当前位置:文档之家› Induced Pluripotent Stem Cells Chapter 8

Induced Pluripotent Stem Cells Chapter 8

Induced Pluripotent Stem Cells  Chapter 8
Induced Pluripotent Stem Cells  Chapter 8

187

G. Steinhoff (ed.), Regenerative Medicine: From Protocol to Patient,

DOI 10.1007/978-90-481-9075-1_8, ? Springer Science+Business Media B.V . 2011Abstract Nearly 50 years have passed since the concept of nuclear r eprogramming was proposed for the first time. Since then, several approaches have been developed to convert somatic cells to a pluripotent state. Direct reprogramming with defined factors, is the newest of these approaches. This method requires just a few genes, and it also has a great reproducibility. Applying this method to humans seems to open the door to cell transplantation therapy without immune rejection, drug

d iscovery, and elucidation of th

e pathogenesis o

f intractable diseases. However, this concept still faces some issues which must be overcome before application due to a shortage of experience. This chapter introduces an overview of direct reprogram-min

g as well as a special focus on its potentials and challenges.

8.1 I ntroduction

Pluripotent stem cells such as embryonic stem (ES) cells may be a hopeful resource for regenerative medicine to repair degenerative or damaged tissues. ES cells have the potential to differentiate into all cell types in the body including germ cells. Not only pluripotency but also their growth properties are substantially superior. In conventional conditions, ES cells can grow infinitely while maintaining K. Takahashi and S. Yamanaka ( )

Center for iPS cell Research and Application, Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8507, Japan

e-mail: takahash@cira.kyoto-u.ac.jp

S. Yamanaka

Department of Stem Cell Biology, Institute for Frontier Medical Sciences,

Kyoto University, Kyoto 606-8507, Japan

and

Yamanaka iPS Cell Special Project, Japan Science and Technology Agency,

Kawaguchi 332-0012, Japan

and

Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA

Chapter 8Induced Pluripotent Stem Cells

Kazutoshi Takahashi and Shinya Yamanaka

188K. Takahashi and S. Yamanaka an undifferentiated state. Combined with the techniques of gene targeting and transgenes, these characters have allowed the generation of genetically modified animals (Robertson et al. 1986; Thomas and Capecchi 1987; Doetschman et al. 1987). To this end, the mechanisms or causes of many diseases have been eluci-dated. Reports on the establishment of human ES cells brought great expectations to regenerative medicine of various diseases (Thomson et al. 1998). In the last decade, scientists have established appropriate culture conditions, differentiation protocols and guidelines for users.

On the other hand, ES cells face two big issues that need to be overcome before successful medical application can be achieved. One is immune rejection caused by the mismatching of human leukocyte antigen (HLA) haplotypes between ES cells and patient. Another is the usage of human embryos. Although the response to e thical issues may vary depending on regions and civilizations, it should be ear-nestly addressed in any case.

One of the solutions to overcome these issues is to reprogram a patient’s own somatic cells directly to pluripotent stem cells. The reprogramming of the somatic nucleus was firstly demonstrated by Sir John Gurdon in 1958 (Gurdon et al. 1958). He developed cloned frogs by injecting the nucleus of a tadpole somatic cell into an egg. This report suggested that frog eggs have some reprogramming factor(s) that could initialize somatic state back to totipotency. In 1997, the group of Sir Ian Wilmut and Dr. Keith Campbell with their famous sheep, Dolly, showed that not only flexible species such as amphibians but also mammals have the reprogram-ming factor(s) in their eggs by using nuclear transfer technology (Wilmut et al. 1997). In the last year of the twentieth century, Dr. Takashi Tada and his colleagues showed that the nucleus of somatic cell also could be reset to the pluripotent state by electrical-fusion with mouse ES cells (Tada et al. 2001). All these findings and following associated reports suggested that ES cells as well as eggs have such reprogramming factor (s). At a later date, the same phenomenon was confirmed in human cells (Cowan et al. 2005).

What is the reprogramming factor? People have hypothesized that factors playing important roles in ES cell identities, such as differentiation potentials and tumor-like growth properties, play a crucial role in the induction of pluripotency in somatic cells. The concept that the genes expressed specifically in stem cells p rovided multipotency to the cells has been established and called stemness (Ramalho-Santos et al. 2002). Therefore, the genes expressed predominantly in eggs and/or ES cells, and some non-ES cell specific genes which are important for the character of pluripotent cells can be candidates of reprogramming factor(s).

The importance of pluripotent cell-associated genes has been proposed in s everal studies (Boiani and Sch?ler 2005; Niwa 2007).

Oct3/4 (also known as Pou5f1) one of the most famous ES cell-specific genes, is an octamer sequence binding transcription factor (Okamoto et al. 1990; Sch?ler et al. 1990). Deletion of Oct3/4 gene caused the loss of pluripotency in both ES cells and early embryos (Nichols et al. 1998). Oct3/4-null embryos die at around the implantation stage. The inner cell mass (ICM) of Oct3/4-deficient embryo can no longer outgrow. Detailed analyses have shown that Oct3/4 prevents the d ifferentiation

8 Induced Pluripotent Stem Cells

189 into trophectoderm by suppressing the function of Cdx2 which plays essential role in trophectoderm development (Niwa et al. 2005). On the other hand, only a 1.5-fold increase of Oct3/4 expression in ES cells is sufficient to trigger differentiation into either mesoderm or primitive endoderm (Niwa et al. 2000). These data indicated that Oct3/4 is one of the most important regulators to prevent differentiation into specific lineages and maintain ES cells in a pluripotent state.

The other important player is Sox2. The expression of Sox2 is restricted in nerve tissue and pluripotent cells including germ cells (Kamachi et al. 2000). Structural and biochemical analyses demonstrated that Sox2 binds directly to Oct3/4 and acts as a regulator of ES cell-specific gene expression such as Utf1, Fgf4 and Lefty1 (Ambrosetti et al. 1997; Reményi et al. 2003; Nishimoto et al. 1999). Homozygous deletion of Sox2 gene leads to embryo death immediate after implantation with the lack of epiblast formation (Avilion et al. 2003). Blastocysts carrying a null mutation of Sox2 gene looked normal, but the ICM could not expand in vitro whereas tropho-blasts and primitive endoderm cells can continue to proliferate. In addition, Sox2-deficient ES cells cannot maintain an undifferentiated state in conventional conditions (Masui et al. 2007). Taken together, Sox2 is crucial for the maintenance of pluripotent cells in both ES cells and early embryos.

However, the functions of Oct3/4 and Sox2 are not sufficient to explain the molecular mechanisms underlying pluripotent stem cell identity. The presence of other co-factors has been speculated. Many exhaustive analyses were performed in the early 2000s, and databases of gene expression profiles were advanced rapidly such as expressed sequence tags (ESTs) and microarray technology (Kawai et al. 2001). To this end, hundreds of stemness-relating genes were found as candidates to define the stem cell phenotype (Tokuzawa et al. 2003; Takahashi et al. 2003). An in silico analysis and functional screening identified a novel stemness gene, designated Nanog at the same time (Mitsui et al. 2003). Nanog is a transcription factor which contains a paired-like homeobox. The expression pattern of Nanog in early development is more restricted than that of Oct3/4 or Sox2. Embryos carrying a null-mutation of Nanog gene die during the post-implantation period lacking epiblasts (Mitsui et al. 2003). Outgrowth of Nanog-deficient ICM is also defective, although primitive endoderm-like cells can proliferate. On the other hand, ES cells carrying homozygous deletion of the Nanog gene can proliferate in vitro although morphologies and gene expression patterns were changed to primitive endoderm-like state (Mitsui et al. 2003). In addition, forced expression of the Nanog gene allows cells to maintain pluripotency even without leukemia inhibitory factor (LIF) which is an essential component for self-renewal of mouse ES cells in serum- containing medium (Chambers et al. 2003; Mitsui et al. 2003). Therefore, these data suggested that Nanog acts as a switch between the pluripotent state and primi-tive endoderm.

ChIP on chip analyses, which combine chromatin immunoprecipitation, microarray, and a transcriptome, revealed global target genes of Oct3/4, Sox2 and Nanog in ES cells (Chew et al. 2005; Loh et al. 2006; Boyer et al. 2005). More than 300 genes were categorized as common targets of these three transcription factors, including both expressed (Oct3/4, Sox2, Nanog, Stat3, Zic3) and not expressed

190K. Takahashi and S. Yamanaka genes (Hoxb1, Pax6, Lhx5, Myf5) in ES cells. These data suggested that a circuit consisting of Oct3/4, Sox2 and Nanog promotes the expression of genes supporting the self-renewal of ES cells, suppresses those genes required for differentiation into three germ layers such as homeobox genes, and thus maintains pluripotency.

On the other hand, several studies reported that some oncogenes also played important roles in ES cell identity (Chambers and Smith 2004; Cheng et al. 1998). The most famous oncogene related to self-renewal of mouse ES cells is Stat3. L IF-mediated Stat3 activation is essential and sufficient for the maintenance of pluripotency (Niwa et al. 1998). One of its downstream targets in LIF/Stat3 signal-ing pathway is c-Myc (Cartwright et al. 2005). An overexpression of c-Myc in mouse ES cells allows LIF-independent self-renewal. On the other hand, another well known oncogenic pathway, Ras/MAPK, negatively regulates the maintenance of pluripotency. Inhibition of the Ras/MAPK pathway by a small molecule or gene targeting blocks differentiation (Cheng et al. 1998; Burdon et al. 1999). It is not always true that these factors are expressed specifically in pluripotent cells. ES cells display tumor-like properties with regard to their growth including anchorage independence, infinite expansion and tumorigenicity. As a result, it is no wonder that tumor-related genes join the network of pluripotency.

In 2006, direct reprogramming of mouse somatic cells was accomplished by introducing the combination of just four transcription factors: Oct3/4, Sox2, Klf4 and c-Myc (Takahashi and Yamanaka 2006). These reprogrammed cells artificially induced by the defined factors were named induced Pluripotent Stem (iPS) cells. In 1 year, human iPS cells were also generated from adult dermal fibroblasts (Fig. 8.1) (Takahashi et al. 2007; Yu et al. 2007). Since the first announcement of these findings, this field has rapidly expanded and developed in various directions.

In this chapter, I will introduce the expected potential and possible problems of iPS cells based on the latest findings.

Fig. 8.1iPS cells derived from adult human dermal fibroblasts

191 8 Induced Pluripotent Stem Cells

8.2 D erivation

8.2.1 R eprogramming Factors and Substitutes

Mouse iPS cells were initially established by forced-expression of Oct3/4, Sox2, Klf4 and c-Myc in mouse embryonic fibroblasts (MEFs) or tail-tip fibroblasts (TTFs) from adult mice (Takahashi and Yamanaka 2006). Some of these factors can be replaced with related genes. For example, Klf2 or Klf5 can mimic Klf4 func-tions, and Sox1, Sox3, Sox15, Sox17 and Sox18 are also able to substitute for Sox2 (Nakagawa et al. 2008). Estrogen-related receptor, beta (Esrrb), can contribute to direct reprogramming with Oct3/4 and Sox2 (Feng et al. 2009). In addition, treat-ment with kenpaullone along with transduction of Oct3/4 and Sox2 also can p roduce ES-like colonies from MEFs (Lyssiotis et al. 2009).

All of the Myc family genes in mammals, c-Myc, N-Myc and L-Myc, dramati-cally enhance the efficiency of iPS cell generation (Nakagawa et al. 2008). Although Myc is dispensable for direct reprogramming, the number of iPS cell colonies gener-ally diminishes to approximately 150 without Myc (Nakagawa et al. 2008; Wernig et al. 2008b). The effects of Myc on iPS cell generation can be mimicked by the activation of the canonical Wnt pathway (Marson et al. 2008). Myc proteins are substrates of Glycogen synthase kinase-3 (GSK3) which is activated by Wnt signals (Cohen et al. 2001). Phosphorylated Myc proteins by GSK3 are rapidly degraded by proteasomes. These data suggest that Myc acts as a booster of direct reprogramming.

8.2.2 S election of Reprogrammed Cells

Generally, mice carrying a reporter system of fluorescent proteins and/or drug resistance genes driven by the promoters of pluripotent cell-associated genes are used for the establishment of mouse iPS cells. First, iPS cells are generated from MEFs or TTFs carrying b geo, which is a beta-galactosidase and neomycin resis-tance fusion gene knocked into the Fbx15 locus (Takahashi and Yamanaka 2006). Thereafter, other reporter systems have been designed for this purpose. Nanog or Oct3/4 can also work as selection markers of reprogramming (Okita et al. 2007; Wernig et al. 2007; Maherali et al. 2007). For example, green fluorescence protein (GFP) and puromycin resistance gene controlled by Nanog or Oct3/4 promoter are widely used in the field. The other indicator of reprogramming is the silencing of the retrovirus promoter (Nakagawa et al. 2008). The long terminal repeat (LTR) of mouse molony-leukemia virus (MMLV) can act as a strong promoter. In contrast, the activity of MMLV LTR is effectively silenced in pluripotent cells such as ES cells and iPS cells. Although some researchers have tried to elucidate this phenom-enon, the underlying mechanisms still remain unclear (Wolf and Goff 2007, 2009). Nevertheless, when a retrovirus encoding fluorescent protein is transduced along

192K. Takahashi and S. Yamanaka with the reprogramming factors into somatic cells, the disappearance of the f luorescence suggests that reprogramming has been completed.

These reporters are employed because it is quite hard to distinguish r eprogrammed cells from the non-reprogrammed cells just by morphology in mice. In contrast, there is little unrest for human cells. Human iPS cells form distinctive flat, tightly packed and clear edged colonies like human ES cells, whereas non-reprogrammed cells show granular morphologies and tend to form rough colonies (Takahashi et al. 2007; Lowry et al. 2008).

8.2.3 E pigenetics

Some reports have shown that treatment with histone deacetylase (HDAC) inhibi-tors, such as Trichostatin A (TSA), valproic acid (VPA), DNA methyltransferase (DNMT) inhibitor, and 5-Aza-2¢-deoxycytidine can improve the frequency of iPS cell establishment (Huangfu et al. 2008a; b; Mikkelsen et al. 2008). Inhibition of histone methyltransferase G9a by treatment with a small molecule, BIX-01294, is also effective. These data suggest that epigenetic modifications are closely linked to nuclear reprogramming (Shi et al. 2008).

8.2.4 O ther Elements

In addition to the above, some other factors which can improve the reprogramming efficiency were identified. The transduction of microRNAs such as miR-291-3p, miR-294, miR-295 elevates the number of iPS cell colonies by about 10-fold (Judson et al. 2009). In addition, RNA-related protein LIN28 enhances the efficiency of human iPS cells generation (Yu et al. 2007; Liao et al. 2008). The inhibition of both Mitogen-Activated Protein Kinase (MEK) and GSK3, which is generally called 2i in serum-free culture, increases the reprogramming efficiency (Silva et al. 2008). The overexpression of Spalt-like 4 (Sall4) or the suppression of transformation related protein 53 (Trp53) increase the reprogramming efficiency both in mouse and human (Tsubooka et al. 2009; Hong et al. 2009; Kawamura et al. 2009; Li et al. 2009; Marión et al. 2009; Utikal et al. 2009; Banito et al. 2009). In the case of human cells, telomerase reverse transcriptase (TERT) and Simian virus 40 large T (SV40LT) antigen that promote the immortalization of human primary fibroblasts, can enhance the reprogramming efficiency (Park et al. 2008b; Mali et al. 2008).

8.2.5 C ell Sources

In mouse, MEFs and TTFs are commonly used as sources of iPS cells in many reports. Various other cell types were demonstrated to be sources of iPS cells, such

193 8 Induced Pluripotent Stem Cells

as neural progenitors, adrenal glands, keratinocytes, muscular cells, intestinal e pithelium cells, mesenchymal stem cells and hematopoietic cells can be (Aoi et al. 2008; Wernig et al. 2008a; Silva et al. 2008; Kim et al. 2008; Eminli et al. 2008, 2009). In addition, terminally differentiated cells such as mature B cells, T cells and pancreatic b-cells can also be reprogrammed into iPS cells (Hong et al. 2009; Hanna et al. 2008; Stadtfeld et al. 2008a).

In human, fibroblasts derived from a fetus, neonatal foreskin and adult dermis are widely used (Takahashi et al. 2007; Yu et al. 2007). Human iPS cells were also generated from keratinocytes, mesenchymal stroma cells and hematopoietic cells (Aasen et al. 2008; Loh et al. 2009). The efficiency of iPS cell generation from these cell types thus seems to be similar, although direct comparisons among them still need to be carried out.

8.3 P roperties

The characteristics of mouse iPS cells are almost completely equivalent to those of mouse ES cells. The morphology of both mouse ES cells and iPS cells is identical. Those two cells types can grow in serum-containing medium in the presence of leukemia inhibitory factor (LIF) and/or feeder cells (Okita et al. 2007). They can also be maintained in serum-free medium supplemented 2i (Silva et al. 2008).

The expression levels of pluripotent cell marker genes such as ERas, Rex1 and Esg1are indistinguishable between ES cells and iPS cells. Microarray analyses have also shown the global gene expression patterns of mouse iPS cells to be very similar to those of mouse ES cells (Okita et al. 2007; Wernig et al. 2007; Maherali et al. 2007). In addition, iPS cells also have the potential to undergo homologous recombination that is a useful property of ES cells in biology (Hanna et al. 2007).

Not only the transcripts but the epigenetic status of iPS cells and ES cells, including DNA methylation and histone modification, are quite similar (Meissner et al. 2008). CpG methylation in the promoter regions of pluripotent cell marker genes such as Oct3/4, Rex1and Nanog are highly unmethylated in iPS cells, whereas those of MEFs or TTFs were steadily methylated. Previous reports d emonstrated that both the 4th (K4) and 27th (K27) lysine residues of histone H3 are methylated around the locus of differentiation-associated genes such as Gata4, Pax6 and Msx2 in mouse ES cells (Bernstein et al. 2006). Generally, K4 is methy-lated in the regions transcriptionally activated. In contrast, methylation of K27 reflects silencing in the vicinity. These bivalent patterns of histone methylation may imply that ES cells are always ready and waiting to initiate differentiation. In addi-tion, mouse iPS cells also show bivalent patterns of histone methylation in differ-entiation marker genes as similar to mouse ES cells (Maherali et al. 2007). Therefore, in the broad view of both external and inner aspects, it seems that iPS and ES cells have a striking resemblance. However, detailed analyses suggest that

194K. Takahashi and S. Yamanaka the epigenetic patterns are not completely identical between ES cells and iPS cells (Mikkelsen et al. 2008). On the other hand, differences in these properties can be found among iPS clones.

These similarities and differences are also found in human cells. In particular, the patterns of global DNA methylation differ between human iPS cells and human ES cells (Chin et al. 2009). On the other hand, various differences such as gene expres-sion patterns, statuses of X-chromosome inactivation and differentiation capacities have been reported even among human ES clones (International Stem Cell Initiative 2007). One of the conceivable reasons for this is the variety of genetic backgrounds among humans, unlike the situation regarding experimental animals. In fact, ES clones derived from different blastocysts provided by the same couple have been shown to have a strong resemblance to each other (Chen et al. 2009).

8.4 D ifferentiation Capacity and Their Precursors

Many protocols for in vitro differentiation of mouse ES cells have been estab-lished. Most of them can be applied to iPS cells. The traditional method with embryoid body formation allows iPS cells to differentiate into all three germ layers of endoderm, mesoderm and ectoderm (Takahashi and Yamanaka 2006; Wernig et al. 2007; Maherali et al. 2007). In vitro differentiations of iPS cells into specific cell types such as cardiac cells, bloods, adipocytes and retinal epitheliums has also been achieved (Schenke-Layland et al. 2008; Narazaki et al. 2008; Tashiro et al. 2009; Senju et al. 2009). The gold standard to test the pluripotency is the genera-tion of chimeric mice and the subsequent germ-line transmission. Similar to ES cells, mouse iPS cells are able to contribute to the development of chimeric mice including germ cells (Okita et al. 2007; Wernig et al. 2007; Maherali et al. 2007). The successful rate of germ-line transmission for iPS cells is no less than that for ES cells. In addition, mouse iPS cells have hurdled the stricter challenge of tetra-ploid complementation (Kang et al. 2009; Zhao et al. 2009; Boland et al. 2009). The tetraploid embryos generated by the fusion of two eggs can contribute only to the placenta instead of the pup body. When iPS cells are injected into a tetraploid blastocyst, the entire body of the pup should be derived from the injected iPS cells. The pups only from iPS cells are then successfully born. These results suggest that mouse iPS cells have already reached the pluripotency of ES cells.

Most of the protocols for human ES cell differentiation are also applicable to human iPS cells. Random differentiation of human iPS cells can be achieved by embryoid body formation in vitro or teratoma experiments in vivo (Takahashi et al. 2007; Yu et al. 2007). Directed differentiation into specific cell lineages has also succeeded, such as differentiation into retinal cells, vascular cells, pancreatic i nsulin-producing cells, hepatocyte-like cells, functional cardiomyocytes and neuronal cells (Osakada et al. 2009; Viczian et al. 2009; Taura et al. 2009; Zhang et al. 2009a, b; Song et al. 2009; Gai et al. 2009; Karumbayaram et al. 2009; Chambers et al. 2009).

195 8 Induced Pluripotent Stem Cells

8.5 P otential Applications for Therapies

One of the potentially useful applications of iPS cell technology is that the source of regenerative medicine using a patient’s own pluripotent stem cells (Yamanaka 2009). These order-made iPS cells would thus make it possible to achieve autolo-gous transplantation. The first study for therapeutic application of iPS cells was reported with the mouse model of sickle-cell anemia, a blood disease caused by a defect in the b-globin gene (Hanna et al. 2007). They established iPS cells from the diseased mouse, and then repaired their genetic defects by homologous recombina-tion. The injection of hematopoietic progenitors derived from genetically-corrected iPS cells could cure the diseased donor mouse. Another report showed the injection of iPS-derived cells directly into the liver of irradiated hemophilia A mice to improve their phenotypes (Xu et al. 2009). These are examples of ideal models for regenerative medicine. In human case, the idea of iPS cell therapy was also brought up by Raya and colleagues (Raya et al. 2009). At first, they corrected genes by introducing a lentiviral vector encoding FANCA or FANCD2in keratinocytes derived from Fonconi anemia patients. iPS cells derived from the patients with genetic correction can be differentiated into the hematopoietic lineage.

Moreover, dopaminergic neurons differentiated from iPS cells were able to improve the behavior of a Parkinson’s disease model rat through transplantation into the brain (Wernig et al. 2008c). On the other hand, however, they found that residual undifferentiated iPS cells included in the cells for transplantation caused a teratoma. Undifferentiated cells and the subsequent tumor formation after trans-plantation remain to be a major complication of pluripotent cell therapies, not only with iPS cells, but also with ES cells.

The depletion of SSEA-1 positive cells, which means undifferentiated cells, from the cultures by fluorescence-activated cell sorter (FACS) can reduce the risk of teratoma formation after cell transplantation (Wernig et al. 2008a). This issue was analyzed with a different point of view in the work of Miura and colleagues (Miura et al. 2009). They differentiated 36 mouse iPS cell lines derived from embryonic or adult cells as well as ES cells into neural progenitor cells using the sphere culture method (Miura et al. 2009). They found that residual undifferenti-ated cells existed in less than 0.5% of ES cells or MEF-derived iPS cell lines. In contrast, TTF-derived iPS cell lines reproducibly produced a significantly higher ratio of undifferentiated cells. Interestingly, such differences showed no clear rela-tionship with the presence or absence of Myc transgenes.

8.6 C onclusion and Perspective

Human iPS cells have another potential utility as a tool for drug discovery or under-standing the pathogenesis of diseases. Over the last couple of years, iPS cells were established from somatic cells of patients with refractory diseases such as Amyotrophic lateral sclerosis (ALS), Duchenne muscular dystrophy, Down s yndrome and

196K. Takahashi and S. Yamanaka Parkinson’s disease, milial dysautonomia, type I diabetes, beta-thalassemia and Fanconi anemia (Park et al. 2008a; Maehr et al. 2009; Ye et al. 2009; Soldner et al. 2009). Heretofore, it was difficult to analyze the pathogenesis of specific diseases in vitro because large amount of the patient’s cells are needed. iPS cells established from the patients may overcome the issue with their indefinite self-renewal ability. Combining the proliferation of undifferentiated iPS cells and the differentiation of specific cell types can yield an enormous amount of cells carrying the causal factors of diseases as associated with genetic mutations can be obtained, and used for large-scale screening or analyses.

If pathological conditions can be recapitulated in vitro using iPS cells from the patients, they could be used for screening therapeutically-effective molecules, and/ or for the evaluation of medicine side-effects for each individual patient. For example, Long-QT syndromes (LQTS) are congenital or acquired types of diseases with delayed repolarization and subsequent depolarization of the heart. This can lead to a risk of ventricular fibrillation and unexpected death. A mutation in one of several disease-causing genes can bring on LQTS, and the effective medication is different among each type of LQTS. An epinephrine-loading test seems to be effec-tive to determine if a patient has LQTS. However, this test may carry a certain degree of risk. Functional cardiomyocytes derived from patient’s iPS cells can be used for the in vitro diagnosis of LQTS, thus reducing the burden and risk for the patient.

However, recapitulation pathogenesis with disease-specific iPS cells does not always work well. Dimos et al. established iPS cells derived from an ALS patient (Dimos et al. 2008). They successfully differentiated ALS-iPS cells into both glial cells and motor neurons. However, although the glial cells of ALS patient produce toxins and result in destroying motor neurons, they failed to show the phenomenon in vitro with iPS cells. In contrast, Ebert and colleagues generated iPS cells carrying spinal muscular atrophy (SMA) which is a neurological disorder developed during infancy and causes death. Motor neurons derived from SMA patient’s iPS cells showed a defect in the maturation of motor neurons (Ebert et al. 2009). Another paper also reported the success of reproducing a pathological condition. They choose Familial dysautonomia (FD) as a model of pathogenesis, which shows peripheral neuropathy induced by a reduction in the expression of the IKBKAP gene. They developed neural crest precursor cells from FD-iPS cells. As result, they observed a defect of cell migration and spontaneous differentiation into TuJ1 or ASCL1 positive neurons. In addition, they treated the cells with kinetin which could correct the expression of IKBKAP in mutant cells, and it markedly improved the phenotypes required for cell migration. Therefore, although not in all cases, these data indicate that the recapitulation of the pathogenesis and subsequent tests for drug effects are feasible.

First iPS cells were generated by transduction with four reprogramming factors with retroviral vectors (Takahashi and Yamanaka 2006). This method has proven to be the most effective. However, viral integration into the genome should be avoided for clinical applications, because of destruction or unexpected activation of adjacent genes, which may result in tumor formation. Many attempts have been

8 Induced Pluripotent Stem Cells

197 reported to overcome the issue. Soldner and colleagues used lentiviral vectors including the loxP sequence in their 3¢ long terminal repeat (LTR) (Soldner et al. 2009). When lentiviruses integrated into the genome, most of the expression units are flanked by two loxP. After isolation of iPS cell clones, the sequence flanked by loxP can be removed by Cre recombinase. Only a ~100 bp sequence, which is a part of the LTR, should be left due to the limitations of this concept.

The generation of iPS cells using an integration-free method was initially reported in mice. Stadtfeld et al. and Okita et al. used adenoviruses and plasmids to deliver the reprogramming factors, respectively (Stadtfeld et al. 2008b; Okita et al. 2008). Both adenoviruses and plasmids are diluted by cell division and finally disappear. Yu et al. showed that integration-free human iPS cells could be established by using Epstein-Barr virus (EBV) vectors (Yu et al. 2009). EBV vec-tors can be replicated by EBV nuclear antigen (EBNA) and episomally main-tained. Therefore, the long-term expression of transgenes is guaranteed to be stable. They confirmed that no transgenes were inserted in the genome of iPS clones by Southern blotting and PCR. However, small pieces of exogenous DNA may slip away in the genome. This must, however, be further analyzed in detail by next-generation sequencing. Currently, all of systems with transient expression depend on elimination of the sequences by the cells themselves without treatment. Additional techniques, such as negative selection are required to aggressively exclude these transgenes to ensure the safety of iPS cells. In addition, the low efficiency of reprogramming with transient expression is another serious problem. The efficiencies of transient methods are lower than 0.0006%, whereas those of virus-mediated methods are near 1%.

Kaji et al., Woltjen et al. and Yusa et al. pursued another path to generate i ntegration-free iPS cells. They chose the transposon system, piggybac, to introduce a set of reprogramming factors (Kaji et al. 2009; Woltjen et al. 2009; Yusa et al. 2009). It is particularly noteworthy that piggybac can be removed in a seamless manner by the action of transposase when the reprogramming events are over. This system includes the forthcoming ablation of transgenes unlike other methods with transient expression. On the other hand, because piggybac has to insert once into the genome of somatic cells, it is necessary to confirm that there are no seams in all of the integration sites after excision. Moreover, no clinical trials using transposon have so far been conducted.

All of these methods are based on the expression units of reprogramming f actors. In contrast, recombinant protein fused with poly-arginine, which permeates into the target cells could achieve generation of mouse iPS cells (Zhou et al. 2009). They performed the forced expression of poly-arginine tagged Oct3/4, Sox2, Klf4 and c-Myc in E.coli, and then purified them. They transduced these proteins to MEF for four times every other day. ES-like colonies appeared after 30 days incu-bation, and grew into transgene-free iPS cells. They demonstrated these protein-induced pluripotent cell lines could not only differentiate into three germ layers in vitro but also contribute to germ cells of chimeric mice. Human fibroblasts were also reprogrammed by protein transduction (Kim et al. 2009). They used crude extracts of poly-arginine tagged reprogramming factors expressed cells.

198K. Takahashi and S. Yamanaka All the methods developed so far for the generation of iPS cells have now been available for over 2 or 3 years. At this time, the overriding issue remains the quality of iPS cells. It is not always true that integration-free and/or virus-free methods are the best methods for clinical application because partial reprogramming carries higher risks than transgenes. A direct comparison of iPS cells established with various techniques must be conducted by the same experimenter with set evaluation stan-dards. Of course, human ES cells must be the benchmark for the evaluation of iPS cell quality. However, many differences are found among human ES cell clones with regard to differentiation potentials, gene expression patterns and the status of X-chromosome because of a variety of races (International Stem Cell Initiative 2007). This issue also applies to iPS cells. In addition, not only genetic back-grounds, but also the age of donors, cell types as sources of iPS cells and freshness such as passage number will be different in individual cases. The effects of these factors on the characteristics of iPS cells should therefore also be further investigated.

The continued rapid progress in iPS cell research, as well as direct reprogram-ming, is therefore expected to elucidate over time various new treatment strategies for intractable diseases.

Acknowledgement We’d like to thank the members of the Yamanaka laboratory and CiRA for their valuable support and discussions. We are also grateful to Dr. Tetsuya Ishii and Kanon Takeda for their critical reading of the manuscript.

References

Aasen T, Raya A, Barrero MJ, Garreta E, Consiglio A, Gonzalez F, Vassena R, Bilié J, Pekarik V, Tiscornia G, Edel M, Boué S, Izpisúa Belmonte JC. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol. 2008 Nov;26(11):1276–84. Ambrosetti DC, Basilico C, Dailey L. Synergistic activation of the fibroblast growth factor 4 enhancer by Sox2 and Oct-3 depends on protein-protein interactions facilitated by a specific spatial arrangement of factor binding sites. Mol Cell Biol. 1997 Nov;17(11):6321–9.

Aoi T, Yae K, Nakagawa M, Ichisaka T, Okita K, Takahashi K, Chiba T, Yamanaka S. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science. 2008 Aug 1;321(5889):699–702.

Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 2003 Jan 1;17(1):126–40. Banito A, Rashid ST, Acosta JC, Li S, Pereira CF, Geti I, Pinho S, Silva JC, Azuara V, Walsh M, Vallier L, Gil J. Senescence impairs successful reprogramming to pluripotent stem cells. Genes Dev. 2009 Sep 15;23(18):2134–9.

Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell. 2006 Apr 21;125(2):315–26.

Boiani M, Sch?ler HR. Regulatory networks in embryo-derived pluripotent stem cells. Nat Rev Mol Cell Biol. 2005 Nov;6(11):872–84.

Boland MJ, Hazen JL, Nazor KL, Rodriguez AR, Gifford W, Martin G, Kupriyanov S, Baldwin KK.

Adult mice generated from induced pluripotent stem cells. Nature. 2009 Sep 3;461(7260):91–4.

8 Induced Pluripotent Stem Cells

199

Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, Gifford DK, Melton DA, Jaenisch R, Young RA. Core transcrip-tional regulatory circuitry in human embryonic stem cells. Cell. 2005 Sep 23;122(6):947–56.

Burdon T, Stracey C, Chambers I, Nichols J, Smith A. Suppression of SHP-2 and ERK signal-ling promotes self-renewal of mouse embryonic stem cells. Dev Biol. 1999 Jun 1;210(1):30–43.

Cartwright P, McLean C, Sheppard A, Rivett D, Jones K, Dalton S. LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development. 2005 Mar;132(5):885–96.

Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell. 2003 May 30;113(5):643–55.

Chambers I, Smith A. Self-renewal of teratocarcinoma and embryonic stem cells. Oncogene. 2004 Sep 20;23(43):7150–60.

Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol. 2009 Mar;27(3):275–80.

Chen AE, Egli D, Niakan K, Deng J, Akutsu H, Yamaki M, Cowan C, Fitz-Gerald C, Zhang K, Melton DA, Eggan K. Optimal timing of inner cell mass isolation increases the efficiency of human embryonic stem cell derivation and allows generation of sibling cell lines. Cell Stem Cell. 2009 Feb 6;4(2):103–6.

Cheng AM, Saxton TM, Sakai R, Kulkarni S, Mbamalu G, V ogel W, Tortorice CG, Cardiff RD, Cross JC, Muller WJ, Pawson T. Mammalian Grb2 regulates multiple steps in embryonic development and malignant transformation. Cell. 1998 Dec 11;95(6):793–803.

Chew JL, Loh YH, Zhang W, Chen X, Tam WL, Yeap LS, Li P, Ang YS, Lim B, Robson P, Ng HH. Reciprocal transcriptional regulation of Pou5f1 and Sox2 via the Oct4/Sox2 complex in embryonic stem cells. Mol Cell Biol. 2005 Jul;25(14):6031–46.

Chin MH, Mason MJ, Xie W, V olinia S, Singer M, Peterson C, Ambartsumyan G, Aimiuwu O, Richter L, Zhang J, Khvorostov I, Ott V, Grunstein M, Lavon N, Benvenisty N, Croce CM, Clark AT, Baxter T, Pyle AD, Teitell MA, Pelegrini M, Plath K, Lowry WE. Induced pluripo-tent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell. 2009 Jul 2;5(1):111–23.

Cohen P, Frame S. The renaissance of GSK3. Nat Rev Mol Cell Biol. 2001 Oct;2(10):769–76. Cowan CA, Atienza J, Melton DA, Eggan K. Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science. 2005 Aug 26;309(5739):1369–73.

Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, Croft GF, Saphier G, Leibel R, Goland R, Wichterle H, Henderson CE, Eggan K. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science. 2008 Aug 29;321(5893):1218–21.

Doetschman T, Gregg RG, Maeda N, Hooper ML, Melton DW, Thompson S, Smithies O.

Targetted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature. 1987 Dec 10–16;330(6148):576–8.

Ebert AD, Y u J, Rose FF Jr, Mattis VB, Lorson CL, Thomson JA, Svendsen CN. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature. 2009 Jan 15;457(7227):277–80. Eminli S, Foudi A, Stadtfeld M, Maherali N, Ahfeldt T, Mostoslavsky G, Hock H, Hochedlinger K.

Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells. Nat Genet. 2009 Sep;41(9):968–76.

Eminli S, Utikal J, Arnold K, Jaenisch R, Hochedlinger K. Reprogramming of neural progenitor cells into induced pluripotent stem cells in the absence of exogenous Sox2 expression. Stem Cells. 2008 Oct;26(10):2467–74.

Feng B, Jiang J, Kraus P, Ng JH, Heng JC, Chan YS, Yaw LP, Zhang W, Loh YH, Han J, V ega VB, Cacheux-Rataboul V, Lim B, Lufkin T, Ng HH. Reprogramming of fibroblasts into induced pluri-potent stem cells with orphan nuclear receptor Esrrb. Nat Cell Biol. 2009 Feb;11(2):197–203.

200K. Takahashi and S. Yamanaka Gai H, Leung EL, Costantino PD, Aguila JR, Nguyen DM, Fink LM, Ward DC, Ma Y. Generation and characterization of functional cardiomyocytes using induced pluripotent stem cells derived from human fibroblasts. Cell Biol Int. 2009 Sep 1;33(11):1184–93.

Gurdon JB, Elsdale TR, Fischberg M. Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature. 1958 Jul 5;182(4627):64–5.

Hanna J, Markoulaki S, Schorderet P, Carey BW, Beard C, Wernig M, Creyghton MP, Steine EJ, Cassady JP, Foreman R, Lengner CJ, Dausman JA, Jaenisch R. Direct reprogramming of ter-minally differentiated mature B lymphocytes to pluripotency. Cell. 2008 Apr 18;133(2):250–

64. Stem Cells. 2008 Oct;26(10):2467–74.

Hanna J, Wernig M, Markoulaki S, Sun CW, Meissner A, Cassady JP, Beard C, Brambrink T, Wu LC, Townes TM, Jaenisch R. Treatment of sickle cell anemia mouse model with iPS cells gener-ated from autologous skin. Science. 2007 Dec 21;318(5858):1920–3.

Hong H, Takahashi K, Ichisaka T, Aoi T, Kanagawa O, Nakagawa M, Okita K, Yamanaka S.

Suppression of induced pluripotent stem cell generation by the p53–p21 pathway. Nature.

2009 Aug 27;460(7259):1132–5.

Huangfu D, Maehr R, Guo W, Eijkelenboom A, Snitow M, Chen AE, Melton DA. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds.

Nat Biotechnol. 2008a Jul;26(7):795–7.

Huangfu D, Osafune K, Maehr R, Guo W, Eijkelenboom A, Chen S, Muhlestein W, Melton DA.

Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2.

Nat Biotechnol. 2008b Nov;26(11):1269–75.

International Stem Cell Initiative, Adewumi O, Aflatoonian B, Ahrlund-Richter L, Amit M, Andrews PW, Beighton G, Bello PA, Benvenisty N, Berry LS, Bevan S, Blum B, Brooking J, Chen KG, Choo AB, Churchill GA, Corbel M, Damjanov I, Draper JS, Dvorak P, Emanuelsson K, Fleck RA, Ford A, Gertow K, Gertsenstein M, Gokhale PJ, Hamilton RS, Hampl A, Healy LE, Hovatta O, Hyllner J, Imreh MP, Itskovitz-Eldor J, Jackson J, Johnson JL, Jones M, Kee K, King BL, Knowles BB, Lako M, Lebrin F, Mallon BS, Manning D, Mayshar Y, McKay RD, Michalska AE, Mikkola M, Mileikovsky M, Minger SL, Moore HD, Mummery CL, Nagy A, Nakatsuji N, O’Brien CM, Oh SK, Olsson C, Otonkoski T, Park KY, Passier R, Patel H, Patel M, Pedersen R, Pera MF, Piekarczyk MS, Pera RA, Reubinoff BE, Robins AJ, Rossant J, Rugg-Gunn P, Schulz TC, Semb H, Sherrer ES, Siemen H, Stacey GN, Stojkovic M, Suemori H, Szatkiewicz J, Turetsky T, Tuuri T, van den Brink S, Vintersten K, Vuoristo S, Ward D, Weaver TA, Young LA, Zhang W. Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat Biotechnol. 2007 Jul;25(7):803–16.

Judson RL, Babiarz JE, Venere M, Blelloch R. Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat Biotechnol. 2009 May;27(5):459–61.

Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K. Virus-free induction of p luripotency and subsequent excision of reprogramming factors. Nature. 2009 Apr 9;458(7239):771–5.

Kamachi Y, Uchikawa M, Kondoh H. Pairing SOX off: with partners in the regulation of embry-onic development. Trends Genet. 2000 Apr;16(4):182–7.

Kang L, Wang J, Zhang Y, Kou Z, Gao S. iPS cells can support full-term development of tetraploid blastocyst-complemented embryos. Cell Stem Cell. 2009 Aug 7;5(2):135–8. Karumbayaram S, Novitch BG, Patterson M, Umbach JA, Richter L, Lindgren A, Conway AE, Clark AT, Goldman SA, Plath K, Wiedau-Pazos M, Kornblum HI, Lowry WE. Directed dif-ferentiation of human-induced pluripotent stem cells generates active motor neurons. Stem Cells. 2009 Apr;27(4):806–11.

Kawai J, Shinagawa A, Shibata K, Yoshino M, Itoh M, Ishii Y, Arakawa T, Hara A, Fukunishi Y, Konno H, Adachi J, Fukuda S, Aizawa K, Izawa M, Nishi K, Kiyosawa H, Kondo S, Y amanaka I, Saito T, Okazaki Y, Gojobori T, Bono H, Kasukawa T, Saito R, Kadota K, Matsuda H, Ashburner M, Batalov S, Casavant T, Fleischmann W, Gaasterland T, Gissi C, King B, Kochiwa H, Kuehl P, Lewis S, Matsuo Y, Nikaido I, Pesole G, Quackenbush J, Schriml LM, Staubli F, Suzuki R, Tomita M, Wagner L, Washio T, Sakai K, Okido T, Furuno M, Aono H, Baldarelli R, Barsh G, Blake J, Boffelli D, Bojunga N, Carninci P, de Bonaldo MF, Brownstein MJ,

8 Induced Pluripotent Stem Cells

201

Bult C, Fletcher C, Fujita M, Gariboldi M, Gustincich S, Hill D, Hofmann M, Hume DA, Kamiya M, Lee NH, Lyons P, Marchionni L, Mashima J, Mazzarelli J, Mombaerts P, Nordone P, Ring B, Ringwald M, Rodriguez I, Sakamoto N, Sasaki H, Sato K, Sch?nbach C, Seya T, Shibata Y, Storch KF, Suzuki H, Toyo-oka K, Wang KH, Weitz C, Whittaker C, Wilming L, Wynshaw-Boris A, Yoshida K, Hasegawa Y, Kawaji H, Kohtsuki S, Hayashizaki Y; RIKEN Genome Exploration Research Group Phase II Team and the FANTOM Consortium.

Functional annotation of a full-length mouse cDNA collection. Nature. 2001 Feb 8;409(6821):685–90.

Kawamura T, Suzuki J, Wang YV, Menendez S, Morera LB, Raya A, Wahl GM, Belmonte JC.

Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature. 2009 Aug 27;460(7259):1140–4.

Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, Ko S, Yang E, Cha KY, Lanza R, Kim KS. Generation of human induced pluripotent stem cells by direct delivery of reprogram-ming proteins. Cell Stem Cell. 2009 Jun 5;4(6):472–6.

Kim JB, Zaehres H, Wu G, Gentile L, Ko K, Sebastiano V, Araúzo-Bravo MJ, Ruau D, Han DW, Zenke M, Sch?ler HR. Pluripotent stem cells induced from adult neural stem cells by repro-gramming with two factors. Nature. 2008 Jul 31;454(7204):646–50.

Li H, Collado M, Villasante A, Strati K, Ortega S, Ca?amero M, Blasco MA, Serrano M. The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature. 2009 Aug 27;460(7259): 1136–9.

Liao J, Wu Z, Wang Y, Cheng L, Cui C, Gao Y, Chen T, Rao L, Chen S, Jia N, Dai H, Xin S, Kang J, Pei G, Xiao L. Enhanced efficiency of generating induced pluripotent stem (iPS) cells from human somatic cells by a combination of six transcription factors. Cell Res. 2008 May;18(5):600–3.

Loh YH, Agarwal S, Park IH, Urbach A, Huo H, Heffner GC, Kim K, Miller JD, Ng K, Daley GQ. Generation of induced pluripotent stem cells from human blood. Blood. 2009 May 28;113(22):5476–9.

Loh YH, Wu Q, Chew JL, V ega VB, Zhang W, Chen X, Bourque G, George J, Leong B, Liu J, Wong KY, Sung KW, Lee CW, Zhao XD, Chiu KP, Lipovich L, Kuznetsov V A, Robson P, Stanton LW, Wei CL, Ruan Y, Lim B, Ng HH. The Oct4 and Nanog transcription network regulates pluripo-tency in mouse embryonic stem cells. Nat Genet. 2006 Apr;38(4):431–40.

Lowry WE, Richter L, Yachechko R, Pyle AD, Tchieu J, Sridharan R, Clark AT, Plath K.

Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci USA. 2008 Feb 26;105(8):2883–8.

Lyssiotis CA, Foreman RK, Staerk J, Garcia M, Mathur D, Markoulaki S, Hanna J, Lairson LL, Charette BD, Bouchez LC, Bollong M, Kunick C, Brinker A, Cho CY, Schultz PG, Jaenisch R. Reprogramming of murine fibroblasts to induced pluripotent stem cells with chemical complementation of Klf4. Proc Natl Acad Sci U S A. 2009 Jun 2;106(22):8912–7.

Maehr R, Chen S, Snitow M, Ludwig T, Yagasaki L, Goland R, Leibel RL, Melton DA. Generation of pluripotent stem cells from patients with type 1 diabetes. Proc Natl Acad Sci U S A. 2009 Aug 31.

Maherali N, Sridharan R, Xie W, Utikal J, Eminli S, Arnold K, Stadtfeld M, Yachechko R, Tchieu J, Jaenisch R, Plath K, Hochedlinger K. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell. 2007 Jun 7;1(1):55–70.

Mali P, Ye Z, Hommond HH, Yu X, Lin J, Chen G, Zou J, Cheng L. Improved efficiency and pace of generating induced pluripotent stem cells from human adult and fetal fibroblasts. Stem Cells. 2008 Aug;26(8):1998–2005.

Marión RM, Strati K, Li H, Murga M, Blanco R, Ortega S, Fernandez-Capetillo O, Serrano M, Blasco MA. A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature. 2009 Aug 27;460(7259):1149–53.

Marson A, Foreman R, Chevalier B, Bilodeau S, Kahn M, Young RA, Jaenisch R. Wnt signaling promotes reprogramming of somatic cells to pluripotency. Cell Stem Cell. 2008 Aug 7;3(2):132–5.

202K. Takahashi and S. Yamanaka Masui S, Nakatake Y, Toyooka Y, Shimosato D, Yagi R, Takahashi K, Okochi H, Okuda A, Matoba R, Sharov AA, Ko MS, Niwa H. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol. 2007 Jun;9(6):625–35. Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, Zhang X, Bernstein BE, Nusbaum C, Jaffe DB, Gnirke A, Jaenisch R, Lander ES. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature. 2008 Aug 7;454(7205):766–70. Mikkelsen TS, Hanna J, Zhang X, Ku M, Wernig M, Schorderet P, Bernstein BE, Jaenisch R, Lander ES, Meissner A. Dissecting direct reprogramming through integrative genomic analysis.

Nature. 2008 Jul 3;454(7200):49–55.

Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell. 2003 May 30;113(5):631–42.

Miura K, Okada Y, Aoi T, Okada A, Takahashi K, Okita K, Nakagawa M, Koyanagi M, Tanabe K, Ohnuki M, Ogawa D, Ikeda E, Okano H, Yamanaka S. Variation in the safety of induced pluri-potent stem cell lines. Nat Biotechnol. 2009 Aug;27(8):743–5.

Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, Takizawa N, Yamanaka S. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol. 2008 Jan;26(1):101–6.

Narazaki G, Uosaki H, Teranishi M, Okita K, Kim B, Matsuoka S, Yamanaka S, Yamashita JK.

Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation. 2008 Jul 29;118(5):498–506.

Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Sch?ler H, Smith A.

Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcrip-tion factor Oct4. Cell. 1998 Oct 30;95(3):379–91.

Nishimoto M, Fukushima A, Okuda A, Muramatsu M. The gene for the embryonic stem cell coactivator UTF1 carries a regulatory element which selectively interacts with a complex composed of Oct-3/4 and Sox-2. Mol Cell Biol. 1999 Aug;19(8):5453–65.

Niwa H, Burdon T, Chambers I, Smith A. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev. 1998 Jul 1;12(13):2048–60.

Niwa H, Miyazaki J, Smith AG. Quantitative expression of Oct-3/4 defines differentiation, dedif-ferentiation or self-renewal of ES cells. Nat Genet. 2000 Apr;24(4):372–6.

Niwa H, Toyooka Y, Shimosato D, Strumpf D, Takahashi K, Yagi R, Rossant J. Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell. 2005 Dec 2;123(5):917–29.

Niwa H. How is pluripotency determined and maintained? Development. 2007 Feb;134(4):635–46. Okamoto K, Okazawa H, Okuda A, Sakai M, Muramatsu M, Hamada H. A novel octamer binding transcription factor is differentially expressed in mouse embryonic cells. Cell. 1990 Feb 9;60(3):461–72.

Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007 Jul 19;448(7151):313–7.

Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S. Generation of mouse induced pluripotent stem cells without viral vectors. Science. 2008 Nov 7;322(5903):949–53. Osakada F, Jin ZB, Hirami Y, Ikeda H, Danjyo T, Watanabe K, Sasai Y, Takahashi M. In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction.

J Cell Sci. 2009 Sep 1;122(Pt 17):3169–79.

Park IH, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, Lensch MW, Cowan C, Hochedlinger K, Daley GQ. Disease-specific induced pluripotent stem cells. Cell. 2008a Sep 5;134(5):877–86.

Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, Lerou PH, Lensch MW, Daley GQ.

Reprogramming of human somatic cells to pluripotency with defined factors. Nature. 2008b Jan 10;451(7175):141–6.

Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA. “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science. 2002 Oct 18;298(5593):597–600.

8 Induced Pluripotent Stem Cells

203

Raya A, Rodríguez-Pizà I, Guenechea G, Vassena R, Navarro S, Barrero MJ, Consiglio A, Castellà M, Río P, Sleep E, González F, Tiscornia G, Garreta E, Aasen T, Veiga A, Verma IM, Surrallés J, Bueren J, Izpisúa Belmonte JC.Disease-corrected haematopoietic progeni-tors from Fanconi anaemia induced pluripotent stem cells. Nature. 2009 Jul 2;460(7251): 53–9.

Reményi A, Lins K, Nissen LJ, Reinbold R, Sch?ler HR, Wilmanns M. Crystal structure of a POU/HMG/DNA ternary complex suggests differential assembly of Oct4 and Sox2 on two enhancers. Genes Dev. 2003 Aug 15;17(16):2048–59.

Robertson E, Bradley A, Kuehn M, Evans M. Germ-line transmission of genes introduced into cultured pluripotential cells by retroviral vector. Nature. 1986 Oct 2–8;323(6087):445–8. Schenke-Layland K, Rhodes KE, Angelis E, Butylkova Y, Heydarkhan-Hagvall S, Gekas C, Zhang R, Goldhaber JI, Mikkola HK, Plath K, MacLellan WR. Reprogrammed mouse fibro-blasts differentiate into cells of the cardiovascular and hematopoietic lineages. Stem Cells.

2008 Jun;26(6):1537–46.

Sch?ler HR, Ruppert S, Suzuki N, Chowdhury K, Gruss P. New type of POU domain in germ line-specific protein Oct-4. Nature. 1990 Mar 29;344(6265):435–9.

Senju S, Haruta M, Matsunaga Y, Fukushima S, Ikeda T, Takahashi K, Okita K, Yamanaka S, Nishimura Y. Characterization of dendritic cells and macrophages generated by directed differentiation from mouse induced pluripotent stem cells. Stem Cells. 2009 May;27(5):1021–31.

Shi Y, Desponts C, Do JT, Hahm HS, Sch?ler HR, Ding S. Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell. 2008 Nov 6;3(5):568–74.

Silva J, Barrandon O, Nichols J, Kawaguchi J, Theunissen TW, Smith A. Promotion of repro-gramming to ground state pluripotency by signal inhibition. PLoS Biol. 2008 Oct 21;6(10):e253.

Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, Hargus G, Blak A, Cooper O, Mitalipova M, Isacson O, Jaenisch R. Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell. 2009 Mar 6;136(5):964–77.

Song Z, Cai J, Liu Y, Zhao D, Yong J, Duo S, Song X, Guo Y, Zhao Y, Qin H, Yin X, Wu C, Che J, Lu S, Ding M, Deng H. Efficient generation of hepatocyte-like cells from human induced pluripotent stem cells. Cell Res. 2009 Sep 8;19(11):1233–42.

Stadtfeld M, Brennand K, Hochedlinger K. Reprogramming of pancreatic beta cells into induced pluripotent stem cells. Curr Biol. 2008a Jun 24;18(12):890–4.

Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K. Induced pluripotent stem cells gener-ated without viral integration. Science. 2008b Nov 7;322(5903):945–9.

Tada M, Takahama Y, Abe K, Nakatsuji N, Tada T. Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol. 2001 Oct 2;11(19):1553–8.

Takahashi K, Mitsui K, Yamanaka S. Role of ERas in promoting tumour-like properties in mouse embryonic stem cells. Nature. 2003 May 29;423(6939):541–5.

Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007 Nov 30;131(5):861–72.

Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006 Aug 25;126(4):663–76.

Tashiro K, Inamura M, Kawabata K, Sakurai F, Yamanishi K, Hayakawa T, Mizuguchi H.

Efficient adipocyte and osteoblast differentiation from mouse induced pluripotent stem cells by adenoviral transduction. Stem Cells. 2009 Aug;27(8):1802–11.

Taura D, Sone M, Homma K, Oyamada N, Takahashi K, Tamura N, Yamanaka S, Nakao K.

Induction and isolation of vascular cells from human induced pluripotent stem cells.

Arterioscler Thromb Vasc Biol. 2009 Jul;29(7):1100–3.

Thomas KR, Capecchi MR. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell. 1987 Nov 6;51(3):503–12.

204K. Takahashi and S. Yamanaka Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM.

Embryonic stem cell lines derived from human blastocysts. Science. 1998 Nov 6;282(5391):1145–7.

Tokuzawa Y, Kaiho E, Maruyama M, Takahashi K, Mitsui K, Maeda M, Niwa H, Yamanaka S.

Fbx15 is a novel target of Oct3/4 but is dispensable for embryonic stem cell self-renewal and mouse development. Mol Cell Biol. 2003 Apr;23(8):2699–708.

Tsubooka N, Ichisaka T, Okita K, Takahashi K, Nakagawa M, Yamanaka S. Roles of Sall4 in the generation of pluripotent stem cells from blastocysts and fibroblasts. Genes Cells. 2009 Jun;14(6):683–94.

Utikal J, Polo JM, Stadtfeld M, Maherali N, Kulalert W, Walsh RM, Khalil A, Rheinwald JG, Hochedlinger K. Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature. 2009 Aug 27;460(7259):1145–8.

Viczian AS, Solessio EC, Lyou Y, Zuber ME. Generation of functional eyes from pluripotent cells.

PLoS Biol. 2009 Aug;7(8):e1000174.

Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE, Jaenisch R.

In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature. 2007 Jul 19;448(7151):318–24.

Wernig M, Lengner CJ, Hanna J, Lodato MA, Steine E, Foreman R, Staerk J, Markoulaki S, Jaenisch R. A drug-inducible transgenic system for direct reprogramming of multiple somatic cell types. Nat Biotechnol. 2008a Aug;26(8):916–24.

Wernig M, Meissner A, Cassady JP, Jaenisch R. c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell. 2008b Jan 10;2(1):10–2.

Wernig M, Zhao JP, Pruszak J, Hedlund E, Fu D, Soldner F, Broccoli V, Constantine-Paton M, Isacson O, Jaenisch R.Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc Natl Acad Sci USA. 2008c Apr 15;105(15):5856–61.

Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH. Viable offspring derived from fetal and adult mammalian cells. Nature. 1997 Feb 27;385(6619):810–3.

Wolf D, Goff SP. Embryonic stem cells use ZFP809 to silence retroviral DNAs. Nature. 2009 Apr 30;458(7242):1201–4.

Wolf D, Goff SP. TRIM28 mediates primer binding site-targeted silencing of murine leukemia virus in embryonic cells. Cell. 2007 Oct 5;131(1):46–57.

Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, H?m?l?inen R, Cowling R, Wang W, Liu P, Gertsenstein M, Kaji K, Sung HK, Nagy A. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature. 2009 Apr 9;458(7239):766–70.

Xu D, Alipio Z, Fink LM, Adcock DM, Yang J, Ward DC, Ma Y. Phenotypic correction of murine hemophilia A using an iPS cell-based therapy. Proc Natl Acad Sci U S A. 2009 Jan 20;106(3):808–13.

Yamanaka S. A fresh look at iPS cells. Cell. 2009 Apr 3;137(1):13–7.

Ye L, Chang JC, Lin C, Sun X, Yu J, Kan YW.Induced pluripotent stem cells offer new approach to therapy in thalassemia and sickle cell anemia and option in prenatal diagnosis in genetic diseases. Proc Natl Acad Sci U S A Wernig. 2009 Jun 16;106(24):9826–30.

Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II, Thomson JA. Human induced pluripo-tent stem cells free of vector and transgene sequences. Science. 2009 May 8;324(5928):797–801.

Yu J, V odyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007 Dec 21;318(5858):1917–20.

Yusa K, Rad R, Takeda J, Bradley A. Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon. Nat Methods. 2009 May;6(5):363–9.

Zhang D, Jiang W, Liu M, Sui X, Yin X, Chen S, Shi Y, Deng H. Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Res.

2009a Apr;19(4):429–38.

8 Induced Pluripotent Stem Cells

205

Zhang J, Wilson GF, Soerens AG, Koonce CH, Yu J, Palecek SP, Thomson JA, Kamp TJ. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res. 2009b Feb 27;104(4):e30–41.

Zhao XY, Li W, Lv Z, Liu L, Tong M, Hai T, Hao J, Guo CL, Ma QW, Wang L, Zeng F, Zhou Q.

iPS cells produce viable mice through tetraploid complementation. Nature. 2009 Sep 3;461(7260):86–90.

Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T, Trauger S, Bien G, Yao S, Zhu Y, Siuzdak G, Sch?ler HR, Duan L, Ding S. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell. 2009 May 8;4(5):381–4.

普通高中生物学课程标准 (2017最新修订版)

普通高中生物学课程标准(2017年最新修订版) 普通高中生物学课标研制组 目录 一、课程性质与基本理 念 ..................................................................... .. (1) (一)课程性 质 ..................................................................... .. (1) (二)基本理 念 ..................................................................... .. (1) 二、学科核心素养与课程目 标 ..................................................................... . (2) (一)学科核心素 养 ..................................................................... . (2) (二)课程目 标 ..................................................................... (3)

三、课程结 构 ..................................................................... (3) (一)设计依 据 ..................................................................... (3) (二)结 构 ..................................................................... . (4) (三)学分与选 课 ..................................................................... .. (4) 四、课程内 容 ..................................................................... (4) (一)必修课 程 ..................................................................... . (4) 模块 1 分子与细 胞 ..................................................................... .. (4)

干细胞存储行业研究报告精编版

2017年干细胞存储行业研究报告 因为具有潜在的再生能力,干细胞自其诞生之日起,就被认为可能是革命性的医疗技术。2007年和2012年的诺贝尔生理或医学奖,分别授予了与干细胞有关的发现。 2011年开始,干细胞概念再次被市场热炒。根据Market Research及Transparency Market Research预计,到2018年全球干细胞储存市场容量将增长至181.6亿美元。 干细胞存储业务的想象空间虽然不及干细胞治疗,但依然是现阶段许多干细胞公司的重要业务。对投资机构来说,一方面存储业务充沛的现金流可以缓解研发费用的压力,一方面细胞分离等技术能力的高低也能侧面反映公司的技术水平,对于分析标的的风险和潜力意义重大,值得持续关注和研究。 一、概述 干细胞是具有自我更新、高度增殖、多项分化潜能及良好组织相容性等特点的细胞群体。因为具有潜在的再生能力,干细胞自其诞生之日起,就被认为可能是革命性的医疗技术。2007年和2012年的诺贝尔生理或医学奖,分别授予了“在利用胚胎干细胞引入特异性基因修饰的原理上的发现”和“发现成熟细胞可被重写成多功能细胞,细胞核重编程技术(iPS细胞)”两项与干细胞有关的发现。 2011年开始,干细胞概念再次被市场热炒。在A股市场上,以中源协和为代表的企业当年股价飞涨。 存储业务涉及的主要是造血干细胞和间充质干细胞,前者主要来源于骨髓、外周血、脐带血、胎盘等,后者主要来源于骨髓、脐带、脂肪、脐带血、羊膜、胎盘等,进而形成了脐带血造血干细胞等细分种类。目前干细胞存储的主要市场仍在新生儿相关的业务,随着分离等技术的成熟和临床研究的深入,新生儿干细胞存储种类正在从脐带血造血干细胞转向胎盘、脐带等来源的间充质干细胞。

干细胞与组织工程

干细胞与组织工程 随着生命科学的飞速发展,目前组织工程、干细胞研究已经成为21世纪生命科学研究的焦点和前沿领域。组织工程研究涉及种子细胞、生物支架材料以及组织构建等众多研究方向.干细胞研究则有望解决组织工程研究中的种子细胞来源问题,可能成为组织工程研究中的理想种子细胞。 一“组织工程”的概念 1 “组织工程”的产生和发展 组织、器官的损伤或功能障碍是人类健康所面临的主要危害之一,也是人类疾病和死亡的最主要原因。据美国的一份资料显示,每年有数以百万计的美国人患有各种组织、器官的损伤或功能障碍,每年需进行800万次手术进行修复,年住院日在4000万~9000万之间,年耗资超过400亿美元。 随看现代外科学的发展,人类对组织、器官缺损的治疗有了很大的进步,但仍然存在许多问题。目前临床常用的治疗方法有三种: 1.自体组织移植、 2.异体组织移植、 3.人工合成组织代用品 组织工程是近年来正在兴起的一门新兴学科,1984年, Wolter首先提出“组织工程”(Tissue Engineering)一词。1987年,美国国家科学基金会于正式提出和确定“组织工程”一词,开辟了组织工程学研究的新纪元。它是应用生命科学和工程学的原理与技术,在正确认识哺乳动物的正常及病理两种状态下结构与功能关系的基础上,研究、开发用于修复、维护、促进人体各种组织或器官损伤后的功能和形态生物替代物的科学。 从事组织工程研究的科学家们利用细胞生物学、分予生物学以及材料科学等学科的最新技术,像工厂生产零部件一样,针对患音组织或器官缺失情况,利用构成组织或器官的基本单位——细胞以及为细胞生存提供空间的支架材料,在体内外培育出所需的人体组织或器官.需要多少就培育多少.量体裁衣制备完成后再给患者安装上去。 组织工程研究的核心是建立由细胞和生物材料构成的三维空间复合体。这一三维的空间结构为细胞提供了获取营养、气体交换、排泄废物和生长代谢的场所,

柳宗元驳复仇议翻译优选稿

柳宗元驳复仇议翻译集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

臣伏见天后时①,有同州下邽人徐元庆者②,父爽为县尉赵师韫所杀③,卒能手刃父仇,束身归罪④。当时谏臣陈子昂建议诛之而旌其闾⑤,且请“编之于令,永为国典。”臣窃独过之⑥。 注释: ①伏见:旧时臣下对君主有所陈述时的表敬之辞,可译为知道,了解。天后:即武则天(624-705),名武瞾。690年,废睿宗李旦自立为皇帝,改洛阳为神都,建立武周王朝,在位十六年。705年,武则天病笃,宰相张柬之发动兵变,迫使武氏退位,史称神龙革命。中宗李哲复位,恢复唐朝。 ②同州:唐代州名,今陕西渭南市大荔县一带地区。下邽(guī):县名,今陕西省渭南县。徐元庆:当时某驿馆的服务人员,徐元庆替父报仇,谋杀官员赵师蕴案是武则天时轰动一时的谋杀案。 ③县尉:县令的属官,专司当地的治安工作。或称御史大夫。 ④卒:最后,最终。束身归罪:自首。 ⑤陈子昂:(661—702),字伯玉。武后时曾任右拾遗,为谏诤之官。旌(jīng):表彰。闾:里巷的大门。 ⑥过:错误,失当。 译文:微臣知道则天皇后时,同州下邽县有个叫徐元庆的人,他的父亲徐爽被县尉赵师韫杀害,他最后能亲手杀掉他父亲的仇人,并且自己捆绑着身体到官府自首。当时的谏官陈子昂建议将他处以死罪,同时在他的家乡表彰他的行为,并请朝廷将这种处理方式“编入法令,永远作为国家的法律制度”。臣私下认为,这样做是不对的。

臣闻礼之大本,以防乱也。若曰无为贼虐①,凡为子者杀无赦。刑之大本,亦以防乱也,若曰无为贼虐,凡为治者杀无赦。其本则合,其用则异。旌与诛莫得而并焉。诛其可旌,兹谓滥,黩②刑甚矣。旌其可诛,兹谓僣③,坏礼甚矣。果以是示于天下,传于后代,趋义者不知所向,违害者不知所立,以是为典可乎?盖圣人之制,穷理以定赏罚,本情以正褒贬,统于一而已矣。 注释: ①贼虐:残害,践踏 ②黩(dú)刑:滥用刑法。黩,轻率。 ③僭(jiàn):越过,超出本分。 译文: 臣听说,礼的根本作用是为了防止人们作乱。意思是说,不要让礼受到践踏,凡是作儿子的,为报父仇而杀了人,就必须处死,不能予以赦免。刑法的根本作用也是为了防止人们作乱。意思是说,不能让刑受到践踏,凡是当官的错杀了人,也必须处死,不能予以赦免。礼和刑的根本目的是一致的,但是实际应用却不同。表彰和处死是不能同施一人的。处死可以表彰的人,这就叫乱杀,就是滥用刑法太过分了。表彰应当处死的人,这就是过失,破坏礼制太严重了。如果以这种处理方式昭示天下,并传给后代,那么,追求正义的人就不知道前进的方向,躲避刑罚的人就不能辨别立身之道,以此作为法则行吗?圣人制定礼法,是透彻地探究事理来制定赏罚,根据事实来确定奖惩,不过是把礼和刑二者结合在一起罢了。 向使刺谳①其诚伪,考正其曲直,原始而求其端②,则刑礼之用,判然离矣。何者?若元庆之父,不陷于公罪,师韫之诛,独以其私怨,奋其吏气,虐于非辜;州牧不知罪,刑官不知问,上下蒙冒③,吁号不闻。而元庆能以戴天④为大耻,枕戈⑤为得礼,处心积虑,

《中学生物教学论-期末总结》(刘恩山版)

《中学生物教学论-期末总结》(刘恩山版) 绪论 1.要胜任当代中学生物学教师的工作,一个人不仅要有坚实的生物学专业知识和实验技能为基础,同时还要具有哪些专业知识及技能? 答:(1)理解中学生物学课程的性质和价值 (2)理解生物科学和技术的本质和特征 (3)掌握学生的学习规律和学习特点 (4)能够使用多样化的教学方法 (5)能够利用多种评价方式来反映学生的进步 (6)专业素养的持续发展 2.怎样做一名合格的中学生物学教师? 3.课程改革的焦点聚集在“面向全体学生”和“倡导探究性学习”。 4.“面向全体学生”带来的变化是课程内容加大了灵活性和选择性,使不同地区、不同学校的学生能学到更适合他们的需求和条件的内容 5.“倡导探究性学习”则大大增加了课程中对于过程技能的要求和探究活动(或解决问题)的内容,并对教师指导学生进行生物学研究的能力和引导发现的教学技能提出了新的要求 第一章 1.中学生物学课程的性质和地位 答:性质:学科课程;科学课程;技术课程。地位:必修课程 2.生物学课程的价值 答:(1)培养学生的生物科学素养 (2)为学生终生的学习和发展打下基础 (3)为学生步入社会、择业和确定进一步学习的专业方向提供帮助; 3.具有生物科学素养的人应具有正确的科学态度、价值观和世界观;有一定的科学探究能力,理解生物学的核心概念和原理;具有良好的思维习惯和理解力,能够应用生物学的知识和方法去面对现实生活中与生物学相关的问题。 4.课程标准 课程标准是由教育部颁布的带有指令性的、重要的国家课程文件,是国家对基础教育课程的基本规范和要求。《基础课程改革纲要(试行)》指出:课程标准是教材编写、教学、评估和考试命题的依据,是国家管理和评价课程的基础。 国家课程标准体现了国家对不同阶段的学生在知识与技能、过程与方法、态度情感与价值观等方面的要求。生物课程标准则是具体规定了中学生物学课程的性质、目标和内容标准,并提出了教学评价及编写教材等方面的建议。它是我国基础教育阶段生物学课程的基本规范和质量要求,是每个中学生物学教材编写人员、生物教师和教育管理者开展工作的依据和准绳。 5.标准和大纲的异同是什么? 标准和大纲的共同之处是它们都是教育部颁布的指令性的课程文件“编教材、教学、评估、命题”的依据,也就是常说的“4个依据”的作用。 课程标准有一些与大纲不同的特点: (1)课程标准主要描述了学生在某一阶段学习后的学习成果,而大纲则强调的是具体的学习内容 (2)生物课程标准是国家制定的初中、高中阶段共同的、统一的基本要求,不是最高要求,

干细胞行业分析

干细胞行业分析报告 贵州省科技风险投资管理中心 贵州省科技风险投资有限公司 贵州鼎信博成投资管理有限公司

目录 一、干细胞概述 (3) (一)产品定义 (3) (二)干细胞产品分类 (3) 二、干细胞行业及发展概况 (5) (一)国际行业发展概况 (5) (二)国内行业发展概况 (6) (三)干细胞行业特点 (8) 三、国内外干细胞临床研究的概况 (10) (一)国外干细胞临床研究现状 (10) (二)国内干细胞临床研究现状 (10) 四、干细胞市场现状分析 (11) 五、干细胞市场供需分析 (16) 六、涉及干细胞技术研究与应用的上市公司基介绍 (21) 七、干细胞行业产业链及投资价值分析 (22) 附件一:2011年最新国外干细胞研发企业及其相关产品 (25) 附件二:干细胞产业政策研究 (33) 附件三:人类干细胞之伦理原则与监管政策 (35)

一、干细胞概述 (一)产品定义 干细胞(stem cells,SC)是一类具有自我复制能力(self-renewing)的多潜能细胞,在一定条件下,它可以分化成多种功能细胞。干细胞(Stem Cell)是一种未充分分化,尚不成熟的细胞,具有再生各种组织器官和人体的潜在功能,改变了人类疾病的应对方法,医学界称为“万用细胞”。 (二)干细胞产品分类 1、干细胞具有自我更新能力(Self-renewing),能够产生高度分化的功能细胞。干细胞按照生存阶段分为以下五类: (1)胚胎干细胞 胚胎干细胞当受精卵分裂发育成囊胚时,内层细胞团(Inner Cell Mass)的细胞即为胚胎干细胞。胚胎干细胞具有全能性,可以自我更新并具有分化为体内所有组织的能力。 (2)成体干细胞 成年动物的许多组织和器官,比如表皮和造血系统,具有修复和再生的能力。成体干细胞在其中起着关键的作用。在特定条件下,成体干细胞或者产生新的干细胞,或者按一定的程序分化,形成新的功能细胞,从而使组织和器官保持生长和衰退的动态平衡。

干细胞与组织工程重大项目课题申请指引

附件1: 863 计划生物和医药技术领域 “干细胞与组织工程”重大项目 课题申请指南 一、指南说明 “十一五”期间,本重大项目以替代、修复或再造人体各种组织器官的“再生医学”为主线,以干细胞与克隆技术、组织工程技术、组织器官代用品和再生医学相关评价体系为重点,利用多学科、多技术交叉合作的关键技术和资源平台,建立具有一定规模的高水平研究、生产和应用基地,形成我国再生医学工程研究开发技术体系,研制具有自主知识产权的系列干细胞与组织工程产品及代用品,建立、完善和细化相应的技术标准、准入规范和相关伦理学指导原则,培育和带动新兴产业,加快实现部分干细胞、组织工程产品和组织器官代用品的产业化,从而使我国再生医学研究和应用的整体水平进入世界先进行列,部分关键技术和产品达到国际领先水平。 本重大项目的任务分解及主要任务指标为:完成1-2 种重要退行性疾病的治疗性克隆临床前研究,力争获得第一个治疗性克隆的临床批 文;完成3-5 种重要疾病干细胞治疗的临床前研究,获得SFDA或卫生 行政主管部门的临床批文,力争1-2种治疗技术或产品 完成临床试验,获得相应证书;初步建立1-2 个国家级人类(疾病)胚胎干细胞库,建立干细胞库有关的硬件标准和管理规范;4-6 种具有自主知识产权的系列组织工程产品获得SFDA临床批文,力争 2-3 项完成临床试验并获得许可证;开发3-5 项具有自主知识产权的新型组织器官代用品,力争获得生产许可证;建立3-5 种针对干细胞和组织工程应用的灵长类动物疾病与评价模型;申请专利200 项左右,其中

10项左右为国际PCT专利,力争10%获得授权。 上述任务分解除个别保密课题外,所有课题均通过公开发布课题申请指南落实任务。 此次发布的是本重大项目课题申请指南,拟安排的主要内容包括干细胞与治疗性克隆、组织工程技术与产品研制、组织器官代用品研发及灵长类动物疾病与评价模型等,拟支持的经费为 2 亿元人民币。课题支持强度依据所承担任务和完成指标而定,课题支持年限为5 年,但依据中期评估进行滚动支持。 二、指南内容 课题 1 、帕金森病或卢迦雷氏病的治疗性克隆研究与应用研究目标:完成治疗性克隆技术及治疗性克隆干细胞的临床前研究及有效性和安全性评价,向SFDA申报临床批文,争取在治疗性克隆领域有所突破。此课题是重大项目总体目标中的重要组成部分和亮点,也是体现本项目水平的重要指标之一。 主要研究内容及考核指标:针对帕金森病或卢迦雷氏病等神经系统退行性疾病,建立治疗性克隆胚胎干细胞系,建立治疗性克隆临床应用评价体系和相关检测手段,完成治疗性克隆技术及治疗性克隆干细胞的有效性和安全性评价等临床前研究,申报SFDA临床批文,争取率先将1-2 种治疗性克隆技术应用到临床。申请30 项左右国家专利及部分PCT力争10%获得授权。 课题支持年限:五年。 课题经费来源及构成:课题拟支持的国拨总经费为1500 万元人民币。作为战略高技术类课题,以国拨经费为主,课题申请单位配套相应的人员经费。 课题2、我国人类(疾病)胚胎干细胞库的建立与应用 研究目标:有计划、有组织、有目标、有分工地利用好、保护好我

驳复仇议阅读题及答案.doc

驳复仇议阅读题及答案 《驳复仇议》出自于唐代文学家柳宗元的一篇驳论性的奏议,这篇奏议阐述了"调"即"和谐"在处理社会矛盾中的重要作用。以下是我给你推荐的驳复仇议阅读题及参考答案,希望对你有帮助! 《驳复仇议》阅读原文 臣伏见天后①时,有同州下邦人徐元庆者,父爽为县吏赵师韫所杀,卒能手刃父仇,束身归罪。当时谏臣陈予昂建议诛之而旌其闾,且请编之于令,永为国典。臣窃独过之。 臣闻礼之大本,以防乱也。若日无为贼虐,凡为子者杀无赦。刑之大本,亦以防乱也。若曰无为贼虐,凡为理者杀无赦。其本则合,其用则异,旌与诛莫得而并焉。诛其可旌,兹谓滥;黩刑甚矣。旌其可诛,兹谓僭;坏礼甚矣。果以是示于天下,传于后代,趋义者不知所向,违害者不知所立,以是为典,可乎? 盖圣人之制,穷理以定赏罚,本情以正褒贬,统于一而已矣。向使刺谳②其诚伪,考正其曲直,原始而求其端,则刑礼之用,判然离矣。何者?若元庆之父,不陷于公罪,师韫之诛,独以其私怨,奋其吏气,虐于非辜,州牧不知罪,刑官不知问,上下蒙冒,吁号不闻;而元庆能以戴天为大耻,枕戈为得礼,处心积虑,以冲仇人之胸,介然自克,即死无憾,是守礼而行义也。执事者宜有惭色,将谢之不暇,而又何诛焉? 其或元庆之父,不

免于罪,师韫之诛,不愆于法,是非死于吏也,是死于法也。法其可仇乎?仇天子之法,而戕奉法之吏,是悖骜而凌上也。执而诛之,所以正邦典,而又何旌焉? 且其议曰:人必有子,子必有亲,亲亲相仇,其乱谁救?是惑于礼也甚矣。礼之所谓仇者,盖其冤抑沉痛,而号无告也;非谓抵罪触法,陷于大戮。而曰彼杀之,我乃杀之,不议曲直,暴寡胁弱而已。其非经背圣,不亦甚哉!《周礼》:调人,掌司万人之仇。凡杀人而义者,令勿仇;仇之则死。有反杀者,邦国交仇之。又安得亲亲相仇也?《春秋公羊传》曰:父不受诛,子复仇可也。父受诛,子复仇,此推刃③之道,复仇不除害。今若取此以断两下相杀,则合于礼矣。 且夫不忘仇,孝也;不爱死,义也。元庆能不越于礼,服孝死义,是必达理而闻道者也。夫达理闻道之人,岂其以王法为敌仇者哉?议者反以为戮,黩刑坏礼,其不可以为典,明矣。 请下臣议附于令,有断斯狱者,不宜以前议从事。谨议。 【注】①天后:武则天。②刺谳:刺,探寻;谳,议罪。 ③推刃:往来项杀。 《驳复仇议》阅读题目 4.对下列句子中加点的词的解释,不正确的一项是(3分) A.臣窃独过之过:认为不对 B.旌其可诛,兹谓僭僭:僭越 C.不愆于法愆:罪过

驳《复仇议》阅读答案附翻译

驳《复仇议》阅读答案附翻译 驳《复仇议》 [唐]柳宗元 臣伏见天后①时,有同州下邦人徐元庆者,父爽为县吏赵师韫所杀,卒能手刃父仇,束身归罪。当时谏臣陈予昂建议诛之而旌其闾,且请编之于令,永为国典。臣窃独过之。 臣闻礼之大本,以防乱也。若日无为贼虐,凡为子者杀无赦。刑之大本,亦以防乱也。若曰无为贼虐,凡为理者杀无赦。其本则合,其用则异,旌与诛莫得而并焉。诛其可旌,兹谓滥;黩刑甚矣。旌其可诛,兹谓僭;坏礼甚矣。果以是示于天下,传于后代,趋义者不知所向,违害者不知所立,以是为典,可乎? 盖圣人之制,穷理以定赏罚,本情以正褒贬,统于一而已矣。向使刺谳②其诚伪,考正其曲直,原始而求其端,则刑礼之用,判然离矣。何者?若元庆之父,不陷于公罪,师韫之诛,独以其私怨,奋其吏气,虐于非辜,州牧不知罪,刑官不知问,上下蒙冒,吁号不闻;而元庆能以戴天为大耻,枕戈为得礼,处心积虑,以冲仇人之胸,介然自克,即死无憾,是守礼而行义也。执事者宜有惭色,将谢之不暇,而又何诛焉? 其或元庆之父,不免于罪,师韫之诛,不愆于法,是非死于吏也,是死于法也。法其可仇乎?仇天子之法,而戕奉法之吏,是悖骜而凌上也。执而诛之,所以正邦典,而又何旌焉? 且其议曰:人必有子,子必有亲,亲亲相仇,其乱谁救?是惑于礼也甚矣。礼之所谓仇者,盖其冤抑沉痛,而号无告也;非谓抵罪触法,陷于大戮。而曰彼杀之,我乃杀之,不议曲直,暴寡胁弱而已。其非经背圣,不亦甚哉!《周礼》:调人,掌司万人之仇。凡杀人而义者,令勿仇;仇之则死。有反杀者,邦国交仇之。又安得亲亲相仇也?《春秋公羊传》曰:父不受诛,子复仇可也。父受诛,子复仇,此推刃③之道,复仇不除害。今若取此以断两下相杀,则合于礼矣。 且夫不忘仇,孝也;不爱死,义也。元庆能不越于礼,服孝死义,是必达理而闻道者也。夫达理闻道之人,岂其以王法为敌仇者哉?议者反以为戮,黩刑坏礼,其不可以为典,明矣。 请下臣议附于令,有断斯狱者,不宜以前议从事。谨议。 【注】①天后:武则天。②刺谳:刺,探寻;谳,议罪。③推刃:往来项杀。 4.对下列句子中加点的词的解释,不正确的一项是 A.臣窃独过之过:认为不对 B.旌其可诛,兹谓僭僭:僭越 C.不愆于法愆:罪过 D.不宜以前议从事从事:处置 5.下列各组句子中,加点词的意义和用法相同的一组是 A.旌与诛莫得而并焉臣与将军戮力而攻秦。 B.而又何诛焉王问:何以知之? C.我乃杀之今其智乃反不能及 D.是必达理而闻道者也虽一龙发机,而七首不动。 6.下列对原文有关内容的概括和分析,不正确的一项是 A.徐元庆杀了父亲的仇人后投案认罪。陈于昂建议,先处死徐元庆,再在他的家乡表彰他,并把这个案例编入法律文书中。作者认为,陈子昂的建议是错误的。 B.作者认为,礼与刑根本作用一致,但在实际运用中有区别,不能对同一个人既施死刑又行褒奖。自相矛盾的做法,公之于众,只会让天下人无所适从。

大学语文重点句翻译练习

重点句翻译 一、《诗经》 1、王事靡盬,不遑启处;忧心孔疾,我行不来 2、昔我往矣,杨柳依依;今我来思,雨雪霏霏 二、《郑伯克段于鄢》 1、制,岩邑也,虢叔死焉,亻它邑唯命 2、都城过百雉,国之害也 3、姜氏何厌之有,不如早为之所,无使滋蔓,蔓,难图也 4、多行不义,必自毙,子姑待之 5、国不堪贰,君将若之何 6、厚将得众,不义不暱,厚将崩 7、大叔完聚,缮甲兵,具卒乘,将袭郑 8、公赐之食,食舍肉 9、君何患焉,若阙地及泉,隧而相见,其谁曰不然 10、孝子不匮,永锡尔类,君将不堪 11、今京不度,非制也,君将不堪 三、《燕昭王求士》 1、先趋而后患,先问而后嘿,则什己者至 2、此古服道致士之法也 3、燕国殷富,士卒乐佚轻战 4、燕兵独追北,人至临淄,尽取齐宝,烧其宫室宗庙 5、诎指而事之,北面而受学,则百己者至 6、今王诚欲致士,先从隗始,隗且见事,况贤于隗者乎,岂远千里哉 7、冯几据杖,眄视指使,则厮役之人至 四、《管晏列传》 1、仓廪实而知礼节,衣食足而知荣辱,上服度则六亲固 2、下令如流水之原,令顺民心 3、吾闻君子诎于不知己而信于知己者 4、通货积财,富国强兵,与俗同好恶 5、将顺其美,匡救其恶,故上下能相亲也 6、少时常与鲍叔牙游,鲍叔知其贤,管仲贫困,常欺鲍叔,鲍叔终善遇之,不以为言 7、吾尝三仕三见逐于君,鲍叔不以为我不肖,知我不遭时也 8、知我不羞小节而耻功名不显于天下也 1

9、知与之为政,政之宝也 10、其在朝,君语及之,即危言;语不及之,即危行 五、《苏武传》 1、武帝嘉其义,乃遣武以中郎将使持节送匈奴使留在汉者,因厚赂单于,答其善意 2、见犯乃死,重负国 3、复举剑拟之,武不动 4、空以身膏草野,谁复知之 5、武既至海上,廪食不至,掘野鼠去草实而食之 6、张胜闻之,恐前语发,以状语武 7、单于壮其节,朝夕遣人候问武,而收系张胜 8、凿地为坎,置煴火,覆武其上,蹈其背以出血 9、且单于信女,使决人死生,不平心持正,反欲斗两主,观祸败 10、天雨雪,武卧啮雪,与旃毛并咽之,数日不死 11、自分已死久矣,王必欲降武,请毕今日之欢,效死于前 12、收族陵家,为世大戮,陵尚复何顾乎 六、《先秦诸子语录》 1、其身正,不令而行;其身不正,虽令不从 2、老吾老以及人之老,幼吾幼以及人之幼,天下可运于掌 3、彼窃钩者诛,窃国者为诸侯,诸侯之门,而仁义存焉 七、《谏逐客书》 1、是以泰山不让土壤,故能成其大;河海不择细流,故能就其深;王者不却众庶,故能明其德 2、此所谓“藉寇兵而赍盗粮”者也 3、臣闻吏议逐客,窃以为过矣 4、今乃弃黔首以资敌国,却宾客以业诸侯 八、《驳复仇议》 1、其本则合,其用则异,旌与诛莫得而并焉 2、向使刺谳其诚伪,烤正其曲直,原始而求其端,则刑礼之用,判然离矣 3、元庆能不越于礼,服孝死义,是必达理而闻道者也 4、执事者宜有惭色,将谢之不暇,而又何诛焉 5、盖圣人之制,穷理以定赏罚,本情以正褒贬,终于一而已矣 6、仇天子之法,而戕奉法之吏,是悖骜而凌上也,是非死于吏也,是死于法也,法其可仇乎 九、《留侯论》

版初中生物学课程标准解读

精品文档 2011版初中生物学课程标准解读 莱西市城关中学张春松 1.生物学课程标准修订的背景 (1)国际上科学教育发展迅速。如:2011年7月美国颁布了《国家科学教育框架》,并即将颁布《美国下一代科学教育标准》。 (2)国内对学生学习科学的研究结果支持了科学教育的发展;(3)2011版初中生物学课程标准有标志性的进步,可以说与全球同步。 2.我国初中生物学课标修订要点 2.1. 修订工作的基本思路 (1)在课程宗旨、课程理念、课程目标、课程内容框架及学生学习方式等重大方向、思路和框架等方面保持稳定; (2)执行基于研究和证据的课程决策程序,确保《生物学课程标准》的高质量; (3)基于研究成果修改或补充,新课标有以下四方面的变化变化:–课程性质 –内容标准中对适合各年级学生学习和理解的生物学重要概念 –教学建议 –评价建议 2.2. 原《生物学课程标准》中对于课程性质的表述: 生物科学是自然科学中的基础学科之一,是研究生命现象和生命精品

文档. 精品文档活动规律的一门科学。它是农林、医药卫生、环境保护及其 他有关应从定性到定量的发展用科学的基础。生物科学经历了从现象到本质、过程,并与工程技术相结合,对社会、经济和人类生活产生越来越大以提高学生的影响。义务教育阶段的生物学课程是国家统一规定的、生物科学素养为主要目的的学科课程,是科学教育的重 要领域之一。新《生物学课程标准》中对于课程性质的表述增加的内容:它不仅是一个结论丰生物科学有着与其他自然科学相同的性质。也包括了人类认识自然现象和规律的一些特有的思维富的知识体系,方式和探究过程。生物科学的发展需要许多人的共同努力和不断探索。这些是生物学课程性质的重要决定因素。其精要义务教育阶段的生物学课程是自然科学领域的学科课程,它既要让学生理反映自然科学的本质。是展示生物科学的基本内容,又要让学生领悟生物学家在研究过程中所持有解基础的生物学知识,的观点以及解决问题的思 路和方法。获生物学课程期待学生主动地参与学习过程,在亲历提出问题、取信息、寻找证据、检验假设、发现规律等过程中习得生物学知识,养成理性思维的习惯,形成积极的科学态度,发展终生学习的能力。其学习成果是学习生物学课程是每个未来公民不可或缺的教育经历,公民素养的基本组成。特别指出,生物学作为一门自然科学,它属于理科,教学中必须要加强理解,防止死记硬背。 2.3.《生物学课程标准》中重要概念的表述: 精品文档. 精品文档 50个重要概念,其中包括8个核心概念)(10个一级主题共

干细胞抗衰老行业现状分析资料

目录 一、干细胞行业的“万用功能“及发展前景 (1) 二、干细胞行业相关政策分析 (2) 三、干细胞抗衰老作用机理 (2) 1.骨髓间充质干细胞 (3) 2.脐带血干细胞 (4) 3.脂肪干细胞 (5) 4.胚胎干细胞 (5) 四、干细胞产业链分析 (6) 五、干细胞国内相关企业分析 (7) 1.中源协和:中国干细胞产业链的整合者,全面布局上下游 (7) 2.北科生物:干细胞技术全球领先,有望成为中国的“苹果” (8) 3.金卫医疗:通过CCBC股权间接经营干细胞存储业务 (9) 4.冠昊生物:依托技术优势进军干细胞治疗领域 (10)

图表目录 图表 1:干细胞治疗应用方向 (3) 图表 2:干细胞抗衰老行业相关政策 (4) 图表 3:随着年龄的增长,骨髓中干细胞数目急剧下降 (5) 图表 4:小鼠骨髓间充质干细胞具有抗衰老作用 (6) 图表 5:脐带血干细胞可以促进细胞增殖,修复受伤组织 (6) 图表 6:肌肉注射胚胎干细胞后各系统疗效(临床改善指数) (7) 图表 7:干细胞产业链 (8) 图表 8:北科生物发展历程 (11) 图表 9:金卫医疗发展历程 (12)

一、干细胞行业的“万用功能“及发展前景 干细胞是具有自我复制和多向分化潜能的原始细胞,是机体的起源细胞,是形成人体各种组织器官的原始细胞。在一定条件下,它可以分化成多种功能细胞或组织器官,医学界称其为“万用细胞”,对应干细胞治疗具有极大的潜力。干细胞按发育状态分为胚胎干细胞、成体干细胞。按分化潜能分为全能干细胞、多能干细胞、单能干细胞。 干细胞治疗则是把健康的干细胞移植到病人或自己体内,以达到修复病变细胞或重建功能正常的细胞和组织的目的。即干细胞治疗从细胞层上治疗疾病,相较很多传统治疗方法具有无可比拟的优点: (1)安全:低毒性(或无毒性); (2)在尚未完全了解疾病发病的确切机理前也可以应用; (3)治疗材料来源充足; (4)治疗范围广阔; (5)是最好的免疫治疗和基因治疗载体; (6)传统疗法认为是“不治之症”的疾病,又有了新的疗法和新的希望。 因此干细胞治疗作为一种比较优势突出的新型治疗,临床上应用的领域包括治疗心血管疾病、神经系统疾病、血液病、肝病、肾病、糖尿病、骨关节疾病等,现在比较成熟的如应用骨髓移植治疗白血病等恶性血液病,随着未来越来越多临床试验的成功,产业发展前景将十分广阔。 图表 1:干细胞治疗应用方向 资料来源:银联信

干细胞技术及发展

干细胞技术及发展 摘要:干细胞技术是生物技术领域最具有发展前景和后劲的前沿技术,其已成为世界高新技术的新亮点,势将导致一场医学和生物学革命。本文主要介绍干细胞及干细胞的相关技术与发展方向。 关键词:干细胞干细胞技术发展方向 1 概述 干细胞技术,又称为再生医疗技术,是指通过对于干细胞进行分离、体外培养、定向诱导、甚至基因修饰等过程,在体外繁育出全新的、正常的甚至更年轻的细胞、组织或器官,并最终通过细胞组织或器官的移植实现对临床疾病的治疗。 干细胞技术最显著的作用就是:能再造一种全新的、正常的甚至更年轻的细胞、组织或器官。由此人们可以用自身或他人的干细胞和干细胞衍生组织、器官替代病变或衰老的组织、器官,并可以广泛涉及用于治疗传统医学方法难以医治的多种顽症,诸如白血病、早老性痴呆、帕金森氏病、糖尿病、中风和脊柱损伤等一系列目前尚不能治愈的疾病。从理论上说,应用干细胞技术能治疗各种疾病,且其较很多传统治疗方法具有无可比拟的优点。 2 干细胞技术 干细胞有诱人的临床应用前景,因此干细胞技术的研究开发自然成为当今世界生物医药领域的一个热点研究方向。干细胞技术涉及许多方面,包括干细胞的鉴别、分离纯化、分裂增殖、诱导分化、冷冻保存、解冻使用等。还包括干细胞培养液、干细胞再生医学生物材料、干细胞产品保存包装材料等相关技术。以下着重简述来自不同发育阶段和不同组织的干细胞的相关技术。 2.1 干细胞 在细胞的分化过程中,细胞往往由于高度分化而完全失去了再分裂的能力,最终衰老死亡。机体在发展适应过程中为了祢补这一不足,保留了一部分未分化的原始细胞即干细胞。一旦生理需要,这些干细胞可按照发育途径通过分裂而产生分化细胞。 2.1.1干细胞的特点 (1)干细胞本身不是处于分化途径的终端。 (2)干细胞能无限的增殖分裂。 (3)干细胞可连续分裂几代,也可在较长时间内处于静止状态。

(完整版)中学生物学教学论

《中学生物学教学论》 1:简答题:举例说明什么是"前科学概念”。 参考答案: 许多学生在进入课堂之前已经思考过一些在生活中所见到的生物学现象,并形成了一些想法来解释身边发生的现象,这就是"前科学概念”。学生的前科学概念有些与科学家的认识接近或相同,但大多数是科学界不能接受的结论,有人也将其称为"错误概念或迷思概念”。例如人们腐肉生蛆的认识。 2:简答题:请你介绍一个中学生物学教育相关的网站,并对其进行评价。 参考答案: 提供一个中学生物学教育相关的网站的网址;主要栏目、特色;简单评价。 3:简述概念图在教学中的用途。 参考答案: (1)作为教的工具,主要是用于组织课程内容; (2)作为学的工具; (3)作为评价工具。 4:简答题:你是如何理解教学目标与评价之间的关系的。 参考答案:教学目标是制定评价标准的基础;评价是围绕着目标展开,否则就是无效的评价。 5:简答题:简要介绍导入的基本结构。 参考答案:引起注意;激起动机;组织引导;建立联系。 6:简答题:举例说明建构主义学习观的某些合理性。

参考答案: (1)强调学习者的经验(举例证明该观点的合理性); (2)注重以学习者为中心(举例证明该观点的合理性); (3)创造冲突的真实的学习情境(举例证明该观点的合理性); (4)注重互动的学习方式(举例证明该观点的合理性)。 7:简答题:简述初中生物学新课程倡导的课程理念。 参考答案:面向全体学生;提高生物科学素养;倡导探究性学习。 8:简答题:简述中学生物学实验的类型。 参考答案: (1)从生物学学科特点看,生物学实验可分为:形态学实验、解剖学实验、生理学实验和分类学实验等。 (2)从教学活动的特点看,可以将生物学实验分为:观察实验、验证性实验、探究性实验及设计和制作实验等。 9:[多选题]教态的变化包括() A:声音的变化B:停顿C:目光接触D:面部表情变化E:身体移动F:头手的动作变化 参考答案:ABCDEF 10:[单选题]讲授"光合作用”这部分内容时,按布鲁姆的教育目标分类,属于理解水平的问题是()。 A:叶绿体中含有哪两类色素B:光反应的场所C:光合作用的实质D:作物栽培要合理密植参考答案:C 11:[多选题]下列属于"模型”的特点的是()。

柳宗元驳复仇议翻译

驳复仇议 臣伏见天后时①,有同州下邽人徐元庆者②,父爽为县尉赵师韫所杀③,卒能手刃父仇,束身归罪④。当时谏臣陈子昂建议诛之而旌其闾⑤,且请“编之于令,永为国典。”臣窃独过之⑥。 注释: ①伏见:旧时臣下对君主有所陈述时的表敬之辞,可译为知道,了解。天后:即武则天(624-705),名武瞾。690年,废睿宗李旦自立为皇帝,改洛阳为神都,建立武周王朝,在位十六年。705年,武则天病笃,宰相张柬之发动兵变,迫使武氏退位,史称神龙革命。中宗李哲复位,恢复唐朝。 ②同州:唐代州名,今陕西渭南市大荔县一带地区。下邽(guī):县名,今陕西省渭南县。徐元庆:当时某驿馆的服务人员,徐元庆替父报仇,谋杀官员赵师蕴案是武则天时轰动一时的谋杀案。 ③县尉:县令的属官,专司当地的治安工作。或称御史大夫。 ④卒:最后,最终。束身归罪:自首。 ⑤陈子昂:(661—702),字伯玉。武后时曾任右拾遗,为谏诤之官。旌(j īng):表彰。闾:里巷的大门。 ⑥过:错误,失当。 译文:微臣知道则天皇后时,同州下邽县有个叫徐元庆的人,他的父亲徐爽被县尉赵师韫杀害,他最后能亲手杀掉他父亲的仇人,并且自己捆绑着身体到官府自首。当时的谏官陈子昂建议将他处以死罪,同时在他的家乡表彰他的行为,并请朝廷将这种处理方式“编入法令,永远作为国家的法律制度”。臣私下认为,这样做是不对的。 臣闻礼之大本,以防乱也。若曰无为贼虐①,凡为子者杀无赦。刑之大本,亦以防乱也,若曰无为贼虐,凡为治者杀无赦。其本则合,其用则异。旌与诛莫得而并焉。诛其可旌,兹谓滥,黩②刑甚矣。旌其可诛,兹谓僣③,坏礼甚矣。果以是示于天下,传于后代,趋义者不知所向,违害者不知所立,以是为典可乎盖圣人之制,穷理以定赏罚,本情以正褒贬,统于一而已矣。 注释: ①贼虐:残害,践踏 ②黩(dú)刑:滥用刑法。黩,轻率。 ③僭(jiàn):越过,超出本分。

驳《复仇议》-柳宗元-附译文翻译-文言文阅读题在线测试(附答案)

驳《复仇议》|柳宗元|附译文翻译|文言文阅读题在线测试(附答案) 驳《复仇议》|柳宗元|附译文翻译|文言文阅读题 驳《复仇议》 [唐]柳宗元 臣伏见天后①时,有同州下邦人徐元庆者,父爽为县吏赵师韫所杀,卒能手刃父仇,束身归罪。当时谏臣陈予昂建议诛之而旌其闾,且请“编之于令,永为国典”。臣窃独过之。 臣闻礼之大本,以防乱也。若日无为贼虐,凡为子者杀无赦。刑之大本,亦以防乱也。若曰无为贼虐,凡为理者杀无赦。其本则合,其用则异,旌与诛莫得而并焉。诛其可旌,兹谓滥;黩刑甚矣。旌其可诛,兹谓僭;坏礼甚矣。果以是示于天下,传于后代,趋义者不知所向,违害者不知所立,以是为典,可乎? 盖圣人之制,穷理以定赏罚,本情以正褒贬,统于一而已矣。向使刺谳②其诚伪,考正其曲直,原始而求其端,则刑礼之用,判然离矣。何者?若元庆之父,不陷于公罪,师韫之诛,独以其私怨,奋其吏气,虐于非辜,州牧不知罪,刑官不知问,上下蒙冒,吁号不闻;而元庆能以戴天为大耻,枕戈为得礼,处心积虑,以冲仇人之胸,介然自克,即死无憾,是守礼而行义也。执事者宜有惭色,将谢之不暇,而又何诛焉?其或元庆之父,不免于罪,师韫之诛,不愆于法,是非死于吏也,是死于法也。法其可仇乎?仇天子之法,而戕奉法之吏,是悖骜而凌上也。执而诛之,所以正邦典,而又何旌焉? 且其议曰:“人必有子,子必有亲,亲亲相仇,其乱谁救?”是惑于礼也甚矣。礼之所谓仇者,盖其冤抑沉痛,而号无告也;非谓抵罪触法,陷于大戮。而曰“彼杀之,我乃杀之”,不议曲直,暴寡胁弱而已。其非经背圣,不亦甚哉!《周礼》:“调人,掌司万人之仇。凡杀人而义者,令勿仇;仇之则死。有反杀者,邦国交仇之。”又安得亲亲相仇也?《春秋公羊传》曰:“父不受诛,子复仇可也。父受诛,子复仇,此推刃③之道,复仇不除害。”今若取此以断两下相杀,则合于礼矣。 且夫不忘仇,孝也;不爱死,义也。元庆能不越于礼,服孝死义,是必达理而闻道者也。夫达理闻道之人,岂其以王法为敌仇者哉?议者反以为戮,黩刑坏礼,其不可以为典,明矣。 请下臣议附于令,有断斯狱者,不宜以前议从事。谨议。 【注】①天后:武则天。②刺谳:刺,探寻;谳,议罪。③推刃:往来项杀。 柳宗元《驳复仇议》参考译文 我(从记载上)看到天后在位时,有个同州下圭人,叫徐元庆,父亲徐爽被县尉赵师韫杀害,他终于能够亲手杀死父亲的仇人,再自缚其身投案认罪。当时谏臣陈子昂建议,处死徐元庆,然后再在他的家乡表彰他,并且请求将这一案例编入律令,永远作为国家的法典。我个人认为他的建议是不对的。 我听说“礼”的最根本作用,用来防止动乱。如“礼”说,不要做凶残暴虐的事,凡是做儿子的杀害无辜之人,要处以死刑而不能赦免。“刑”的最根本作用,也是用来防止动乱的,如“刑”规定,不要做凶残暴虐的事,凡是做官的杀害无辜之人,要处以死刑而不能赦免。它们的根本作用一致,但运用起来有差异,表彰和诛杀是不能同时运用到一个人身上的。处死当

第一章中学生物学课程

第一章中学生物学课程 本章學習目標: 1.概述中学生物学课程的性质和价值。 2.利用生物学课程标准指导教学。 3.阐明中学生物学课程的目的。 4.说明教科书的作用。 生物学课程是基础教育中学阶段重要的学科课程。随着时代的前进,生物 科学技术的迅速发展及其对人类社会产生的日益广泛而深入的影响,人们更加关注生物学课程在基础教育中的地位和作用,科学教育家和生物学教育专家们也在不断思考如何使中学生物学课程跟上科学技术进步和时代的步伐。在过去的几十年间,这些因素都有力地推动了世界范围的中学生物学课程改革。 生物学课程的不断改革,给生物学教师(包括实习教师)提出了许多新的挑 战和新的要求。在对教师的诸多要求之中,一个基本要求就是生物学教师要能够正确认识和理解中学生物学课程,包括对课程的性质、课程的价值、课程目标以及课程标准和教材等方面的认识。本章将基于我国第八次课程改革的成果,就中学生物学课程的这些基本问题展开讨论和介绍。 第一节中学生物学课程的性质、价值和地位 生物学教师对生物学课程性质、价值的认识是教师专业素养的基本要求之 一,这种认识会直接影响教师对自身教学任务的理解和教学行为的调整。因此,生物学教师要对生物学课程性质、价值及其在基础教育中的地位有深入的理解,并能随着新课程的推进,不断地思考这个问题。 第一章中学生物学课程·5·

一、生物学课程的性质和地位 中学生物学课程从课程性质来说属于学科课程。在我国大陆地区,初中阶 段的生物学课程是国家统一规定的,以提高学生生物学素养为主要宗旨的必修课程;高中生物学课程是在义务教育基础上,适应高中学生身心发展特点和规划人生、终生发展的需要,以进一步提高学生生物科学素养为主要目的的科学课程,包括必修和选修两部分内容。中学生物学课程是科学教育中的一门重要学科。 学科的性质影响学科课程的性质。生物学课程是学科课程,这是生物学课 程的一个基本性质。因此,生物学课程要体现科学的本质和特征。每一个生物学教育工作者,不论是教材编写人员、生物学教师,还是教研人员,都应在实现生 物学课程的过程中注意把握并向学生展示课程的这一性质。 科学不仅是一个内容丰富的知识体系,它也是人类认识自然世界的一些特 殊途径和方法。由于有了这些对生命世界准确地提出问题及获取较为可靠答案的方法,如观察、提出问题、定量化、求证和思考,人类对自身和环境的认识日益 深入、全面、更加可靠。这些方法反映出自然科学与其他领域认识模式的不同,也体现了科学本质和特征最基本的部分。生物学课程作为学科课程,不仅要传播科学的事实和概念,更要体现科学是一个探究的过程。(参见第二章第一节)。生物学课程具有技术课程的性质。技术是推动人类文明的强大动力,技术 增强了人们改变世界的能力,它在许多方面表现为生产力。科学和技术有密切的关系,科学家将科学和技术称为“一个硬币的两个侧面”。在当今世界中,生物 科学和技术的发展已经充分地表现出了这些特点。中学生物学课程在注意到科学课程性质的同时,也注意到了技术的本质和特征,其中生物技术的内容在不断增加。一个具有生物科学素养的人,应该对生物技术的特征有一些基本的认识。这种认识包括生物科学与技术的关系、生物技术与社会的关系、生物技术的基本原理。在中学生物学课程中加强生物技术,是我国生物学课程在进入21世纪

相关主题
文本预览
相关文档 最新文档