当前位置:文档之家› 《复变函数》复习资料

《复变函数》复习资料

《复变函数》复习资料
《复变函数》复习资料

《复变函数》 复习资料1

一、判断题

1. 把角形域映射为角形域用指数函数映射( )

2.

3.

4.

5.

6.

7. 分式线性映射在复平面上具有共形性、保圆性、保对称性。 ( )

8.

9.

10.

二、解答题

1.设)

1()(2

z z e z f z +=,求()f z 在1||0<

z 各项). 2.利用留数定理计算复积分I =2

1

a

z z e dz =?

+

1()()n n z dz

z a z b =--? (01,01a b <<<<且,a b n ≠为自

然数).

3.利用留数定理计算实积分θθ

θ

π

d ?

-20

cos 452cos 4.

三、解答与证明题

1.如果在1z <内,函数()f z 解析,且1

()1f z z

-,求()(0)n f 的最优估计值. 2.(1)函数

2

11

x

+当x 为实数时,都有确定的值且在全实轴上有任意阶导数,但它的泰勒展开式:Λ-+-=+422

111

x x x

却只当1

0(1)sin ,(21)!

n n n z z n ++∞

=-=+∑

1z <. 3.设)(z ?在:1C z =内解析且连续到C ,在C 上 ()1z ?<试证 在C 内部2

()3z z z ?=+只有一个根0z .

4. 设D 为单连通区域,()f z 在D 内解析,C 在D 内一条周线,0D 为C 的内部.若对于任意的0z D ∈都有1()Re 12C f d i z ξξπξ?

?

=?

?-???,则在D 内恒有()f z 1ic =+,其中c 为实常数.

答案

一、1-5 FFTTF 6-10 TFFTF

二、解答题

1、设)1()(2

z z e z f z +=,求()f z 在1||0<

z 各项) 解:)1()(2

z z e z f z

+=211z e z z

=+ =2

1(1)2!3!

z z z ++++L (2421(1)n n z z z -+-+-+L L ) =

215

126

z z z +--+L (1||0<

2

1

a

z z e dz =?

+

1()()n n z dz

z a z b =--? (01,01a b <<<<且,a b n ≠为自

然数)

解:因为 ||1a <,||1b <且a b ≠ 所以1||1()()n n z dz

I z a z a ==

--?=2i π[Re ()z a s f z =+Re ()z b

s f z =] =12121(1)...(22)11

2(1)()0(1)!()()n n n n n n i n b a a b π---??---+=??---??

设2I =2

1

a

z z e dz =?

,因为在单位圆周1z =内2

a

z e 只有一个本质奇点0z =,在该点的去心领域内有洛朗展

式:

2

a

z e =2

24

12!a a z z +++L

所以2

Re 0a

z z s e ==,故20I =,因此原积分值为零。

3、利用留数定理计算实积分

θθ

θπ

d ?

-20

cos 452cos 4

解:令i

e z θ=,则2cos 1-+=z z θ,i z z 2sin 1--=θ,iz

dz

d =θ

先计算积分θθ

θθπ

d i I ?

-+=

20

cos 452sin 42cos 4

()

dz iz

z z z z 1

254112?=-+-=

dz z z z i z ?=--=1222254225Re 24222

1--??==

z z z s i i z π=π32 , 故所求积分等于π3

2

Re =I 三、解答与证明题

1.如果在1z <内,函数()f z 解析,且1

()1f z z

-,求()(0)n f 的最优估计值。 证明:对任意的r 且满足01r <<,由于()f z 在1z <内解析,在z r ≤上应用柯西不等式得:

()(0)n f !()

n

n M r r ≤

,其中()M r 为()f z 在z r =的最大值。 又因为有条件1()1f z z ≤

-,在z r =,()M r =11r

-,所以 ()(0)n f !()!(1)n n n M r n r r r ≤

=-,令()g r =

(1)n

r r -,有数学分析的知识可得当1

n r n =+,()g r =(1)n r r -在01r <<达到最大,把1

n

r n =

+代入()(0)n f !()!(1)n n

n M r n r r r ≤=-,的 ()(0)n f ≤1(1)!(1)n n n ++,1

(1)!(1)n n n

++为()(0)n f 的最优估计值。

2.(1)函数2

11

x +当x 为实数时,都有确定的值且在全实轴上有任意阶导数,但它的泰勒展开式:

Λ-+-=+4

22

111x x x

却只当1

(1)sin ,(21)!n n n z z n ++∞

=-=+∑ 1z <. 证明:(1)考虑函数2

11

)(z z f +=

,那么i z ±=是()f z 的两个奇点,因此()f z 在0z =的领域内展成的幂级数的收敛半径为1,而211x +是2

11

)(z

z f +=的特殊情形,所以Λ-+-=+4

22

111x x x

只当1

(1)(21)!n n n z n ++∞

=-+∑的收敛半径为1,所以在收敛圆1z <内收敛到一个解析函数

()g z ,令()f z =sin z ,则()f z 在1z <内也解析.

因为在数学分析中知道:21

(1)sin ,(21)!n n n x x n ++∞

=-=+∑ 1x <。 即当z x =时,()f z =()g z ,有惟一性定理可知:21

0(1)sin ,(21)!

n n n z z n ++∞

=-=+∑

1z <. 3. 设)(z ?在:1C z =内解析且连续到C ,在C 上 ()1z ?<试证 在C 内部2

()3z z z ?=+只有一个根0z .

证明:令()F z =2

()z z ?-,()3f z z =-,则()f z 及其)(z ?在1z <解析,在1z ≤上连续,在C 上有

2

2|()|32|()|()f z z z z z ??=>>+≥-.

由儒歇定理可知()f z 与()F z =()z z ?-在1z <内有相同的零点个数,而()3f z z =-在1z <内仅有一个一级零点,0z =,故2()3z z z ?--在1z <也仅有一个根,设为0z ,

即22

000

()30z z z ?--==0. 4.设D 为单连通区域,()f z 在D 内解析,C 在D 内一条周线,0D 为C 的内部。若对于任意的0z D ∈都有1()Re 12C f d i z ξξπξ?

?

=?

?-???,则在D 内恒有()f z 1ic =+,其中c 为实常数。 证明:有柯西积分公式,在0D 内1()

()2C f f z d i z

ξξπξ=

-?,

于是在0D 内Re ()1f z =,从而()f z 在0D 内为常数, 注意到Re ()1f z =,对任意的0z D ∈,

()f z 1ic =+,其中c 为实常数。

再由解析函数的惟一性定理可得在D 内

()f z 1ic =+,其中c 为实常数。

《复变函数》 复习资料2

一、计算题

1、(1)计算积分z

dz

z

z n

z 21)

1

(?=+(其中n 是正整数). (2) 令θ

i e z =,并利用(1)计算的结果,导出!

)!2(!

)!12(2cos 20

2n n d n -=?π

θθπ

2、利用留数理论计算积分I=dx x

mx

?

cos 45cos (m 是正整数).

3、求函数f(z)=1141++-z z z ze z

的所有奇点及奇点类型.并计算积分?=??????????+

++-341sin 111z z

dz z z z z z ze . 二、证明题

1、设)(z f 在区域R a z <-<0内满足:)(z f 在R a z <-<0解析且不恒为常数;

{}{}

R a z z z n <-<

?0使得)2,1(,0)(Λ==n z f n ,且a z n n =∞

→lim .证明a 为()z f 的本质奇点 .

2、(1)证明:如果函数()f z 在区域D 内单叶解析,则在D 内'()0f z ≠.

(2) 试问上述命题的逆是否真,如果不真,请举一个初等解析函数的例子. 3、设f(z)在任何有限的区域上解析,而且M z f ≤)((正常数)

试证:(1)0)

)(()

(lim

=--?=+∞→dz b z a z z f R z R , (a, b 为任意两个给定的复数, a b ≠).

(2) 根据(1)推出刘维尔(Liouville )定理.

4、若不为常数的函数f(z)在R z >(包括∞)中解析,试证明M (r )=)(max z f r

z =(r>R )是r

的严格下降函数.并利用此结论证明下列结论:设P (z )=z 011a z a n n n +++--Λ

求证:1

max =z 1)(≥z P .

答案

一、计算题

1、(1)解:z

dz

z

z n

z 21)

1

(?=+= z

dz

z c z n n

n z n )1(221

2+

+++?

=ΛΛ =!

)

1()12(22n n n n i

+-Λπ

(2)在(1)中令θi e z =,并利用余弦函数的定义,再整理就得到结论 2解:因为积分号下的函数为x 的偶函数,故I=

dx x

mx

?--ππcos 45cos 21 , 命 ,cos 45cos 1dx x mx I ?

--=π

π

dx x

mx

I ?--=ππcos 45sin 2 则dx x e iI I imx ?--=+ππcos 4521 设,ix

e z =则dz z z z i

dz z z z i iI I m

m ??

Γ

Γ--=+-=+)

2

1

)(2(2)1(251221

在圆周Γ内部,f(z)仅有一个一阶极点 )

2(31

2

,2112

1

)(Re 21-=

=-

=-=

=m z m

z sf z z z z

故 由留数定理 )2(3)2(31.2.21121--=???? ??-=+m m i i iI I π

π 于是 知,0,)

2(3211==

-I I m π

所以I=

)

2(3211m I π= 3.解:i

k k e

z z 4

2,1π

π+==)3,2,1,0(=k 皆为一阶极点,0=z 是本质奇点,

∞=z 是可去奇点

?=???

?

??????+++-341sin 111z z

dz z z z z z ze =i π4-

二、证明题

1、证明:由条件知a 是 )(z f 的孤立奇点

先证a 不是 )(z f 的可去奇点.若不然,令)(z f =0,则)(z f 在R a z <-内解析,由零

点的孤立性得0)(≡z f ,这与条件矛盾.

再证a 不是 )(z f 的极点,若不然,由极点的等价条件知)(z f 在a 的某邻域内无界,

这也与条件矛盾。因此a 是 )(z f 的本质奇点

2、证明:(1)若有D 的点o z 使'()0o f z =,则o z 必为0()()f z f z -的一个n 阶零点(2)n ≥。由零点的孤立性,故存在0δ>,使在圆周0:c z z δ-=上,0()()f z f z -0≠在C 的内部,

0()()f z f z -及'()f z 无异于o z 的零点。

命m 表0()()f z f z -在C 上的下确界,则由儒歇定理即知,当0a m <-<时,

0()()f z f z -a -在圆周c 的内部亦恰有n 个零点。

但这些零点无一为多重点,理由是'()f z 在C 内部除o z 外无其他零点,而o z 显然非

0()()f z f z -a -的零点。

故命12,,n z z z L 表0()()f z f z -a -在C 内部的n 个相异零点。于是0()()k f z f z a =+

(1,2,,)k n =L 这与()f z 的单叶性假设矛盾。故在区域D 内'()0f z ≠。

(2)其逆不真,例:z e z f =)( 3.(1)由于:

)(0)

1)(1(1.2))((2))(()(+∞→→-

-

=--≤--?=R R b R a R

M

b R a R R M dz b z a z z f R z ππ

(2)由于

0))

()((2])()([1))(()(=--=----=--?=b

a b f a f i dz b z z f a z z f b a dz b z a z z f R z π 故f(a)=f(b).由于a 、b 任意,故f(z)恒为常数. 4.证明:由最大模原理得,对于任何21r r R <<

M (1r )=)(max 1

z f r z ==)(max 1

z f r z ≥>)(max 2

z f r z ≥=)(max 2

z f r z == M (2r )

由 P (z )=z 011a z a n n n +++--Λ,考虑函数n z

z p )

((1≥z )是解析的(包括∞),由(1)知在1≥z 内是递减的,1

max =z )(z P =1

max

=z n z z p )(≥R z =max n z

z p )

((R 1≥),令∞→R 取极限,就有1max =z 1)(≥z P .

《复变函数》 复习资料3

一. 求解方程083=+z . 二.计算复数 Ln (34)i -+.

三.计算积分221(1)(4)C

dz z z ++??, 3

:2C z =,C 为正向曲线. 四.将函数

)

1()

2ln(--z z z 在110<-

五.计算积分?

+πθ

θ

20

cos 35d .

六.计算2()1

z

e f z z =-在∞处的留数.

七.计算积分15

2243(1)(2)C

z dz z z ++??,:3C z =,C 为正向曲线.

答案

一.

解:因为

388(cos sin ),z i ππ=-=+所以, 222(cos

sin

),0,1,2.3

3

k k z i k ππ

ππ

++=+=

即方程有三个解:1

1z =+,22z =-

,31z =-

二.

解:根据对函数的定义有

(34)ln 34(34)Ln i i iArg i -+=-++-+

4

ln 5(arctan 2)3

i k ππ=+-+

0,1, 2...k =±±

三. 解:令

221

()(1)(4)

f z z z =++,则

()f z 在C内有两个一阶极点,i i -,由留数定理得

()2(Re [(),]Re [(),])c

f z dz i s f z i s f z i π==-??

2(()()()())lim lim z i

z i

i z i f z z i f z π→→-=-++

=0 四. 解:

2

3

232221ln(2)ln[1(1)][(1)0.5(1)(1)...]

3

111(1)(1)(1)...1(1)

(2)ln(2)1

.

(1)11

[10.5(1)(1)...][1(1)(1)...]

35

10.5(1)(1)...

6

z z z z z z z z z z ln z z z z z z

z z z z z z -=--=--+-+-+==--+---++---=--=-+-+-+--+--=-+---+所以

五. 解:

令1211,,cos 0.5(),21

053cos [5 1.5()]

231032(31)(3)i i i i z z z z e dz e id e e d dz

iz z z i

dz

z z i

dz

z z θθθθθθπ

θθ-======+=+++-=++-++???????则从而有

在1z =内被积函数只有一个奇点1

3

-,且为一阶级点,所以

13

221

2Re [,]053cos (31)(3)3

223(3)

2

z d i i s z z i

i z πθπθππ

=-

-=-+++-=+=

?

六.

解:()f z 在复平面内有两个奇点1,-1,根据留数定理有

11

Re [(),](Re [(),1]Re [(),1]22122z z z z s f z s f z s f z e e z z e e

==-∞=-+-=--

=-+

七.

解:设15

2243

()(1)(2)

z f z z z =++,则()f z 得所有有限奇点均在3z =内部,由留数定理得: 1

()2Re [(),]2Re [(),]

n

k

k f z i s f z z i s f z ππ===-∞∑??.

另一方面:

215

223

24

2243

0224311

Re [(),]Re [

(),0]2

1()1Re [.,0]11(1)(2)1

Re [,0](1)(12)1

(1)(12)1

z s f z s f z z s z z z s z z z z z =-∞==++=++=++=. 所以所求积分为:2i π

复变函数试题2

第一部分 选择题 一、单项选择题(本大题共20小题,每小题2分,共40分)在每小题列出的四个选项中只有 一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。 1. 复数i 25 8-2516z =的辐角为( ) A . arctan 2 1 B .-arctan 2 1 C .π-arctan 2 1 D .π+arctan 2 1 2.方程1Rez 2=所表示的平面曲线为( ) A . 圆 B .直线 C .椭圆 D .双曲线 3.复数)5 ,-isin 5-3(cos z π π=的三角表示式为( ) A .)54isin ,543(cos -ππ+ B .)54 isin ,543(cos ππ- C .)54isin ,543(cos ππ+ D .)5 4 isin ,543(cos -ππ- 4.设z=cosi ,则( ) A .Imz=0 B .Rez=π C .|z|=0 D .argz=π 5.复数i 3e +对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 6.设w=Ln(1-I),则Imw 等于( ) A .4π - B . 1,0,k ,4 2k ±=ππ- C .4 π D . 1,0,k ,42k ±=+ππ 7.函数2z w =把Z 平面上的扇形区域:2||,03 argz 0<<

复变函数总结

第一章 复数的运算与复平面上的拓扑 1.复数的定义 一对有序实数(x,y )构成复数z x iy =+,其中()()Re ,Im x z y z ==.21i =-, X 称为复数的实部,y 称为复数的虚部。 复数的表示方法 1) 模: z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值 ()arg z 是位于(,]ππ-中的幅角。 3)()arg z 与 arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

4)若 12 1122,i i z z e z z e θθ==, 则 () 121212i z z z z e θθ+=; ()121122 i z z e z z θθ-= 5.无穷远点得扩充与扩充复平面 复平面对内任一点z , 用直线将z 与N 相连, 与球面相交于P 点, 则球面上除N 点外的所有点和复平面上的所有点有一一对应的关系, 而N 点本身可代表无穷远点, 记作∞.这样的球面称作复球面 这样的球面称作复球面. 扩充复平面---引进一个“理想点”: 无穷远点 ∞ 复平面的开集与闭集 复平面中领域,内点,外点,边界点,聚点,闭集等概念 复数序列的极限和复数域的完备性 复数的极限,,柯西收敛定理,魏尔斯特拉斯定理,聚点定理等从实数域里的推广,可以结合实数域中的形式来理解。 第二章 复变量函数 1.复变量函数的定义 1)复变函数的反演变换(了解) 2)复变函数性质 反函数 有界性 周期性, 3)极限与连续性 极限: 连续性 2.复变量函数的形式偏导 1)复初等函数 ). ( ),( , , , , . z f w z w iv u w z G iy x z G =+=+=记作复变函数简称的函数是复变数那末称复变数之对应与就有一个或几个复数每一个复数中的对于集合按这个法则个确定的法则存在如果有一的集合是一个复数设. )( )(,)0(0 )( ,0 , , 0 )( 0000时的极限趋向于当为那末称有时使得当相应地必有一正数对于任意给定的存在如果有一确定的数内的去心邻域定义在设函数z z z f A A z f z z A z z z z f w ερδδεδερ<-≤<<-<><-<= . )( , )( . )( ),()(lim 000 内连续在我们说内处处连续在区域如果处连续在那末我们就说如果D z f D z f z z f z f z f z z =→

中南大学复变函数考试试卷(A)及答案

中南大学考试试卷(A) 2008--2009学年第二学期 时间110分钟 复变函数与积分变换课程40学时2.5学分 考试形式:闭卷 专业年级:教改信息班 总分100分,占总评成绩70 % 注:此页不作答题纸,请将答案写在答题纸上 一、单项选择题(15分,每小题3分) 1. 下列方程中,表示直线的是( )。 ()()()()()()()254(54)54(54)1 12R e 1 A i z i z z z B i z i z C z i z i D z z z -++ =-++=-++= =- 2. 函数222()()(2)f z x y x i xy y =--+-在( )处可导。 ()()()()22A B x C y D ==全平面 处处不可导 3. 下列命题中,不正确的是( )。 ()()()()()()()()()0R e s ,0I m 1.z z A f z f z B f z D z f z D C e i D z e i ωπω∞∞ =-=<<<+如果无穷远点是的可去奇点,那么若在区域内任一点的邻域内展开成泰勒级数 ,则在内解析. 幂级数的和函数在收敛圆内是解析函数.函数将带形域0()映射为单位圆 4. 下列级数绝对收敛的是( )。 ()()()() ()2 2111 1112n n n n n n n i i i A B C i D n n n ∞∞ ∞ ∞ ====?? ++ ?? ?∑ ∑∑∑ 5. 设()f z 在01z <<内解析且()0 lim 1z zf z →=,那么()() Res ,0f z =( )。

()()()()22 11 A i B i C D ππ-- 二、填空题(15分,每空3分) 1.()Ln 1i -的主值为 。 2.函数()()Re Im f z z z z ()=+仅在点z = 处可导。 3. ()1 sin z z z e z dz =-=? 。 4. 函数()ln 1z +在0z =处的泰勒展开式 。 5. 幂级数()1 1n n z n ∞ =-∑ 的收敛半径为 。 三.(10分)求解析函数f z u iv ()=+,已知22,()1u x y xy f i i =-+=-+。 四.(20分)求下列积分的值 1. () 2 2 4 1z z e dz z z =-? 2. ()2 sin 0x x dx a x a +∞ >+? 五.(15分)若函数()z ?在点解析,试分析在下列情形: 1.为函数()f z 的m 阶零点; 2.为函数()f z 的m 阶极点; 求()()()0Res ,f z z z f z ??? '??? ?。 六.(15分)试求()2 1 1f z z = +以z i =为中心的洛朗级数。 七.(10分)已知单位阶跃函数()0 01 t u t t >?=?

复变函数作业纸.doc

(1) 3 + 2/ (3) l-2z 2-i 3 — 4, 57 习题1复数与复变函数 1.求下列复数的实部、虚部、共侧复数、模以及辐角: (2) 2.将下列复数化为三角表示式和指数表示式: (1)一1 +病

(2) l-cosQ + isin。 3.求下列各式的值: ⑴呻 (2) (V3-O2015

4.设z = x +,y.将方程|z| + Rez = l表示为关于x,),的二元方程,并说明它是何种曲线. 5.设/为实参数,求曲线Z = M"+3(0

证明 z 2 —Z x = Z 2 — z 3 = Z3 — Z] 7.如果复数Z] ,Z 9 Z3满足等式 二至—Z3 一 z 3 - z, z 2 并说明这些等式的儿何意义。 8 .试用复数乘法的儿何意义证明三角形内角之和等于;T.

习题2解析函数 1.填空: ■f a (1)、已知/(z) = u + iv是解析函数,其中u = —ln(x2 + y2),则一^ = _________ 2 dy (2)^ 设/(z) = %3-3xy2 + (ajcy-y3)i在z平面上解析,则《/ =。 (3)、若/(z) = w + iv是复平面上的解析函数,则f'(z) = ____________ 尸 - --------------------------- ° (4)、对数函数W = lnz的解析区域为。 (5)Z JZ(—2) =、In(—2) = . 2.利用导数定义推出:(Z〃)' = "Z〃T, 3.下列函数何处可导?何处解析? (1 )> /(z) = 2x3 + 3y3i

10-11-1复变函数考试题A 2

2010-2011 第一 复变函数与积分变换 (A) 数理学院 自动化各专业 (答案写在答题纸上,写在试题纸上无效) 一、 选择题(每小题3分,共18分) 1、设z =1-i ,则Im(21z )=____________. A 、1- B 、2 1- C 、21 D 、1 2、设z=cosi ,则____________. A 、Imz=0 B 、Rez=π C 、|z|=0 D 、argz=π 3、设C 为正向圆周|z|=1,则积分?c z dz ||=____________. A 、0 B 、2πi C 、2π D 、-2π 4、幂极数∑∞ =+1n n z (2n)!1)!n (的收敛半径为____________. A 、0 B 、1 C 、2 D 、+∞ 5、点z =0是函数) 1(sin )1()(2--=z z z e z f z 的_____________. A 、可去奇点 B 、一阶极点 C 、二阶极点 D 、本性奇点 6、函数? ??><-=0101sgn t t t 在傅氏变换下的像为_____________. A 、ωi -11 B 、 ωi 1 C 、 ωi 2 D 、 ω i +11 课程考试试题 学期 学年 拟题学院(系): 适 用 专 业:

二、 填空题(每小题3分,共21分) 1、当1≤z 时,a z n +的最大值为_____________. 2、i i )1(+为_________. 3、函数) 3)(2()(-+=z z z z f 在1=z 的泰勒展开式的收敛圆域为_____________. 4、若)(z f =ζζζζζd z ?=-+2 353,则()f i ''-=_____________ 5、设)1()(1 -=z e z z f ,则Res[f (z ),0]=__________. 6、已知函数t e 在拉氏变换下的像为才,则t e t 2)1(-在拉氏变换下的像为______. 7、函数z 1=ω把z 平面上的曲线x y =映射成ω平面上的像为 ______. 三、 计算题(每小题10分,共50分) 1、试讨论定义于复平面内的函数)Re()(z z z f =在何处可导?何处解析?在可导点求其导函数。 2、求) 2)(1(12)(+-+=z z z z f 在圆环域1

复变函数学习指导书

复变函数复习提纲 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.2 1i =-. 注:两个复数不能比较大小. 2.复数的表示 1 )模:z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

复变函数试题汇总

复变函数试题汇总

————————————————————————————————作者: ————————————————————————————————日期: ?

《复变函数》考试试题(一) 一、 判断题(20分): 1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z0解析. ( ) 2. 有 界 整 函 数 必 在 整 个 复 平 面 为 常 数 . ( ) 3 . 若 } {n z 收敛,则 } {Re n z 与 } {Im n z 都收敛. ( ) 4.若f(z)在区域D内解析,且 0)('≡z f ,则C z f ≡)((常数). ( ) 5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( ) 6.若 z 0是 )(z f 的 m 阶零点,则 z 0是 1/ )(z f 的 m 阶极 点. ( ) 7.若 ) (lim 0 z f z z →存在且有限,则z 0 是函数f(z)的可去奇点. ( ) 8.若函数f(z)在是区域 D 内的单叶函数,则)(0)('D z z f ∈?≠. ( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=? C dz z f . 10.若函数f (z )在区域D 内的某个圆内恒等于常数,则f (z)在区域D 内恒等于常数.( ) 二.填空题(20分) 1、 =-?=-1||0 0)(z z n z z dz __________.(n 为自然数) 2. =+z z 22cos sin _________. 3.函数z sin 的周期为___________.

复变函数经典习题及答案

练习题 一、选择、填空题 1、下列正确的是( A ); A 1212()Arg z z Argz Argz =+; B 1212()arg z z argz argz =+; C 1212()ln z z lnz lnz =+; D 10z Ln Ln Lnz Lnz z ==-=. 2、下列说法不正确的是( B ); A 0()w f z z =函数在处连续是0()f z z 在可导的必要非充分条件; B lim 0n n z →∞=是级数1 n n z ∞=∑收敛的充分非必要条件; C 函数()f z 在点0z 处解析是函数()f z 在点0z 处可导的充分非必要条件; D 函数()f z 在区域D 内处处解析是函数()f z 在D 内可导的充要条件. 3、(34)Ln i -+=( 45[(21)arctan ],0,1,2,3ln i k k π++-=±± ), 主值为( 4 5(arctan )3 ln i π+- ). 4、2|2|1 cos z i z dz z -=? =( 0 ). 5、若幂级数0n n n c z ∞=∑ 在1(1)2z = +处收敛,那么该级数在45 z i =处的敛散性为( 绝对收敛 ). 6、 311z -的幂级数展开式为( 30n n z ∞=∑ ),收敛域为( 1z < ); 7、 sin z z -在0z =处是( 3 )阶的零点; 8、函数221 (1)z z e -在0z =处是( 4 )阶的极点; 二、计算下列各值 1.3i e π+; 2.tan()4i π -; 3.(23)Ln i -+; 4 . 5.1i 。 解:(略)见教科书中45页例2.11 - 2.13

复变函数测试试题库

复变函数试题库

————————————————————————————————作者:————————————————————————————————日期:

《复变函数论》试题库 梅一A111 《复变函数》考试试题(一) 1、 =-?=-1||0 0)(z z n z z dz __________.(n 为自然数) 2. =+z z 22cos sin _________. 3.函数z sin 的周期为___________. 4.设 11 )(2+= z z f ,则)(z f 的孤立奇点有__________. 5.幂级数 n n nz ∞ =∑的收敛半径为__________. 6.若函数f(z)在整个平面上处处解析,则称它是__________. 7.若ξ =∞ →n n z lim ,则= +++∞→n z z z n n (i) 21______________. 8.= )0,(Re n z z e s ________,其中n 为自然数. 9. z z sin 的孤立奇点为________ . 10.若0z 是)(z f 的极点,则___ )(lim 0 =→z f z z . 三.计算题(40分): 1. 设 )2)(1(1 )(--= z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式. 2. .cos 1 1||?=z dz z 3. 设 ? -++=C d z z f λ λλλ1 73)(2,其中 }3|:|{==z z C ,试求).1('i f + 4. 求复数 11 +-= z z w 的实部与虚部. 四. 证明题.(20分) 1. 函数 )(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内

《复变函数》总结

复变小结 1.幅角(不赞成死记,学会分析) .2 argtg 20,0,0,0,arctg 0,0,20,arctg arg ππ πππ<<-???? ?????=<≠<±≠=±>=x y y x y x x y y x x x y z 其中 -∏

b.对于P12例题 1.11可理解为高中所学的平面上三点(A,B,C )共线所满足的公式: (向量) OC=tOA+(1-t )OB=OB+tBA c.对于P15例题1.14中可直接转换成X 和Y 的表达式后判断正负号来确定其图像。 d.判断函数f(z)在区域D 内是否连续可借助课本P17定义1.8 4.解析函数,指数,对数,幂、三角双曲函数的定义及表达式,能熟练计算,能熟练解初等函数方程 a.在某个区域内可导与解析是等价的。但在某一点解析一定可导,可导不一定解析。 b.柯西——黎曼条件,自己牢记:(注意那个加负那个不加) c.指数函数:复数转换成三角的定义。 d.只需记住:Lnz=ln[z]+i(argz+2k π) e.幂函数:底数为e 时直接运算(一般转换成三角形式) 当底数不为e 时,w= z a = e aLnz (幂指数为Ln 而非ln) 能够区分: 的计算。 f.三角函数和双曲函数: 只需记住: 及 其他可自己试着去推导一下。 反三角中前三个最好自己记住,特别 iz iz i z -+-=11Ln 2Arctg 因为下一章求积分会用到 11)(arctan ,2+=z z (如第三章的习题9) 5.复变函数的积分 ,,,i e e i i e i ππ+)15.2(.2e e sin ,2e e cos i z z iz iz iz iz ---=+=???????=-==+=--y i i iy y iy y y y y sh 2e e sin ch 2e e cos

重庆大学《复变函数与积分变换》期末考试试卷及答案

得分 得分 ?复变函数与积分变换?期末试题(A ) 一.填空题(每小题3分,共计15分) 1. 2 3 1i -的幅角是( );2.)1(i Ln +-的主值是 ( );3. 2 11)(z z f +=,=)0() 5(f ( ); 4.0=z 是 4 sin z z z -的( )极点;5. z z f 1 )(=,=∞]),([Re z f s ( ) ; 二.选择题(每小题3分,共计15分) 1.解析函数),(),()(y x iv y x u z f +=的导函数为( ); (A ) y x iu u z f +=')(; (B )y x iu u z f -=')(; (C ) y x iv u z f +=')(; (D )x y iv u z f +=')(. 2.C 是正向圆周3=z ,如果函数=)(z f ( ),则0d )(=?C z z f . (A ) 23-z ; (B )2 )1(3--z z ; (C )2)2()1(3--z z ; (D )2)2(3-z . 3.如果级数∑∞ =1 n n n z c 在 2=z 点收敛,则级数在 (A )2-=z 点条件收敛 ; (B )i z 2=点绝对收敛; (C )i z +=1点绝对收敛; (D )i z 21+=点一定发散. 4.下列结论正确的是( ) (A )如果函数)(z f 在0z 点可导,则)(z f 在0z 点一定解析;

(B) 如果)(z f 在C 所围成的区域内解析,则0)(=? C dz z f (C )如果 0)(=? C dz z f ,则函数)(z f 在C 所围成的区域内一定解析; (D )函数 ),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是 ),(y x u 、),(y x v 在该区域内均为调和函数. 5.下列结论不正确的是( ). (A) 的可去奇点;为z 1 sin ∞(B) 的本性奇点;为z sin ∞ (C) ;1sin 1 的孤立奇点为 z ∞(D) .sin 1的孤立奇点为z ∞ 三.按要求完成下列各题(每小题10分,共计40分) (1)设)()(2 2 2 2 y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a (2).计算? -C z z z z e d ) 1(2 其中C 是正向圆周:2=z ; 得分

复变函数课后习题答案(全)

习题一答案 1.求下列复数的实部、虚部、模、幅角主值及共轭复数: (1) 1 32i + (2) (1)(2) i i i -- (3)13 1 i i i - - (4)821 4 i i i -+- 解:(1) 132 3213 i z i - == + , 因此: 32 Re, Im 1313 z z ==-, 232 arg arctan, 31313 z z z i ==-=+ (2) 3 (1)(2)1310 i i i z i i i -+ === --- , 因此, 31 Re, Im 1010 z z =-=, 131 arg arctan, 31010 z z z i π ==-=--(3) 133335 122 i i i z i i i -- =-=-+= - , 因此, 35 Re, Im 32 z z ==-, 535 ,arg arctan, 232 i z z z + ==-= (4)821 41413 z i i i i i i =-+-=-+-=-+ 因此,Re1,Im3 z z =-=, arg arctan3,13 z z z i π ==-=--

2. 将下列复数化为三角表达式和指数表达式: (1)i (2 )1-+ (3)(sin cos )r i θθ+ (4)(cos sin )r i θθ- (5)1cos sin (02)i θθθπ-+≤≤ 解:(1)2 cos sin 2 2 i i i e π π π =+= (2 )1-+2 3 222(cos sin )233 i i e πππ=+= (3)(sin cos )r i θθ+()2 [cos()sin()]22i r i re π θππ θθ-=-+-= (4)(cos sin )r i θ θ-[cos()sin()]i r i re θθθ-=-+-= (5)2 1cos sin 2sin 2sin cos 222 i i θ θθ θθ-+=+ 2 2sin [cos sin ]2sin 22 22 i i e πθ θπθ πθ θ ---=+= 3. 求下列各式的值: (1 )5)i - (2)100100(1)(1)i i ++- (3 )(1)(cos sin ) (1)(cos sin ) i i i θθθθ-+-- (4) 23(cos5sin 5)(cos3sin 3)i i ????+- (5 (6 解:(1 )5)i -5[2(cos()sin())]66 i ππ =-+- 5 552(cos()sin()))66 i i ππ =-+-=-+ (2)100 100(1) (1)i i ++-50505051(2)(2)2(2)2i i =+-=-=- (3 )(1)(cos sin ) (1)(cos sin ) i i i θθθθ-+--

复变函数测试题及答案-精品

第一章 复变函数测试题及答案-精品 2020-12-12 【关键字】条件、充分、关系、满足、方向、中心 一、 选择题 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3 )2(π = +z arc ,6 5)2(π = -z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2321+- (D )i 2 123+- 3.复数)2 (tan πθπ θ<<-=i z 的三角表示式是( ) (A ))]2sin()2[cos( sec θπθπ θ+++i (B ))]2 3sin()23[cos(sec θπ θπθ+++i (C ))]23sin()23[cos( sec θπθπθ+++-i (D ))]2 sin()2[cos(sec θπ θπθ+++-i 4.若z 为非零复数,则22z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点) ,(y x 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转 3 π ,向右平移3个单位,再向下平移1个单位后对应的复数为

i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3 7.使得2 2 z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +- 43 (B )i +43 (C )i -43 (D )i --4 3 9.满足不等式 2≤+-i z i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域 10.方程232= -+i z 所代表的曲线是( ) (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A ) 22 1 =+-z z (B )433=--+z z (C ) )1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44-- (B )i 44+ (C )i 44- (D )i 44+- 13.0 0) Im()Im(lim 0z z z z x x --→( ) (A )等于i (B )等于i - (C )等于0 (D )不存在 14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( )

(完整版)复变函数第六章留数理论及其应用知识点总结

第六章留数理论及其应用 §1.留数 1.(定理6.1 柯西留数定理): ∫f(z)dz=2πi∑Res(f(z),a k) n k=1 C 2.(定理6.2):设a为f(z)的m阶极点, f(z)= φ(z) (z?a)n , 其中φ(z)在点a解析,φ(a)≠0,则 Res(f(z),a)=φ(n?1)(a) (n?1)! 3.(推论6.3):设a为f(z)的一阶极点, φ(z)=(z?a)f(z),则 Res(f(z),a)=φ(a) 4.(推论6.4):设a为f(z)的二阶极点 φ(z)=(z?a)2f(z)则 Res(f(z),a)=φ′(a) 5.本质奇点处的留数:可以利用洛朗展式 6.无穷远点的留数: Res(f(z),∞)= 1 2πi ∫f(z)dz Γ? =?c?1 即,Res(f(z),∞)等于f(z)在点∞的洛朗展式中1 z 这一项系数的反号 7.(定理6.6)如果函数f(z)在扩充z平面上只有有限个孤立奇点(包括无穷远点在内),设为a1,a2,…,a n,∞,则f(z)在各点的留数总和为零。 注:虽然f(z)在有限可去奇点a处,必有Res(f(z),∞)=0,但是,如果点∞为f(z)的可去奇点(或解析点),则Res(f(z),∞)可以不为零。 8.计算留数的另一公式:

Res (f (z ),∞)=?Res (f (1t )1t 2,0) §2.用留数定理计算实积分 一.∫R (cosθ,sinθ)dθ2π0型积分 → 引入z =e iθ 注:注意偶函数 二.∫P(x)Q(x)dx +∞?∞型积分 1.(引理6.1 大弧引理):S R 上 lim R→+∞zf (z )=λ 则 lim R→+∞∫f(z)dz S R =i(θ2?θ1)λ 2.(定理6.7)设f (z )=P (z )Q (z )为有理分式,其中 P (z )=c 0z m +c 1z m?1+?+c m (c 0≠0) Q (z )=b 0z n +b 1z n?1+?+b n (b 0≠0) 为互质多项式,且符合条件: (1)n-m ≥2; (2)Q(z)没有实零点 于是有 ∫ f (x )dx =2πi ∑Res(f (z ),a k )Ima k >0 +∞ ?∞ 注:lim R→R+∞ ∫f(x)dx +R ?R 可记为P.V.∫f(x)dx +∞?∞ 三. ∫P(x)Q(x)e imx dx +∞?∞ 型积分 3.(引理6.2 若尔当引理):设函数g(z)沿半圆周ΓR :z =Re iθ(0≤θ≤π,R 充分大)上连续,且 lim R→+∞g (z )=0 在ΓR 上一致成立。则 lim R→+∞ ∫g(z)e imz dz ΓR =0 4.(定理6.8):设g (z )=P (z )Q (z ),其中P(z)及Q(z)为互质多项式,且符合条件:

华师在线复变函数作业答案

1.第1题 A.. B.. C.. D.. 您的答案:D 题目分数:1.0 此题得分:1.0 2.第2题 A.. B.. C.. D.. 您的答案:B 题目分数:2.0 此题得分:2.0 3.第3题 A.. B.. C.. D..

您的答案:C 题目分数:2.0 此题得分:2.0 4.第4题 A.. B.. C.. D.. 您的答案:C 题目分数:2.0 此题得分:2.0 5.第5题 A.. B.. C.. D.. 您的答案:B 题目分数:2.0 此题得分:2.0 6.第6题

A.. B.. C.. D.. 您的答案:D 题目分数:1.0 此题得分:1.0 7.第7题 A.. B.. C.. D.. 您的答案:C 题目分数:2.0 此题得分:2.0 8.第8题

A.. B.. C.. D.. 您的答案:B 题目分数:2.0 此题得分:2.0 9.第9题 A.. B.. C.. D.. 您的答案:B 题目分数:2.0 此题得分:2.0 10.第10题 A.. B.. C.. D.. 您的答案:D 题目分数:2.0

此题得分:2.0 11.第11题 A.. B.. C.. D.. 您的答案:A 题目分数:2.0 此题得分:2.0 12.第12题 A.. B.. C.. D.. 您的答案:A 题目分数:2.0 此题得分:2.0 13.第13题

A.. B.. C.. D.. 您的答案:C 题目分数:2.0 此题得分:2.0 14.第14题 A.. B.. C.. D.. 您的答案:B 题目分数:2.0 此题得分:2.0 15.第15题 A.. B.. C.. D..

《复变函数》考试试题

伊犁师范学院数学系考试试题 课程:复变函数 专业:数学与应用数学 年级: 考试形式:闭卷 编号:一 命题教师: 一、 判断题(4x10=40分): 1、若函数f (z )在z 0解析,则f (z )在z 0的某个邻域内可导。( ) 2、如果z 0是f (z )的本性奇点,则)(lim 0 z f z z →一定不存在。( ) 3、若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续。( ) 4、cos z 与sin z 在复平面内有界。( ) 5、若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点。( ) 6、若f (z )在z 0处满足柯西-黎曼条件,则f (z )在z 0解析。( ) 7、若)(lim 0 z f z z →存在且有限,则z 0是函数的可去奇点。( ) 8、若f (z )在单连通区域D 内解析,则对D 内任一简单闭曲线C 都有0)(=? C dz z f 。( ) 9、若函数f (z )是单连通区域D 内的解析函数,则它在D 内有任意阶导数。( ) 10、若函数f (z )在区域D 内的解析,且在D 内某个圆内恒为常数,则在区域D 内恒等于常数。( ) 二、填空题(4x5=20分) 1、函数e z 的周期为__________。 2、幂级数∑+∞ =0n n nz 的和函数为__________。 3、设1 1 )(2+= z z f ,则f (z )的定义域为___________。 4、∑+∞ =0 n n nz 的收敛半径为_________。 5、=)0,(Res n z z e _____________。 三、计算题(8x5=40分):

复变函数考试试题与答案各种总结

《复变函数》考试试题(一) 一、 判断题(20分): 1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析. ( ) 2.有界整函数必在整个复平面为常数. ( ) 3.若 } {n z 收敛,则 } {Re n z 与 } {Im n z 都收敛. ( ) 4.若f(z)在区域D 内解析,且 0)('≡z f ,则C z f ≡)((常数). ( ) 5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( ) 6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( ) 7.若 ) (lim 0 z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( ) 8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈?≠. ( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=? C dz z f . ( ) 10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.( ) 二.填空题(20分) 1、 =-?=-1||0 0)(z z n z z dz __________.(n 为自然数) 2. =+z z 22cos sin _________. 3.函数z sin 的周期为___________. 4.设 11 )(2+= z z f ,则)(z f 的孤立奇点有__________. 5.幂级数 n n nz ∞ =∑的收敛半径为__________. 6.若函数f(z)在整个平面上处处解析,则称它是__________. 7.若ξ =∞ →n n z lim ,则= +++∞→n z z z n n (i) 21______________. = )0,(Re n z z e s ,其中n 为自然数.

复变函数练习题及答案

复变函数卷答案与评分标准 一、填空题: 1.叙述区域内解析函数的四个等价定理。 定理1 函数()(,)(,)f z u x y iv x y =+在区域D 内解析的充要条件: (1)(,)u x y ,(,)v x y 在D 内可微, (2)(,)u x y ,(,)v x y 满足C R -条件。(3分) 定理2 函数()(,)(,)f z u x y iv x y =+在区域D 内解析的充要条件: (1),,,x y x y u u v v 在D 内连续, (2)(,)u x y ,(,)v x y 满足C R -条件。(3分) 定理3 函数()f z 在区域D 内解析的充要条件:()f z 在区域D 内连续,若闭曲线C 及内部包含于D ,则()0C f z dz =? 。 (3分) 定理4 函数()f z 在区域D 内解析的充要条件:()f z 在区域D 内每一点a ,都能展成x a -的幂级数。(3分) 2.叙述刘维尔定理:复平面上的有界整函数必为常数。(3分) 3、方程2z e i =+的解为:11ln 5arctan 222 i k i π++,其中k 为整数。(3分) 4、设()2010sin z f z z +=,则()0Re z s f z ==2010。(3分) 二、验证计算题(共16分)。 1、验证()22,2u x y x y x =-+为复平面上的调和函数,并求一满足条件()12f i i =-+的解析函数()()(),,f z u x y iv x y =+。(8分) 解:(1)22u x x ?=+?,222u x ?=?;2u y y ?=-?,222u y ?=-?。 由于22220u u y x ??+=??,所以(,)u x y 为复平面上的调和函数。(4分) (2)因为()f z 为解析函数,则(),u x y 与(),v x y 满足C.-R.方程,则有 22v u x y x ??==+??,所以(,)2222()v x y x dy xy y C x =+=++? 2,v u y x y ??=-=??又2()v y C x x ?'=+? ,所以 ()0C x '=,即()C x 为常数。

(完整版)复变函数试题库

《复变函数论》试题库 梅一A111 《复变函数》考试试题(一) 1、 =-?=-1||0 0)(z z n z z dz __________.(n 为自然数) 2. =+z z 2 2cos sin _________. 3.函数z sin 的周期为___________. 4.设 11 )(2+= z z f ,则)(z f 的孤立奇点有__________. 5.幂级数 n n nz ∞ =∑的收敛半径为__________. 6.若函数f(z)在整个平面上处处解析,则称它是__________. 7.若ξ=∞→n n z lim ,则=+++∞→n z z z n n ...lim 21______________. 8.= )0,(Re n z z e s ________,其中n 为自然数. 9. z z sin 的孤立奇点为________ . 10.若0z 是 )(z f 的极点,则___ )(lim 0 =→z f z z . 三.计算题(40分): 1. 设 )2)(1(1 )(--= z z z f ,求)(z f 在} 1||0:{<<=z z D 内的罗朗展式. 2. .cos 1 1||?=z dz z 3. 设 ? -++=C d z z f λ λλλ1 73)(2,其中 }3|:|{==z z C ,试求).1('i f + 4. 求复数 11 +-= z z w 的实部与虚部. 四. 证明题.(20分) 1. 函数 )(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数, 那么它在 D 内为常数. 2. 试证 : ()f z = 在割去线段0Re 1z ≤≤的z 平面内能分出两 个单值解析分支, 并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.

相关主题
文本预览
相关文档 最新文档