当前位置:文档之家› 三相电路瞬时无功功率理论

三相电路瞬时无功功率理论

三相电路瞬时无功功率理论
三相电路瞬时无功功率理论

三相电力系统中的广义瞬时无功功率理论

三相电力系统中的广义瞬时无功功率理论 摘要该篇论文讲述了三相电力系统中广义上的瞬时无功功率理论。该理论给出了瞬时无功功率的一般定义,适用于任何三相电力系统,不论正弦或非正弦,平衡或不平衡以及是否含有零序电流和电压。并且详细论述了新定义的瞬时无功功率的特性和物理意义,然后又以含零序的三相滤波器为例来说明如何用该理论来计算和补偿无功功率。 1.引言 对于正弦电压和正弦电流的单相电力系统来说,有功功率,无功功率,有功电流,无功电流、功率因数等参数都是基于平均值的概念。很多学者都试图重新定义上述参数来处理不平衡以及电压、电流发生畸变的三相系统。 其中,引入了一个有用的瞬时无功功率的概念,它提供了一个有效的方法可以不用储存能量就能补偿三相电力系统的瞬时无功功率分量。但是这个瞬时无功功率理论仍然在概念上仍然受[2]中所列出的限制,即该理论只是对于不含零序电流和零序电压的三相系统是完整的。为了解决这个限制和其他问题,提出了一个新方法来定义瞬时有功电流和瞬时无功电流。但是,他的方法是把电流分解成正交的分量,而不是分解功率。 这篇论文提出了三相电力系统的瞬时无功功率的一般理论,该理论给出了瞬时无功功率的一般定义,适用于任何三相电力系统,不论正弦或非正弦,平衡或不平衡,以及是否含有零序电流和电压。下面介绍这个理论的一些性能。

2.三相系统的瞬时无功功率的定义 图1 三相电路的结构 对于图1所示的三相电力系统,瞬时电压和瞬时电流表 示成瞬时空间矢量v和i ,也就是 图2 三相的相量图 图2给出了互相垂直的三相坐标图,依次记为a相,b相,c相。这个三相电路的瞬时有功功率p可以写成 这里表示点乘或者矢量的内积。 公式(2)也可以写成传统的定义式 这里,我们定义一个新的瞬时空间矢量为

无功功率的测量方法

四种相位的测量方法(无功功率) 一、无功功率概念的历史发展 最早的无功功率概念是建立在单相正弦交流信号的基础上。 设某线路的电压 ,电流,则 有功功率为 ,无功功率为。U 、I,分别为电压与电流的有效值。 随着半导体行业和电力工业的发展,各种整流器件、换流设备以及其他非线性负载大量安装与电力系统中,使原有的无功功率定义在工程运用中非常不方便。 现在人们对正弦信号无功功率有了新的理解。 假设某单相线路的电压为 ,电流为,则将按照与平行和垂直两个方向分解为与,那么与的积即为无功功率。 二、无功功率的测量方法 1、替代法 主要使用于无功功率变送器中,用于测量三相平衡电路的无功功率。当三相电路严格平衡对称时,此方法不存在原理性误差。在不对称与存在多谐波的情况下,此方法不适用。 2、电子移相测量法(简称模拟移相法) 多用于比较高级的综合仪器中(多用数字表) 根据三角公式变换??sin 90-cos =?)(,从而把无功功率测量转化为有功功率测量,即转化为求两个向量的内积)(???=??=90-cos U I sin U I Q ??。这已经可以比较方便的测量了。 理想情况下电子移相并不存在原理性误差。但在工程上电容与电阻是实际元件,其值及相应的效应与理想值差距巨大,所以效果并不理想。 3、数字移相测量法 在一个周期内对三相电压、三相电流均匀采样24点至64点(因生产厂家所生产的设备不同而异),然后用电压采样值乘以滞后90度点的电流采样值,做积分运算从而得到一个周期内的平均无功功率 N N N N /)j 4/(i u )j 4/(i u )j 4/(i u Q N 1j C Cj B Bj A Aj ∑=+?++?++?=)( 式中 j ——代表第j 个采样点 N ——代表一个周期的采样点数,N/4代表1/4个周期 从原理上讲,不存在理论误差。该方法的问题主要在于数字移相的适用性。当被测量是单纯的三相正弦信号,可以通过控制采样点数及其均匀的程度来实现精密的数字移相。但是如果被测信号不是严格的正弦波,有谐波含量、则数字移相就要出现误差。原因在于,数字移相90度是按基波计算的,对于三次谐波而言,则相当于移了270度,对于五次谐波而言,相当于移相90度。所以此时的无功功率测量存在着各次谐波造成的误差。 )?+=wt sin(2u U )?+=wt sin(I 2i ?cos UI P =?sin UI Q =→U →I →I →U →1I →2I →U →2I

相电路瞬时无功功率理论

三相电路瞬时无功功率理论首先1983年由赤木泰文提出,此后该理论经不断研究逐渐完善。赤木最初提出的理论亦称pq 理论,是以瞬时实功率p 和瞬时虚功率q 的定义为基础,其主要的一点不足是未对有关的电流量进行定义。下面将要介绍的是以瞬时有功电流p i 和瞬时无功电流q i 为基础的理论体系,以及它与传统功率定义之间的关系。 设三相电路各相电压和电流的瞬时值分别为a e 、b e 、c e 和a i 、b i 、c i 。为分析问题方便,把它们变换到βα-两相正交的坐标系上研究。由下面的变换可以得到α、β两相瞬时电压αe 、βe 和α、β两相瞬时电流αi 、βi ???? ??????=??????c b a e e e C e e 32βα (6-1) ???? ??????=??????c b a i i i C i i 32βα (6-2) 式中?? ????---=23230212113232C 。 β β e i ββi q i β 图6-1 βα-坐标系中的电压、电流矢量 在图6-1所示的βα-平面上,矢量αe 、βe 和αi 、βi 分别可以合成(旋转)电压矢量e 和电流矢量i e e e e e ?βα∠=+= (6-3)

i i i i i ?βα∠=+= (6-4) 式中,e 、i 为矢量、的模;e ?、i ?分别为矢量e 、i 的幅角。 【定义6-1】三相电路瞬时有功电流p i 和瞬时无功电流q i 分别为矢量在矢量及其法线上的投影。即 ?cos i i p = (6-5) ?sin i i q = (6-6) 式中,i e ???-=。βα-平面中的p i 、q i 如图6-1所示。 【定义6-2】三相电路瞬时无功功率q (瞬时有功功率p )为电压矢量的模和三相电路瞬时无功电流q i (三相电路瞬时有功电流p i )的乘积。即 p ei p = (6-7) q ei q = (6-8) 把式(6-5)、式(6-6)及i e ???-=代入式(6-7)、式(6-8)中,并写成矩阵形式得出 ??????=????????????-=??????βαβααβ βαi i C i i e e e e q p pq (6-9) 式中?? ????-=βββα e e e e C pq 。 把式(6-1)、式(6-2)代入上式,可得出p 、q 对于三相电压、电流的表达式 c c b b a a i e i e i e p ++= (6-10) ()()()[]c b a b a c a c b i e e i e e i e e q -+-+-=3 1 (6-11) 从式(6-10)可以看出,三相电路瞬时有功功率就是三相电路的瞬时功率。 【定义6-3】α、β相的瞬时无功电流aq i 、q i β(瞬时有功电流ap i 、p i β)分别为三相电路瞬时无功电流q i (瞬时有功电流p i )在α、β轴上的投影,即 p e e e i e e i i p e p p 22cos β αααα?+=== (6-12a )

无功原理分析 深入浅出超经典!

电压稳定基本概念 从80年代以来,电网运行越来越接近于极限状态。主要有几个原因: ?环保对电源建设和线路扩建的压力 ?重负荷区域的用电消费增加 ?电力市场下的新的系统负荷方式(潮流方式) ?。。。 无论发达国家还是发展中国家,都存在负荷、线路和电源间的矛盾 用户负荷在增加<——> 电网扩建却面临着更大的问题 由于网络运行在重载情况下,出现了慢速或快速的电压跌落现象,有时甚至产生电压崩溃,电压稳定已成为电力系统规划和运行的主要问题之一。 (介绍电压稳定的三本国际性的书籍:) 那么什么是电压失稳?(在国际上,有多种公认的定义。)在这里,我们观察文献[TVCUTSEM]的定义: 电压失稳产生于动态的负荷功率的恢复在传输网和发电系统的能力之外。 作者进一步解释道: ?电压:许多母线的电压发生明显的、不可控的下跌。 ?失稳:超越了最大的传输功率极限,负荷功率的恢复变得不稳,反面降 低了功率的消耗,这是电压失稳的关键。 ?动态:任何稳定问题与动态有关,可以用微分方程(连续变化)或用差 分方程(离散变化)模拟。 ?负荷:是电压失稳的原动力,因此这一现象也被称为负荷失稳,但负荷 不是仅有的角色。 ?传输网:有传输极限,从基本电工理论就可是到这个结论,这一极限是 电压失稳的开始。 ?发电系统:发电机不是理想的电压源,其模型的准确性对正确的电压稳 定十分重要。 与电压稳定相关的另一术语是电压崩溃。电压崩溃可能不是电压失稳的最终结果。 电压稳定基本概念 1

电压稳定基本概念 2 无功功率的角色 可以注意到上述定义中没有引入无功功率。众所周知,在交流网中,电抗线路占主导,电压控制和无功功率有密切的关系。这里作者的目的是不想过于强调无功功率在电压稳定中的作用。的确,有功功率和无功功率二者同时对电压稳定有重要的作用。作者引用了一个例子,表明电压失稳与无功功率没有因果关系。 假设电源电压E 恒定,控制R L ,使功率消耗达到予定值P o : o L L P R I R -=2 同时,我们知道最大的传输功率发生在R L = R : R E P 42max = 如果需求的P o 大于P max , 负荷电阻会下降比R 更小,电压失稳就会产生了。 这个范例虽然没有无功功率,没有功角稳定问题,但具有电压失稳的主要特征。在交流电力系统中,无功功率使得问题变得更复杂,但不是问题的唯一根源。传输有功功率仍然是电力系统的主要功能,而无功功率的传输和消耗也是的电力系统的不可缺少的一部分。 电压稳定VS 电力系统稳定 可以把电压稳定归到一般的电力系统稳定问题,下表显示根据时间域和失稳原因方式进行的分类。我们应该知道,可以用不同的方法对稳定问题进行分类。这里的分类可有效地分别电压稳定与功角稳定的差异。 快速稳定问题:

基于旋转空间矢量分析的瞬时无功功率理论及应用

基于旋转空间矢量分析的瞬时无功功率理论及应用 Instantaneous Reactive Power Theory Based on Space Vector Analysis and Its Applications 刘进军 王兆安 西安交通大学 Liu Jinjun Wang Zhaoan ( Xi’an Jiaotong University ) 摘要 本文建立了瞬时无功功率理论基于旋转空间矢量的分析方法借以深入分析瞬时无功功率理论与传统功率理论统一关系的内在本质并探讨了瞬时无功功率理论中功率脉动现象的实质原因最后在对瞬时无功功率理论的深入认识的基础上分析了其应用范围并给出了应用实例 叙词无功功率 功率理论 空间矢量 Abstract This paper established a space vector method for the analysis of instantaneous reactive power theory. By this method , the inner nature of the uniform relationship between the instantaneous reactive power theory and the conventional theory is revealed, and the origins of the power oscillation phenomenon in the instantaneous reactive power theory can be easily investigated. Based on the above analysis and the understanding of the uniform relationship, the application area of the theory is well enlarged. This is discussed in detail in the final part and experimental results are shown. Keywords: Reactive power Power theory Space vector . 引言 自日本学者赤木泰文提出三相电路瞬时无功功率理论以来[,]12不少文献进行了跟踪研 究并成功地应用于实际当中[] 15?但仍存在作者在文献[6]中所指出的问题使其应用范围 也难以扩展文献[6]深入分析了瞬时无功功率理论与传统功率理论的统一关系揭示了其物理意义该文的分析是基于由传统功率定义引申来的统一数学描述结果与赤木瞬时无功功率理论描述结果的对照本文将首先建立瞬时无功功率理论基于旋转空间矢量的分析方法然后借以分析这种统一关系的内在本质并探讨瞬时无功功率理论中功率脉动现象的实质文献[6]及本文对瞬时无功功率理论的深入认识大大扩展了其原有的应用范围本文最后将对此进行讨论并给出应用实例 . 三相电路电压和电流的旋转空间矢量表示法 图1 三相电路电压和电流的旋转空间矢量表示法

故弄玄虚的瞬时无功功率理论

故弄玄虚的瞬时无功功率理论 沈阳万思电力技术研究所 标签:无功补偿 三相电路瞬时无功功率理论是由日本学者赤木泰文于1983年首先提出来的。赤木泰文的理论中定义了瞬时实功率p和瞬时虚功率q,因此又称为pq理论。该理论受到很多人的追捧,并且不断有人为其添砖加瓦。 在pq理论中使用了一系列的矩阵变换,来定义没有物理意义的实电压和虚电压以及实电流和虚电流,并导出瞬时实功率p和瞬时虚功率q。从而得出可以通过对瞬时值的检测来确定系统无功参数的结论。 其实,赤木泰文的pq理论最终导出的瞬时实功率p和瞬时虚功率q就是在三相完全平衡状态下可以导出的值,也就是说:只有在三相完全平衡的状态下,赤木泰文的pq理论才有正确的结果。在三相不平衡的状态下,使用赤木泰文的pq理论不会得出正确的结果。 在pq理论中使用一系列的矩阵变换以及定义没有物理意义的实电压和虚电压不过是为了搅浑水,使人们无法一下子看清其中的破绽罢了。 有人比赤木泰文走的更远,不仅发明出新的方法使瞬时无功功率理论应用于不平衡系统,而且应用于三相四线系统,直至单相系统。更有人发明出新的方法不仅使瞬时无功功率理论应用于纯正弦波系统,而且应用于含谐波系统,直至应用于暂态过渡系统。所有的这些“新发展”,都得力于矩阵变换这种可以搅浑水的有效工具。 下面我们详细探讨瞬时无功功率理论的问题所在。 一,关于瞬时无功功率的定义 由于SVG装置可以实现很高的响应速度,于是人们就开始研究对无功功率的快速检测问题。 在电力系统中基本的物理量定义大都是以平均值为基础的,例如电压有效值U、电流有效值I、有功功率P、无功功率Q、视在功率S等等。以平均值为基础的定义显然不能满足快速检测的需要,而为了进行快速无功补偿,就需要对无功功率进行快速检测,因此就产生了怎样定义瞬时无功功率的问题,在这里有必要对瞬时与平均进行深入探讨。 在正弦稳态的情况下,设U和I是有效值,则正弦电压和电流可以表示如下: 瞬时功率可以表达如下: 电流可以分解为有功电流和无功电流,由于有功电流与无功电流有90度的相位差,因此有功电流与无功电流属于正交向量,于是瞬时电流就可以表达为有功电流瞬时值与无功电流瞬时值的代数和。设ip(t)代表有功电流瞬时值,iq(t) 代表无功电流瞬时值,则有: 于是就可以简便地定义: 有功功率的瞬时值等于有功电流瞬时值与电压瞬时值的乘积,即(1)式中的第一项,无功功率的瞬时值等于无功电流瞬时值与电压瞬时值的乘积,即(1)式中的第二项。 这种定义方法的最大优点是有功功率与无功功率的物理意义非常明确,但是也有明显的

关于瞬时无功功率理论的探讨

关于瞬时无功功率理论的探讨 山 霞 (武汉大学电气工程学院,武汉430072) 摘 要:通过瞬时无功功率P-Q理论(IR P)及电流物理分量理论(CP C)在电网电压、电流为正弦的三相三线制不对称电路中的应用的对比,表明瞬时无功功率理论的分析结果与电路中的某些功率现象不一致:即无功功率Q 为零时,瞬时无功电流可能不为零;有功功率P为零时,瞬时有功电流不为零;电源电压为正弦,负荷为非谐波源时,瞬时有功电流和瞬时无功电流中都包含三次谐波分量。瞬时有功功率p、瞬时无功功率q与有功功率P、无功功率Q及不平衡功率D之间的关系说明p、q分别与多个功率现象相关,仅用P、Q的瞬时值不能无延时的辨识三相负荷不对称系统的功率特性。这一结论对有源电力滤波器的控制算法具有重要意义。 关键词:瞬时无功功率理论;电流物理分量理论;有源滤波器;不对称系统;控制算法 中图分类号:T M71文献标识码:A文章编号:1003 6520(2006)05 0100 03 Discussion on Instantaneous Reactive Power P Q Theory SH AN Xia (School of Electrical Eng ineer ing,Wuhan U niv ersity,Wuhan430072,China) Abstract:T he compariso n of the instant aneous reactive power P Q theo ry(IR P)wit h the t heo ry o f the cur rent's physical components(CP C)presented in this pa per reveals t he results of t he IR P P Q theor y are inconsistent w ith po wer phenomena in three phase,three w ir e cir cuit s w ith sinusoidal vo ltag es and curr ents.N amely,according to the IR P P Q T heor y the instantaneous reactive cur rent can occur ev en if a load has zero reactive power Q.Similarly, the instantaneo us activ e cur rent can o ccur ev en if a load has zero act ive pow er P.M or eover,t hese tw o cur rents in circuits w ith a sinusoidal supply v oltage can be nonsinusoidal even if there is no so ur ce of cur rent distor tio n in the load.T he relat ionship betw een the instantaneous pow ers(p,q)and the activ e,reactiv e and unba lanced po wer(P, Q,D)sho ws the p and q po wer s ar e associated w ith multiple phenomenon,and the IR P P Q T heor y can no t identify po wer propert ies o f thr ee phase unbalanced loads w ith a pair of values of p and q po wer s instantaneo usly.T his con clusio n may have an impo rtant va lue for co ntr ol alg or ithms of activ e pow er f ilter s. Key words:instantaneous reactive pow er theor y;theor y of curr ent s physical components;act ive po wer f ilter s;un balanced sy stems;co nt rol alg or ithms 0 引 言 为解决谐波、无功功率的瞬时检测和不用储能元件实现二者补偿的问题,Akag i提出的瞬时无功功率P Q理论(IRP)[1 4],是脉冲宽度调制(PWM)技术及有源滤波器的数学基础,极大推动谐波和无功补偿装置的研究开发,是分析非正弦三相电路功率特性的理论工具[5 12]。瞬时!一词表明功率P、Q 由电压电流的瞬时值定义,可无延时检测补偿三相负荷的无功功率,能否用两个变量表示三个独立的功率现象及用瞬时值辨识三相系统的功率特性是一个与功率原理和有源滤波器的控制算法都密切相关的问题。 Czar necki提出的电流物理分量理论(CPC)[13,14],能清楚的解释各种功率现象,且与传统功率理论相一致,有利于无功功率的辨识分析及提高功率因数,已成为自适应型无功补偿器和混合型无功补偿器的控制算法的基础。 瞬时无功功率理论和电流物理分量理论都是为解决电网电压电流为非正弦波的三相系统的问题而提出,但它们也适用于功率现象更为简单易解的三相正弦系统。本文用电流物理分量理论作为工具对瞬时无功功率理论在三相三线正弦不对称系统中的应用做深入探讨。 1 瞬时无功电流和瞬时无功电流 瞬时无功功率理论用Clarke变换将传统的A、B、C三相坐标变换为 ~ 两相直角坐标。在三相三线平衡系统中: u u =2 3 1-1/2-1/2 03/2-3/2 u A u B u C = 2/20 1/22 u A u B =C u A u B , i i = 3/20 1/22 i A i B =C i A i B ; ?100?第32卷第5期 2006年 5月 高 电 压 技 术 H igh Voltage Engineering Vol.32No.5 M ay 2006

无功功率与优化控制_考试部分答案

2014-5-19参数辨识、自适应控制 2014-5-20电力系统无功补偿与优化控制考试题签 满分110分(常规的100分+提高题10分) 1、解释无功功率的含义,无功功率概念的起源,无功功率理论的发展过程,无功功率与有功功率的关系,以及无功功率对电力系统的作用和影响(20分) 无功功率的含义:无功功率主要用于电气设备内电场与磁场的能量交换,在电气设备(电路系统)中建立和维护磁场的功率。它不表现对外做功,由电能转化为磁能,又由磁场转化为电能,周而复始,并无能量损耗。特别指出的是无功功率并不是无用功,只是它不直接转化为机械能、热能为外界提供能量,作用却十分重要。 无功功率概念的起源: 无功功率理论的发展过程: 无功功率与有功功率的关系:视在功率s=UI,无功Q=UIsinθ,有功p=UIcosθ,他们的单位分别为KVA,KV AR,KW。S*S=P*P+Q*Q。 无功功率对电力系统的作用和影响:电压和无功是电能质量的重要指标之一。电压偏移过大会影响用电设备的运行特性,而且还影响到用电设备所取用的功率,对系统带来不利影响,如异步电动机。而无功功率与系统电压水平是密切相关的。为了保证系统电压必须具有充足的无功功率。无功功率从电源端经线路和变压器向负荷端输送,要产生电压损耗(高压线路和变压器的电压损耗主要取决于通过的无功功率),无功功率潮流的变化也会相应的引起电压损耗的变化。无功电源的不足会引起系统电压水平的下降,在无功电源不足的情况下只能在较低的电压下达到无功功率的平衡。为了使电压上升,就需要使电源增加无功出力。 2、论述无功功率与电压的关系,由此说明如何加强无功电压管理?(10分) 无功功率与电压的关系: 无功功率是与电压不同相位的电流所做的功;无功功率不足(也就是欠补偿)线路上就会存在较大的无功电流,增大线路损耗造成末端电压降低。将给电力系统带来诸如出力不足,电力系统损耗增加,设备损坏等一系列的损害,甚至可能引起电压崩溃事故,造成电网大面积停电。而无功过剩(也就是过补偿),对于线路来说呈现出容性负载特征,过补偿电容在交流电不断充放电的作用下,致使末端电压被提升。 如何加强无功电压管理: 电力系统的电压质量是衡量电力系统运行水平和电能质量的主要指标之一。保证电网电压质量是电力系统安全稳定的要求,也是保证用户的正常安全用电的要求。电力系统的电压管理不同于电力系统频率调整,由于系统内不同地区、不同节点的电压不相同,同时无功调节和控制手段的多样化,电力系统无功电压管理和电压的调整较电力系统有功频率调整更加复杂,但调节的手段也更加灵活。 为了解决电压波动的问题,需要讨论电压调整和管理。虽然主网中有很多节点,但人们关注的重点是中枢点的电压水平。所谓中枢点指的是某些能反映全网的电压水平的节点,这些中枢点通常是大容量的枢纽变电站,或者是大容量的发电厂。如能控制住这些中枢点的电压,那么全网大部分节点的电压质量一般来说将能得以保证。因此,电力系统的电压管理和调整可以通过监视和调整各个电压中枢点的电压来实现的。为了对中枢点电压进行控制,其必要条件首先是明确中枢电压的允许变动范围,从而编制出中枢点的电压曲线。 在进行电网规划设计时,通常难以事先进行较准确的电压管理方面的预测和计算的。这时可以依据如下原则大体确定一个中枢点电压的允许变动范围。

无功功率的本质

无功功率的本质 无功功率和有功功率一样,都是电网中的电能,都是发电厂给出的。 无功功率,是维持设备运转,但是并不消耗的能量。他存在于电网与设备之间,是电网和设备不可缺少的能量部分。 比如:异步电动机,它需要的定子产生一个旋转的磁场,转子有了这个旋转的磁场中才能动起来。定子产生旋转磁场,需要能量,但是这个能量仅仅是产生磁场,不会对外做功,这就是电机需要的无功功率。 无功功率在电网中,要占用电网系统的容量,如果被设备对无功功率需求过多,就造成电网有功功率容量减少,效率低下,大量无功功率在电网中来回传送,使线损高企。为了减少电网的无功传送,就要求用户就地做无功补偿。 无功功率就是电流和电压相位相差90度时所产生的功率,它并不消耗电源功率的。 无功功率的实质是否可以用这一解释:如果在交流正弦电路中,电流和电压相位相差90度,就发生这种情况,前90度区域中电压和电流都为正,因此这90度区域中的即时功率(P=U×I)为正,而下一90度区域电压和电流为一正一负,因此这90度区域中的即时功率(P=U×I)为负,再下一90度区域中的即时功率(P=U×I)为正,接下90度区域电压和电流又为一正一负,因此这90度区域中的即时功率(P=U×I)为负……,可见每一180度的周波中,实际功率消耗(有功功率)为零。 从物理意义来说,电路中的电压和电流为同一方向时,是电源在消耗功率(正功率,,是电源给电感或电容储存能量),而电路中的电压和电流为反方向时,是电源在储存功率(负功率,是电感或电容将能量放给电源),无功功率实质上是,不断地为电源消耗和储存功率,因此最终电源消耗功率(有功功率)为零。 这种情况是理论上纯电感和纯电容电路的情况,实际电路中虽然不是纯电感或纯电容,但可以将实际电路分解成纯电感或纯电容和纯电阻来进行计算。 虽然无功功率并不消耗功率,但是会使电路中电流增加,电流会增加传输导线电阻发热消耗,因此希望减少无功功率,进行无功功率的补偿措施。

无功功率是如何产生的

无功功率是如何产生的 无功功率是怎样产生的近日,有朋友问我无功功率是怎样发出来的。我觉得关于无功功率的概念大多数人都比较迷糊,包括部分电气人员也说不清楚。因此,特将我对无功的理解成文,供大家参考,对文中的错误之处也请提出意见,相互探讨。首先,有几个基本的东西需要大家了解。第一、什么叫有功功率。从纯理论上说,就是在交流电路中,电源在一个周期内发出瞬时功率的平均值(或负载电阻所消耗的功率)。以我们最能理解的方式解释,有功功率就是保持用电设备正常运行所需的电功率,也就是将电能转换为其他形式能量(机械能、光能、热能)的电功率。第二、什么叫无功功率。从理论上讲,就是在具有电感或电容的电路中,在前半个周期内,把电源能量变成磁场(或电场)能量贮存起来,然后,在另半个周期释放,又把贮存的磁场(或电场)能量再返回给电源,只是进行这种能量的交换,并没有真正消耗能量,我们把这个交换过程中瞬时功率的最大值称为无功功率。由于现在电网中的负荷绝大数都是感性负荷,因此也有将无功功率定义为在电气设备中建立和维持交变磁场及感应磁通而需要的电功率。这个定义比较容易理解,因为大家都知道电动机需要建立和维持旋转磁场,使转子转动,从而带动机械运动;变压器也同样需要一次线圈产生磁场,才能在二次线圈感应出电压。这样理解后,大家就知道无功功率是不可缺少的了。打个比喻,比如建房子,我们要用竹筐挑砖,房屋是用砖建成的,挑砖所用的力就是有功,而挑着空竹筐往返用的力就是无功,挑空竹筐并不是没用,没有竹筐,砖怎么运走呢?不知道这个比喻是否恰当,大家发表一下意见哈。第三、不同性质负载电流电压关系1、纯电阻电路:电流和电压同相;2、纯电感电路:电流滞后电压90°角;3、纯电容电路:电流超前电压90°角。接着,来回答一下无功功率是怎样产生的。这个问题理解起来就比较复杂一点了,需要有一定的电磁基础。其实,在《电机学》中已经讲解得比较清楚了,在这里,我尽量总结至浅显易懂,如果大家在阅读中还有什么概念上的东西不明白就请查阅《电机学》相关定义。发电机转子由原动机拖动旋转,在转子线圈中通入电流,也就是我们说的励磁电流if,励磁电流将在转子上产生励磁磁势F,励磁磁势又将在转子与定子间的气隙中产生磁密B,气隙磁密将随转子一起转动,切割定子绕组,就在定子绕组中产生了感应电势E。注意,到目前为止,我们都还是在空载的情况下讨论的。上面的应该都好理解,接着说说以上几个量的时间空间位置,这个可能就稍微复杂一点了。磁势的空间向量(为了便于理解,我就不再细化到什么基波磁势上了)和气隙磁密空间向量的相位是一致的,定子绕组感应电势的时间向量要比磁势的空间向量(或气隙磁密空间向量)的相位滞后90°。其实在这里,不必纠缠于什么时间向量与空间向量,只要记住的相位比(或)的相位滞后90°就行了。还要了解一点就是,励磁电流增大,定子的感应电势也增大,但不是成线性关系的。好了,结合平时发电机并网的实际操作,现在发电机的状态就应该是并网前的状态了,我们通过调节汽门使转速(即频率)达到并网要求;通过调节励磁电流,使定子绕组的感应电势(也就是我们所说的发电机端电压)达到并网要求。然后,我们并网了!在继续讲解前,我们先来复习一下发电机的并网条件:1、频率相等;2、电压的幅值相等;3、电压的相序相等; 4、相角一样。并网后,由于发电机端电压与电网电压是相等的,所以电枢电流为0。不要慌,不要慌,有人肯定又在问什么是电枢电流了,那我们就先来说说电枢电流吧。就同步发电机而言,电枢绕组就是指发电机的定子绕组,一旦带上负荷,定子线圈中就有了负载电流,这个负载电流我们就称为电枢电流。这个电流将在定子(电枢)绕组中产生电枢反应磁势,这个电枢反应磁势将与励磁磁势合成为合成磁势,由合成磁势产生的气隙磁密在定子绕组中产生感应电势。由于电流流过定子绕组时,还要在绕组中产生电阻压降和漏电抗压降。于是,我们就可以得到下面的公式:忽略电阻压降,则好,我们在回头来看“并网后,由于发电机端电压与电网电压是相等的,所以电枢电流为0。”,现在就理解了吧。一般我们并网后,都是先加点无功。那么怎么加无功呢,我们的操作就是增加励

相关主题
文本预览
相关文档 最新文档