当前位置:文档之家› 雷达原理复习

雷达原理复习

雷达原理复习
雷达原理复习

第一章绪论

1、雷达的任务:测量目标的距离、方位、仰角、速度、形状、表面粗糙度、介电特性。

雷达是利用目标对电磁波的反射现象来发现目标并测定其位置。

当目标尺寸小于雷达分辨单元时,则可将其视为“点”目标,可对目标的距离和空间位置角度定位。目标不是一个点,可视为由多个散射点组成的,从而获得目标的尺寸和形状。采用不同的极化可以测定目标的对称性。

β任一目标P所在的位置在球坐标系中可用三个目标确定:目标斜距R,方位角α,仰角

在圆柱坐标系中表示为:水平距离D,方位角α,高度H

目标斜距的测量:测距的精度和分辨力力与发射信号的带宽有关,脉冲越窄,性能越好。目标角位置的测量:天线尺寸增加,波束变窄,测角精度和角分辨力会提高。

相对速度的测量:观测时间越长,速度测量精度越高。

目标尺寸和形状:比较目标对不同极化波的散射场,就可以提供目标形状不对称性的量度。

2、%

3、雷达的基本组成:发射机、天线、接收机、信号处理机、终端设备

4、雷达的工作频率:220MHZ-35GHZ。L波段代表以22cm为中心,1-2GHZ;S波段代表10cm,2-4GHZ;C波段代表5cm,4-8GHZ;X波段代表3cm,8-12GHZ;Ku代表,12-18GHZ;Ka代表8mm,18-27GHZ。

第二章雷达发射机

1、雷达发射机的认为是为雷达系统提供一种满足特定要求的大功率发射信号,经过馈线和收发开关并由天线辐射到空间。

雷达发射机可分为脉冲调制发射机:单级振荡发射机、主振放大式发射机;连续波发射机。

2、单级振荡式发射机组成:大功率射频振荡器、脉冲调制器、电源

触发脉冲

脉冲调制器大功率射频振荡器收发开关

·

电源高压电源接收机

主要优点:结构简单,比较轻便,效率较高,成本低;缺点:频率稳定性差,难以产生复杂的波形,脉冲信号之间的相位不相等

3、主振放大式发射机:射频放大链、脉冲调制器、固态频率源、高压电源。射频放大链是发射机的核心,主要有前级放大器、中间射频功率放大器、输出射频功率放大器

射频输入前级放大器中间射频放大器输出射级放大器射频输出固态频率源脉冲调制器脉冲调制器

-

高压电源高压电源电源

脉冲调制器:软性开关调制器、刚性开关调制器、浮动板调制器

4、现代雷达对发射机的主要要求:发射全相参信号;具有很高的频域稳定度;能够产生复杂信号波形;适用于宽带的频率捷变雷达;全固态有源相控阵发射机

5、发射机的主要性能指标:

工作频率和瞬时带宽:雷达发射机的频率是按照雷达的用途确定的。瞬时带宽是指输出功率变化小于1bB 的工作频带宽度。

输出功率:雷达发射机的输出功率直接影响雷达的威力范围以及抗干扰的能力。雷达发射机的输出功率可分为峰值功率t P 和平均功率av P 。t

P 是指脉冲期间射频振荡的平均功率;av P 是指脉冲重复周期内的输出功率的平均值。 av P =t P v f

信号形式与脉冲波形:按调制方式可将信号分为规则波形与随机信号;理想矩形脉冲的主要参数是脉冲幅度和脉冲宽度,实际的信号都具有上升边和下降边,还有顶部波动和顶部倾斜。

信号的稳定度和频谱纯度:信号的稳定性是指信号的各项参数,即信号的振幅、频率、脉冲宽度及脉冲重复频率是否随时间变化的程度。不稳定量可以分为确定的不稳定量:由电源的波纹、脉冲调制波形的顶部波形和外界有规律的机械振动产生;随机的不稳定量:由发射管的噪声、调制脉冲的随机起伏,用统计的方法分析。对于离散型的寄生输出,信号的频谱纯度为该离散分量的单边带功率与信号功率之比;对于寄生型输出,信号的频谱纯度定义为以偏离载频若干赫兹的傅里叶频率上每单位的单边带功率与信号功率之比。

发射机的效率:发射机的效率通常指发射机输出射频功率与输入供电或发电机的输入功率之比。

6、、

7、固态雷达发射机:固态发射机由多个功率放大器组件直接合成,或者在空间合成得到需要的输出功率。

固态发射机的分类:集中合成式全固态发射机;分布式空间合成相控阵雷达发射机

优点:不需要阴极加热,寿命长;具有很高的可靠性;体积小、重量轻;工作频带宽、效率高;系统设计和运用灵活;维护方便‘成本较低。

微波单片集成收发组件的优点:成本低;高可靠性;电路的一致性好、成品率高;尺寸小、重量轻。

第三章 雷达接收机

1、雷达接收机的主要功能是:对雷达天线接收到的微弱信号进行预选、放大、变频、滤波、解调、数字化处理,同时抑制外部的干扰、杂波以及机内噪声,使回波信号尽可能多的保持目标信息,以便进一步进行信号处理和数据处理。一般来说,雷达探测的飞机、船只、地面车辆和人员反射回来的回波是有用信号;地面、海面、云雨、鸟群等反射的回波为杂波;干扰是指各种有源干扰和无源干扰。

雷达接收机主要由微波电路、模拟电路、数字电路、数字信号处理组成。

雷达系统一般采用超外差接收机:

接收机前端:包括接收机保护器;射频放大器;射频滤波器,抑制进入接收机的干扰,置于放大器前,对雷达接收机的抗干扰和抗过载能力有好处,但是增加了接收机的噪声,置于放大器之后,对接收机的灵敏度和噪声系数有好处,但是抗干扰能力和抗过载能力变差;混频器

2、雷达接收机的基本组成:接收机前端、中频接收机、频率源。

#

接收机前端一般采用二次变频,因为对于具有一定射频带宽的雷达接收机,一次变频的镜像频率一般会落在信号频率带宽之内,只有通过提高中频频率才能使镜像频率落在信号频带范围外。镜像频率的信号和噪声是不需要的,会使接收机的噪声系数变高,必须通过射频滤波器滤掉。或者直接采用镜像抑制混频器。

中频接收机:为具有对数放大和“零中频”的中频接收机,包括匹配滤波器

频率源:具有一定频域稳定度的本机振荡器;相干振荡器;自动频率控制。频率合成器是全相参频率源的核心部分,可以用直接合成和间接合成的方法实现。

3、雷达接收机的主要质量指标:

灵敏度和噪声系数:灵敏度表示接收机接收微弱信号的能力。噪声系数F 的定义是:接收机输入端的信号噪声功率比与输出端的信号噪声功率比的比值,其表达式为:

=i

i

O

O S N S N F 接收机灵敏度与噪声系数的关系为:

min i o n S kT B FM 接收机的工作频带宽度和滤波特性:接收机的工作频带宽度表示接收机的瞬时工作频率范围。接收机的工作频带较宽时,必须选择较高的中频,以减少混频器输出的寄生响应对接收机性能的影响。接收机的滤波特性主要取决于中频频率的选择和中频部分的频率特性。如果中频滤波特性的带宽大于回波信号的带宽,则过多的噪声进入接收机,反之,信号的能量将会损失,使得接收机输出的信噪比减小

动态范围和增益:动态范围表示接收机工作时允许的输入信号强度的变化范围。所允许的最小输入信号强度通常取最小可检测信号,而所允许的最大的输入信号强度则根据正常工作的要求定。当输入的信号过大时,接收机将发生过载饱和,从而使较小的目标回波显著减小。接收机的增益表示对回波信号的放大能力,通常表示为输出信号功率与输入信号功率之比。 ~

频率源的频率稳定性和频谱纯度:短期频率稳定度通常用单边带相位噪声功率密度来表

示。频谱纯度主要是频率源的杂波抑制度和谐波抑制度。

幅度和相位的稳定性

正交鉴相器的正交度:模拟正交鉴相器和数字正交鉴相器。正交鉴相器的正交度表示鉴相器保持信号幅度和信号信息的准确程度。模拟正交鉴相器指相干振荡器的频率与中频信号的中心频率相等,使其差频为零;可以处理较宽的基带信号,难以实现I 、Q 通道良好的幅度平衡和相位正交;数字鉴相器的工作原理是直接用A/D 变换器对中频信号,然后进行I/Q 分离。全数字化处理,可以实现很高的I/Q 幅度平衡和相位正交,工作稳定性好。

A/D 变化器的技术参数

抗干扰能力

频率源和发射激励性能:从频域角度,主要检测波形和发射激励信号的频谱特性;从时域角度信号的质量主要是调制信号的前沿、后沿和顶部起伏,以及调制载波的频率和相位特性。

4、接收机的噪声系数和灵敏度

接收机的噪声来源主要分为两种:内部噪声,主要由接收机中的馈电、放电保护器、高频放

大器或混频器产生,在时间上是连续的,相位和幅度是随机的;外部噪声是 由雷达天线进入接收机的各种人为干扰、天电干扰、工业干扰、宇宙干扰和天线热噪声。

电阻热噪声:是由于导体中自由电子的无规则热运动形成的。电阻产生的起伏噪声电压均方值为

2n 4n u kTRB = -

额定噪声功率:当负载阻抗与噪声源内阻抗匹配时,噪声源输出最大的噪声功率 o n N kTRB =

天线噪声:包括天线的热噪声和宇宙噪声,前者是由天线周围介质微粒的热运动产生的噪声,后者是由太阳以及银河系产生的噪声,这种起伏噪声被天线吸收后进入接收机就呈现为天线的热起伏噪声

2nA 4A A n u kT R B =

天线噪声温度取决于天线方向图中各辐射源的噪声温度,他与波瓣仰角θ和工作频率f 有关。 噪声带宽:把不均匀的噪声功率谱等效为在一定频带内是均匀的功率谱,这个频带为等效噪声功率谱带宽。

202

0()()n H f df

B H f ∞

=?

5、噪声系数和噪声温度:噪声系数的定义是接收机的输入信号噪声功率比与输出信号噪声功率比的比值。它表示由于接收机内部噪声的影响,使接收机输出端额信噪比其输入端的信噪比变差的倍数。

0i a N F N G =

噪声系数只适用于接收机的线性电路和准线性电路;为保证噪声系数具有单值确定性,规定输入噪声以天线等效电阻在室温290K 时产生的热噪声为标准;噪声系数是没有单位的数值用分贝表示;噪声系数的概念与定义可以推广到任何无源或有源的四段网咯。

$

等效噪声温度把接收机内部噪声看成理想接收机的天线电阻在温度

e T 时所产生的 0(1)e T F T =- 级联电路的噪声系数:32111211......F F F F G G G --=+++

321112.....e T T T T G G G =+

++

接收机的灵敏度:表示接收机接收微弱信号的能力。

第四章 雷达终端

1、雷达终端的基本内容:目标数据的录取、数据处理和目标状态的现实。任务是发现目标,测定目标的位置坐标,根据目标回波的特点及其变化关系来判断目标的性质。

2、雷达坐标系:直角坐标、极坐标。一维显示、二维显示。采用的显示器件:阴极射线管、平板显示器。扫描方式:直线扫描、径向扫描、圆周扫描,随机扫描方式、光栅扫描

一次显示显示目标的距离、方位、仰角、高度、位置为模拟显示,二次显示显示目标的高度、速度、航线,以数字显示为主。

主要类型:距离显示器、平面显示器、高度显示器、情况显示器、综合显示器

距离显示器:一维显示,用屏幕上的光点距参考面的水平偏移量表示目标的斜距,光点的垂直距离表示目标回波的强度。A 型显示器采用直线扫描方式;A/R 型显示器采用双踪直线扫描方式;J 型显示器采用圆周显示器,主波与回波沿顺时针方向扫略弧线的长度对应目标的斜距。

平面显示器:用屏幕上的光点的位置表示目标的坐标位置,光点的量度表示目标回波的强度。PPI 显示器。

高度显示器:E 型显示器。

雷达显示器的质量指标:显示器的类型;显示的目标坐标的数量、种类和量程;对坐标的分辨力;显示器的量度和对比度;图像的重复频率;显示图像的失真和误差;其他指标:体积、重量、工作温度。

距离显示器:A 型显示器:画面上有发射脉冲,近区地物回波,目标回波。组成:扫面电路的形成,视频放大,距标、距离刻度的形成

A/R 显示器:发射脉冲、近区地物回波、两个目标回波

第五章 雷达作用距离

雷达方程:设雷达发射功率为t P ,雷达天线的增益为t G ,则在自由空间工作时,距离雷达天线R 的目标处的功率密度为

?

假设目标可以将接受到的功率无损失的辐射出来,则可得到二次辐射功率:

又假设P2均匀辐射,则在接受天线处收到的回波功率为

如果雷达接收天线的有效截面积为Ar ,则在雷达接收处接受到的回波功率为Pr ,而

*

天线增益和有效面积之间有以下关系:

单基地脉冲雷达通常是收发公用天线

雷达方程虽然给出了作用距离和各参数之间的定量关系,但是未考虑到设备的实际损耗和环境因素,而且方程中有两个不可能预测的量:目标有效发射面积、最小可检测信号。

目标的雷达截面积:定义为目标处每单位入射功率密度在接收机每单位立体角内产生的反射功率乘以4π,导电性良好各向同性的球体,它的截面积等于该球体的几何投影面积,等效的意思是该球体在接收机方向每单位立体角产生的功率与实际目标散射体所产生的相同。 最小可检测信号:雷达检测能力实际上取决于信号噪声比。

min i o n S kT B FM =

M 是识别系数,D 是检测因子

用检测因子表示的优点:当雷达在检测目标之前有多个脉冲可以积累,由于积累可以改善信噪比;用能量表示的雷达方程适用于当雷达使用各种复杂脉压信号时的情况。只要知道脉冲功率及发射脉宽,就可以用来估计作用距离而不必考虑具体的波形参数。

门限检测:对检波后n 个的脉冲进行加权积累,然后将积累输出与某一门限电压进行比较,若输出包络超过门限值,则认为目标存在,否则认为没有目标。

电子科技大学雷达原理与系统期末考题

大四上学期雷达原理与系统期末考题(大部分) 一.填空选择: 1下列不能提高信噪比的是(B) A,匹配滤波器B,恒虚警C,脉冲压缩D,相关处理 2,若一线性相控阵有16个阵元,阵元间距为波长的一半,其波束宽度为(100/16) 3,模糊图下的体积取决于信号的(能量) 4,对于脉冲多普勒雷达,为了抑制固定目标,回拨方向加入对消器,这措施对运动目标的检测带来的影响是出现了(盲速) 5,雷达进行目标检测时,门限电平越低,则发现概率(越大),虚警概率(越大),要在虚警概率保持不变的情况下提高发现概率,则应(提高信噪比) 6,对于脉冲雷达来说,探测距离盲区由(脉冲宽度)参数决定。雷达接受机灵敏度是指(接收机接收微弱信号的能力,用接收机输入端的最小可探测信号功率Smin表示) 7,不属于单级站脉冲雷达系统所必要的组成部分是(B) A收发转换开关B分立两个雷达 8,若要求雷达发射机结构简单,实现成本低,则应当采用的结构形式是(单级振荡式发射机) 9,多普勒效应由雷达和目标间的相对运动产生,当发射信号波长为3m,运动目标与雷达的径向速度为240m/s,如果目标是飞向雷达,目标回波信号的频率是(100MHz+160Hz) 注:多普勒频率2drfv 10,在雷达工作波长一定情况下,要提高角分辨力,必须(增大天线间距d),合成孔径雷达的(方向分辨力)只与真实孔径的尺寸有关 11,只有同时产生两个相同且部分重叠的波束才能采用等信号法完成目标方向的测量 12,当脉冲重复频率fr和回波多普勒频率fd 关系满足(fr)》fd)时,不会出现(频闪和盲速) 13,只有发射机和接受机都是(相参系统),才能提取出目标多普勒信息14,大气折射现象会增加雷达(直视距离) 15,奈曼尔逊准则是在检测概率一定的条件下,使漏警概率最小,或者发现概率最大。16,相控阵雷达随着扫描角增加,其波束宽度(变大) 17,雷达波形模糊函数是关于(原点)对称的。

雷达原理笔记之雷达方程推导

参数 符号雷达发射机的发射功率为 P t 目标距离R 目标的雷达截面积发射天线增益G t 接收天线增益G r 天线的有效接受面积 A e 电磁波波长接收机最小可检测功率 S imin 雷达原理笔记之雷达方程的推导 H1 雷达作用距离跟雷达方程的各个参数关系紧密。雷达作用距离的改善往往需要利用雷达方程的各项影响参数进行改善。 1,基本方程 H2 参数列表: 公式推导: 首先假设,发射天线为无方向性天线,即各向同性。那么空间中任何一点的电磁波功率密度为: 然后加上天线增益系数G t : 空间中,被目标截获并产生二次辐射的电磁波功率: 被目标二次辐射到空间的电磁波功率密度: 目标二次辐射的电磁波功率,被雷达接收天线截获得到的功率: 雷达接收机能检测的回波信号最小功率为S min ,因此应满足的不等式: 解不等式得到: 进而,最大作用距离R max :

参数符号玻尔兹曼常数k 接收机噪声带宽B n /B s 环境温度(噪声温度) T 0接收机噪声系数F 0检测因子(未相参积累) D 0信号处理增益G sp 损耗衰减因子L 相参积累脉冲个数 N 脉冲宽度 脉冲雷达发射期间的平均功率 P t 信号积累有效总时宽 T s 对于脉冲体制雷达,常用收发共用天线,则G t =R r ,可得R max 的其他两种形式: 2,雷达方程的其他形式 H2 2.1考虑相参积累增益 H3 将S imin =kT 0B n F 0D 0代入雷达基本方程,得到:s 信号处理后:D 0=D 0/G sp ,信号处理后: 2.2考虑各种损耗H3 2.3用信号能量表示的形式H3 根据,得到:

雷达原理

一、绪论 雷达:无线电探测与测距。利用电磁波对目标检测、定位、跟踪、成像和识别。 雷达利用目标对电磁波的反射或散射现象来发现目标并测定其位置的。 组成框图 雷达测量原理 雷达发射信号: 雷达接收信号: 雷达利用收发信号之间的相关性获取目标信息 雷达组成: 天线:向确定的方向发射和接收特定频段的电磁波 收发开关: 发射状态将发射机输出功率接到天线,保护接收机输入端 接收状态将天线接收信号接到接收机,防止发射机旁路信号 发射机:在特定的时间、以特定的频率和相位产生大功率电磁波 接收机:放大微弱的回波信号,解调目标信息 雷达的工作频率: 工作频率范围:22mhz--35ghz 扩展范围:2mhz--94ghz 绝大部分雷达工作在:200mhz--10000ghz 雷达的威力范围:最大作用距离、最小作用距离、最大仰角、最小仰角、方位角范围 分辨力:区分点目标在位置上靠近的能力 距离分辨力:同一方向上两个目标之间最小可区别的距离 角度分辨力:在同一距离上的两个不同方向的点目标之间最小能区别的角度 数据率:雷达对整个威力范围内完成一次搜索所需要的时间倒数,也就是单位时间内雷达所能提供对一个目标数据的次数。 跟踪速度:自动跟踪雷达连续跟踪运动目标的最大可能速度 发射功率的和调制波形: 发射功率的大小直接影响雷达的作用距离

发射信号的调制波形: 早期简单脉冲波形,近代采用复杂波形 脉冲宽度:脉冲雷达发射信号所占的时间。影响探测能力和距离分辨力 重复频率:发射机每秒发射的脉冲个数,其倒数是重复周期。决定单值测距的范围,影响不模糊速区域大小 天线波束形状天线:一般用水平面和垂直面内的波束宽度来表示 天线的扫描方式:搜索和跟踪目标时,天线的主瓣按照一定规律在空间所作的反复运动。机械性扫描和电扫描 接收机的灵敏度:通常规定在保证50%、90%的发现概率条件下,接收机输入端回波信号的功率作为接收机的最小可检测信号功率。这个功率越小接收机的灵敏度越高,雷达的作用距离越远。 显示器的形式和数量:雷达显示器是向操纵人员提供雷达信息的一种终端设备,是人际联系的一个环节。 电子战对抗中的雷达: 电子战(EW ):敌我双方利用无线电电子装备或器材所进行的电磁信息斗争,包括电子对抗和电子反对抗。 电子对抗(ECM ):为了探测敌方无线电电子装备的电磁信息(电磁侦察),削弱或破坏其使用效能所采取的一切战术、技术措施(电子干扰、伪装、隐身和摧毁) 电子反对抗(ECCM ):在敌方实施电子对抗的条件下,保证我方有效采用电磁信息所采取的一切战术、技术措施(反侦察、抗干扰、反伪装、反隐身、反摧毁) 雷达反干扰 天线抗干扰:低旁瓣、旁瓣对消、波束控制、随机扫描 发射机抗干扰:提高有效辐射功率、频率捷变、频率编码、频率分集、脉冲压缩、波形隐蔽、窄脉冲、重频时变 接收机、信号处理机抗干扰:接收机抗饱和、重频、脉宽鉴别、MTI 、MTD 、积累检测 二、发射机 发射机任务:产生大功率高频振荡发射信号。脉冲雷达要求发射机产生一定宽度、一定重复频率、一定波形的大功率射频脉冲列 基本类型:连续波发射机、脉冲调制发射机(单极振荡式发射机、主振荡式发射机) 输出功率:发射机送到天线输入端的功率 峰值功率:脉冲期间发射机输出功率的平均值(不要过分增大法设计的峰值功率) 平均功率:脉冲重复周期内输出功率的平均值: 工作比D: 常规脉冲雷达工作比0.001 脉冲多普勒雷达工作比10-2 ~10-1量级 连续波雷达工作比100% 总功率:发射机输出功率与输入功率之比 主振放大式发射机特别注意改善输出级效率 信号形式: 信号形式由雷达体制决定 常规脉冲雷达为简单脉冲波形,特殊体制雷达为复杂调制波形 t r av P T P τ=r r T F D ττ= =

雷达原理复习

1、雷达的任务:测量目标的距离、方位、仰角、速度、形状、表面粗糙度、介电特性。 雷达是利用目标对电磁波的反射现象来发现目标并测定其位置。 当目标尺寸小于雷达分辨单元时,则可将其视为“点”目标,可对目标的距离和空间位置角度定位。目标不是一个点,可视为由多个散射点组成的,从而获得目标的尺寸和形状。采用不同的极化可以测定目标的对称性。 任一目标P所在的位置在球坐标系中可用三个目标确定:目标斜距R,方位角,仰角 在圆柱坐标系中表示为:水平距离D,方位角,高度H 目标斜距的测量:测距的精度和分辨力力与发射信号的带宽有关,脉冲越窄,性能越好。目标角位置的测量:天线尺寸增加,波束变窄,测角精度和角分辨力会提高。 相对速度的测量:观测时间越长,速度测量精度越高。 目标尺寸和形状:比较目标对不同极化波的散射场,就可以提供目标形状不对称性的量度。 2、雷达的基本组成:发射机、天线、接收机、信号处理机、终端设备 3、雷达的工作频率:220MHZ-35GHZ。L波段代表以22cm为中心,1-2GHZ;S波段代表10cm,2-4GHZ;C波段代表5cm,4-8GHZ;X波段代表3cm,8-12GHZ;Ku代表,12-18GHZ;Ka代表8mm,18-27GHZ。 第二章雷达发射机 1、雷达发射机的认为是为雷达系统提供一种满足特定要求的大功率发射信号,经过馈线和收发开关并由天线辐射到空间。 雷达发射机可分为脉冲调制发射机:单级振荡发射机、主振放大式发射机;连续波发射机。 2、单级振荡式发射机组成:大功率射频振荡器、脉冲调制器、电源 触发脉冲 脉冲调制器大功率射频振荡器收发开关 电源高压电源接收机 主要优点:结构简单,比较轻便,效率较高,成本低;缺点:频率稳定性差,难以产生复杂的波形,脉冲信号之间的相位不相等 3、主振放大式发射机:射频放大链、脉冲调制器、固态频率源、高压电源。射频放大链是发射机的核心,主要有前级放大器、中间射频功率放大器、输出射频功率放大器 射频输入前级放大器中间射频放大器输出射级放大器射频输出固态频率源脉冲调制器脉冲调制器 高压电源高压电源电源 脉冲调制器:软性开关调制器、刚性开关调制器、浮动板调制器 4、现代雷达对发射机的主要要求:发射全相参信号;具有很高的频域稳定度;能够产生复杂信号波形;适用于宽带的频率捷变雷达;全固态有源相控阵发射机 5、发射机的主要性能指标: 工作频率和瞬时带宽:雷达发射机的频率是按照雷达的用途确定的。瞬时带宽是指输出功率变化小于1bB的工作频带宽度。 输出功率:雷达发射机的输出功率直接影响雷达的威力范围以及抗干扰的能力。雷达发

雷达气象学

一、填空(30分,T14=2分) 1使用雷达的PPI资料时,不同R处回波处于不同高度上 2根据衰减理论,波长越短,衰减愈大;雷达波在大气中传播时受到衰减的原因是:(1)电磁波投射到气体分子或液态、固态的云和降水粒子上时一部分能量被粒子吸收,变成热能或其他形式的能量。(2)另一部分能量将被粒子散射,使原来入射方向的电磁波能量受到削弱。 或者:大气对电磁波的吸收和衰减作用的总和(P33) ?3圆形的中气旋流场,在多普勒速度图上表示为零径向速度线穿过涡旋中心,一对左负右正,对称的正负速度中心,正负闭合等值线圈沿雷达距离圈排列(P289、407) 4大冰雹的后向散射截面比同体积的大水滴的后向散射截面大 5通常,超折射回波的本质是地物回波(ppt,P300) 6“V”型缺口通常表示冰雹云的回波(P381,ppt) 7 Z的物理意义是单位体积中降水离子直径6次方的总和,它与粒子大小有关(ppt) 8 以不同的仰角探测超级单体风暴云的回波特征,可能出现:钩状回波, 空洞回波(无回波穹窿),指状回波回波(ppt) 9层状云降水的雷达强度回波图上,经过加衰减后,其回波图上经常会出现零度层亮带,此现象在雷暴消散期也常常出现。(P306、309) 10 非降水回波包括云的回波,闪电的回波,雾的回波,晴空大气回波等回波(P345) ?11 同一块雨云由远至近地性质不变地逼近雷达站,在强度回波图上显示的回波范围越来越大,强度越来越强,这是由于距离衰减的影响 12 波束宽度指的是在天线方向图上两个半功率点方向的夹角(单位:°),它决定雷达的切向分辨率。(课堂笔记) 13 在雷达的速度回波图上若零速度带通过测站并呈一直线状,则表示测量范围内各高度层的风向不变(P278) 14 如果雷达发射功率很大,接收灵敏度也很高,那么天气雷达的探测能力的大小主要取决于:雷达电磁波束能否有效地照射到降水区中和反射率因子的大小(ppt习题) 15 多普勒天气雷达速度回波图中零速度带的意义是:实际风速为零或很小、实际风向与雷达探测波束相垂直(ppt) 16 层状云零度层亮带的成因主要是由于:融化作用,碰并聚合效应,速度效应,粒子形状的作用,(P308)二计算题 分别画出并计算图一、图二中1,2的真实风向 (画出!&计算!四个地方) 三、简答题(30分) 1用雷达资料判别冰雹云回波可以从哪些方面着手?(P380-385) (1)冰雹云的雷达回波强度特别强

南京理工大学 雷达原理期末考试题09年A卷

南京理工大学课程考试试卷(学生考试用) 课程名称: 雷达原理 学分: 3教学大纲编号: 04041901 试卷编号: A卷 考试方式: 闭卷、笔试 满分分值: 100+5考试时间: 120分钟 组卷日期: 2009年6月16日 组卷老师(签字): 审定人(签字): 学生班级: 学生学号: 学生姓名: 常用分贝(功率)换算表:1dB(1.26), 2dB(1.6), 3dB(2), 4dB(2.5), 5dB(3.2), 7dB(5), 8dB(6.3) 2(3dB), 3(4.77dB), 4(6dB), 5(7dB), 6(7.78dB), 7(8.45dB), 8(9dB) 注意:简答题必须语句完整;推导题和计算题必须要有分步过程及必要的文字说明,直接写出结果最多只得一半分;各题中若出现无文字说明的箭头符号将被扣分 一、 填充选择题(15空,每空2分,共30分) 1.在以下雷达参数中,()对目标雷达截面积的影响最小? (a)波段(b)视角(c)脉冲重复频率(d)极化 2.某雷达接收机的输入信噪比为SNR i =10,输出信噪为SNR o =4,则该雷达接收机的噪 声系数为dB。 3.在某对空警戒雷达接收信号中,从空中飞机反射回来的电磁波称为(),从己方其 它同频雷达泄漏过来的电磁波称为(),从云层反射回来的电磁波称为() (a)干扰(b)目标(c)噪声(d)杂波 4. (相位扫描/机械扫描/频率扫描)雷达的最大作用距离将不随扫描角度 的变化而变化。 5. (单级振荡/超外差/主振放大/超再生)式雷达发射机的频率稳定度较差, 相继发射脉冲之间的相位通常不相参 6.以下哪个部件最不可能属于雷达接收机() (a)低噪高放(b)混频器(c)脉冲调制器(d)信号处理机 7.雷达接收机带宽应 (小于/等于/大于/不确定)该雷达的发射信号带宽 8.某雷达工作频率为6GHz,则该雷达属于 (L/S/C/X)波段 9.振幅和差式单脉冲雷达的鉴角特性曲线是 (差波束/和波束/ 差波束比和波束/和波束比差波束)随目标角误差变化的函数关系曲线 10.A雷达与B雷达的发射脉冲宽度分别为4μs和6μs,发射信号带宽分别为0.5MHz和 1MHz,则A雷达的距离分辨力 (低于/高于/不确定)B雷达 11.某车载全相参脉冲雷达的峰值发射功率为P t,脉冲重复频率为f r,工作频率为f0,雷 达车以速度v r直线行进,在雷达车正侧方某处有一巨石,测得该巨石的脉冲回波延时为τ,则对雷达接收机来说,该巨石的距离为。若该雷达采用N个等

雷达原理笔记之恒虚警概率检测

雷达原理笔记——恒虚警概率检测 H1 恒虚警概率检测技术是雷达设计过程中经常涉及到的问题。 由于噪声的存在,雷达在探测目标时不可避免地会出现虚警情况。而这种虚警概率的高低则是反应雷达探测性能的重要指标。“恒虚警检测”顾名思义就是在保证虚警概率一定的情况下,尽可能高的提高发现概率。 上图是,雷达设计过程经常用到的一个概率分布图。一般来说,噪声都是服从0均值的高斯分布,其包络服从瑞利分布。目标和噪声的包络服从莱斯分布(Rice分布)或者广义瑞利分布。横坐标是对噪声电平归一化的回波信号电平(目标和噪声的包络电压)。 图中与纵坐标平行的虚线是雷达接收机的信号检测门限值,高于门限电平接收机认为接收到的是目标信号,判为有目标存在。因此在图中可以直观看到,在虚线右边,信号和噪声的包络电压概率分布曲线和横坐标轴所围成的面积是对应的发现概率;而在虚线右边,噪声的包络电压概率分布曲线和横坐标轴所围成的面积是对应的虚警概率。因此,提高检测门限,发现概率P d减小;降低检测门限,虚警概率P fa 增大。因此,在实际设计过程中,需要根据具体使用情景权衡考虑。 需要注意的是: 1. 噪声电平的包络的概率密度曲线是对噪声电平归一化后的,对所有的雷达设计均适用。 2. 图像的横坐标不是实际的雷达接收机检测信号所设置的信号电平。而是在确定虚警概率和检测信 噪比门限U R/σ后,再根据雷达实际的噪声电平得到信号检测对应的实际信号电平门限。 设信噪比检测门限实际雷达的噪声电平则信号电平门限值为: 实际设计中雷达接收机的噪声基底不同,造成不同的原因主要有: 1. 接收机带宽不同 2. 接收机内部噪声温度不同 易混淆点: 提高雷达的检测门限,不影响接收机前端的噪声系数。(这两个是毫不相关的概念)

雷达工作原理

一、雷达工作原理、专业术语解释 雷达是军事电子对抗的尖端技术和设备,是作为21世纪反恐和安保的技术新标准(家庭安全警戒网) 幕帘技术同红外技术相似,只是它的防范区域与普通红外不同,顾名思义就是象一道帘子一样,适合于整个平面防范。 A)幕帘夹角 幕帘的两道之间的夹角。 B)幕帘张角 每道幕帘展开扇形的两条边之间的夹角。 C)探测范围

探测范围指雷达正常工作的感应范围,即雷达能够探测到在此范围以内的所有物体运 动从而产生报警状态。 D)探测距离 雷达在正常工作下所能探测到的最远距离,雷达分为四档;分别是2-3m、3-4m、5-6m、6-8m。 E)发射距离 报警系统中无线器件在被触发后将无线报警信号以电磁波的形式发射出去的最远距离,雷达在空旷地带为100M。 F)发射频率 电磁波发射的频率用HZ计算,国家电磁波管理委员会规定的公用波段频率是315/433MHZ G)关于护窗雷达的防宠物功能 护窗雷达发展到今天,在技术上已经比较成熟,防小宠物是护窗雷达的一种重要的功能,慑力护窗雷达对抗小宠物干扰的处理方式有两种: 一种是物理方式,即通过菲涅尔透镜的分割方式的改变来降低由于小宠物引起误报的概率,这种方式是表面的,效果也是有限的。第二种方式是采用对探测信号处理分析方式,主要是对探测的信号进行数据采集,然后分析其中的信号周期,幅度,极性。这些因素具体反应出移动物体的速度、热释红外能量的大小,以及单位时间内的位移。探测器中的微处理器将采集的数据进行分析比较,由此判断移动物体可能是人是小动物。 由此看来,我们要注意的是护窗雷达的防小宠物的功能是相对的。这种相对性包括两个方面,一个是防宠物是相对的,相对于没有防宠物功能的探测器其误报率是大大降低了,它对小宠物的数量和大小有一定限度的。第二方面是安装位置是要有一定要求的,并不是随意的安装就可以达到防小宠物功能。 效果 一旦整幢别墅设防,将形成无形的雷达警戒网,有效的将整幢别墅警戒起来,如果贼匪将在深夜靠近别墅时,男警立刻通通碟,紧接着高达95分贝的防恐警和国际反恐广播立刻炸响,十二束红眩捕俘灯和墙壁上太阳灯交替发射,同时雷达第一时间了射无线电信号给装在室内的主机,主机会告诉你哪个位置在报警,并第一时间拨打您

雷达原理复习总结

雷达原理复习总结 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

雷达原理复习要点第一章(重点) 1、雷达的基本概念 雷达概念(Radar): radar的音译,Radio Detection and Ranging 的缩写。无线电探测和测距,无线电定位。 雷达的任务: 利用目标对电磁波的反射来发现目标并对目标进行定位,是一种电磁波的传感器、探测工具,能主动、实时、远距离、全天候、全天时获取目标信息。 从雷达回波中可以提取目标的哪些有用信息,通过什么方式获取这些信息? 斜距R : 雷达到目标的直线距离OP 方位α: 目标斜距R在水平面上的投影OB与某一起始方向(正北、正南或其它参考方向)在水平面上的夹角。 仰角β:斜距R与它在水平面上的投影OB在铅垂面上的夹角,有时也称为倾角或高低角。 2、目标距离的测量 测量原理 式中,R为目标到雷达的单程距离,为电磁波往返于目标与雷达之间的时间间隔,c为电磁波的传播速率(=3×108米/秒)距离测量分辨率 两个目标在距离方向上的最小可区分距离 ρr= ρρ 2 最大不模糊距离 3、目标角度的测量 方位分辨率取决于哪些因素 4、雷达的基本组成 雷达由哪几个主要部分,各部分的功能是什么 同步设备:雷达整机工作的频率和时间标准。 发射机:产生大功率射频脉冲。 收发转换开关: 收发共用一副天线必需,完成天线与发射机和接收机连通之间的切换。天线:将发射信号向空间定向辐射,并接收目标回波。 接收机:把回波信号放大,检波后用于目标检测、显示或其它雷达信号处理。 显示器:显示目标回波,指示目标位置。

2014遥感导论考研笔记

第一章绪论 1、遥感的基本概念: v广义:泛指一切无接触的远距离探测,包括对电磁场、力场、机械波(声波、地震波)等的探测。 v 狭义:应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。也是一门科学。 2、遥感系统的组成部分: 1)被测目标的信息特征 目标物电磁波特性,既是遥感的信息源,也是遥感探测的依据。 2)信息的获取 信息获取主要由遥感平台、遥感器等协同完成。 3)信息的传输与接收 空间数据传输与接收是空间信息获取和空间数据应用中必不可少的中间环节。 4)信息的处理 首先地面站进行一系列的预处理,如信息的恢复、辐射校正、几何纠正、卫星姿态校正、投影变换等;地面站和用户再根据需要进行精校正处理和专题信息的处理和分类。 5)遥感信息的应用 遥感获取信息的目的就是应用。 3、遥感的类型:按遥感平台分 地面遥感、航空遥感、航天遥感航宇遥感 按传感器的探测波段分 紫外遥感:探测波段在0.05~0.38μm之间;可见光遥感:探测波段在0.38~0.76μm之间;红外遥感:探测波段在0.76~1000μm之间;微波遥感:探测波段在1mm~10m之间; 多波段遥感:指探测波段在可见光波段和红外波段范围内,再分成若干窄波段来探测目标。按工作方式分 (1)主动遥感和被动遥感:主动遥感由探测器主动发射一定的电磁波能量并接收目标的后向散射信号;被动遥感的传感器不向目标发射电磁波,仅被动接收目标物的自身发射和对自然辐射源的反射能量。(2)成像遥感与非成像遥感:前者传感器接收的目标电磁辐射信号可转换成(数字或模拟)图像;后者传感器接收的目标电磁辐射信号不能形成图像。按遥感的应用领域 (1)从大的研究领域可分为外层空间遥感、大气层遥感、陆地遥感和海洋遥感等。 (2)从具体应用领域可分为资源遥感、环境遥感、农业遥感、林业遥感、渔业遥感、地质遥感、气象遥感、水文遥感、城市遥感、工程遥感及灾害遥感、军事遥感等。 4、遥感的特点:1)大面积的同步观测2)时效性3)数据的综合性和可比性4)经济性5)局限性 5、航天遥感阶段概述(1957-)P8-10 遥感平台方面:传感器方面: 1)波谱分辨率提高:单一波段多波段高光谱; 2)光学成像技术数字成像技术 14、 植物的光谱曲线 从植物典型的波谱曲线来看,控制植物反射率的主要因素有植物叶子的颜色、叶子的细胞构造和植物的水分等。植物的生长发育、植物的不同种类、灌溉、施肥、气候、土壤、地形等因素都对植物的光谱特征发生影响,使其光谱曲线的形态发生变化。土壤的光谱曲线 土壤光谱曲线与土壤本身的颜色、质地的粗细、有机质和含水量等因素影响。水体的光谱曲线清水在可见光范围:水体的反射率总体是比较低。不超过10%,一般为4~5%,并随波长的增加而不断减低,到了0.6um处大约为2~3%。过了0.75um,水体几何成全吸收体。 在近红外波段清澈的水:为全吸收体,色调深,与地物有明显的界线,可以区分水陆界线;热红外晚间成像水体呈浅色调;根据热红外传感器的温度定标,可在热红外影像上反演出水体的温度。所以夜间的热红外影像可用于寻找泉水,特别是温泉。

二次雷达作用距离及影响因素分析

二次雷达覆盖范围及影响因素分析 民航吉林空管分局 梁志国 严浩 文敏 马纯清 1 引言 航管二次雷达对保证民航飞机安全飞行、航班正常、提高空中交通管制效率具有重要的作用。二次雷达覆盖范围是一项重要指标,这涉及到雷达设备的各项指标(如雷达天线增益、发射机发射功率、接收机带宽、接收机噪声系数等指标)的确定、准确合理的选址、规划和布局。影响雷达实际作用距离的外界因素是非常复杂的,雷达的探测性能要受到雷达站选址和气候等多种因素的影响。本文系统的研究了二次雷达辐射信号作用距离以及影响因素、空域覆盖问题。 2 理想条件下二次雷达覆盖范围分析 二次雷达覆盖范围由二次雷达的作用距离决定。二次雷达探测飞机需要询问信号能够有效的到达飞机应答机天线,飞机的应答信号能够有效的到达雷达天线。询问距离要想达到最大,条件就是询问信号到达飞机时的功率刚刚好等于飞机应答机最小可检测信号。询问信号作用距离的公式为 2/1min I I I I Imax 4????????''=P G G P R πλ,其中,I λ为询问信号波长,这里为0.291m ,I P 为询问 信号功率,典型值为2000瓦,I G 为询问信号增益,典型值为27dB ,即天线增 益为501,'I G 为应答机天线的接收增益,因为应答机天线为全向天线,所以天线增益为1,'min P 为应答机的灵敏度,即最小可检测信号,典型值为-71dBm , 即79.4×10-12w 。经计算可以得到询问信号的最大作用距离为2600km 。 应答信号到达雷达的距离达到最大的条件是应答信号到达雷达天线的功率刚刚好等于二次雷达最小可检测信号,应答信号作用距离的公式为 2/1min R R R R Rmax 4????????''=P G G P R πλ,R λ为应答信号波长,0.275m ,'R P 为应答信号功率, 典型值为251W,24dBW ,R G 为雷达接收增益,27dB ,'R G 为应答频率应答机天线

西电雷达原理期末复习题2

模拟题2 一、填空(每空1分,总共25分) 1. 选择题(每题2分,共计20分) 1.1 英文“Radar ”(音译雷达)的中文含义_________________。 1.2 雷达发射机可以分为两类,它们分别是单级振荡式和______ ____。 1.3 某雷达的脉冲宽度为1μs ,脉冲重复周期为1ms ,发射功率为100KW ,平均功率为__________。 1.4 某警戒雷达发射脉冲为脉宽为1μs 的矩形脉冲,接收匹配滤波器采用矩形滤波器,最佳带宽脉宽积为1.37,不考虑剩余失谐,则接收机中频通道的最佳带宽为______ ____。 1.5 雷达脉冲积累对雷达检测性能有所改善,M 个脉冲的相参积累可以是雷达信号的输出信噪比提高 倍。 1.6 某脉冲雷达脉冲宽度为1.5微秒,则其最小可分辨距离为: 米。 1.7 某PPI 显示器为了避免15Km 内的地物杂波在显示器上显示,则实现时距离扫略电流应该延迟 微秒后提高起始电流强度开始。 1.8 一维直线移相器天线阵,阵元数目是20,发射信号波长是λ,阵元间距是2/λ=d ,则偏离法线45°方向上雷达天线方向图的半功率波束宽度是______度。 1.9 若雷达探测的目标是一架飞机,雷达的发射频率是,若飞机以100m/s 的速度绕雷达做圆周运动,则雷达接收到的目标回波信号的频率是 GHz 1Hz 。 1.10 脉冲多卜勒雷达的脉冲重复频率为Hz f r 1000=,对动目标进行检测,其多卜勒频率为,能够出现盲速的最小多普勒频率等于 d f Hz 。 二、采用多基线相位法测角,示意图如下,目标偏离法线夹角是θ,1阵元与2阵元之间的间距2/12λ=d ,1阵元与3阵元之间的间距λ413=d ,相位计测得,,求具有高的测角精度的D 5012=?D 5413=?θ角。(15分) 第1页 共3页

军事理论课笔记

一、核袭击前的防护工作有哪些? 1、建立现代化的警戒网 采用预警卫星、超视距雷达、远程跟踪雷达等组成全国性或地区性的警戒网,日夜担负着发现、识别、报警、捕获、跟踪来袭目标的任务。 2、使用反导武器摧毁敌导弹核武器 (1)导弹反导弹 (2)激光反导弹 (3)粒子束反导弹 3、筑起防核武器的新长城 修筑各种防御工事——人防坑道、掩蔽部、地下室。 4、做好临战前人员物资防护的准备工作 人员:(1)要准备生活必需品和防护用具 (2)要了解人防工事的位置、入口、标志和行动路线 (3)要听懂报警信号 (4)要服从人防部门的指挥 物资:掩、盖、埋、涂、包 二、敌核袭击时的防护动作和方法? 1、疏散隐蔽 (1)当国家进入临战状态时,对大中城市的人口要进行疏散,到山区、农村隐蔽。 (2)留守城市的人员,当听到报警信号时,迅速切断电源,关好门窗,

携带个人防护用具和生活用品按指定的路线进入人防工事迅速隐蔽。 2、发现核爆炸闪光时的行动 (1)利用地形地物进行防护 A、利用高地背向爆心迅速卧倒。 B、室内人员可躲在背向爆心的墙角边,最好是框架结构的水泥柱边,注意避开易倒塌的建筑物和易燃易爆物品。 C、遇到有水塘、河流等立即跳入水中,短暂隐蔽二十秒也可减轻伤害。 (2)在开阔地时的防护动作 见闪光,核爆炸,背向爆心快卧下;双手交叉叠于胸前,闭眼收腹闭嘴;热浪来时停呼吸,保存自己好杀敌。 三、敌人核袭击后的行动? 1、严防放射性沾染的伤害 核爆炸后尽量利用工事来保护自己,减少放射性沾染的伤害,不在沾染地方停留、休息和吃东西,穿戴好防护器材,扎好“三口”,快速通过或绕过沾染地带。 2、组织沾染检查和消除工作 (1)对人员、武器装备进行沾染检查,然后组织进行全身洗消或局部消除,没有条件洗澡更换衣服的,应组织拍打、扫拂等方法消除沾染减少伤害。(2)对粮食、蔬菜的消除可采取多冲洗几次的方法进行。(3)对饮水的消除沾染可用土壤净化法、过滤法、三防净水袋等。

电子科技大学雷达原理与系统期末考题精编WORD版

电子科技大学雷达原理 与系统期末考题精编 W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

大四上学期雷达原理与系统期末考题(大部分)一.填空选择: 1下列不能提高信噪比的是(B) A,匹配滤波器B,恒虚警C,脉冲压缩D,相关处理 2,若一线性相控阵有16个阵元,阵元间距为波长的一半,其波束宽度为(100/16)3,模糊图下的体积取决于信号的(能量) 4,对于脉冲多普勒雷达,为了抑制固定目标,回拨方向加入对消器,这措施对运动目标的检测带来的影响是出现了(盲速) 5,雷达进行目标检测时,门限电平越低,则发现概率(越大),虚警概率(越大),要在虚警概率保持不变的情况下提高发现概率,则应(提高信噪比) 6,对于脉冲雷达来说,探测距离盲区由(脉冲宽度)参数决定。雷达接受机灵敏度是指(接收机接收微弱信号的能力,用接收机输入端的最小可探测信号功率Smin表示) 7,不属于单级站脉冲雷达系统所必要的组成部分是(B) A收发转换开关B分立两个雷达 8,若要求雷达发射机结构简单,实现成本低,则应当采用的结构形式是(单级振荡式发射机)

9,多普勒效应由雷达和目标间的相对运动产生,当发射信号波长为3m,运动目标与雷达的径向速度为240m/s,如果目标是飞向雷达,目标回波信号的频率是(100MHz+160Hz) 注:多普勒频率2drfv?? 10,在雷达工作波长一定情况下,要提高角分辨力,必须(增大天线间距d),合成孔径雷达的(方向分辨力)只与真实孔径的尺寸有关 11,只有同时产生两个相同且部分重叠的波束才能采用等信号法完成目标方向的测量12,当脉冲重复频率fr和回波多普勒频率fd 关系满足(fr)》fd)时,不会出现(频闪和盲速) 13,只有发射机和接受机都是(相参系统),才能提取出目标多普勒信息 14,大气折射现象会增加雷达(直视距离) 15,奈曼尔逊准则是在检测概率一定的条件下,使漏警概率最小,或者发现概率最大。 16,相控阵雷达随着扫描角增加,其波束宽度(变大) 17,雷达波形模糊函数是关于(原点)对称的。

新一代天气雷达复习笔记

目录 第一章引论 (2) 1.1 新一代天气雷达概述 (2) 1.2 天气雷达的局限性 (2) 第二章多普勒天气雷达原理 (3) 2.1 后向散射截面 (3) 2.2 球形粒子的散射 (3) 2.3 电磁波在大气中的衰减和折射 (3) 2.4 雷达气象方程 (4) 2.5 最大不模糊距离和距离折叠 (5) 2.6 多普勒效应 (5) 2.7 最大不模糊速度和速度模糊 (5) 2.8 谱宽 (5) 2.9 雷达取样技术 (6) 第三章多普勒雷达图识别基础 (6) 3.1 识别反射率基本知识 (7) 3.2 识别速度图的基本知识 (7) 第四章雷达数据质量控制 (11) 4.1 地物杂波抑制 (11) 第五章对流风暴及其雷达回波特征 (12) 5.1 普通风暴单体生命史: (12) 5.2 强风暴的雷达回波特征: (12) 5.3 弱垂直风切变中的强风暴——脉冲风暴的回波特征 (12) 5.4 中等到强垂直风切变环境中多单体风暴的雷达回波特征 (13) 5.5 超级单体 (13) 第六章灾害性对流天气的探测与预警 (15) 6.1 龙卷 (15) 6.2 大冰雹 (16) 6.3 灾害性大风 (16) 6.4 暴洪(短时强降水) (17) 6.5 强对流天气预报和预警的发布 (17) 第七章雷达产品与算法 (18) 7.1 产品概述 (18) 7.2 基本产品 (19) 7.3 一些算法简单的重要导出产品 (20) 7.4 风暴单体识别与跟踪算法及其产品 (24) 7.5 冰雹指数产品及其算法 (24) 7.6 中气旋(M)和龙卷涡旋特征(TVS)算法和产品 (25) 7.7 V AD风廓线算法 (25) 7.8 降水算法及其产品 (26) 参考文献: (29)

(完整版)雷达组成及原理.doc

雷达的组成及其原理 课程名称:现代阵列并行信号处理技术 姓名:杜凯洋 学号: 2015010904025 教师:王文钦教授

一.简介 雷达( Radar,即 radio detecting and ranging),意为无线电搜索和测距。它是运用各种无线电定位方法,探测、识别各种目标,测定目标坐标和其它情报的装置。在现代军事和生产中,雷达的作用越来越显示其重要性,特别是第二次世界大战,英国空军和纳粹德国空军的“不列颠”空战,使雷达的重要性显露的非常清楚。雷达由天线系统、发射装置、接收装置、防干扰设备、显示器、信号处理器、电源等组成。其中,天线是雷达实现大空域、多功能、多目标的技术关键 之一;信号处理器是雷达具有多功能能力的核心组件之雷达种类很多,可按多种方法分类: (1)按定位方法可分为:有源雷达、半有源雷达和无源雷达。 (2)按装设地点可分为;地面雷达、舰载雷达、航空雷达、卫星雷达等。 (3)按辐射种类可分为:脉冲雷达和连续波雷达。 (4)按工作被长波段可分:米波雷达、分米波雷达、厘米波雷达和其它波段 雷达。 (5)按用途可分为:目标探测雷达、侦察雷达、武器控制雷达、飞行保障雷达、气象雷达、导航雷达等。 二.雷达的组成 (一)概述 1、天线:辐射能量和接收回波(单基地脉冲雷达),(天线形状,波束形状,扫描方式)。 2、收发开关:收发隔离。 3、发射机:直接振荡式(如磁控管振荡器),功率放大式(如主振放大式),(稳定,产生复杂波形,可相参处理)。 4、接收机:超外差,高 频放大,混频,中频放大,检波,视频放大等。(接收机部分也进行一些信号处理,如匹配滤波等),接收机中的检波器通常是包络检波,对于多普勒处理则采用相位检波器。 5、信号处理:消除不需要的信号及干扰而通过或加强由目标产生的回波信号,通常在检测 判决之前完成( MTI,多普勒滤波器组,脉冲压缩),许多现代雷达也在检测判决之后完成。 6、显示器(终端):原始视频,或经过处理的信息。 7、同步设备(视频综合器):是雷达机的频率和时间标准(只有功率放大式(主振放大式) 才有)。 (二)雷达发射机 1、单级振荡式:大功率电磁振荡产生与调制同时完成(一个器件)

遥感原理与应用期末复习题

1.广义遥感:泛指一切无接触的远距离探测,包括对电磁场、力场、机械波(声波、地震波)等的探测 2.狭义遥感:在高空或者外层空间的各种平台上,通过各种传感器获得地面电磁波辐射信息,通过数据的传输 和处理揭示地面物体的特征、性质及其变化的综合性探测技术。 3.传感器是收集、量测和记录遥远目标的信息的仪器,是遥感技术系统的核心。传感器一般由信息收集、探测 系统、信息处理和信息输出4部分组成。 4.遥感平台是装载传感器的运载工具 5.主动遥感:传感器主动发射一定电磁波能量并接收目标的后向散射信号。如:雷达。被动遥感:传感器不向目标发射电磁波,仅被动地接收目标物的自身发射和对自然辐射的反射能量。太阳是被动遥感最主要的辐射源多波段遥感:在可见光和红外波段间,再细分成若干窄波段,以此来探测目标。 6.遥感分类:按照遥感的工作平台分类:地面遥感、航空遥感、航天遥感。按照探测电磁波的工作波段分类:可见光 遥感、红外遥感、微波遥感、多波段遥感等。按照遥感应用的目的分类:环境遥感、农业遥感、林业遥感、地质遥感 等.按照资料的记录方式:成像方式、非成像方式(如:雷达辐射计等)按照传感器工作方式分类:主动遥感、被动遥 感 7.遥感的特点:大面积的同步观测、时效性、数据的综合性和可比性、经济性、局限性。 1.电磁波:由振源发出的电磁振荡在空气中传播。 2.电磁辐射:这种电磁能量的传递过程(包括辐射、吸收、反射和透射)称为电磁辐射。 3.电磁波谱:将各种电磁波在真空中的波长按其长短,依次排列制成的图表。 4.地球辐射的分段特性:一、内容:1、0.3~2.5μm(可见光与近红外):地表以反射太阳辐射为主,地球自身热辐射 可忽略不计。2、2.5~6μm(中红外):地表以反射太阳辐射、地球自身热辐射均为被动RS辐射源。3、6μm以上(远 红外):以地球自身热辐射为主,地表以反射太阳辐射可忽略不计。二、意义:1、可见光和近红外RS影像上的信息来自地物反射特性。 2、中红外波段遥感影像上信息既有地表反射太阳辐射的信息,也有地球自身热辐射信息。3、热红外波段遥感影像上的信息来自地物本身的辐射特性。 5.绝对黑体:如果一个物体对于任何波长的电磁辐射都全部吸收,则这个物体是绝对黑体。绝对黑体则是吸收率≡1,反射率≡0,与物体的温度和电磁波波长无关。 6.黑体辐射规律:普 5.图2.11太阳辐照度分布曲线分析:太阳光谱相当于5800K的黑体辐射;据高分辨率光谱仪观察,太阳光谱连续的光谱线的明亮背景上有许多离散的明暗线,称为弗朗和费吸收线,据此可以探测太阳光球中的元 素及其在太阳大气中的比例;太阳辐射的能量主要集中在可见光,其中0.38 ~0.76μm的可见光能量占太阳辐射总 能量的46%,最大辐射强度位于波长0.47μm左右;到达地面的太阳辐射主要集中在0.3 ~3.0μm波段,包括近紫外、 可见光、近红外和中红外。这一波段区间能量集中,且相对稳定,是被动遥感主要的辐射源;经过大气层的 太阳辐射有很大的衰减,衰减最大的区间便是大气分子吸收最强的波段;各波段的衰减是不均衡的。 6.大气散射:太阳辐射通过大气时遇到空气分子、尘粒、云滴等质点时,传播方向改变,并向各个方向散开; 7.瑞利散射:当微粒的直径比辐射波长小得多时,此时的散射称为瑞利散射。(大气中的原子和分子,氮、氧、二氧化碳等分子)。特点:散射率与波长的四次方成反比,波长越长,散射越弱;影响:瑞利散射对可见光的影响较大, 对红外辐射的影响很小,对微波的影响可以不计。 问题:多波段遥感中一般不使用蓝紫光的原因?无云的晴天,天空为什么呈现蓝色?朝霞和夕阳为什么都偏橘 红色?蓝紫光波长短,散射强度较大,红光,红外,微波波长较长,散射强度弱。 8.米氏散射:当微粒的直径与辐射光的波长差不多时(即d≈λ)称为米氏散射(烟、尘埃、水滴及气溶胶等)。为何 红外遥感探测时要避免使用云雾天气所成的影像?云雾的粒子大小和红外线的波长接近,所以云雾对红外线的散射 主要是米氏散射,红外遥感不可穿云透雾 9.无选择性散射:当微粒的直径比波长大得多时(即d>λ)所发生的散射称为无选择性散射。为何云雾呈白色?空气中存在较多的尘埃或雾粒,一定范围的长短波都被同样的散射,使天空呈灰白色的。 问题:1、太阳光为何是可见的?2、蓝色火焰为何比红色火焰高?6、微波为何能穿云透雾? 10.大气窗口:通常将这些吸收率和散射率都很小,而透射率高的电磁辐射波段称为大气窗口。 11.典型地物的反射波谱曲线分析:(1)植被反射波谱曲线:规律性明显而独特。可见光波段(0.38~0.76μm)有一个小的反射峰,两侧有两个吸收带。这是因为叶绿素对蓝光和红光吸收作用强,而对绿光反射作用强。在近红外波段 (0.7~0.8 μrn)有一反射的“陡坡”,至1.l μm附近有一峰值,形成植被的独有特征。这是由于植被叶细胞结构

高频电子线路笔记

绪论一、通信系统模型 二、发送设备组成框图 三、接收设备组成框图

第1章 高频小信号放大器 §1.1 分散选频 一、高频电压放大器的作用:放大+选频 二、选频电路分类 三、分散选频电路 1、LC 串联选频电路 主要参数:谐振频率 LC f π210= C L R C R R L Q 1100= = =ωω Q f f BW 02=?= 2、LC 并联选频电路 主要参数:谐振频率 LC f π210= L C R C R L R Q === 00ωω Q f f BW 0 2=?= 3、耦合选频(了解)

§1.2 集中选频 1.石英晶体滤波器 石英晶体滤波原理:逆压电效应 压电效应:当晶片两面加机械力时,晶片两面将产生电荷,电荷的多少与机械力所引起的变形成正比,电荷的正负将取决于所加机械力是张力还是压力。 逆压电效应:当在晶片两面加不同极性的电压时,晶片会产生机械形变,其形变大小正比于所加的电压强度;形变是压缩还是伸张,则决定于所加电压的极性。 Lq 为石英晶片的动态等效电感 Cq 为石英晶片的动态等效电容 Rq 为石英晶片的动态等效电阻 C 0为石英谐振器的静态电容 品质因数: q q q C L R Q 1 = fs :串联谐振频率,即石英晶片本身的自然频率: q q 21C L f s π= fp :和石英谐振器的并联谐振频率: q S q 0q 0q p 121C C f C C C C L f + = =+π 2. 陶瓷滤波器 原理与参数同石英晶体滤波器 3. 声表面波滤波器 原理:电声效应 4.螺旋滤波器

FMCW激光雷达的阅读笔记

按CNKI被引频次排序 快餐一 基本信息 论文名称:雷达信号模糊函数理论研究与仿真 作者:孙亚东 机构:2007,武汉:武汉理工大学 主要参考文献: 学习笔记 解决的问题:推导出了不同类型雷达发射信号下的模糊函数数学模型,绘制并分析了模糊函数图波形信号的特点。最后,用Matlab对线性调频信号 雷达进行了仿真,效果较好。 不足:1、没有考虑,频率的选择、扫描方式、极化选择、信号处理类型、发射机的选择等复杂情况下,对雷达波形的影响。 2、在建立模糊函数数学模型时,采用的是“点目标”回波模型,仅考虑 了鉴别目标的信号时延、多普勒频移,忽略了距离衰减、目标运动加 速度等因素的影响。这种建模,仅适用于一般窄带信号。 摘录知识点 1、模糊函数是研究雷达信号波形的重要工具。模糊函数仅由雷达发射波形和滤 波器特性决定,它决定了发射源发射出的波形形状、接收系统采用的滤波器类型、系统的测距和测速的分辨力、抗干扰能力。 2、信号的时域结构特点决定了目标速度的测量精度和分辨力。时域大时宽,测 速精度和分辨力较好;信号的频域结构特点决定了目标距离的测量精度及分辨力。频域大带宽,测距精度和距离分辨力较高 3、雷达信号特点有: I)信号频带较窄; II)信号若用实信号表示,频谱对称分布于正负两个频域; 信号若用复信号表示,频谱只分布在正频域; III)复信号能量是实信号能量的两倍,雷达信号能量是一个常量; 4、雷达信号中接收机的滤波器称为匹配滤波器; 模糊函数定义,信号复包络的时间-频率复合自相关函数,表征的是分辨两个

相邻目标的能力,也能表征匹配滤波器的抗干扰能力。 5、距离-速度耦合问题 距离、速度耦合问题:距离、速度不同的两个目标信号经滤波器输出后,信号波形发生重叠,无法区别。一般调制信号类型为线性调频信号时,才会出现距离-速度耦合,出现模糊度图形模糊,无法区分的现象。 误差消除方法:交替发射“刀刃”取向不同的线性调频信号。即发射两个相反斜率的线性调频信号。

相关主题
文本预览
相关文档 最新文档