当前位置:文档之家› 海岸动力学试验

海岸动力学试验

海岸动力学试验
海岸动力学试验

目录

试验1:波浪数据采集及波高统计试验

一、…………………………………………………………试验目的

二、…………………………………………………………试验要求

三、…………………………………………………………试验过程

四、…………………………………………………………数据处理

五、…………………………………………………………结果分析

六、…………………………………………………试验结论与感悟试验2:波压力量测试验

一、…………………………………………………………试验目的

二、…………………………………………………………试验要求

三、……………………………………………………试验水文要素

四、…………………………………………………………试验仪器

五、…………………………………………………………试验过程

六、…………………………………………………………数据处理

七、…………………………………………………………结果分析

八、…………………………………………………试验结论与感悟

试验一:波浪数据采集及波高统计试验

一、试验目的

了解波浪中规则波及不规则波的区别,波浪模型试验的一般方法,规则波波高、周期、不规则波波高的统计方法。

二、试验要求

1、规则波及不规则波的测量与特征值的统计。

2、明确实验目的。掌握实验原理。掌握基本仪器的使用,包括波浪数据采集系统和水槽造波机的使用方法。通过自己设计出不同波长、波高的规则及不规则波,参与造波及数据采集的全过程,了解波浪物理模型试验的最基本方法。正确处理实验数据,能通过处理采样数据文件统计各种累积频率波高,发现规律,得出实验结论。分析实验误差,提出减少误差的方法,分析误差的范围。

3、编写实验报告,要求报告能准确反映实验目的、方法、过程和结论。

三、试验过程

试验中共设置四根波高传感器,四个同学为一组,每人采用其中一根传感器的数据计算波高,规则波采样时间为20s,不规则波采样时间为80s左右。

规则波试验结果主要统计平均波高。波峰减波谷即为波高,将采集到的所有波高进行算术平均,得到规则波的平均波高。不规则波试验结果主要统计有效波高。波峰减波谷即为波高,将采集到的所有波高进行排序,取前1/3大波进行算术平均,得到不规则波的有效波高。

四、数据处理

本次实验使用fortran90语言编写计算程序,对数据进行处理。

1、规则波

(1)程序编写

!求规则波各通道下平均波高

program main

implicit none

integer::i,j,k=2000,m=0,n,x

real::crest=0,trough=0,middle=0

real,dimension(4,2000)::series=0

integer,dimension(4,100)::zero=0

real,dimension(4,100)::h=0

real,dimension(4)::sum_height=0,average_h=0

integer,dimension(4)::mark=0

open(1,file='DAYU05B.800')

do k=1,2000

read(1,'(4x,f7.3,3(3x,f7.3))')series(1:4,k)

enddo

close(1)

open(2,file="d:\mirror\one\date.dat")

do i=1,4

m=0

do j=1,k-1

if((series(i,j)<1e-10).and.(series(i,j+1)>1e-10))then

m=m+1;zero(i,m)=j

end if

end do

mark(i)=m

do x=1,m-1

crest=maxval(series(i,(zero(i,x)):(zero(i,x+1))))

trough=minval(series(i,(zero(i,x)):(zero(i,x+1))))

h(i,x)=crest-trough

end do

end do

print'(1x,a/10i7)',"15通道上跨零点位置",zero(1,1:mark(1))

print'(1x,a/10f8.3)',"15通道波高",h(1,1:mark(1)-1)

print*,"---------------------------------------------------------------------"

print'(1x,a/10i7)',"4通道上跨零点位置",zero(2,1:mark(2))

print'(1x,a/10f8.3)',"4通道波高",h(2,1:mark(2)-1)

print*,"----------------------------------------------------------------------"

print'(1x,a/10i7)',"15通道上跨零点位置",zero(3,1:mark(3))

print'(1x,a/10f8.3)',"15通道下波高",h(3,1:mark(3)-1)

print*,"----------------------------------------------------------------------"

print'(1x,a/10i7)',"15通道上跨零点位置",zero(4,1:mark(4))

print'(1x,a/10f8.3)',"15通道下波高",h(4,1:mark(4)-1)

print*,"----------------------------------------------------------------------"

print*

do i=1,4

m=mark(i)

do n=1,m-1

average_h(i)=average_h(i)+h(i,n)

end do

average_h(i)=average_h(i)/(m-1)

print'(1x,i2,a,f9.5)',i,"列的平均波高为",average_h(i)

write(2,*)i,"列的平均波高为",average_h(i)

end do

end program

(2)计算结果

2、不规则波

(1)程序编写

!求不规则波各通道下波高

program main

implicit none

integer::i,j,k,m=0,n,x

real::crest=1e-10,trough=1e-10,middle=0

real,dimension(4,8000)::series=0

integer,dimension(4,100)::zero=0

real,dimension(4,100)::h=0

real,dimension(4)::sum_height=0,average_h=0

integer,dimension(4)::mark=0

open(1,file='DAYU05C.800')

do k=1,8000

read(1,'(4x,f7.3,3(3x,f7.3))')series(1,k),series(2,k),series(3,k),series(4,k) end do

close(1)

open(2,file="d:\mirror\second\date.dat")

do i=1,4

m=0

do j=1,k-1

if((series(i,j)<1e-10).and.(series(i,j+1)>1e-10))then

m=m+1;zero(i,m)=j

end if

end do

mark(i)=m

do x=1,m-1

crest=maxval(series(i,(zero(i,x)):(zero(i,x+1))))

trough=minval(series(i,(zero(i,x)):(zero(i,x+1))))

h(i,x)=crest-trough

end do

end do

!求1/3大波波高与平均波高

do i=1,4

do n=1,mark(i)-2

do j=2,mark(i)-1

if(h(i,j)>h(i,j-1))then

middle=h(i,j)

h(i,j)=h(i,j-1)

h(i,j-1)=middle

end if

end do

end do

end do

do i=1,4

m=mark(i)

do n=1,(m-1)/3

sum_height(i)=sum_height(i)+h(i,n)

end do

sum_height(i)=3*sum_height(i)/(m-1)

print'(1x,i3,a,f10.6)',i,"列的1/3大波波高为",sum_height(i)

write(2,*)i,"列的1/3大波波高为",sum_height(i)

do n=1,m-1

average_h(i)=average_h(i)+h(i,n)

end do

average_h(i)=average_h(i)/(m-1)

print'(4x,i3,a,f10.6)',i,"列的平均波高为",average_h(i)

write(2,*)i,"列的平均波高为",average_h(i)

print*

end do

end program

(2)计算结果

五、结果分析

1、规则波

规则波波形图(通道4)

10

5

-5

-10

图1 规则波波形图(通道4)

由图1可以看出,规则波的波列中每个波的波要素(波高、周期)近乎相等,由fortran 编程计算可知,通道4共有10个上跨零点,平均波高为11.75500cm。

2、不规则波

不规则波波形图(通道4)

10

5

-5

-10

图2 不规则波波形图(通道4)

由图2可以看出,不规则波在构成波浪的波列中波形不同、波要素随机分布。根据fortran编程数据处理可知,通道4的不规则波有效波高为8.018728cm,平均波高为5.473799cm。

六、试验结论与感悟

波浪根据其形态可分为规则波和不规则波,从试验可以看出:

1、规则波与不规则波在波形上存在差异,规则波的波要素大致相同,波形图有周期性的规律;不规则波的波要素呈随机分布,波形图无规律。

2、规则波的平均波高与有效波高大致相等;不规则波的平均波高小于有效波高。

造波机是一种能够在实验水池中人为造出各种波浪,能够进行模拟试验的专用设备,是室内模拟海洋环境中不可缺少的装置。在这次试验中,我们选定了不同的参数,在波浪水槽内利用造波机模拟规则波与不规则波,从而进行数据读取与分析,让我们对波浪的生成以及波要素对波形的影响有了更加直观而深刻的认识。在后续的数据处理与结果分析中又锻炼了我们对相关专业软件的操作能力,培养小组成员之间相互探讨相互帮助的精神。

试验二:波压力量测试验

一、试验目的

海岸和近海工程的设计和建设,波浪与建筑物相互作用的研究是前提。波浪与建筑物的相互作用,决定工程目标的实现和建筑物的稳定与安全。

在海岸和近海工程中,如海上平台,离岸式码头,防波堤,挡土墙等建筑物,这类建筑物的主要外力之一就是作用在其上的波浪力,因此,波浪与建筑物相互作用研究中,波浪作用力的研究显得非常重要。

二、试验要求

试验采用规则波进行。

1、确定模型比尺(λ=30),率定波浪要素,测量模型上压力分布规律,要求压力测点不少于6个。

2、明确实验目的,掌握实验原理。掌握基本仪器的使用方法,了解波压力数据采集系统的工作原理。通过参与实验的全过程,深入了解波浪与建筑物相互作用的一般规律。正确处理实验数据,能通过处理采样数据文件得出斜坡建筑物在波浪作用下压力分布的规律,画出压力分布图,得出实验结论。分析实验误差,提出减少误差的方法,分析误差的范围。

3、试验报告的编写,要求报告能准确的反映试验目的、方法、过程及结果,能总结出压力在建筑物上分布的规律性,包含压力分布图,压力实测波形并给出最终压力的原型值。

三、试验水文要素

底高程潮位水深波要素

Zd(m) Z(m) D(m)

五十年一遇

H1%(m)周期T(s)

-5.24

3.75 8.99 2.61 5.30

3.75 8.99 2.61 7.00

四、试验仪器

本次试验使用的主要仪器为DJ800型多功能监测系统。 DJ800型多功能监测系统是由计算机、多功能监测仪和各种传感器组成的数据采集和数据处理系统。它能对多种物理量的数据,进行准同步采集。例如水位、波高、点脉动压力、面脉动压力、拉力、三维总力、二维流速、护舷、位移、温度、应变以及模拟电压等。本次试验用其进行点脉动压力的同步采集。

五、试验过程

试验成员分为2组,一组成员进行波浪要素的率定,另外一组成员同时进行波压力传感器的安装,在斜坡中选取10个测点装入压力传感器,待率定结束后再将建筑物防入试验水槽,进行波浪压力的量测。

试验采用规则波,试验结果主要统计平均正向波压力。零线以上波峰的峰值即为试验得出的正向波压力,每个波峰得到一个正向波压力值,将采集到的所有正向波压力值进行算术平均,得到平均正向波压力值。

六、数据处理

1、程序编写

!求压力值

program main

implicit none

integer::i,j,k,m=0,n,x

real,dimension(8,2000)::stress=0

integer,dimension(8,1000)::zero=0

real,dimension(8,1000)::h=0

real,dimension(8)::sum_h=0

real,dimension(8)::average=0

integer,dimension(8)::mark=0

open(1,file='DAYU02B.800')

do k=1,2000

read(1,'(4x,f7.3,6(3x,f7.3),3x,f6.3)')stress(1:8,k)

enddo

close(1)

open(2,file="d:\mirror\yali\date02B.dat")

do i=1,8

m=0

do j=1,1999

if((stress(i,j)<1e-10).and.(stress(i,j+1)>1e-10))then

m=m+1;zero(i,m)=j

end if

end do

mark(i)=m

do x=1,m-1

h(i,x)=maxval(stress(i,(zero(i,x)):(zero(i,x+1)))) end do

end do

!剔除非正常值

do i=1,8

m=mark(i);n=mark(i)

do j=1,m-1

sum_h(i)=sum_h(i)+h(i,j)

enddo

average(i)=sum_h(i)/(m-1)

do j=1,m-1

if(h(i,j)<0.4*average(i))then

h(i,j)=0;n=n-1

end if

end do

sum_h(i)=0

do j=1,m-1

sum_h(i)=sum_h(i)+h(i,j)

average(i)=sum_h(i)/(n-1)

end do

end do

do i=1,8

print'(3x,a,i1,a,2x,f10.7)',"第",i,"点压力值为:",average(i) enddo

write(2,*)average(1:8)

end program

2、计算结果

(1)T=5.3s

(2)

T=7s

七、结果分析

1、数据表格

通道数33 17 29 40 25 10 15 23 距底高度(m) 5.49 5.73 6.45 6.66 6.93 7.62 9.00 11.31 原高程(m)0.25 0.49 1.21 1.42 1.69 2.38 3.76 6.07

原压力值kPa

T=

0.53s

13.2900 18.9645 17.9558 26.9086 23.4000 19.1400 2.5224 1.5677

T=

7.00s

12.8507 11.0888 13.1179 14.7680 13.7071 18.6780 12.1160 5.3231

2、压力分布图

压力分布总体趋势大致为随高程增加压力值先增大后减小。T=5.3s中压力最大值在高程为1.21m与1.69m之间,达到最大值后减小的幅度较大;T=7.00s中压力最大值在高程为1.69m至3.76m之间,达到最大值后减小的幅度较小。

八、试验结论与感悟

通过绘制出波压力分布图,我们可以看到模型对斜坡式护面在T=5.3S和T=7s不同周期和波浪组合的作用下,斜面承受的波压力值也不相同。大致特点如下:

1、波浪压力沿斜面从水面上到水底的分布大致为先增大后减小。

2、波压力的最大值大致出现在距静水面一倍波高的水面处。

3、同样波高不同周期的波浪对斜面的最大波压力所在位置也不同。

查阅相关文献可知,波浪在斜坡上发生卷跃破碎时, 水体以射流状态冲击斜坡, 形成击岸水流。在坡面上往复上塑下落, 在射流冲击斜坡的地方产生很大的动水压力。波压分布自打击点处沿斜坡面上下分别递减。而我们的试验波压力分布图与理论波压力分布图有一定差距,例如在T=7.00s 的波列中,高程0.25m 处的波压力比高程0.49 处波压力值大,这是不合理的,产生的原因可能是因为在安置仪器的过程中存在一定的误差,导致数据读取不够精确。

对于最大冲击波压力在斜坡上的位置,有相关试验表明波坦的影响较小,与相对水深和坡度有一定关系,如果在本试验中能够把波高(有效波高)数据记录下来,就可以通过相应公式计算出波浪最大冲击力在静水位下的位置,从而与压力分布图进行比较分析,以验证其正确性。

在试验准备阶段同学们就分为两组,一组完成波浪的率定,一组进行传感器的布置,分工合作同时进行,提高了试验的效率,团结协作才能更好地完成试验。

在传感器的布置完成后我们发现传感器的数据线都缠绕在一起了,有可能对传感器造成损坏,这是我们在试验中需要注意的细节问题。一个试验的完成包括准备、实施、数据记录与处理、结果分析等各个阶段都需要我们细致而认真地对待,每一个步骤都是重要的环节,做好每一步才能做好整个试验。

动力学模拟实验详解

分子平衡与动态行为的动力学模拟实验详解 吴景恒 实验目的: (1)掌握Hyperchem中的分子建模方法 (2)掌握运用分子力学进行几何优化的方法,能正确设置力场参数及几何优化参数 (3)掌握分子动力学、Langevin动力学及Monte Carlo模拟方法, 能正确设置模拟参数 (4)通过动力学或Monte Carlo模拟,获取低能量的结构和热力学参数 实验注意: (1)穿实验服;实验记录用黑色,蓝色或蓝黑色钢笔或签字笔记录;实验数据记录不需要画表格 (2)实验前请先仔细阅读前面的软件使用介绍,然后逐步按照实验步骤所写内容进行操作 (3)截图方法:调整视角至分子大小适中,按下键盘上的PrintScreen按键截图,从“Windows开始菜单”打开“画图”工具,按Ctrl+v或“编辑-粘贴”,去掉四周多余部分只留下分子图形,保存图片 (4)所有保存的文件全部存在E盘或D盘根目录用自己学号命名的文件夹下,不要带中文命名,实验完毕全部删除,不得在计算用机上使用自己携带的U盘或其他便携存储设备! Hyperchem使用介绍: 本次实验用到的工具: Draw:描绘分子工具,在工作区单击画出原子,拖拽画出成键原子,在分子键上单击更改成键类型,双击会出现如下元素周期表用于选择不同原子建立分子 Select:选择原子工具,选中的原子或键会呈现绿色,在原子上单击左键选择对应原子/分子(选择模式对应在Select 菜单下Atoms/Moleculars更改),在原子上右击取消选择该原子,在工作区单击选择全部分子,在工作区右击取消全部分子;同时选中(确保Select – Multiple Selections为选中状态)两个原子时在状态栏显示键长(单位为?),同时选中三个原子显示键角,同时选中四个原子显示二面角 Rotate out-of-plane:平面外旋转工具,转换视角用 Rotate in-plane:平面内旋转工具,转换视角用 Translate:平移工具,转换视角用 Mgnify/Shrink:放大镜工具,转换视角用 Model Builder:分子建模工具,左三分别用于画C, N, O原子,最右为建立分子模型

波浪要素与流场测量实验指导

波浪要素与流场测量实验指导 波浪要素的测量 一、试验时间: 二、实验地点:长沙理工大学水利实验中心实验大厅 三、实验人员: 四、实验仪器设备:水槽、造波机、防波堤模型、浪高仪、数据采集仪、秒表、米尺、照相机。 五、实验要求: 1、了解认知风浪槽结构,如图一所示,实验风浪水槽为40m(长)X 1m(高)X0.8m(宽),实际有效长度为37m。 图一 实验布置图 2、了解掌握风浪槽各个结构作用及操作流程 造波机:造波机在风浪的最前端,是制造波况的主要设备。按照设计要求可以制造规则波、椭圆波、不规则波、破碎波、孤立波、聚焦波。波况参数设置有:周期、波高、水深等等参数。 操作流程:严格按照造波机的开关机程序说明来执行。 效能网:在离造波机最远的地方,作用是减少多次反射。

3、了解测量仪器和采集仪器,并熟悉数据测量和采集 浪高仪:浪高仪为加拿大Richard Branker Research 公司生产的WG—50型。测量每个时刻波高的变化趋势:波高和周期。 采集系统:采集系统是武汉优泰软件有限公司生产的utelk采集系统T3232f以及北京东方振动和噪声研究所制造的INV306智能信号分析系统。 数据采集:浪高仪根据生产厂商的率定,导线与电源盒需要一一的对应连接,并且检查信号通信质量。浪高仪信号经过utelk采集系统转化为软件所能认识的信号,在电脑端进行采集。utelk采集系统设定根据实验数据需要进行设定,主要设定参数有:时间函数、通道标识、采集通道数、设备,描述、报警值、细化、频谱参数、分析频率、平均与谱线数、工程单位、校正因子、采集控制、频响函数、抗混滤波、程控放大、触发参数等等。 4、数据分析 熟练掌握实验所测电压值转化为工程值方法及步骤(浪高已经经过率定:20mv电压值对应1mm水深工程值),提高对数据的真伪判别能力。 学会根据两点法分离计算入射波与反射波波高。两点分离法的理论基础:见附页。 为了简捷,选择吴宋仁教授主编的《海岸动力学》p51方法。假设反射波是稳定,由于反射波具有和入射波相同的波长和周期,故在离模型x=n*L/2,n=0,1,2,3……,处出现最大波高Hmax=Hi+Hrf,在x=(2n-1)*L/4处出现最小波高:Hmin=Hi-Hrf。其中Hi为入射波,Hrf为反射波,反射系数为 Krf=Hrf/Hi。 根据计算转化的工程值,图表及文字分析水力要素随波况变化的趋势,主要是反射系数随波高、波周期、波长、水深等要素的变化趋势。 5、上交实验报告及数据分析结果。 6、培养动手能力,提高对实验的兴趣。

最新浙江大学《海岸动力学》考点整理

【名词解释】 (15题×2分=30分) 第2章 1.海浪:风作用于海面产生的风浪 2.涌浪:风平息后海面上仍然存在的波浪或风浪移动到风区以外的波浪。 3.规则波不规则波/随机波浪:规则波波形规则,具有明显的波峰波谷,二维 性质显著。不规则波波形杂乱,波高,波周期和波浪传播方向不定,空间上具有明显三维性质。 4.混合浪:风浪和涌浪叠加形成的波浪 5.深水波,浅水波,有限水深波:深水波h/L大于1/2、浅水波h/L小于1/20、 其之间的称为有限水深波 6.振荡波:波动中水质点围绕其静止位置沿着某种固有轨迹作周期性的来会往 复运动,质点经过一个周期后没有明显的向前推移的波浪。 7.推进波:振荡波中若其波剖面对某一参考点作水平运动,波形不断向前推移 的波浪。 8.立波:振荡波中若波剖面无水平运动,波形不再推进,只有上下振荡的波浪。 9.推移波:波动中水质点只朝波浪传播方向运动,在任一时刻的任一断面上, 沿水深的各质点具有几乎相同的速度的波浪。 10.振幅:波浪中心至波峰顶的垂直距离;波高:波谷底至波峰顶的垂直距离 11.波长:两个相邻波峰顶之间的水平距离 12.波周期:波浪推进一个波长距离所需要的时间 13.波速、波数、波频等概念。 14.波的色散现象:不同波长(或周期)的波以不同速度进行传播最后导致波的 分离的现象 15.波能流:波浪在传播过程中通过单宽波峰线长度的平均的能量传递率 16.波能:波浪在传播过程中单宽波峰线长度一个波长范围内的平均总波能 17.波群:波浪叠加后反映出来的总体现象 18.波频谱(频谱)波能密度相对于组成波频率的分布函数 19.驻波:当两个波向相反,波高、周期相等的行进波相遇时,形成驻波。 20.孤立波:波峰尖陡、波谷平坦、波长无限大的波。 第3章 1.摩阻损失:海底床面对于波浪水流的摩阻力引起的能量损失; 2.浅水变形:当波浪传播至水深约为波长的一半时,波浪向岸传播时,随着水 深的减小,波长和波速逐渐减小,波高逐渐增大,此现象即为浅水变形; 3.波浪守恒:规则波在传播中随着水深变化,波速,波长,波高和波向都将发 生变化,但是波周期则始终保持不变。 4.波浪折射:当波浪传播进入浅水区时,如果波向线与等深线不垂直而成一偏 角,将发生波向线逐渐偏转,趋向于与等深线和岸线垂直的现象; 5.辐聚:在海岬岬角处,波向线将集中;辐散:在海湾里,波向线将分散; 6.波浪的绕射:波浪在传播中遇到障碍物如防波堤、岛屿或大型墩柱时,绕过 障碍物继续传播,这种现象称为波浪绕射; 7.绕射系数:绕射区内任一点波高与入射波高之比; 8.破波带:波浪破碎点至岸边这一地带称为破波带。 9.崩破波,激破波,卷破波(P78)

海岸动力学内容汇总

海岸动力学 第一章概论 1、海岸带宽度按从海岸线向内陆扩展10km,向外海延伸到-15~-20m水深计算。 2、海岸的类型: 按照岸滩的物质组成可以把海岸分作基岩海岸、沙质海岸、淤泥质海岸和生物海岸等类型。 基岩海岸,特征是:岸线曲折、湾岬相间;岸坡陡峭、滩沙狭窄。此类海岸水深较大,掩蔽较好,基础牢固,可以选作兴建深水泊位的港址。 沙质海岸:岸线平顺,岸滩较窄,坡度较陡,常伴有沿岸沙坝、潮汐通道和泻湖。此类海岸常是发展旅游、渔港的良好场所。 淤泥质海岸:此类海岸岸线平直,一般位于大河河口两侧,岸坡坦缓、潮滩发育好、宽而分带,潮流、波浪作用显著,以潮流作用为主;潮滩冲淤变化频繁,潮沟周期性摆动明显。淤泥质海岸滩涂资源丰富,有利于发展海洋水产养殖、发展海涂圈围成为陆用于发展农业与盐业或畜牧业等其他产业。 生物海岸:包括红树立海岸和珊瑚礁海岸。 海岸的基本概念:海岸是海洋和陆地相互接触和相互作用的地带,包括遭受海浪为主的海水动力作用的广阔范围,即从波浪所能作用到的海底,向陆延至暴风浪所能达到的地带。 外滩:指破波点到低潮线之间的滩地。 离岸区:破波带外侧延伸到大陆架边缘的区域。 淤泥质海岸从陆到海由三部分组成:潮上带,位于平均大潮高潮位以上;潮间带,为平均大潮高潮位到平均大潮低潮位之间的海水活动地带;和潮下带,在平均大潮低潮位向海一侧。 海岸侵蚀:指海水动力的冲击造成海岸线的后退和海滩的下蚀。 引起海岸侵蚀的原因主要有两种:一是由于自然原因:如河流改道或入海泥沙减少、海面上升或地面沉降、海洋动力作用增强等;二是由于为人原因,如拦河坝的建造、滩涂围垦、大量开采海滩沙、珊瑚礁,滥伐红树林,以及不适当的海岸工程设施等。 常见的海岸动力因素主要有:

酶促反应动力学实验.

酶动力学综合实验 实验(一)——碱性磷酸酶Km值的测定 【目的要求】 1.了解底物浓度对酶促反应速度的影响 2.了解米氏方程、Km值的物理意义及双倒数作图求Km值的方法。 【实验原理】 1、碱性磷酸酶: 碱性磷酸酶是广泛分布于人体各脏器器官中,其中以肝脏为最多。其次为肾脏、骨骼、肠和胎盘等组织。但它不是单一的酶,而是一组同功酶。本实验用的碱性磷酸酶是从大肠杆菌中提取的。 2、米氏方程: Michaelis-Menten 在研究底物浓度与酶促反应速度的定量关系时,导出了酶促反应动力学的基本公式,即: 错误!未找到引用源。(1) 式中:v表示酶促反应速度, 错误!未找到引用源。表示酶促反应最大速度, [S]表示底物浓度, 错误!未找到引用源。表示米氏常数。 3、错误!未找到引用源。值的测定主要采用图解法,有以下四种: ①双曲线作图法(图1-1,a) 根据公式(1),以v对[s]作图,此时1/2错误!未找到引用源。时的底物浓度[s]值即为Km值,以克分子浓度(M)表示。这种方法实际上很少采用,因为在实验条件下的底物浓度很难使酶达到饱和。实测错误!未找到引用源。一个近似值,因而1/2错误!未找到引用源。不精确。此外由于v对[S]的关系呈双曲线,实验数据要求较多,且不易绘制。 ②Lineweaver- Burk作图法双倒数作图法(图1-1,b) 实际工作中,常将米氏方程(式(1))作数学变换,使之成为直线形式,测定要方便、精确得多。其中之一即取(1)式的倒数,变换为Lineweaver- Burk方程式:错误!未找到引用源。(2) 以错误!未找到引用源。对错误!未找到引用源。作图,即为y=ax+b形式。此时斜率为错误!未找到引用源。,纵截距为错误!未找到引用源。。把直线外推与横轴相交,其截距相交,其截距即为—错误!未找到引用源。。 ③Hofstee作图法(略) 把(2)式等号两边乘以错误!未找到引用源。,得: 错误!未找到引用源。(3) 以v对错误!未找到引用源。作图,这时斜率为错误!未找到引用源。,纵截距

河海大学海岸动力学第五次作业答案

Homework (5) Standing waves often occur when incoming waves are completely reflected by vertical wall. At which phase would the wall be located ? 解:设正向波波形函数为:)cos(1 t kx a ση?= 势函数为:()t kx kh h z k ga σσφ?+=sin cosh )(cosh 1 反向波波形函数为:)cos(2 t kx a ση+= 势函数为:)sin(cosh )(cosh 2t kx kh h z k ga σσφ++?= 则两个波叠加后有 t kx a σηηηcos cos 22 1=+= 势函数为:t kx kh h z k ga σσφφφsin cos cosh )(cosh 221+? =+= 从而可以得到:t kx kh h z k a x u σσφsin sin cosh )(cosh 2+=??= 由于在防波堤(墙)的表面垂向速度必须为零,从而防波堤的位置在波腹处,由u 的表达式有 0sin =kx ? πn kx =即k n x π= (K ,4,3,2,1,0=n ). As far as the water surface ,the particle velocity and the particle orbit are concerned,what are the differences between linear waves and second order Stokes waves ? 解: (1) 波形不同:二阶Stokes 波的波峰相比微幅波抬高,变尖变陡;波谷相比微幅波 也抬高,变得平坦; 波峰波谷不再关于静水面对称。 (2) 速度不同:二阶Stokes 波的水平速度在一周期内不对称。波峰时,水平速度增 加而历时变小;波谷时,水平速度变小而历时边长;随水深变浅现象尤为明显。 (3) 水质点轨迹不同:二阶Stokes 波的水质点轨迹不封闭,水质点运动一个周期后 有一个净水平位移;而微幅波的水质点运动轨迹封闭 。

海岸动力学复习

填空 1波浪按波浪形态分为规则波和不规则波。大洋中的风浪是不规则波或随机波;离开风区后自由传播的的涌浪可视为规则波。 2波浪按传播海域的水深分为深水波、有限水深波和浅水波。分别将h/L =1/2和h/L =1/20作为它们之间的界限。 3波浪非线性的程度取决于波高、波长、水深的相互关系,在深水中影响最大的特征比值是波陡,在浅水中影响最大的是相对波高。 4波长较短的风浪进入水流较大的水域,或骑在波长较长的涌浪或潮波之上时,其波长、波速、波高及波向均将发生变化,而波周期保持不变。 5对波群速度与波速的关系而言,浅水波的波群速度为 C g =C s = gh ,深水波的波群速度为C g =12C 0。 6一般把h/L <1/20的波浪称为浅水波,其群速为C g =C = gh 7斯托克斯波的水质点运动轨迹不封闭,运动一个周期后有一净水平位移,造成一种水平流动,称为漂流或质量输移;造成泥沙净输运。 8近岸水流速度的垂向分布,可采用对数分布或指数分布两种形式。垂向水流结构的分层描述中常采用Boussinesq 假定。 9重力波周期的范围在1至30秒之间,周期为200秒的是低频波,潮波的周期大于 12小时 。 10海岸线是指 陆地与海水的边界线。从海岸动力学的角度,海岸带的范围是从波浪所能作用的海底,向陆延至暴风浪所能达到的上界。 12当两列波向相反,波高、周期相等的行进波相遇时,形成驻波。驻波的动能是入射行进波的2倍。 13非线性的有限振幅波理论主要有斯托克斯波理论、椭余波理论、孤立波理论等。 14一般认为,波浪破碎的运动学条件是波峰处水质点运动速度大于波峰相速度;动力学条件是质点离心力大于约束力重力,出现溢出现象。 15引潮力主要包括月球和太阳对地球上海水的引力,以及地球与月球绕其公共质心旋转产生的惯性离心力。 16辐射应力向岸的分量xx S 梯度驱动产生波浪增减水,xy S 梯度驱动产生沿岸流,yy S 梯度驱动 产生裂流和近岸环流。 17海洋潮波运动包括海面周期性升降,称为潮汐,和海水周期性流动称为潮流。 18沙质海岸的短期演变主要是指海岸横剖面在波浪和水流作用下的季节性冲淤变化。沙质海岸的典型剖面形式为沙坝剖面和滩肩剖面,也称为风暴陪面和常浪剖面。 19淤泥质海岸的地形变化与沙质海岸的变化有所不同,其主要特征往往是在动力较强的地方发生冲刷,在动力较弱的地方发生淤积。 20一列简单波浪进入浅水区后,在传播中随水深变化,其波速、波长、波高和波向都将发生变化,但是其波周期则始终保持不变,波浪这一性质为分析它从深水传播到浅水的变化提供方便。 21沿岸输沙是波浪和波生流共同作用引起的纵向泥沙运动,主要发生在破波带内,其机理是波浪掀沙和沿岸流输沙;沿岸流量最大输沙率出现在破波线和沿岸流速最大值之间。 22辐射应力可定义为波浪运动引起的剩余动量流。 23沿岸沙坝和滩肩是沙质海岸剖面形态的重要特性构造。卷破波是形成沿岸沙坝的主要原因。 24近岸流包括 向岸流 、沿岸流 和 离岸流 25海岸可分为 沙质 海岸和 淤泥质 海岸

海岸动力学考试复习大纲

海岸动力学考试复习大纲 一、考试类型:闭卷 二、考试题型 包括 1、名词解释 2、证明或推导题 3、问答题 4、计算题 三、复习考试时间 十七、十八周 四、期末考试所占分数(60%) 五、考试范围 1、名词解释 小振幅波理论深水波及浅水波、波能流辐射应力有效波高能谱方向谱 波浪守恒波能守恒波浪浅水变形波浪折射 波浪增水减水、边缘波、低频波浪、海岸垂向环流 港湾共振开尔文波潮流椭圆无潮点 载沙量体积输沙率平衡输沙、不平衡输沙 2、证明推导 P61-62页,2.4、2.5、2.7题 1)根据波能守恒推导浅水系数

2)根据有限水深极限波陡的表达式推导浅水波浪破碎的判别指标3)试推导河口潮汐的格林定律 4)证明平直海岸破波带外沿岸流速为0 5)p82, 3-7题。5-5题 3、问答题 2-2题; 1)、试利用小振幅波理论解释水质点运动的特征 2)、有限斯托克斯波的主要特征 3)、试解释动水压力在不同水深(浅水、深水、有限水深)的分布特征 4)、试解释深水波与浅水波的差异(波浪要素、水质点速度及轨迹、压力)? 5)、何谓波浪破碎?有什么判别准则?波浪破碎的特点是什么?6)、简述辐射应力在碎波带内外的变化规律 7)、简述近岸流方程中各项的意义 8)、简述波浪增减水在碎波带内外的变化规律 9)、简述沿岸流在碎波带内的分布特征 10)、请利用简化的潮波理论,阐述地形、径流对一个喇叭形状的、水深由口外向河口湾顶端逐渐减少的河口湾潮汐的影响 教材4.2~4.4题 5.3 -5.4 题,7-1~7-4题,7-7~7-8题

4、计算题 1)掌握深水、浅水波的判别方法,计算深水波和浅水波的波长、波速 2)计算水质点的最大速度、水质点轨迹直径及近底层最大速度 3)计算波能、波动压力 4)掌握波浪浅水系数、折射系数的计算,计算给定水深的波高,判断波浪是否破碎 5)掌握正向入射波浪辐射应力的计算公式及掌握波浪最大减水公式及增水公式,计算给定波浪的增减水 6)掌握沿岸流的计算,如 若等深线平行,深水波高m H 20=,周期s T 8=,深水波向角 300=α,不考虑海滩坡度的影响,请计算并判断5m 水深处波浪是否破碎?1.0m 水深处呢?计算碎波带内平均沿岸流流速。(如b b m b l u v ααcos sin 7.2=) 7)掌握水流强度参数及希尔兹参数的计算公式,泥沙起动的一种判别方式,并判别给定波浪、水深,其泥沙是否被起动? 8)均匀平直的海岸等深线,深海入射波高2 m ,周期5 sec ,波浪入射角为?15,碎波线处入射角为?5,试求一日的沿岸输沙量。(()b b b g a y EC Q θθα=cos sin 取 06.0=αa ) 9)综合:从波长~波高~水质点速度、轨迹~泥沙起动(沿岸流、沿岸输沙等)

分子动力学实验报告

分子动力学实验报告 实验名称平衡晶格常数和体弹模量 实验目的 1、学习Linux系统的指令 2、学习lammps脚本的形式和内容 实验原理 原子、离子或分子在三维空间做规则的排列,相同的部分具有直线周期平移的特点。为了描述晶体结构的周期性,人们提出了空间点阵的概念。为了说明点阵排列的规律和特点,可以在点阵中去除一个具有代表性的基本单元作为点阵的组成单元,称为晶胞。晶胞的大小一般是由晶格常数衡量的,它是表征晶体结构的一个重要基本参数。 在本次模拟实验中,给定Si集中典型立方晶体结构:fcc,bcc,sc,dc。根据 可判定dc结构是否能量最低,即是否最稳定 材料在弹性变形阶段,其应力和应变成正比例关系(即符合胡克定律),其比例系数称为弹性模量。弹性模量是描述物质弹性的一个物理量,是一个总称,包括杨氏模量、剪切模量、体积模量等。在弹性变形范围内,物体的体应力与相应体应变之比的绝对值称为体弹模量。表达式为 B=? dP dV V 式中,P为体应力或物体受到的各向均匀的压强,dV V为体积的相对变化。对于立方晶胞,总能量可以表示为ε=ME,E为单个原子的结合能,M 为单位晶胞内的原子数。晶胞体积可以表示为V=a3,那么压强P为 P=?dε dV =? M 3a2 dE da 故体积模量可以表示为 根据实验第一部分算出的平衡晶格常数,以及能量与晶格间距的函数关系,可以求得对应晶格类型的体积模量。并与现有数据进行对比。 实验过程 (1)平衡晶格常数

将share文件夹中关于第一次实验的文件夹拷贝到本地,其中包含势函数文件和input文件。 $ cp□-r□share/md_1□. $ cd□md_1 $ cd□1_lattice 通过LAMMPS执行in.diamond文件,得到输出文件,包括体系能量和cfg文件,log文件。 $ lmp□-i□in.diamond 用gnuplot画图软件利用输出数据作图,得到晶格长度与体系能量的关系,能量最低处对应的晶格长度即是晶格常数。 Si为diamond晶格结构时晶格长度与体系能量关系图如图, 由图可得能量最小处对应取a0=5.43095。 Si为fcc晶格结构时晶格长度与体系能量关系图如图, a0=4.15。 改写后的sc、bcc脚本文件分别如图所示

国家自然科学基金申请代码E

国家自然科学基金申请代码 E.工程与材料科学部 E01金属材料 E0101 金属结构材料 E010101 新型金属结构材料 E010102 钢铁和有色合金结构材料 E0102? 金属基复合材料 E010201 纤维、颗粒增强金属基复合材料 E010202 新型金属基复合材料 E0103? 金属非晶态、准晶和纳米晶材料 E010301 非晶态金属材料 E010302 纳米晶金属材料 E010303 新型亚稳金属材料 E0104? 极端条件下使用的金属材料 E0105 金属功能材料 E010501 金属磁性材料 E010502? 金属智能材料 E010503? 新型金属功能材料 E0106金属材料的合金相、相变及合金设计 E010601 金属材料的合金相图 E010602 金属材料的合金相变 E010603 金属材料的合金设计 E0107 金属材料的微观结构 E010701 金属的晶体结构与缺陷及其表征方法 E010702 金属材料的界面问题 E0108 金属材料的力学行为

E010801? 金属材料的形变与损伤 E010802? 金属材料的疲劳与断裂 E010803 金属材料的强化与韧化 E0109 金属材料的凝固与结晶学 E010901? 金属的非平衡凝固与结晶 E010902? 金属的凝固行为与结晶理论E0110 金属材料表面科学与工程 E011001? 金属材料表面的组织、结构与性能 E011002? 金属材料表面改性及涂层 E0111 金属材料的腐蚀与防护 E011101? 金属常温腐蚀与防护 E011102? 金属高温腐蚀与防护 E0112 金属材料的磨损与磨蚀 E011201? 金属材料的摩擦磨损 E011202? 金属材料的磨蚀 E0113 金属材料的制备科学与跨学科应用基础 E02无机非金属材料 E0201人工晶体 E0202玻璃材料 E020201 特种玻璃材料 E020202 传统玻璃材料 E0203结构陶瓷 E020301 先进结构陶瓷 E020302 陶瓷基复合材料 E0204功能陶瓷 E020401 精细功能陶瓷 E020402 压电与铁电陶瓷材料 E020403 生物陶瓷与生物材料

药物代谢动力学实验讲义

实验一药酶诱导剂及抑制剂对 戊巴比妥钠催眠作用得影响 【目得】 以戊巴比妥钠催眠时间作为肝药酶体内活性指标,观察苯巴比妥及氯霉素对戊巴比妥钠催眠作用得影响,从而了解它们对肝药酶得诱导及抑制作用。 【原理】 苯巴比妥为肝药酶诱导剂,可诱导肝药酶活性,使戊巴比妥钠在肝微粒体得氧化代谢加速,药物浓度降低,表现为戊巴比妥钠药理作用减弱,即催眠潜伏期延长,睡眠持续时间缩短。而氯霉素则为肝药酶抑制剂,能抑制肝药酶活性,导致戊巴比妥钠药理作用增强,即催眠潜伏期缩短,睡眠持续时间延长。 【动物】 小白鼠8只,18~22g 【药品】 生理盐水、0、75%苯巴比妥钠溶液、0、5%氯霉素溶液、0、5%戊巴比妥钠溶液【器材】 天平、鼠笼、秒表、注射器1 ml×4、5号针头×4 【方法与步骤】 一、药酶诱导剂对药物作用得影响 1、取小鼠4只,随机分为甲、乙两组。甲组小鼠腹腔注射0、75%苯巴比妥钠溶液0、1 ml/10g,乙组小鼠腹腔注射生理盐水0、1 ml/10g,每天1次,共2天。 2、于第三天,给各小鼠腹腔注射0、5%戊巴比妥钠溶液0、1 ml/10g,观察给药后小鼠得反应。记录给药时间、翻正反射消失与恢复得时间,计算戊巴比妥钠催眠潜伏期及睡眠持续时间。 二、药酶抑制剂对药物作用得影响 1、取小鼠4只,随机分为甲、乙两组。甲组小鼠腹腔注射0、5%氯霉素溶液0、1 ml/10g;乙组小鼠腹腔注射生理盐水0、1 ml/10g。 2、30分钟后,给各小鼠腹腔注射0、5%戊巴比妥钠溶液0、1 ml/10g,观察给药后小鼠得反应。记录给药时间、翻正反射消失与恢复得时间,计算戊巴比妥钠催眠潜伏期及睡眠持续时间。 【统计与处理】 以全班结果(睡眠持续时间,分)作分组t检验,检验用药组与对照组有无显著性差异。(参见“数理统计在药理学实验中得应用”) 【注意事项】 1、催眠潜伏期为开始给药到动物翻正反射消失得间隔时间,睡眠持续时间为翻正反射消失至恢复得间隔时间。 2、本实验过程中,室温不宜低于20 C,否则戊巴比妥钠代谢减慢,使动物不易苏醒。 3、氯霉素溶液有结晶析出时可在水浴中加热溶解。 4、吸取氯霉素溶液得注射器应预先干燥,否则易结晶堵塞针头。

海岸动力学复习提纲

第一章 1.▲按波浪形态可分为规则波和不规则波。 2.按波浪破碎与否波浪可分为:破碎波,未破碎波和破后波 3.★根据波浪传播海域的水深分类:①h/L=0.5深水波与有限水深波界限②h/L=0.05有限水深波和浅水波的界限,0.5>h/L>0.05为有限水深;h/L≤0.05为浅水波。 4.波浪运动描述方法:欧拉法和拉格朗日法;描述理论:微幅波理论和斯托克斯理论 5.微幅波理论的假设:①假设运动是缓慢的u远小于0,w远小于0②波动的振幅a远小于波长L或水深h,即H或a远小于L和h。 6.(1)基本参数:①空间尺度参数:波高H:波谷底至波峰顶的垂直距离;振幅a:波浪中心至波峰顶的垂直距离;波面η=η(x,t):波面至静水面的垂直位移;波长L:两个相邻波峰顶之间的水平距离;水深h:静水面至海底的垂直距离②时间尺度参数:波周期T:波浪推进一个波长所需的时间;波频率f:单位时间波动次数f=1/T;波速c:波浪传播速度c=L/T (2)复合参数:①波动角(圆)频率σ=2π/T②波数k=2π/L③波陡δ=H/L④相对水深h/L或kh 7.(1)势波运动的控制方程(拉普拉斯方程): (2)伯努利方程: 8.定解条件(边界条件):①在海底表面水质点垂直速度为零,②在波面z=η处,应满足两个边界条件:动力边界条件:自由水面水压力为0;运动边界条件:波 面的上升速度与水质点上升速度相同。自由水面运动边界条件:③波 场上、下两端面边界条件:对于简单波动,常认为它在空间和时间上呈周期性。 9.①自由水面的波面曲线:η=cos(kx-σt)*H/2②弥散方程:σ2=gktanh(kh)③弥散方程推得的几个等价关系式:L=tanh(kh)*gT2/(2π),c=tanh(kh)*gT/(2π),c2=tanh(kh)*g/k 10.★弥散(色散)现象:水深给定时,波周期愈长,波长愈长,波速愈大,这样使不同波长的波在传播过程中逐渐分离。这种不同波长(或周期)的波以不同速度进行传播最后导致波的分散现象称为波的弥散(或色散)现象。 11.①深水波时:波长L0=gT2/(2π);波速c0=gT/(2π)②浅水波时:波长L s=T;波速c s= 12.微幅波水质点的轨迹为一个封闭椭圆,但不是一直为椭圆,在深水情况下,水质点运动轨迹为一个圆,随着质点距水面深度增大,轨迹圆的半径以指数函数形式迅速减小。 13.波浪压力p z=-ρgz+ρgHcosh[k(z+h)]/[2cosh(kh)],等号右边第1项为静水压力部分,其值始终为正值,第二项为动水压力部分。此公式值在波峰时为最大,波谷时为最小。 14.一个波长范围内,单宽波峰线长度的平均总波能:=E/L=ρgH2/8,单位为J/m2 15.★波能流:波浪传播过程有能量传递,通过单宽波峰线长度的平均能量传递率称波能流。 16.★辐射应力:作用在垂直于底面的单位水柱体四个侧面上的由于动量交换而产生的应力的时均值,单位是N/m。 17.描述波系大小有两种方法:①对波高、周期等进行统计分析,采用有某种统计特征值的波作为代表波的特征波法;②谱表示法。

海岸动力学实验指示书

高等学校实验教材 海岸动力学》实验指示书重庆交通大学河海学院

二00 六年十二月 目录 、八、- 丄前言................................................................. 1.. 实验一波浪三要素测试实验............................................. 2.. 实验二波浪传质速度实验............................................... 7.. 实验三波浪传播浅水变形实验....................................................................... 1.. 0 实验四波浪作用下的泥沙运动实验....................................................................... 1.. 4 实验五不规则波谱分析实验....................................................................... 1.. 8 实验六岸滩演变演示实验....................................................................... 2.. 1 实验七波浪与水流相互作用特性实验....................................................................... 2.. 4 参考文献....................................................................... 2.. 8..

海岸动力学试验

目录 试验1:波浪数据采集及波高统计试验 一、…………………………………………………………试验目的 二、…………………………………………………………试验要求 三、…………………………………………………………试验过程 四、…………………………………………………………数据处理 五、…………………………………………………………结果分析 六、…………………………………………………试验结论与感悟试验2:波压力量测试验 一、…………………………………………………………试验目的 二、…………………………………………………………试验要求 三、……………………………………………………试验水文要素 四、…………………………………………………………试验仪器 五、…………………………………………………………试验过程 六、…………………………………………………………数据处理 七、…………………………………………………………结果分析 八、…………………………………………………试验结论与感悟

试验一:波浪数据采集及波高统计试验 一、试验目的 了解波浪中规则波及不规则波的区别,波浪模型试验的一般方法,规则波波高、周期、不规则波波高的统计方法。 二、试验要求 1、规则波及不规则波的测量与特征值的统计。 2、明确实验目的。掌握实验原理。掌握基本仪器的使用,包括波浪数据采集系统和水槽造波机的使用方法。通过自己设计出不同波长、波高的规则及不规则波,参与造波及数据采集的全过程,了解波浪物理模型试验的最基本方法。正确处理实验数据,能通过处理采样数据文件统计各种累积频率波高,发现规律,得出实验结论。分析实验误差,提出减少误差的方法,分析误差的范围。 3、编写实验报告,要求报告能准确反映实验目的、方法、过程和结论。 三、试验过程 试验中共设置四根波高传感器,四个同学为一组,每人采用其中一根传感器的数据计算波高,规则波采样时间为20s,不规则波采样时间为80s左右。 规则波试验结果主要统计平均波高。波峰减波谷即为波高,将采集到的所有波高进行算术平均,得到规则波的平均波高。不规则波试验结果主要统计有效波高。波峰减波谷即为波高,将采集到的所有波高进行排序,取前1/3大波进行算术平均,得到不规则波的有效波高。 四、数据处理 本次实验使用fortran90语言编写计算程序,对数据进行处理。 1、规则波 (1)程序编写

(精选)河海大学海岸动力学试卷海岸答案

二、 1、波速,相速度或速度是一个特定的相在介质中移动的速率或水中波峰移动的速率。它可以通过波长比周期进行计算。 2、深水——水深大于波长的一半,即2L h >,波的相速度很难被水深影响。深水情况适用于很多由于海上的风在海面引起的风浪; 有限水深——水深202L L h << 浅水——20 L h < 3、深水区的波浪外形是波长长且波高小的。当波浪进入浅水区,传播速度和波长减小,波浪变得陡峭,波高增加直到波列由被平缓的波谷分隔的尖的波峰组成。(上一句有点拗口。。。)我觉得后面的没用,不翻译了。

4、间接作用的波浪趋势和近岸的水深测量对沿岸流有影响。?当波浪以某一角度破碎时,波浪破碎的动量形成了和破碎波前进方向一致的近岸流和段波。成堆的波浪形成了在破波带内和海岸平行的沿岸流。沿岸流会顺着海岸在碎浪区和海岸间流动。当波浪很高而且波浪接近海岸的角度是垂直的时候,沿岸流是最强的。沿岸流的最大速度一般是在波浪表面接近破波点的位置出现。

3、波浪破碎类型有三种:崩破波、卷破波和激破波。这个不如书上的详细P78 崩破波:波浪首先在波峰顶端出现白色浪花,随着波浪向前传播,波峰顶部浪花不断产生,直至海岸附近。(波陡大,水底坡度小时发生) 卷破波:波峰的前沿面首先变得陡立,然后卷曲成舌状,舌状波峰逐渐向下翻卷,最后投入水中,发生破碎,并伴随着空气的卷入。(波陡中等,水底坡度中等)激破波:波峰前后逐渐变得非常不对称,之后在波峰前沿根部开始出现破碎,随后波峰前面大部分呈非常杂乱的破碎状态,并沿斜坡上爬。(波陡小,水底坡度较大)影响因素:深水波陡和海岸坡度 4、不考虑侧向混合时,沿岸流速呈三角形分布,在破波线处,沿岸流速最大,而在破波点外,没有沿岸流,因而在破波点流速分布不连续。考虑侧向混合时,由于侧向紊动动量交换,促使破波带内沿岸流动量向带外扩散,发生流速再分布。沿岸流速分布趋于平坦,最

海岸动力学复习资料

1 海岸动力学复习资料 第一章 1.海岸带宽度按从海岸线向内陆扩展10KM,向外海延伸到-15~-20m 水深计算。 2.海岸类型:基岩海岸,砂质海岸,淤泥质海岸,生物海岸。 3.海岸的基本概念:海岸是海洋和陆地相互接触和相互作用的地带,包括遭受波浪为主的海水动力作用的广阔范围,即从波浪所能作用到的海底,向陆延伸至暴风浪所能到达的地带。 4.海岸动力因素:波浪的作用、 海岸波生流、潮流的作用、径流的作用、海流的作用、风暴潮和海啸、风的作用、海平面上升。 5.波浪是引起海岸变化的主要因素。 6.近岸波生流——波浪传至近岸地区发生变形、折射与破碎,不仅其尺度改变了,同时还形成的一定水体流. 7.沿岸流——斜向入射的波浪进入海滨地带后,在破波带引起一股与海岸平行的平均流。 8.裂流流速很高,会带动强烈的向外海输移的泥沙运动。 9.潮流对海岸的作用:影响海岸带波浪的作用范围及作用强度;影响海岸带地貌类型的发育;潮流流速影响海岸带的侵蚀与淤积。 10.河流径流挟带着大量的泥沙在河口外扩散和沉积,是海岸淤涨的主要物质来源之一,导致在河口外发育着河口三角洲或三角港。 第二章 1.风浪的大小取决于风速、风时和风距的大小。由于风速风向复杂多变,风所引起的海浪在形式上也极为复杂,波形极不规则,传播方向变化不定,不可能用简单的确定性数学公式来描述,所以经常把风浪称为不规则波。 2.波浪的分类: 1)按形态分类:规则波和不规则波 2)按传播海域的水深分类:深水波、有限水深波、潜水波(深水波与有限水深波界限为h/L=1/2,潜水波与有限水深波界限为h/L=1/20)。 3)按运动状态分类:震荡波、推进波、推移波 4)按破碎与否分类:破碎波、未破碎波、破后波 5)按运动学和动力学的处理方法:微幅波和有限振幅波 3.波浪运动控制方程 0x 222 2=??+??z φ φ 4.定解条件: 1)海底表面设为固壁,因此水质点垂直速度为零。0z =??φ z=-h 2)在波面 z=η处,应满足动力学边界条件 运动学边界条件。动力学边界条件为水面上压力为常数,因此取 z=η,并令p=0,得到自由表面动力学边界条件。 3)流场左右两端的边界条件可根据简单的波动在空间和时间上呈周期性来却确定。在空间上看的波要素是相同的,在时间上看一个周期后的要素也应相等,故波场上下两端面边界条件可表示为 ),,(),,(,,T t z x t z L x t z x +=+=φφφ)(。 5.建立简单波理论时,一般作如下规定:流体是均质和不可压缩的,其密度为常数;流体是无粘性的理想液体;自由水面的压力是均匀的且为常数;水流运动是无旋的;海底水平、不透水;质量力仅为重力,表面张力和柯氏力可忽略不计;波浪属于平面运动,在xz 平面内坐二维运动。 6.微幅波理论的控制方程和定解条件 控制方程:0x 222 2 =??+??z φφ 定解条件:海底部边界条件:0t =??φ z=-h 自由水面处: 动力学边界条件:t g 1??- =φ η z=0(能量守恒) 运动学边界条件: 0g t 22=??+??z φ φ z=0 边界条件:),(),,(z ct x t z x -==φφ 7.微幅波理论的意义:假设运动是缓慢的,波动的振幅A 远小于波长L 或水深h 。 8.微幅波势函数:σ φAg =)sin(cosh ) (cosh t kx kh h z k σ-+ 9.色散方程:kh gk tanh 2 =σ L=kh gT tanh 22 π c=T L =k σ 10.波的色散现象:不同波长或周期的波以不同的速度进 行传播最后导致的分散现象。该现象表明了:波浪的传播还与水深有关,水深变化时,波长和波速也将随之变化。 11.微幅波单宽波峰线长度一个波长范围内平均的波浪动能和势能相等。 12.波能流:波浪在传播过程中存在能量传递,通过单宽波峰线长度的平均的能量传递率。

土动力学试验测试方法简介

土动力学试验测试方法简介 摘要:本文针对土动力学特征主要介绍了振动三轴试验方法的原理、试验仪器 及发展概况,同时对几种试验方法简单对比,并对DDS-70型动三轴仪试验方法 与计算原理进行了详细阐述。 关键词:动三轴:剪切模量:阻尼比 1 振动三轴试验基本原理 三轴试验分为静三轴与动三轴两种。静三轴试验是在三向静应力作用下,根 据摩尔-库仑破坏准则确定土的强度参数凝聚力与内摩擦角。动三轴与静三轴不同,属于土的动态测试内容,是室内进行土的动力特性测定时较普遍采用的一种方法,被用来测定土在三向动应力作用下的动力特性指标。 土的动力特性主要指变形特性和强度特性。变形特性即动应力—应变关系; 强度关系除了土的一般动强度外,还包括可液化土的振动液化强度。土体动态测 试技术,直接影响土动力学特性研究和土体动力分析计算的发展,起着正确揭示 土的动力特性规律和完善分析计算理论的重要作用,是土动力学发展的基础。在 室内进行土的动力特性试验,主要包括两方面的内容:一是土的动强度,用以分 析大变形条件下地基和结构物的稳定性,特别是砂土的振动液化问题;一是确定 剪切模量和阻尼比,用于计算在小变形的条件下土体在一定范围内的位移、速度、加速度和应力随时间的变化。 2 试验仪器与发展概况 振动三轴仪一般包括压力室、激振设备和量测设备三个系统。在量测设备方面,一般采用电测设备,即将动力作用下的动孔隙水压力、动变形和动应力的变 化纪录,通过传感器转换成电量或电参数的变化,在经过放大,推动光电示波器 的振子偏转,引起光点移动,并在紫外线滤光纸带上分别记录。振动三轴仪的激 振设备,根据产生激振力方式不同,可以分为电-磁激震式、惯性激振式和电-气 激振式等类型。每种类型又可分为单向激振和双向激振两种。 1959年,我国水电部水利水电科学研究院开始利用加在试件上端重量的惯性 作用产生的轴向振动应力研制单向振动三轴仪。1964年,中国科学院工程力学研 究所制成电磁式单向激振式三轴仪,研究土体变形模量和阻尼问题。1975年,安 徽水利科学研究所试制惯性力双向激振式振动三轴仪。1976年,由北京市地形地 质勘测处和北京市科学仪器修配厂等单位合作。制成DSZ-100型振动三轴仪。1976年,西北农学院研制电气单向激振式三轴仪和气动双向激振式三轴仪。中国 地震局工程力学研究所在1982年首先研制成了固定一自由端GZ一1型共振柱仪,后来又不断改进。1999年,为了对深层大应力状态下黄土试样和黄土层下覆强风 化岩层进行动三轴试验,中国地震局兰州地震研究所与天水红山试验机有限公司 共同研制了20 kN动三轴试验机。近年来,北京新技术应用研究所为很多科研单 位和院校试制了一批电磁式振动三轴仪,采用微机控制和数据处理。南京工业大 学岩土工程研究所近年也自行研制了GZ一1型共振(自振)柱仪。振动三轴仪 在国外发展较早,目前应用最广的就是英国GDS公司研制生产了采用电机控制并 双向施加动荷载动三轴试验系统。 3 试验方法概述 实验室测定土的动模量和阻尼比已有很多的研究成果,己成为较成熟的技术

海岸动力学

中国海洋大学本科生课程大纲 课程属性:公共基础/通识教育/学科基础/专业知识/工作技能,课程性质:必修、选修 一、课程介绍 1.课程描述: 海岸动力学是海岸工程和海岸带资源综合开发利用的理论基础,对于利用与开发海岸带、保护海岸工程至关重要,更是海港建设的关键。本课程包括波浪理论、波浪传播和破碎、近岸水流运动特性、海岸波生流、泥沙基本特性、沙质海岸泥沙运动、沙质海岸形态和变形、淤泥质海岸泥沙运动和岸滩演变以及海岸防护等内容。 2.设计思路: 本课程内容以海岸动力因素(主要为波浪与流)作为出发点,以该动力因素作用下的泥沙运动基本规律为基础,以海滩上的泥沙运动与冲淤规律作为归结。在讲授中以“波浪、流→泥沙运动→海滩变形”为主线,内容具体编排如下: (1)第一章概论 1)主要内容:海岸动力学的定义、研究内容、研究方法、发展简史及和专业的关系 2)教学要求:了解海岸动力学的定义、研究内容、研究方法、发展简史及和专业的关系 3)重点、难点:无 - 3 -

4)其它教学环节(如实验、习题课、讨论课、其它实践活动):无 (2)第二章波浪理论 1)主要内容:微幅波理论、有限振幅波理论、浅水非线性波理论、各种波浪理论的适用范围和随机波、波浪的统计特征和波谱概念、波浪在深水中弥散与传 播 2)教学要求:掌握微幅波理论、有限振幅波理论、浅水非线性波理论、各种波浪理论的适用范围和随机波、波浪的统计特征和波谱概念、波浪在深水中弥散与 传播 3)重点、难点:微幅波理论、有限振幅波理论;有限振幅波理论、浅水非线性波理论 4)其它教学环节:实验3学时,内容是驻波形成试验 (3)第三章波浪传播和破碎 1)主要内容:波浪在浅水中变化、波浪的破碎等。波浪在水流中的运动特性和底摩阻引起的波能衰减 2)教学要求:掌握波浪在浅水中变化、波浪的破碎等。了解波浪在水流中的运动特性和底摩阻引起的波能衰减 3)重点、难点:波浪在浅水中变化、波浪的破碎等;波浪在水流中的运动特性和底摩阻引起的波能衰减 4)其它教学环节(如实验、习题课、讨论课、其它实践活动):实验5学时,内容是波浪浅化效应试验 (4)第四章近岸水流运动特性 1)主要内容:潮波运动简介、速度垂向分布 2)教学要求:掌握潮汐原理、了解海流速度垂向分布 - 3 -

相关主题
文本预览
相关文档 最新文档