剩余系。 A:9,17,-5,-1 B:25,27,13,-1 C:0,1,6,7 D:1,-1,2,-2 正确答案:C 得分:10 11、下面的()是不定方程3x + 7y = 20的一个整数解。 A:x=0,y=3 B:x=2,y=1 C:x=4,y=2 D:x=2,y=2 正确答案:D 得分:10 12、设a,b,c,d是模5的一个简化剩余系,则a+b+c+d对模5同余于()。 A:0 B:1 C:2 D:3 正确答案:A 得分:10 13、使3的n次方对模7同余于1的最小的正整数n等于()。 A:6 B:2

欧拉定理

欧拉定理 认识欧拉 欧拉,瑞士数学家,13岁进巴塞尔大学读书,得到著名数学家贝努利的精心指导.欧拉是科学史上最多产的一位杰出的数学家,他从19岁开始发表论文,直到76岁,他那不倦的一生,共写下了886本书籍和论文,其中在世时发表了700多篇论文。彼得堡科学院为了整理他的著作,整整用了47年。欧拉著作惊人的高产并不是偶然的。他那顽强的毅力和孜孜不倦的治学精神,可以使他在任何不良的环境中工作:他常常抱着孩子在膝盖上完成论文。即使在他双目失明后的17年间,也没有停止对数学的研究,口述了好几本书和400余篇的论文。当他写出了计算天王星轨道的计算要领后离开了人世。欧拉永远是我们可敬的老师。欧拉研究论著几乎涉及到所有数学分支,对物理力学、天文学、弹道学、航海学、建筑学、音乐都有研究!有许多公式、定理、解法、函数、方程、常数等是以欧拉名字命名的。欧拉写的数学教材在当时一直被当作标准教程。19世纪伟大的数学家高斯(Gauss,1777-1855)曾说过“研究欧拉的著作永远是了解数学的最好方法”。欧拉还是数学符号发明者,他创设的许多数学符号,例如π,i,e,sin,cos,tg,Σ,f (x)等等,至今沿用。欧拉不仅解决了彗星轨迹的计算问题,还解决了使牛顿头痛的月离问题。对著名的“哥尼斯堡七桥问题”的完美解答开创了“图论”的研究。欧拉发现,不论什么形状的凸多面体,其顶点数V、棱数E、面数F之间总有关系V+F-E=2,此式称为欧拉公式。V+F-E 即欧拉示性数,已成为“拓扑学”的基础概念。那么什么是“拓扑学”?欧拉是如何发现这个关系的?他是用什么方法研究的?今天让我们沿着欧拉的足迹,怀着崇敬的心情和欣赏的态度探索这个公式...... 初等数论中的欧拉定理

数学高中竞赛之初等数论2

1 4 7 10 13 … 4 9 14 19 24 … 7 14 21 28 35 … 10 19 28 37 46 … … … … … … … 定理2:不定方程x 2+y 2=z 2满足(x ,y )=1,x ,y ,z >0,2|x 的全部整数解可表示为 x=2ab ,y=a 2-b 2,z=a 2+b 2。其中a >b >0,a 、b 一奇一偶,(a ,b )=1为任意整数。 四、例题与练习 1、右表的结构为:第一行是以1为首项,3为 公差的无穷等差数列;第一列中的数与第一行 中的数对应相等;第n (n ≥2)行是公差为2n+1 的无穷等差数列。证明:⑴若N 在表中,则2N+7 不是素数;⑵若N 不在表中,则2N+7是素数。 2、证明:若正整数x 、y 使得2xy | x 2+y 2-x ,则x 是完全平方数。 3、证明:存在一个1997的整倍数,它不超过11位,且各位数字不含2,3,4,5,6,7。 4、设c 为奇自然数,且存在自然数a ≤ 13-c ,使(2a -1)2+8c 为平方数,求证:c 为合数。 5、求最大的正整数x ,使得对任意y ∈N ,有x|(1127-+y y ) 6、证明:方程3 25y x =+无整数解。 7、求方程235=-y x 的全部整数解。 8、给数集M={1,2,…,n -1}(n ≥3)中的数染色,满足⑴i 与n -i 同色;⑵有一个k ∈M ,(k ,n )=1,使得当i ≠k 时i 与|k -i|同色,求证:M 中有一色。

9、在一个圆周上标记了4个整数,规定一个方向,使每个整数都有相邻的下一个数,每一步操作是指对每一个数,同时用该数与下一个数之差来替换,即对于a 、b 、c 、d 依次用a -b 、b -c 、c -d 、d -a 来替换。问经过1996步这样的替换之后,是否可以得到4个数a 、b 、c 、d ,使得|bc -ad|、|ac -bd|、|ab -cd|都是素数。(IMO -37预选题) 10、求所有大于3的自然数n ,使得1+321n n n C C C ++整除20002(CMO - 1998) 11、有多少个正整数对x 、y ,x ≤y ,使得(x ,y )=5!和[x ,y]=50!成立?(1997年加拿大) 12、设w (n )表示自然数n 的素因数的个数,n >1。证明:存在无穷多个n ,使得w (n )<w (n+1)<w (n+2)。 13、求最小的整数n (n ≥4),满足从任意n 个不同的整数中能选出四个不同的数a 、b 、c 、d ,使a+b -c -d 可以被20整数。 14、求所有实数对(a ,b ),使对所有的正整数n 满足a[bn]=b[an],其中[x]表示不超过x 的最大整数。(IMO -39预选题)

极限思想在小学数学教材中的渗透

极限思想在小学数学教材中的渗透 教育科学学院小学教育专业100401056 赵倩 指导教师苏明强副教授 【摘要】数学教学既要教授知识技能,也要重视学生对数学思想的感悟。极限思想作为小学数学常见的数学思想之一,蕴含在小学数学的诸多知识领域中。本文将立足于小学这一教育阶段,以北师大版小学数学教材为例,针对“极限思想”在教材中的渗透进行初步探索,挖掘教材中所蕴含的极限思想,为教师进行教材分析,设计教学方案提供参考。 【关键词】极限思想;小学数学;教材;北师大版 在《义务教育数学课程标准(2011年版)》课程目标中的“总目标”明确指出:“通过义务教育阶段的数学学习,学生能获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验。”[1]其中新增的“基本思想”则对应三维目标中的“过程与方法”,注重在学生学习数学知识的过程中体会数学思想。从这一变化上可以看出,课程标准重视在数学教学中渗透数学的基本思想,重视数学思想对学生思维发展的作用。 极限思想是一种重要的数学思想,在小学数学教材中十分常见。所谓极限思想是用联系变动的观点,把所考察的对象看作是某个对象在无限变化过程中变化结果的思想。它体现了“从有限中找到无限,从暂时中找到永久,并且使之确定起来”的一种运动辩证思想。[2]极限思想蕴含在小学数学诸多知识领域中。基于此,本文将立足于小学这一特定的教育阶段,针对“极限思想”在小学数学教材中的渗透进行初步探索,挖掘不同教学内容中所蕴含的极限思想,为教师的教学设计提供参考。 一、极限思想在数与代数中的渗透 (一)数的认识中的蕴含的极限思想

《数学》三年级下册P2。教材以学生最为熟知的买文具的生活情境进行导入,以呈现商品价格来引出小数。“像3.50,1.06,16.85……这样的数,都是小数。”通过用省略号来表示余下的小数,由此可以知道,小数的个数有无数个。小数可以越来越大,也可以越来越小,小数是数不完的。在教学中可以从“数量”上突出“无限多”,渗透极限的数学思想。 《数学》三年级下册P4。小数有无限多个与其等值的小数。例如:与0.5相同的小数有无限多个。因此,在比较两个小数的大小时,可以转化成与原小数等值的小数进行比较。 《数学》三年级下册P54。分数的个数是无限多的。教材以分苹果,分割圆片为例,引出分数的表示方法。把一张纸等分为四份,其中一份用 41表示,其中的两份用4 2 表示……随着份数的逐渐增加,则可用于表示的分数也增加。如果将物体一直分下去,那么这是一个 “无限”的过程。在这个无限“分”的过程中产生的分数越来越多,直至无限多个。因此,分数的个数是无限多的。分数可以无穷大,也可以无穷小。这里蕴含着极限的数学思想,教学时可以适时让学生体会分数的个数有无数个。 《数学》四年级上册P4。数可以越来越大,没有尽头。教材以数位表的形式展示数的

初等数论定理

初等数论 1. 整除性质 a) 若a|b,a|c,则a|(b±c)。 b) 若a|b,则对任意c,a|bc。 c) 对任意非零整数a,±1|a,±a|a。 d) 若a|b,b|a,则|a|=|b|。 e) 如果a能被b整除,c是任意整数,那么积ac也能被b整除。 f) 如果a同时被b与c整除,并且b与c互质,那么a一定能被积bc整除,反 过来也成立。 g) 如果a∣b且b∣c,则a∣c。 h) 如果c∣a且c∣b,则c∣ua+vb,其中u,v是整数。 i) 对任意整数a,b,b>0,存在唯一的数对q,r,使a=bq+r,其中0≤r0是两个不全为零的整数a,b的公因子,如果a,b的任何公因子都整除c,则c称为a,b的最大公因子,记为c= (a,b). a) (a,b)=(-a,b)=(a,-b)=(-a,-b) b) (0,a)=a c) 设a,b是两个不全为零的整数,则存在两个整数u,v,使 (a,b)= ua+vb. 4. 欧几里德除法(辗转相除法): 已知整数a,b,记r0=a,r1=b, r0=q1r1+r2,0 ≤r2<r1=b; r1=q2r2+r3,0 ≤r3<r2; … r n-2=q n-1r n-1+r n,0 ≤r n<r n-1; r n-1=q n r n

初等数论中的几个重要定理高中数学竞赛

初等数论中的几个重要定理 基础知识 定义(欧拉(Euler)函数)一组数称为是模的既约剩余系,如果对任意的,且对于任意的,若=1,则有且仅有一个是对模 的剩余,即。并定义中和互质的数的个数, 称为欧拉(Euler)函数。 这是数论中的非常重要的一个函数,显然,而对于,就是1,2,…,中与互素的数的个数,比如说是素数,则有。 引理:;可用容斥定理来证(证明略)。 定理1:(欧拉(Euler)定理)设=1,则。 分析与解答:要证,我们得设法找出个相乘,由个数我们想到中与互质的的个数:,由于=1,从而 也是与互质的个数,且两两余数不一样,故 (),而()=1,故。 证明:取模的一个既约剩余系,考虑,由于与互质,故仍与互质,且有,于是对每个都能找到唯一的一个,使得,这种对应关系 是一一的,从而,。

,,故。证毕。 这是数论证明题中常用的一种方法,使用一组剩余系,然后乘一个数组组成另外一组剩余系来解决问题。 定理2:(费尔马(Fermat)小定理)对于质数及任意整数有。 设为质数,若是的倍数,则。若不是的倍数,则 由引理及欧拉定理得,,由此即得。 定理推论:设为质数,是与互质的任一整数,则。 定理3:(威尔逊(Wilson)定理)设为质数,则。 分析与解答:受欧拉定理的影响,我们也找个数,然后来对应乘法。 证明:对于,在中,必然有一个数除以余1,这是因为则好是的一个剩余系去0。 从而对,使得; 若,,则,,故对于,有。即对于不同的对应于不同的,即中数可两两配对,其积除以余1,然后有,使,即与它自己配对,这时,,或,或。 除外,别的数可两两配对,积除以余1。故。

定义:设为整系数多项式(),我们把含有的一组同余式 ()称为同余方组程。特别地,,当均为的一次整系数多项式时,该同余方程组称为一次同余方程组.若整数同时满足: ,则剩余类(其中)称为同余方程组的一个解,写作 定理4:(中国剩余定理)设是两两互素的正整数,那么对于任意整数,一次同余方程组,必有解,且解可以写为: 这里,,以及满足,(即为对模的逆)。 中国定理的作用在于它能断言所说的同余式组当模两两互素时一定有解,而对于解的形式并不重要。 定理5:(拉格郎日定理)设是质数,是非负整数,多项式 是一个模为次的整系数多项式(即),则同余方程至多有个解(在模有意义的情况下)。 定理6:若为对模的阶,为某一正整数,满足,则必为的倍数。 以上介绍的只是一些系统的知识、方法,经常在解决数论问题中起着突破难点的作用。另外还有一些小的技巧则是在解决、思考问题中起着排除情况、辅助分析等作用,有时也会起到

初等数论

初等数论 初等数论从表面意义来讲,就是作为一门研究数的相关性质的数学学科。准确地按照潘承洞、潘承彪两位数论大师的说法:初等数论是研究整数最基本的性质,是一门十分重要的数学基础课。它不仅是中、高等师范院校数学专业,大学数学各专业的必修课,而且也是计算机科学等相关专业所需的课程。纵观数论发展过程,我国出现了许许多多的数论大师,如:华罗庚的早期研究方向、陈景润、潘承洞等。 第一部分:整除 初接触初等数论,经过《初等数论》课本知整除理论是初等数论的基础。整除理论首先涉及整除。现向上延伸则想到整除的对象,即自然数、整数。从小学、中学再到大学,我们从接触最初的1、2、3再到后来的有理数、无理数、实数再到复数,可谓种类繁多。但数论中的整除运算仅仅局限于自然数及其整数等相关范围内。首先大学数学中绝大多数数学定义中的自然数不包括0 ,这似乎与中学有一点差别,当然整数的定义改变就相对少得多。另外,自然数、整数的相关基本性质需懂得及灵活利用,如分配律、交换律、反对称性等。在初等代数中曾系统地介绍了自然数的起源问题:自然数源于经验,自然数的本质属性是由归纳原理刻画的,它是自然数公理化定义的核心。自然数集合严格的抽象定义是由Peano定理给出的,他刻画了自然数的本质属性,并导出有关自然数的有关性质。 Peano定理:设N是一个非空集合,满足以下条件: (ⅰ)对每一个n∈N,一定有唯一的一个N中的元素与之对应,这个元素记作n+,称为是n的后继元素(或后继); (ⅱ)有元素e∈N,他不是N中任意元素的后继; (ⅲ)N中的任意一个元素至多是一个元素的后继,即从a+=b+ 一定可以推出a=b; (ⅳ)(归纳原理)设S是N的一个子集合,e∈S, 如果n∈S则必有n+ ∈S,那么,S=N. 这样的集合N称为自然数集合,它的元素叫做自然数。 其中的归纳原理是我们常用的数学归纳法的基础。数学归纳法在中学已属重点内容,此处就不作介绍。主要描述一下推广状态下的第二种数学归纳法:(第二种数学归纳法)设P(n)是关于自然数n的一种性质或命题。如果 (1)当n=1时,P(1)不成立; (2)设n>1,若对所有的自然数m

浅论极限思想在小学数学中的应用

龙源期刊网 https://www.doczj.com/doc/502430988.html, 浅论极限思想在小学数学中的应用 作者:王琳 来源:《中国校外教育(中旬)》2020年第07期 【摘要】极限思想是近代数学的一种重要思想。随着我国对数学教育教学改革力度的不断加大,从小学数学开始抓起,注重将数学思想植根于小学生的脑海里,使他们应用极限思想的思维方式、量化方法和内在规律,来指导他们分析问题和解决问题,理解问题和总结问题,从而激发学生的学习兴趣,提高他们的数学素养和综合能力,使小学数学教学质量得到有效提升。 【关键词】极限思想小学数学应用 一、极限思想在小学数学教学中应用的重要意义 随着教育体制改革,数学的教育教学改革力度也在不断地加大,注重从小学数学开始抓起,将数学思想牢牢植根于小学生的脑海里,用来指导他们分析问题和解决问题,充分调动学生的参与激情,变被动为主动,激发他们的学习兴趣,活跃课堂气氛,化繁为简,有效提高课堂的教学质量。 1.激发学习兴趣,变被动为主动,充分调动学生的参与激情 小学生思维比较活跃,喜欢动脑筋,但小学阶段数学的内容相对简单,基本概念比较多,而且受传统教育模式的影响,课堂教学以老师讲,学生听为主,学生的学习兴趣不高。那么,将极限思想渗透到小学数学教学过程中,让学生充分发挥想象,扩散他们的思维,比如,老师在讲射线概念的时候,它是由线段的一端无限延长所形成的直的线,那个“无限延长”就是极限思想的体现,让学生尽情地想象,就像铁轨一眼望不到头,就像喷气式飞机在天空留下的飞行轨迹一样直到天际之外,又像远行的航船驶向海的尽头。通过学生积极的思维活动,有利于激发他们的学习兴趣,变被动为主动。 2.活跃课堂气氛,化繁为简,有效提高课堂的教学质量 小学生的思维虽然相对活跃但思维能力有限,小学阶段数学概念较多,有些概念解释起来比较饶舌,学生往往理解困难,使课堂气氛沉闷。这时老师要改变教学方法,将极限思想渗透给学生,比如在学习无限小数的时候,按照传统的教学方法,老师将无限小数的概念告诉学生并让他们记住就完事了,虽然在学生脑海里对无限小数概念中的“无穷尽”有一个大大的问号,但教材就是这样说的,老师的讲解也到此为止了。但是,应用极限思维的方法,老师引导学生积极思考,将“无穷尽”与生活结合起来,像海水能斗量吗?天上的星星能数过来吗?这样学生

西南大学2016《初等数论》网上作业(共4次)

初等数论第一次作业 简答题 1. 叙述整数a被整数b整除的概念。 2. 给出两个整数a,b的最大公因数的概念。 3. 叙述质数的概念,并写出小于14的所有质数。 4. 叙述合数的概念,并判断14是否为合数。 5. 不定方程c +有整数解的充分必要条件是什么? by ax= 6. 列举出一个没有整数解的二元一次不定方程。 7. 写出一组勾股数。 8. 写出两条同余的基本性质。 9. 196是否是3的倍数,为什么? 10. 696是否是9的倍数,为什么? 11. 叙述孙子定理的内容。 12. 叙述算术基本定理的内容。 13.给出模6的一个完全剩余系。 14.给出模8的一个简化剩余系。 15.写出一次同余式) ax≡有解得充要条件。 (mod m b 答: 1.设a,b是任意两个整数,其中b≠0,如果存在一个整数q使得等式a=bq 成立,我们就称b整除a或a被b整除,记做b|a。 2.设a,b是任意两个整数,若整数d是他们之中每一个的因数,那么d就叫做a,b的一个公因数。a,b的公因数中最大的一个叫做最大公因数。 3.一个大于1的整数,如果它的正因数只有1和它本身,就叫作质数(或素数)。14的所有质数为2,3,5,7,11,13 4.一个大于1的整数,如果它的正因数除了1和它本身,还有其他的正因数,则就叫作合数。14的所有正因数为1,2,7,14,除了1和本身14,还有2和7两个正因数,所以14是合数。 5.不定方程c ax= +有整数解的充分必要条件是。 by 6.没有整数解的二元一次不定方程10x+10y=5。 7.一组勾股数为3,4,5。 8.同余的基本性质为: 性质1 m为正整数,a,b,c为任意整数,则 ①a≡a(mod m);

第五节初等数论中的几个重要定理

第五节 初等数论中的几个重要定理 基础知识 定义(欧拉(Euler)函数)一组数s x x x ,,,21 称为是模m 的既约剩余系,如果对任意的s j ≤≤1,1),(=m x j 且对于任意的Z a ∈,若),(m a =1,则有且仅有一个j x 是a 对模m 的剩余,即)(mod m x a j ≡。并定义},,2,1{)(m s m ==?中和m 互质的数的个数,)(m ?称为欧拉(Euler )函数。 这是数论中的非常重要的一个函数,显然1)1(=?,而对于1>m ,)(m ?就是1,2,…,1-m 中与m 互素的数的个数,比如说p 是素数,则有1)(-=p p ?。 引理:∏? =为质数)-(P |P 11)(m P m m ?;可用容斥定理来证(证明略)。 定理1:(欧拉(Euler )定理)设),(m a =1,则)(mod 1)(m a m ≡?。 证明:取模m 的一个既约剩余系))((,,,,21m s b b b s ?= ,考虑s ab ab ab ,,,21 ,由于a 与m 互质,故)1(s j ab j ≤≤仍与m 互质,且有i ab )1(s j i ab j ≤<≤?,于是对每个 s j ≤≤1都能找到唯一的一个s j ≤≤)(1σ, 使得)(mod )(m b ab j j σ≡,这种对应关系σ是一一的,从而)(mod )(mod )(11)(1m b m b ab s j j s j j s j j ∏∏∏===≡≡σ,∴))(mod ()(11m b b a s j j s j j s ∏∏==≡。 1),(1=∏=s j j b m ,)(mod 1m a s ≡∴,故)(mod 1)(m a m ≡?。证毕。 分析与解答:要证)(mod 1)(m a m ≡?,我们得设法找出)(m ?个n 相乘,由)(m ?个数我们想到m ,,2,1 中与m 互质的)(m ?的个数:)(21,,,m a a a ? ,由于),(m a =1,从而)(21,,,m aa aa aa ? 也是与m 互质的)(m ?个数,且两两余数不一样,故)(21m a a a ???? ≡)(21,,,m aa aa aa ? ≡)(m a ?)(21m a a a ???? (m mod ),而 ()(21m a a a ???? m )=1,故)(mod 1)(m a m ≡?。 这是数论证明题中常用的一种方法,使用一组剩余系,然后乘一个数组组成另外一组剩余系来解决问题。

相关主题
文本预览
相关文档 最新文档