当前位置:文档之家› 直流电机起动仿真

直流电机起动仿真

直流电机起动仿真
直流电机起动仿真

5.2 基于MATLAB的电机起动仿真

在上节直流电机参数测试的基础上,本节作了基于MATLAB/Simulink的直流电机起动仿真研究[46-47],得到了电机起动过程中的电动机电流、电动机角速度、电枢电压和电磁转矩波形并分析了其仿真结果,为实物测试提供了简便经济的预测和验证。

5.2.1 电机起动仿真模型的建立

自MATLAB从5.3版本中新增进了电力系统工具箱(Power System Blockset)发展至今,MATLAB在电力系统仿真中的应用越来越广泛。电力系统工具箱是一个基于图形编程的电力系统仿真工具箱。主要是由加拿大的HydroQuebec和International公司共同开发的,其功能非常强大,可以用于电路、电力电子系统、电机系统、电力传输等过程的仿真,它提供了一种类似电路建模的方式进行模型绘制,使用者不需要自己编程而只需将仿真的电力系统图搭建在工作窗口中,MATLAB自动将其变化成状态方程描述的系统形式,便可以在SIMULINK下进行仿真研究了。

图5.4 电机起动仿真模型

电力系统工具箱包含的模块有:Electrical Sources(电源库)、Elements(元件库)、Power Electronics(电力电子元件库)、Machines(电机库)、Connectors (连接器库)、Measurements(测量仪器库)、Extra Library(附加元件库)、Demos (示例库)、Powergui(图形用户界面graphical user interface),在此基于MATLAB 对电机起动进行SIMULINK仿真。

搭建的电机起动仿真模型主要由直流电压源(DC V oltage Source)、理想开关(Ideal Switch)、电机起动器(Motor Starter)、直流电机(DC machine)、串联RLC支路(Series RLC Branch)、电压表(V oltage Measurement)、信号分解模块(Demux)和示波器(Scope)等模块构成。仿真模型如图5.4所示。

仿真系统中励磁电压Ef由一个直流电压源提供,电枢绕组电动势E由另一个直流电压源经一个由计时器(Timer)控制的理想开关(Ideal Switch)提供。采用电枢回路串电阻三级起动,电机起动器由搭建并封装的子系统(Motor

Starter )模拟。电机采用单边励磁直流电机模块(DC machine )模拟,输入端子中A+是正电枢绕组端子,F+是正磁场线圈端子,是负载转矩端子;输出端子中A-是负电枢绕组端子,F-是负磁场线圈端子,m 是仿真测量信号。因负载转矩TL 与转速及转动角速度ω成正比,故负载转矩输入端TL 由输出信号角速度ω经过一个增益环节形成反馈环提供。仿真测量信号m 经信号分解模块(Demux )分解为电动机角速度、电动机机电流和电磁转矩等,可在示波器中观测到其波形。另外系统中还可观测到电枢电压信号波形。

5.2.2 仿真参数及算法的设置

(1)仿真模块参数设置

仿真模型中各模块参数要相互匹配,并正确初始化,才能使仿真系统得到正确的运行结果。依据上节电机参数的测试数据,模型主要模块参数设置如下: 直流电压源(DC V oltage Source ):

电动势幅值(Amplitude )(V):220

理想开关(Ideal Switch ):

初始状态(Initial state )(0表示“断开”,1表示“闭合”):0

计时器(Timer ):

转换时间(Time(s)):[0 0.5]

幅值(Amplitude ):[0 1]

串联RLC 支路(Series RLC Branch ):

电阻(Resistance R )(ohms):1e4;

电感(Inductance L )(H):0;

电容(Capacitance C )(F):无穷大inf

电机起动器(Motor Starter ):

该子系统模拟一个三级电机起动器,由三个串联联接的串联RLC 支路(Series RLC Branch )和三个分别与串联RLC 支路并联的断路器(Breaker )构成,三个断路器的动作时间分别由阶跃响应(Step )模块控制。

设置模块参数前,必须先计算出三级起动电阻的阻值,计算如下:

已知直流电动机额定电流Ie =1.2A ,额定电压Ue =220V ,上节已用直流伏安法测得电枢电阻Ra =21.29Ω。

取最大起动电流I 1为额定电流的二倍,即

)(4.22.1221A I I e =?== (5.17)

则一级起动电阻R 1为

)(67.914

.222011Ω===

I U R e (5.18) 起动级数 m =3

起动电流比λ为 63.129

.2167.91331===a R R λ (5.19) 故,各级起动电阻值为:

)(70.3429.2163.13Ω=?==a R R λ (5.20)

)(56.5670.3463.132Ω=?==R R λ (5.21)

)(19.9156.5663.121Ω=?==R R λ (5.22)

据此,三级起动器各模块参数设置为:

串联RLC 支路1(Series RLC Branch 1):电阻(Resistance R )(ohms):91.19

电感(Inductance L )(H):0;

电容(Capacitance C )(F):无穷大inf

串联RLC 支路2(Series RLC Branch 2):电阻(Resistance R )(ohms):56.56

电感(Inductance L )(H):0;

电容(Capacitance C )(F):无穷大inf

串联RLC 支路3(Series RLC Branch 3):电阻(Resistance R )(ohms):34.70

电感(Inductance L )(H):0;

电容(Capacitance C )(F):无穷大inf

阶跃响应模块(Step 1):响应时间(Step time )(s):2.8

初始值(Initial value ):0

终了值(Final value ):1

阶跃响应模块(Step 2):响应时间(Step time )(s):4.8

初始值(Initial value ):0

终了值(Final value ):1

阶跃响应模块(Step 3):响应时间(Step time )(s):6.8

初始值(Initial value ):0

终了值(Final value ):1

并联的各断路器(Breaker ):断路器电阻(Breaker resistance Ron )(Ohm):0.01

初始状态(Initial state )(0表示“断开”,1表示“闭合”):0

直流电机(DC machine ):

电枢电阻和电感(Armature resistance and inductance[Ra(ohms) La(H)]):

[21.29 0.81]

磁场电阻和电感(Field resistance and inductance[Rf(ohms) Lf(H)]:[220 120] 磁场电枢互感(Field-armature mutual inductance Laf(H)):1.8

转动惯量(Total inertia J(kg.m^2)):0.058

初始转速(Initial speed(rad/s)):1

增益模块(Gain ):

放大系数(Gain ):0.2287

信号分解模块(Demux ):

将电机输出信号m 分解,设置输出信号为电动机角速度、电动机电流和电磁转矩

输出个数(Number of output ):3

XY 示波器(XYscope ):

X轴最小值(x-min):0;

X轴最大值(x-max):40;

Y轴最小值(y-min):0;

Y轴最大值(y-max):140;

采样时间(Sample time):-1

(2)仿真参数设置

仿真参数中主要设置了仿真算法页(Solver),其它页设置为默认值,仿真效果良好。仿真时间设置为10秒(并不等同于实际时间,与选取的算法、仿真精度和计算机的运行速度等因素有关),仿真算法选用变步长ode23s,具体设置如下:

仿真算法页(Solver):

起始时间(Start time):0.0 停止时间(Stop time):10

算法类型(Type):变步长算法(Variable-step)解法选取ode23s刚性问题解法

最大步长尺寸:自动(auto)

最小步长尺寸:自动(auto)

初始步长尺寸:自动(auto)

相对误差(Relative tolerance):1e-3(精确到小数点后三位)

绝对误差(Absolute tolerance):自动(auto)

输出选项(Output options):

精简输出(Refine output),精简因子(Refine factor):1

5.2.3 仿真结果及分析

在图5.4的电机起动仿真模型中经信号分解模块(Demux)分解得到的电动机角速度、电动机电流和电磁转矩信号以及电枢电压信号可在示波器中观测到其波形,如图5.5所示。横轴为时间轴,纵轴为幅值,仿真时间为10秒。图5.5(a)为电枢电压Va的波形,图5.5(b)为电磁转矩Te的波形,图5.5(c)为电动机角速度ω的仿真波形,图5.5(d)为电动机电流Ia的仿真波形。

(a)电枢电压波形(b)电磁转矩波形

(c)电动机的角速度仿真波形(d)电动机电流仿真波形

图5.5 电机起动仿真波形

从图5.5(a)电动机电压波形中可看出当计时器在0到0.5秒时没有发触发脉冲给触发理想开关的控制端g,理想开关保持初始的断开状态,电机电枢的输入电压Va为初始值约1.8V;0.5秒触发理想开关的控制端后,理想开关导通,电枢输入电压立即稳定在额定值220V。从图5.5(b)电磁转矩波形中可看出,在理想开关闭和前电磁转矩Te为0;0.5秒理想开关导通后,电磁转矩激增到稳态值的约2倍处,之后逐渐减小,在2.8秒时由阶跃响应模块控制断路器切除第一级起动电阻,电磁转矩又激增到稳态值的约1.9倍处,之后逐渐减小,在4.8秒时由阶跃响应模块控制断路器切除第二级起动电阻,电磁转矩再次激增到稳态值的约1.7倍处,之后逐渐减小,在6.8秒时由阶跃响应模块控制断路器切除第三级起动电阻,电磁转矩再次激增到稳态值的约1.4倍处,之后逐渐减小,最后稳定在稳态值处。图5.5(c)电动机角速度仿真波形结果表明,在理想开关闭和前角速度ω为初始值1rad/s;0.5秒理想开关导通后,角速度迅速逐渐增加,在2.8秒、4.8秒、6.8秒切除各级电阻时稍有波动,最后比较平稳的运行在稳态值约124rad/s(1180r/min)处。图5.5(d)电动机电流仿真波形结果表明,在理想开关闭和前电动机电流Ia为0A;0.5秒理想开关导通后,电动机电流激增到稳态值的2.1倍,之后逐渐减小,在2.8秒时由阶跃响应模块控制断路器切除第一级起动电阻,电动机电流又激增到稳态值的约2倍处,之后逐渐减小,在4.8秒时由阶跃响应模块控制断路器切除第二级起动电阻,电动机电流再次激增到稳态值的约1.7倍处,之后逐渐减小,在6.8秒时由阶跃响应模块控制断路器切除第三级起动电阻,电动机电流再次激增到稳态值的约1.4倍处,之后逐渐减小,最后稳定在稳态值处。

以上得到的结果为电机监测系统的实物测试提供了简便经济的预测和验证。

直流电动机开环调速系统设计与仿真

东北大学秦皇岛分校控制工程学院自动控制系统课程设计 设计题目:直流电动机开环调速系统 设计与仿真 专业名称自动化 班级学号 学生姓名 指导教师 设计时间2015.7.13~2014.7.24 成绩

目录 1.设计任务书 (3) 2.概述 (4) 2.1前言 (4) 2.2 系统原理 (4) 2.3 simulink框图 (5) 3.元件参数设置 (7) 3.1三相交流电压源设置 (7) 3.2.同步六脉冲触发器 (7) 3.3.三相全控桥整流电路 (8) 3.4.直流电动机设计 (8) 4.仿真结果分析 (9) α=时 (12) 4.2 当30o α=时 (14) 4.3 当60o α=时 (17) 4.4 当90o 4.5励磁电流 (19) 5.结论 (20) 6.参考文献 (22) 7.结束语 (22)

东北大学秦皇岛分校控制工程学院 《自动控制系统》课程设计任务书 专业自动化班级姓名 设计题目:直流电动机开环调速系统设计与仿真 一、设计实验条件 地点:实验室 实验设备:PC机 二、设计任务 直流电动机的额定数据为220V,136A,1460r/min,4极, R=0.21 , a 22 GD=22.5N m;励磁电压为220V,励磁电流为1.5A。采用三相桥式全控整流电路。平波电抗器 L=200mH。 p 设计要求:设计并仿真该晶闸管-电动机(V-M)开环调速系统。观察电动机在全压起动和起动后加额定负载时电动机的转速、转矩和电流变化。 三、设计说明书的内容 1、设计题目与设计任务(设计任务书) 2、前言(绪论)(设计的目的、意义等) 3、主体设计部分 4、参考文献 5、结束语 四、设计时间与设计时间安排 1、设计时间:7月13日~7月24日 2、设计时间安排: 熟悉课题、收集资料:3天(7月13日~7月15日) 具体设计(含上机实验):6天(7月16日~7月21日) 编写课程设计说明书:2天(7月22日~7月23日) 答辩:1天(7月24日)

直流电机串电阻启动(DOC)

指导教师评定成绩: 审定成绩: 重庆邮电大学移通学院 课程设计报告 设计题目:直流电机的串电阻启动过程设计 学校: 学生姓名: 专业: 班级: 学号: 指导教师: 设计时间:年月 重庆邮电大学移通学院

目录 一、直流电动机的综述 (4) 1.1直流电动机的基本工作原理 (4) 1.2直流电动机的分类 (5) 1.3直流电动机的特点 (5) 二、他励直流电动机 (5) 2.1他励直流电动机的机械特性 (5) 2.2固有机械特性与人为机械特性 (6) 三、他励直流电动机的起动 (7) 3.1直流电动机的启动过程分析 (8) 3.2他励直流电动机起动电阻的计算 (9) 四、设计内容 (10) 五、结论 (11) 六、心得体会 (12) 七、参考文献 (12)

一、直流电动机的综述 1.1直流电动机的基本工作原理 图1 是一台最简单的直流电动机的模型,N和S是一对固定的磁极(一般是电磁铁,也可以是永久磁铁)。磁极之间有一个可以转动的铁质圆柱体,称为电枢铁心。铁心表面固定一个用绝缘导体构成的电枢线圈abcd,线圈的两端分别接到相互绝缘的两个弧形铜片上,弧形铜片称为换向片,它们的组合体称为换向器。在换向器上放置固定不动而与换向片滑动接触的电刷A和B,线圈abcd通过换向器和电刷接通外电路。电枢铁心、电枢线圈和换向器构成的整体称为电枢。 如果将电源正负极分别接电刷A和B,则线圈abcd中流过电流。在导体ab中,电流由a 流向b,在导体cd中,电流由c流向d,如图(a)所示。载流导体ab和cd均处于N和S 极之间的磁场当中,受到的电磁力的作用。用左手定则可知,载流导体ab受到的电磁力F 的方向是向左的,力图使电枢逆时针方向运动,载流导体cd受到的电磁力F的方向是向右的, 也是力图使电枢逆时针方向运动,这一对电磁力形成一个转矩, 即电磁转矩T,其方向为逆时针方向,使整个电枢沿逆时针方向转动。当电枢转过180°, 导体cd转到N极下,ab转到S极上,如图(b)所示。由于电流仍从电刷A流入,使cd中的电流变为由d流向c,而ab中的电流由b流向a,再从电刷B流出。用左手定则判别可知,导体cd受到的电磁力的方向是向左的,ab受到的电磁力的方向是向右的,因而电磁转矩的方向仍是逆时针方向,使电枢沿逆时针方向继续转动。当电枢在转过180°,就又回到图(a)所示的情况。这就是直流电动机的基本工作原理。

双闭环直流电机调速系统的SIMULINK仿真实验

双闭环直流电机调速系统的SIMULINK仿真实验 魏小景张晓娇刘姣 (自动化0602班) 摘要:采用工程设计方法对双闭环直流调速系统进行设计,选择调节器结构,进行参数的计算和校验;给出系统动态结构图,建立起动、抗负载扰动的Matlab Simulink 仿真模型.分析系统起动的转速和电流的仿真波形 ,并进行调试 ,使双闭环直流调速系统趋于合理与完善。 关键词:双闭环调速系统;调节器;Matlab Simulink建模仿真 1.引言 双闭环直流调速系统是目前直流调速系统中的主流设备,具有调速范围宽、平稳性好、稳速精度高等优点,在理论和实践方面都是比较成熟的系统,在拖动领域中发挥着极其重要的作用。由于直流电机双闭环调速是各种电机调速系统的基础,直流电机双闭环调速系统的工程设计主要是设计两个调节器。调节器的设计一般包括两个方面:第一选择调节器的结构,以确保系统稳定,同时满足所需的稳态精度. 第二选择调节器的参数,以满足动态性能指标。本文就直流电机调速进行了较系统的研究,从直流电机的基本特性到单闭环调速系统,然后进行双闭环直流电机设计方法研究,最后用实际系统进行工程设计,并采用Matlab/Sim-ulink进行仿真。 2.基本原理和系统建模 为了实现转速和电流两种负反馈分别起作用,在系统中设置了两个调节器,分别调节转速和电流,二者之间实行串联连接. 把转速调节器ASR 的输出当作电流调节器ACR 的输入,再用电流调节器的输出去控制晶闸管整流器的触发装置GT ,TA为电流传感器,TG 为测速发电机. 从闭环结构上看,电流调节环在里面,叫做内环,转速调节环在外边叫做外环,这样就形了转速、 图1 直流电机双闭环调速系统的动态结构图

直流电动机的MATLAB仿真..

第一章课程设计内容及要求 1. 直流电动机的机械特性仿真; 2. 直流电动机的直接起动仿真; 3. 直流电动机电枢串联电阻启动仿真; 4. 直流电动机能耗制动仿真; 5.直流电动机反接制动仿真; 6. 直流电动机改变电枢电压调速仿真; 7. 直流电动机改变励磁电流调速仿真。 要求:编写M文件,在Simulink环境画仿真模型原理图,用二维画图命令画仿真结果图或用示波器观察仿真结果,并加以分析

第二章直流电动机的电力拖动仿真绘制 1)直流电动机的机械特性仿真 clear; U_N=220;P_N=22;I_N=115; n_N=1500;R_a=;R_f=628; Ia_N=I_N-U_N/R_f; C_EPhi_N=(U_N-R_a*Ia_N)/n_N; C_TPhi_N=*C_EPhi_N; Ia=0;Ia_N; n=U_N/C_EPhi_N-R_a/(C_EPhi_N)*Ia; Te=C_TPhi_N*Ia; P1=U_N*Ia+U_N*U_N/R_f; T2_N=9550*P_N/n_N; figure(1); plot(Te,n,'.-'); xlabel('电磁转矩Te/'); ylabel('转矩n/rpm'); ylim([0,1800]); figure(2); plot(Te,n,'rs'); xlabel('电磁转矩Te/'); ylabel('转矩n/rpm');

hold on; R_c=0; for coef=1:;; U=U_N*coef; n=U/C_EPhi_N-(R_a+R_c)/(C_EPhi_N*C_TPhi_N)*Te; plot(Te,n,'k-'); str=strcat('U=',num2str(U),'V'); s_y=1650*coef; text(50,s_y,str); end figure(3); n=U_N/C_EPhi_N-(R_a+R_c)/(C_EPhi_N*C_TPhi_N)*Te; plot(Te,n,'rs'); xlabel('电磁转矩Te/'); ylabel('转矩n/rpm'); hold on; U=U_N;R_c=; for R_c=0::; n=U/C_EPhi_N-(R_a+R_c)/(C_EPhi_N*C_TPhi_N)*Te; plot(Te,n,'k-'); str=strcat('R=',num2str(R_c+R_a),'\Omega'); s_y=400*(4-R_c*; text(120,s_y,str);

他励直流电机串电阻启动

他励直流电动机串电阻启动仿真一、工作原理 电动机的起动是指电机合上电源后,从静止状态加速到所要求的稳定转速时的过程。起动时把电动机电枢直接加上额定电压是不允许的,因为在起动前,电机转速为零,由电枢电势公式可知,Ea也为零,电枢绕组电阻Ra又很小,若此时加上额定电压,会引起过大的起动电流Is,Is = UN/Ra,其值可达额定值的10~20倍。这样大的启动电流会产生强烈火花,甚至烧毁换向器;还会加剧电网电压的波动,影响同一电网上其他设备的正常运行,甚至可能引起电源开关跳闸。 直流电动机在电枢回路中串联电阻起动是限制起动电流和起动转矩的有效方法之一。建立他励直流电动机电枢串联电阻起动的仿真模型,仿真分析其串联电阻起动过程,获得起动过程的电枢电流、转速和电磁转矩的变化曲线。 二、参数计算 有一台他励直流电动机,参数如下: PN=100KW UaN=440V IaN=497A

nN=1500r/min Ra=0.076Ω 若采用串电阻启动,所串电阻计算如下: (1)选择I1和I2 I1=(1.5~2.0)IaN=(1.5~2.0)497A=(745.5~994)A I2=(1.1~1.2)IaN=(1.1~1.2)497A=(546.7~596.4)A 选择I1=850A ,I2=550A (2)求出起切电流比β 5.1550 85021===I I β (3)求出启动时的电枢电路电阻Ram Ω=Ω==518.0850 4401I U R aN am (4)求出启动级数m 74.45 .1lg 076.0518.0lg lg lg ===βa aN R R m 故取m=5 (5)重新计算β,校验I 2

直流电动机串电阻分级启动仿真实验设计

直流电动机串电阻分级启动仿真实验 电路图搭建: 如果电动机直接启动的话,设置Step1/ Step2 /Step3的起始值为0,并且step time 设为0,也就是在0时刻开始以后一直都为0值,也就是三个电阻开关保持闭合,使所串电阻短路,仿真得到转速和电枢电流的启动图形: 可以发现,启动电流在很短的时间里就冲击到很大的值,我们将电流波形横坐标和纵坐标分别放大看看: 从图中可以看到,在时间约为0.08s时刻电流冲击到了大约1840A,这很显然不符合要求,电机一启动就烧,或者启动瞬间熔断丝就烧断。

如果这时候串一个1Ω的电阻,也就是讲三个电阻值都串进电路,设置Step1/ Step2 /Step3的step time 设置为20s,得到以下波形: 可以发现启动电流变小了很多,在200A左右,这也就满足启动电流限制的要求了,但是串联的电阻不能一直在电路中,这样会造成能量损耗,因为虽然电阻很小,但是电流很大,电流平方得到损耗电功率就很大了,即使是在额定运行时,额定电流大约在88.8A,而且我们还发现在时间t=10s时刻,电机还没有达到额定运行状态,也就是启动过程太慢,这主要是串了启动电阻的原因。

现在我们采用分级启动,下次电阻降低是在电流约为额定的1.2倍时,这样我们选t=3.5s时,把串的0.518Ω的电阻去掉,使所串电阻为0.482Ω,设置step3的step time 为3.5s,得到如下仿真图: 可以发现电流会在3.5s时又有一个冲击电流,大约是210V左右,一般也能满足要求, 也就是说,二次所串的电阻0.482欧姆能够满足要求,现在我们试试如果去掉0.838Ω的电阻,只剩一只0.162Ω时仿真的波形: 很显然看出,在时间3.5s时刻,冲击电流很大,大约460V(底下的放大波形可以清楚地看出),这也就不能满足电机的启动电流的要求。所以我们在去电阻时候要选择大小,不能一次性完全去掉,而是一次一次的分级去掉。下面就是我们进行的第二次去电阻。

直流电机启动方法

直流电机启动方法 直流电机从接通电源开始转动,直至升速到某一固定转数稳定运行,这一过程称为电动机的启动过程。直流电机有直接合闸起动、串电阻起动和降电压启动三种方法。 由于直流电机电枢回路电阻和电感都较小,而转动体具有一定的机械惯性,因此当直流电机接通电源后,起动的开始阶段电枢转速以及相应的反电动势很小,起动电流很大。最大可达额定电流的15~20倍。这一电流会使电网受到扰动、机组受到机械冲击、换向器发生火花。因此直接合闸起动只适用于功率不大于4千瓦的电动机。 为了限制起动电流,常在电枢回路内串入专门设计的可变电阻。在起动过程中随着转速的不断升高及时逐级将各分段电阻短接,使起动电流限制在某一允许值以内。这种起动方法称为串电阻起动,非常简单,设备轻便,广泛应用于各种中小型直流电机中。但由于起动过程中能量消耗大,不适于经常起动的电机和中、大型直流电机。但对于某些特殊需要,例如城市电车虽经常起动,为了简化设备,减轻重量和操作维修方便,通常采用串电阻起动方法。 对容量较大的直流电机,通常采用降电压起动。即由单独的可调压直流电源对电机电枢供电,控制电源电压既可使电机平滑起动,又能实现调速。此种方法电源设备比较复杂。下面和松文机电具体了解一下这些启动方式。 a.直接合闸起动。 直接合闸起动就是将电动机直接接入到额定电压的电源上启动。由于电动机所加的是额定电源,而电动机开始接通电源瞬间电枢不动,电枢反电动势E。为零,所以启动时电流很大。启动时电动机最大电流为正因为电动机启动电流很大,所以启动转矩大,电动机启

动迅速,启动时间短。 不过,电动机一旦开始运转,电枢绕组就有感应电动势产生,且转数越高,电枢反电动势就越大。随着电动机转数上升,电流迅速下降,电磁转矩也随之下降。当电动机电磁转矩与负载阻力转矩相平衡时,电动机的启动过程结束而进人稳定运行状态。 直接合闸起动的优点是不需其他设备,操作简便;缺点是启动电流大。它只适用于小型电动机,如家用电器中的直流电机。 b. 串电阻起动 串电阻起动就是在启动时将一组启动电阻RP串人电枢回路,以限制启动电流,而当转数上升到额定转数后,再把启动变阻器从电枢回路中切除。 串电阻起动的优点是启动电流小;缺点是变阻器比较笨重,启动过程中要消耗很多的能量。 c.降电压起动。 降电压起动就是在启动时通过暂时降低电动机供电电压的办法来限制启动电流,当然降压启动要有一套可变电压的直流电源,这种方法只适合于大功率直流电机。

直流电动机开环调速MATLAB系统仿真

东北石油大学 MATLAB电气应用训练 2013年 3 月 8日

MATLAB电气应用训练任务书 课程 MATLAB电气应用训练 题目直流电动机开环调速系统仿真 专业电气信息工程及其自动化姓名赵建学号 110603120121 主要内容: 采用工程设计方法对双闭环直流调速系统进行设计,选择调节器结构,进行参数的计算和校验;给出系统动态结构图,建立起动、抗负载扰动的MATLAB /SIMULINK 仿真模型。分析系统起动的转速和电流的仿真波形,并进行调试,使双闭环直流调速系统趋于合理与完善 基本要求: 1.设计直流电动机开环调速系统 2.运用MATLAB软件进行仿真 3.通过仿真软件得出波形图 参考文献: [1] 陈伯时. 电力拖动自动控制系统—运动控制系统第3版[M]. 北京:机械工业出版社, 2007. [2] 王兆安, 黄俊. 电力电子技术第4版[M]. 北京:机械工业出版社, 2000. [3] 任彦硕. 自动控制原理[M]. 北京:机械工业出版社, 2006. [4] 洪乃刚. 电力电子和电力拖动控制系统的MATLAB仿真[M]. 北京:机械工业出版社, 2006. 完成期限 2013.2.25——2013.3.8 指导教师李宏玉任爽 2013年 2 月25 日

目录 1课题背景 (1) 2直流电动机开环调速系统仿真的原理 (2) 3仿真过程 (5) 3.1仿真原理图 (5) 3.2仿真结果 (9) 4仿真分析 (12) 5总结 (13) 参考文献 (14)

1课题背景 直流调速是现代电力拖动自动控制系统中发展较早的技术。在20世纪60年代,随着晶闸管的出现,现代电力电子和控制理论、计算机的结合促进了电力传动控制技术研究和应用的繁荣。晶闸管-直流电动机调速系统为现代工业提供了高效、高性能的动力。尽管目前交流调速的迅速发展,交流调速技术越趋成熟,以及交流电动机的经济性和易维护性,使交流调速广泛受到用户的欢迎。但是直流电动机调速系统以其优良的调速性能仍有广阔的市场,并且建立在反馈控制理论基础上的直流调速原理也是交流调速控制的基础。现在的直流和交流调速装置都是数字化的,使用的芯片和软件各有特点,但基本控制原理有其共性。 长期以来,仿真领域的研究重点是仿真模型的建立这一环节上,即在系统模型建立以后要设计一种算法。以使系统模型等为计算机所接受,然后再编制成计算机程序,并在计算机上运行。因此产生了各种仿真算法和仿真软件。 由于对模型建立和仿真实验研究较少,因此建模通常需要很长时间,同时仿真结果的分析也必须依赖有关专家,而对决策者缺乏直接的指导,这样就大大阻碍了仿真技术的推广应用。 MATLAB提供动态系统仿真工具Simulink,则是众多仿真软件中最强大、最优秀、最容易使用的一种。它有效的解决了以上仿真技术中的问题。在Simulink中,对系统进行建模将变的非常简单,而且仿真过程是交互的,因此可以很随意的改变仿真参数,并且立即可以得到修改后的结果。另外,使用MATLAB中的各种分析工具,还可以对仿真结果进行分析和可视化。 Simulink可以超越理想的线性模型去探索更为现实的非线性问题的模型,如现实世界中的摩擦、空气阻力、齿轮啮合等自然现象;它可以仿真到宏观的星体,至微观的分子原子,它可以建模和仿真的对象的类型广泛,可以是机械的、电子的等现实存在的实体,也可以是理想的系统,可仿真动态系统的复杂性可大可小,可以是连续的、离散的或混合型的。Simulink会使你的计算机成为一个实验室,用它可对各种现实中存在的、不存在的、甚至是相反的系统进行建模与仿真。 传统的研究方法主要有解析法,实验法与仿真实验,其中前两种方法在具有各自优点的同时也存在着不同的局限性。随着生产技术的发展,对电气传动在启制动、正反转以及调速精度、调速范围、静态特性、动态响应等方面提出了更高要求,这就要求大量使用调速系统。由于直流电机的调速性能和转矩控制性能好,从20世纪30年代

直流电动机起动实验

实验一直流电动机起动实验 一、实验目的理解直流电机的工作原理,测试直流电动及直接起动的波形。说明负载转矩、转速、电流、电磁转矩之间为何具有相应的对应关系。 二、实验的主要内容 仿真一台直流并励电动机的起动过程。电动机参数为: PN =17kW, U N = 220V, n0= 3000r/min,电枢回路电阻R a =0. 0870,电枢电感La =0. 0032H,励磁回路电阻R F=181.50,电机转动惯量J=0.76 kg ?m2。 三、实验的基本原理直流电动机刚与电源接通的瞬间,转子尚未转动起来时,他励和串励电动机的电枢电流以及并励和复励电动机的输入电流称为起动电流,这时的电磁转矩称为起动转矩。一般情况下,在额定电压下直接起动时,起动电流可达电枢电流额定值的10~20倍,起动转矩也能达到额定转矩的10~20倍,这样的起动电流是换向所不允许的,而且过大的起动转矩会使电动机和它所拖动的生产机械遭受突然的巨大冲击,以致损坏传动机械和生产机械。由此可见,除了额定功率在数百瓦以下的微型直流电动机,因电枢绕组导线细、枢电阻大以及转动惯量又比较小,可以直接起动以外,一般的直流电动机是不允许采用直接起动的。 四、实验步骤 1) 建立并激电动机的仿真模型:直流电动机DCmotor 的电枢和励磁并联后由直流电源DC 供电,用Step 模块给定电动机的负载转矩,在DCmotor 的m 端连接了Demux 模块,将m 端输出的4 个信号分为4 路,以便通过示波器Scope 观察,m 端输出的转速单位为rad/s,这里使用了一个放大器(Gain), 将rad/s 转换为习惯的r/min,变换系数为:k=60/2 π =9.55。 2) 计算电动机参数: 励磁电流 励磁电感在恒定磁场控制时可取“ 0” 电枢电阻 R a =0.0870 电枢电感估算

直流电机的启动过程

首先,电厂中的直流油泵用在什么地方,一般多用在润滑油系统,称为直流润滑油泵或事故油泵;如是氢冷发电机组的话,密封油系统通常也设置一台,名称也是直流密封油泵或事故密封油泵。作用是什么呢?一般是考虑全厂失电的情况下,保护汽轮机大轴和氢气扩散至空气中,这些都可以从部颁的二十五项反措中找到设计直流油泵的原因,什么防汽轮机大轴弯曲了,氢爆了等等。 其次,再说直流电机的分类,一般有串励、并励、他励三种,至于派生出什么积复励和差复励等等咱就不研究了。像刚才所说的油泵电机,容量都不会太大,所以此类直流电机一般都设计为并励直流电机。像15楼所述怕电机飞车这种情况一般只出现在自励直流电机上;当然了,自励电机和并励电机各自有各自的优缺点,在什么地方使用跟需要实现什么功能有关,这里就不再啰嗦了 第三,先上一个图,这是电厂直流油泵电机典型的接线图,辅助的一些元件我没有画出来,比方说KM的合跳、信号回路、电流指示回路等,甚至有些单位还加了一些时间继电器等等。 启动电阻 电枢绕组 励磁绕组 其中KM是直流电机的主接触器,KM1就是楼主所述的辅助接触器,电枢绕组为转子线圈,其阻值一般都很小,微欧级。励磁绕组为静子的磁极线圈,有兴趣的可以利用设备解体的时候学习一下,直流电机静子上不但有磁极线圈,还有换向极线圈(在两个主磁极之间的那个),励磁绕组的那个阻值一般都在百欧级。 接下来我们要说直流电机的启动过程,假如没有KM1和启动电阻的话,直流电压(一般为220V)直接加在一个微欧级的电阻上,你们可以计算一下电流有多大。直流电机的主回路会受不了这么大的电流的。忘了说了那个启动电阻一般的阻值为零点几到几欧姆之间吧,根据各单位限流的幅值倍数而定,可自行设计。所以啊,直流电机的启动过程必须要加限流的措施,一般采用的方法如上图所示。KM先动作合闸,此时KM1不动作,启动电阻串在电枢回路里,此时的电流值可依据设计的启动电流倍数而定,一般不超额定的4-7倍,此时电流值在我们的控制范围内。当电机启动完成后,我们当然不希望启动电阻串在电枢回路里,发热会很厉害,也不节能,所以必须得切除。什么时间切除呢,大家都注意到了KM1这个接触器的线圈是并在电枢回路里,随着电机转速逐渐升高的时候,它的反电势也在逐步增加,增加到KM1的动作电压时,KM1吸合,切除启动电阻,直流电机启动完成。 至于楼主说的两个接触器是串联关系,我认为说的不太确切,只能说是混联,或者说不存在串并联关系,因为,这两个接触器动作的次序不一样,只有在电机启动完成后,才勉强可以说是串联的。 另外一点,在电机启动而启动电阻未切除的时候,随着反电势的建立(方向与电源极性相反),启动电流是呈下降趋势的,相当于加在电枢绕组两端电压在下降,U1=U-E。 直流电机在电厂用处不是十分广泛,但无他不行,所以有关直流电机的资料和经验都很少,欢迎大家来一起交流直流电机的运行心得和经验教训。

直流电机起动仿真

5.2 基于MATLAB的电机起动仿真 在上节直流电机参数测试的基础上,本节作了基于MATLAB/Simulink的直流电机起动仿真研究[46-47],得到了电机起动过程中的电动机电流、电动机角速度、电枢电压和电磁转矩波形并分析了其仿真结果,为实物测试提供了简便经济的预测和验证。 5.2.1 电机起动仿真模型的建立 自MATLAB从5.3版本中新增进了电力系统工具箱(Power System Blockset)发展至今,MATLAB在电力系统仿真中的应用越来越广泛。电力系统工具箱是一个基于图形编程的电力系统仿真工具箱。主要是由加拿大的HydroQuebec和International公司共同开发的,其功能非常强大,可以用于电路、电力电子系统、电机系统、电力传输等过程的仿真,它提供了一种类似电路建模的方式进行模型绘制,使用者不需要自己编程而只需将仿真的电力系统图搭建在工作窗口中,MATLAB自动将其变化成状态方程描述的系统形式,便可以在SIMULINK下进行仿真研究了。 图5.4 电机起动仿真模型 电力系统工具箱包含的模块有:Electrical Sources(电源库)、Elements(元件库)、Power Electronics(电力电子元件库)、Machines(电机库)、Connectors (连接器库)、Measurements(测量仪器库)、Extra Library(附加元件库)、Demos (示例库)、Powergui(图形用户界面graphical user interface),在此基于MATLAB 对电机起动进行SIMULINK仿真。 搭建的电机起动仿真模型主要由直流电压源(DC V oltage Source)、理想开关(Ideal Switch)、电机起动器(Motor Starter)、直流电机(DC machine)、串联RLC支路(Series RLC Branch)、电压表(V oltage Measurement)、信号分解模块(Demux)和示波器(Scope)等模块构成。仿真模型如图5.4所示。 仿真系统中励磁电压Ef由一个直流电压源提供,电枢绕组电动势E由另一个直流电压源经一个由计时器(Timer)控制的理想开关(Ideal Switch)提供。采用电枢回路串电阻三级起动,电机起动器由搭建并封装的子系统(Motor

直流电动机建模与仿真实验

《直流电动机建模及仿真实验》 —实验报告 院(系) 3 系 姓名 ****** 学号 ********* 任课教师王卫红

2013年 11月 6日 直流电动机建模及仿真实验 1实验目的 了解直流电动机的工作原理; 了解直流电动机的技术指标; 掌握直流电动机的建模及分析方法; 学习计算直流电动机频率特性及时域响应的方法。 2实验设备 (1)硬件:PC 机。 (2)工具软件:操作系统:Windows 系列;软件工具:MATLAB 及simulink 。 3实验原理 原理框图: 直流电机电枢回路的电路方程是: dt di L iRa E u a +=- 其中,u a 是加到电机两端的电压,E 是电机反电势,i 是电枢电流,R a 是电枢回路总电阻, L 是电枢回路总电感,Ra La T l = 称为电枢回路电磁时间常数。并且反电动势E 与电机角速度m ω成正比:

m e m e k k E θω == 其中ke 称为反电势系数,m θ为电机轴的转角。 对于电机而言,其转动轴上的力矩方程为: m m m m l m J J M i k θω ==- 其中km 是电机的力矩系数,l M 是负载力矩,J 是电机电枢的转动惯量。 进行拉式变换得到: ?????=-=+=-s s J M s I k s k s E s s I T s I Ra s E s Ua m m l m m e l )()()()() )()(()()(θθ 由此方程组可以得到相应的电动机数学模型的结构框图: 图4.1直流电动机数学模型结构框图 实验要求: (1)根据电机的工作原理(电压平衡方程、力矩平衡方程)建立从电枢电压a u 到转速m θ 的 传递函数模型,并根据表1所给电机参数求其频率特性。表1共给出了两个电机的参数,其中A 为大功率电机,B 为小电机。 (2)编制MATLAB 或simulink 程序求电机的调速特性,即不同负载力矩情况下电压和转速 之间的关系,将数据填入表2和表3。(提示:由于调速特性是电机的静态特性,故可先推导出考虑负载力矩情况下电枢电压Ua 与转速m θ 之间的静态模型,然后再仿真。) (3)编制MATLAB 或simulink 程序求电机的机械特性,即不同电压情况下负载力矩和转速 之间的关系。(提示:在仿真时可将电枢电压固定,改变负载力矩的值,即可求出M l 与转速m θ 之间的关系。)

直流电动机启动、调速控制电路实验.

实验题目类型:设计型 《电机与拖动》实验报告 实验题目名称:直流电动机启动、调速控制电路 实验室名称:电机及自动控制 实验组号:X组指导教师:XXX 报告人:XXX 学号:XXXXXXXXX 实验地点:XXXX 实验时间:20XX年XX月X日指导教师评阅意见与成绩评定

一、实验目的 掌握直流电动机电枢电路串电阻起动的方法; 掌握直流电动机改变电枢电阻调速的方法; 掌握直流电动机的制动方法; 二、实验仪器和设备 三、实验内容 (1)电动机数据和主要实验设备的技术数据

四、实验原理 直流电动机的起动:包括降低电枢电压起动与增加电枢电阻起动,降低电枢电压起动需要有可调节电压的专用直流电源给电动机的电枢电路供电,优点是起动平稳,起动过程中能量损耗小,缺点是初期投资较大;增加电枢电阻起动有有级(电机额定功率较小)、无极(电机额定功率较大)之分。是在起动之前将变阻器调到最大,再接通电源,随着转速的升高逐渐减小电阻到零。 直流电动机的调速:改变Ra、Ua和?中的任意一个使转子转速发生变化。 直流电动机的制动:使直流电动机停止转动。制动方式有能耗制动:制动时电源断开,立即与电阻相连,使电机处于发电状态,将动能转化成电能消耗在电路内。反接制动:制动时让E与Ua的作用方向一致,共同产生电流使电动机转换的电能与输入电能一起消耗在电路中。回馈制动:制动时电机的转速大于理想空转,电机处于发电状态,将动能转换成电能回馈给电网。 五、实验内容 (一)、实验报告经指导教师审阅批准后方可进入实验室实验 (二)、将本次实验所需的仪器设备放置于工作台上并检查其是否正常运行,检验正常后将所需型号和技术数据填入到相应的表内(若是在检验中发现 问题要及时调换器件) (三)、按实验前准备的实验步骤实验

直流电动机启动调速控制线路

` 实验题目类型:设计型 《电机与拖动》实验报告 实验题目名称:直流电动机启动、调速控制线路实验室名称:电机及自动控制 实验组号:指导教师: 报告人:学号: 实验地点:实验时间: 指导教师评阅意见与成绩评定

文档Word ` 一、实验目的 1、掌握并励直流电动机电枢电路串电阻起动的方法。 2、掌握并励直流电动机改变电枢电阻和改变励磁电流调速的方法。 3、掌握并励直流电动机的制动方法。 4、提交实验成果。 二、实验设备

实验技术路线三、 :实验前预习要点直流电动机的起动1. 起动的方法串电阻起动a)串入电枢回路,以限制启动电串电阻起动就是在启动时将一组启动电阻R 流,而当转数上升到额定转数后,再把启动变阻器从电枢回路中切除。启动过程中要消缺点是变阻器比较笨重,串电阻起动的优点是启动电流小;耗很多的能量。 降电压起动b)降电压起动就是在启动时通过暂时降低电动机供电电压的办法来限制启动这种方法只适合于大功率直当然降压启动要有一套可变电压的直流电源,电流,流电机。 文档Word ` 2.直流电动机的调速 调速的种类与方法: 调节电枢供电电压 a)改变电枢电压主要是从额定电压往下降低电枢电压,从电动机额定转速向下变速,属恒转矩调速方法。对于要求在一定围无级平滑调速的系统来说,这种方法最好。变化遇到的时间常数较小,能快速响应,但是需要大容量可调直流电源。 b)改变电动机主磁通 改变磁通可以实现无级平滑调速,但只能减弱磁通进行调速(简称弱磁调速),从电机额定转速向上调速,属恒功率调速方法。变化时间遇到的时间常数同变化遇到的相比要大得多,响应速度较慢,但所需电源容量小。 c)电枢回路串电阻调速 电动机电枢回路外串电阻进行调速的方法,设备简单,操作方便。但是只能进行有级调速,调速平滑性差,机械特性较软;空载时几乎没什么调速作用;还会在调速电阻上消耗大量电能。 3.直流电动机的制动方法能耗制动在电枢两端从电源断开的同并励直流电动机在能耗制动时要保持励磁电流不变,电枢因机械惯性这时电动机主磁场保持不变,时,其立即接到一个制动电阻上。从而电动机由电动机状态立即转至发电机

实验四:直流电动机的MATLAB仿真实验

clear UN=220;PN=5.5;IN=30.4; nN=1000;Ra=0.55;Rf=430; IaN=IN-UN/Rf; CePhi=(UN-Ra*IN)/nN; CtPhi=9.55*CePhi; Ia=0:IN; n=UN/CePhi-Ra/CePhi*Ia; Te=CtPhi*Ia; T2N=9500*PN/nN; figure(1); plot(Te,n,'*'); xlabel('电磁转矩'); ylabel('转速'); ylim([0,1200]); figure(2); plot(Te,n,'rs'); xlabel('电磁转矩'); ylabel('转速'); hold on; for coef=1:-0.25:0.25; U=UN*coef; n=U/CePhi-Ra/(CePhi-Ra)/(CePhi*CtPhi)*T e; plot(Te,n,'k-'); str=strcat('U=',num2str(U),'V'); sy=1000*coef; text(50,sy,str); end ylim([0,1200]); figure(3); Rc=0; n=UN/CePhi-(Ra+Rc)/(CePhi*CtPhi)*Te; plot(Te,n,'rs'); xlabel('电磁转矩'); ylabel('转速'); hold on; U=UN; for Rc=0:2.0:8.0; n=U/CePhi-(Ra+Rc)/(CePhi*CtPhi)*Te; plot(Te,n,'k-'); str=strcat('R=',num2str(Ra+Rc),'\Omega'); sy=260*(4-Rc*0.5); text(50,sy,str); end ylim([0,1200]); figure(4); Rc=0; n=UN/CePhi-(Ra+Rc)/(CePhi*CtPhi)*Te; plot(Te,n,'rs'); xlabel('电磁转矩'); ylabel('转速'); hold on; U=UN; for coef=0.5:0.25:1.3; Ce=CePhi*coef; Ct=CtPhi*coef; n=U/Ce-Ra/(Ce*Ct)*Te; plot(Te,n,'k-'); str=strcat('\phi=',num2str(coef),'\phiN'); sy=600*(4-coef*2.1); text(50,sy,str); end ylim([0,2500])

直流电机PID控制与仿真

长春大学 课程设计说明书 题目名称直流电机速度PID控制与仿真 院(系)电子信息工程学院 专业(班级)自动化13403 学生姓名张华挺 指导教师曹福成 起止日期2016.10.24——2016.11.04

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 直流电机速度PID控制与仿真 摘要:在本次课程设计中重点研究直流电机的工作原理以及直流电机的各种调速方法。在调速控制中,我们包含两个大的部分,一个是直流电机的开环控制,另一个是直流电机的闭环控制,在直流电机的闭环控制中,又分别介绍转速闭环控制和PID闭环控制,并且对直流电机的每个模型进行建模并仿真,观察其动态性能,分析研究直流电机的各个控制的优缺点。 关键词:直流电动机;转速控制;PID控制;Matlab仿真

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ DC Motor Speed PID Control and Simulation Abstract: In this curriculum design, the work principle of DC motor and DC motor speed control methods are studied. In speed control, we include two parts, one is the open loop control of DC motor, the other is a closed loop DC motor control in DC motor closed-loop control, and introduces the speed closed-loop control and PID control, and each model of the DC motor for modeling and simulation to observe the dynamic performance analysis of DC motor control and the advantages and disadvantages of each. Keywords: DC motor; speed control; PID control; Matlab simulation

直流电动机起动实验

F 实验一直流电动机起动实验 一、实验目的 理解直流电机的工作原理,测试直流电动及直接起动的波形。说明负载转矩、 转速、电流、电磁转矩之间为何具有相应的对应关系。 二、实验的主要内容 仿真一台直流并励电动机的起动过程。电动机参数为: PN =17kW, U N = 220V, n0= 3000r/min,电枢回路电阻R a =0. 0870,电枢电感La =0. 0032H,励磁回路电阻R =181.50,电机转动惯量J=0.76 kg ?m2。 三、实验的基本原理 直流电动机刚与电源接通的瞬间,转子尚未转动起来时,他励和串励电动机的电枢电流以及并励和复励电动机的输入电流称为起动电流,这时的电 磁转矩称为起动转矩。一般情况下,在额定电压下直接起动时,起动电流可 达电枢电流额定值的10~20倍,起动转矩也能达到额定转矩的10~20倍,这 样的起动电流是换向所不允许的,而且过大的起动转矩会使电动机和它所拖 动的生产机械遭受突然的巨大冲击,以致损坏传动机械和生产机械。由此可见,除了额定功率在数百瓦以下的微型直流电动机,因电枢绕组导线细、枢 电阻大以及转动惯量又比较小,可以直接起动以外,一般的直流电动机是不 允许采用直接起动的。 四、实验步骤 1)建立并激电动机的仿真模型:直流电动机DCmotor 的电枢和励磁并联后由直流电源DC 供电,用Step 模块给定电动机的负载转矩,在DCmotor 的m 端连接了Demux 模块,将m 端输出的4 个信号分为4 路,以便通过示波器Scope 观察,m 端输出的转速单位为rad/s,这里使用了一个放大器(Gain), 将rad/s 转换为习惯的r/min,变换系数为:k=60/2π =9.55。 2)计算电动机参数: 励磁电流 励磁电感在恒定磁场控制时可取“0” 电枢电阻 电枢电感估算R a =0.0870

电力拖动直流电机仿真实验(实验1)

实验一 转速单闭环直流电机调速系统的性能研究 一、实验目的 1.验证电动机在理想空载状态下转速的调节过程 2.验证电动机在突然加上负载时转速的调节过程 3. 通过实验了解自控原理中关于控制器设计方法的重要性 二、实验原理 图1所示为本次实验所用的含PI 调节器的直流电机转速单闭环调速系统。采用教材例2-1给出的直流电机参数确定图中转速传感器、电机、电力电子装置的数学模型。 图1 含PI 调节器的直流电机转速单闭环调速系统 建立系统的仿真模型,通过对I dL 的控制来实现空载和负载的变换。PI 调节器的参数可根据经验调节,也可采用基于BODE 图的工程最佳设计方法设计。 三、实验步骤 1. 在Matlab 的Simulink 中构建图示的仿真模型。 系统的仿真图 2. 电机空载起动的仿真

按图2和图3所示分别设置给定值和负载电流的数值,并将仿真时间设置为1s。 图2 给定值模块图3 负载电流模块 点击仿真按钮,记录示波器中显示的转速和电流曲线。对于转速曲线,从上升时间(第一次达到稳态值的时间)、超调量、调节时间、振荡次数等方面对转速曲线进行分析,说明该控制系统的性能好坏,并写在实验报告上。 3. 仿真分析系统的抗扰动性能 双击图中的IdL模块,按照图4设置仿真模块的数值。仿真时间设置为1.5s。 图4 IdL模块的参数设置

点击仿真按钮,记录示波器中显示的转速和电流曲线。对于转速曲线,从转速降落(转速下降的最大值)、恢复时间、振荡次数等方便对转速曲线进行分析,说明该控制系统的抗扰动能力的好坏,并写在实验报告上。 4.验证基于BODE图的工程最佳设计方法的优越性 将下图中的比例环节和积分环节的参数重新设置为初始值1,IdL模块的值重新设置为0。现增加一个控制要求:要求系统没有超调量。请自行调节比例环节和积分环节的参数,将你认为性能已调节到最好的系统的输出曲线记录下来,并粘贴在实验报告上。仿真时间改回为原来的10s。 注意:如果输出曲线很快能接近稳态值,但有迟迟达不到稳态值,这种情况称为爬坡现象,这在自控系统中是不允许的。你可以用一个单独的示波器观察一下积分环节的输出,根据积分器的工作原理,想想这个问题应该怎么处理。 四.思考题 (1)观察空载起动时的电流曲线,结合例2-1给出的额定值,说明起动电流的最大值达到了额定值的多少倍?对于大中型电机,允许出现这种情况么? (2)通过你自行调节参数时遇到的困难,谈谈你对根据自动控制理论设计系统参数的优越性的理解。

直流电动机闭环调速试验

. University of South China 电气传动技术 实验报告1 实验名称直流电动机闭环调速实验 学院名称电气工程学院 指导教师 班级电力 学号 学生姓名 文档Word . 一预习报告

目的:1了解并掌握典型环节模拟电路构成方法。 2 熟悉各典型线性环节阶跃响应曲线。 3 了解参数变化对典型环节动态性能影响。内容: 1比例积分控制的无静差直流调速系统的仿真模型 2电流环调速系统的仿真模型 3转速环调速系统的仿真模型

文档Word . 二实验报告 直流电动机:额定电压U=220N,额定电流I=55A,额定转速 dNN n=1000r/min,电动机电动势系数C=0.192V·min/r。假定晶闸管整流eN装置输出电流可逆,装置的放大系数Ks=44,滞后的时间常数 T=0.00167s。电枢回路总电阻R=1.0Ω,电枢回路电磁时间常数 s T=0.00167s,电力拖动系统机电时间常数T=0.075s。转速反馈系数ml*U。对应额定转速时的给定电压·α=0.01Vmin/r=10V。双闭环调速系统中Ks=40,T=0.0017s,T=0.18s,T=0.03s,T=0.002s,T=0.01s,R=0onlmsoi Ω,C=0.132V·min/r,α=0.00666V·min/r,β=0.05V·min/r。e一比例积分控制的无静差直流调速系统中PI调节器的值为: K=0.56,1/τ=11.34 P 文档Word .

无静差调速系统输出(Scope图像1) 输出波形比例部分(Scope1图像2) 对比图1和图2可以发现,只应用比例控制的话,系统响应速度快,但是静差率大,而添加积分环节后,系统既保留了比例环节的快速响应性,又具有了积分环节的无静差调速特性,使调速系统稳定性相对更高,动态响应速度也快。 文档Word .

相关主题
文本预览
相关文档 最新文档