当前位置:文档之家› 增材制造的概述

增材制造的概述

增材制造

增材制造(Additive Manufacturing,AM)技术是采用材料逐渐累加的方法制造实体零件的技术,相对于传统的材料去除-切削加工技术,是一种“自下而上”的制造方法。

增材制造按能量源分类

?激光束

?电子束

?等离子或等离子束

通过热源加热材料使之结合、直接制造零

件,统称高能束流快速制造

增材制造按工艺分类?LMD技术

?SLM技术

LMD技术基本原理

LMD技术作为增材制造技术的一种,是通过快速成型(RapidPrototyping,RP)技术和激光熔覆技术有机结合,以金属粉末为加工原料,采用高能密度

激光束将喷洒在金属基板上的粉末逐层熔覆堆积,从而形成金属零件的制造

技术。整个LMD系统包括激光器、激光制冷机组、激光光路系统、激光加工机床、激光熔化沉积腔、送粉系统及工艺监控系统等。

LMD快速成型技术的基本原理为:首先,利用切片技术将连续的三维CAD

数模离散成具有一定层厚及顺序的分层切片;第二,提取每一层切片所产生

的轮廓并根据切片轮廓设计合理的激光器扫描路径、激光扫描速度、激光强

度等,并转换成相应的计算机数字控制程序;第三,将激光溶化沉积腔抽真空,并充入一定压力的惰性保护气体,防止粉末熔化时被氧化;第四,计算

机控制送粉系统向工作台上的基板喷粉,同时激光器在计算机指令控制下,

按照预先设置的扫描程序进行扫描,溶化喷洒出来的粉末,熔覆生成与这一

层形状、尺寸一致的熔覆层;最后,激光阵镜、同轴送粉喷嘴等整体上移

(或工作台下移)一个切片厚度并重复上述过程,逐层熔覆堆积直到形成CAD 模型所设计的形状,加工出所需的金属零件。

SLM技术基本原理

SLM技术作为增材制造技术的另外一种实施方式,由粉床选区激光烧结技术(SLS)发展而来,以金属粉末为加工原料,采用高能密度激光束将铺洒在金属基板上的粉末逐层熔覆堆积,从而形成金属零件的制造技术。整个SLM设备包括激光器、激光阵镜、粉末碾轮、粉末储存室、零件成型室等。

SLM快速成型技术的基本原理为:首先,利用切片技术将连续的三维CAD数模离散成具有一定层厚及顺序的分层切片;第二,提取每一层切片所产生的轮廓并根据切片轮廓设计合理的激光器扫描路径、激光扫描速度、激光强度等,并转换成相应的计算机数字控制程序;第三,将激光溶化沉积腔抽真空,并充入一定压力的惰性保护气体,防止粉末熔化时被氧化;第四,计算机控制可升降系统上升,粉末碾轮将粉末从粉末储存室推送到零件成型室工作台上的基板,同时激光器在计算机指令控制下,按照预先设置的扫描程序进行扫描,溶化铺洒在基板上的粉末,熔覆生成与这一层形状、尺寸一致的熔覆层;最后,粉末储存室上移而零件成型室下移一个切片厚度并重复上述过程,逐层熔覆堆积直到形成CAD模型所设计的零件。

增材制造钛合金的组织特征

试样顶部,试样顶部由大量的等轴V晶粒

组成。等轴V晶粒内部组织如图b所示,

其亚结构十分复杂,在粗大的等轴V晶界

上有少量的Al团束析出,而在V晶粒内部

密集分布着针状Al、片状Al及V相转变组

试样底部,从基底至沉积试样中部的微观

组织依次为基底纯钛组织、片(条)状组织、

网篮组织、细密马氏体组织

以激光增材制造Ti6Al4V为例

其他方法制造钛合金的组织特征

?铸造钛合金——一次性成型,组织存在较多缺陷,力学性能通常低于锻造件

?锻造钛合金——

在较短时间内经受较大的变形,因而在组织形态上表现出较为明显的变形方向特征

?粉末热压钛合金——通常可得细密、稳定的晶粒组织,组织性能优于锻件

裂纹扩展与断裂韧性裂纹扩展:当材料受到小于屈服强度的交变应力时,会产生疲劳问题,即在疲劳源附近,发生裂纹的萌生和扩展

断裂韧性:表征材料阻止裂纹扩展的能力

裂纹扩展、断裂韧性试样类型及规格尺寸

裂纹扩展、断裂韧性检测方法

在试样中间开一裂纹,通过三点或四点抗弯断裂测试,

计算材料的断裂韧性。

a 232BL

PL Y K IC 公式:

加载频率的影响:裂纹扩展速率低时,加载频率的变化对疲劳裂纹扩展速率基本没有影响;速率高时,加载频率的降低使裂纹扩展速率增大

?R >0时,随着R 的增大,高速率区,裂纹扩展的寿命减小;在低速率区,疲劳裂纹扩展速率的下限降低?R <0时,负应力的存在使低速率区裂纹扩展加快;对中速率区的裂纹扩展速度影响不大;在高速率区,裂纹扩展速度有减缓的趋势

应力比R 的影响:a m R -1R 1σσ+=平均应力

循环应力

?温度

?腐蚀环境等

增材制造国内外发展状况

增材制造(3D打印)技术国内外发展状况 --西安交通大学先进制造技术研究所2013-07-09 一、概述 增材制造(Additive Manufacturing,AM)技术是通过CAD设计数据采用材料逐层累加的方法制造实体零件的技术,相对于传统的材料去除(切削加工)技术,是一种“自下而上”材料累加的制造方法。自上世纪80年代末增材制造技术逐步发展,期间也被称为“材料累加制造”(Material Increse Manufacturing)、“快速原型”(Rapid Prototyping)、“分层制造”(Layered Manufacturing)、“实体自由制造”(Solid Free-form Fabrication)、“3D打印技术”(3D Printing)等。名称各异的叫法分别从不同侧面表达了该制造技术的特点。 美国材料与试验协会(ASTM)F42国际委员会对增材制造和3D打印有明确的概念定义。增材制造是依据三维CAD数据将材料连接制作物体的过程,相对于减法制造它通常是逐层累加过程。3D打印是指采用打印头、喷嘴或其它打印技术沉积材料来制造物体的技术,3D打印也常用来表示“增材制造”技术,在特指设备时,3D打印是指相对价格或总体功能低端的增材制造设备。 增材制造技术不需要传统的刀具、夹具及多道加工工序,利用三维设计数据在一台设备上可快速而精确地制造出任意复杂形状的零件,从而实现“自由制造”,解决许多过去难以制造的复杂结构零件的成形,并大大减少了加工工序,缩短了加工周期。而且越是复杂结构的产品,其制造的速度作用越显着。近二十年来,增材制造技术取得了快速的发展。增材制造原理与不同的材料和工艺结合形成了许多增材制造设备。目前已有的设备种类达到20多种。这一技术一出现就取得了快速的发展,在各个领域都取得了广泛的应用,如在消费电子产品、汽车、航天航空、医疗、军工、地理信息、艺术设计等。增材制造的特点是单件或小批量的快速制造,这一技术特点决定了增材制造在产品创新中具有显着的作用。 美国《时代》周刊将增材制造列为“美国十大增长最快的工业”,英国《经济学人》杂志则认为它将“与其他数字化生产模式一起推动实现第三次工业革命”,认为该技术改变未来生产与生活模式,实现社会化制造,每个人都可以成为一个工厂,它将改变制造商品的方式,并改变世界的经济格局,进而改变人类的生活

增材制造的概述

增材制造 增材制造(Additive Manufacturing,AM)技术是采用材料逐渐累加的方法制造实体零件的技术,相对于传统的材料去除-切削加工技术,是一种“自下而上”的制造方法。

增材制造按能量源分类 ?激光束 ?电子束 ?等离子或等离子束 通过热源加热材料使之结合、直接制造零 件,统称高能束流快速制造

增材制造按工艺分类?LMD技术 ?SLM技术

LMD技术基本原理 LMD技术作为增材制造技术的一种,是通过快速成型(RapidPrototyping,RP)技术和激光熔覆技术有机结合,以金属粉末为加工原料,采用高能密度 激光束将喷洒在金属基板上的粉末逐层熔覆堆积,从而形成金属零件的制造 技术。整个LMD系统包括激光器、激光制冷机组、激光光路系统、激光加工机床、激光熔化沉积腔、送粉系统及工艺监控系统等。 LMD快速成型技术的基本原理为:首先,利用切片技术将连续的三维CAD 数模离散成具有一定层厚及顺序的分层切片;第二,提取每一层切片所产生 的轮廓并根据切片轮廓设计合理的激光器扫描路径、激光扫描速度、激光强 度等,并转换成相应的计算机数字控制程序;第三,将激光溶化沉积腔抽真空,并充入一定压力的惰性保护气体,防止粉末熔化时被氧化;第四,计算 机控制送粉系统向工作台上的基板喷粉,同时激光器在计算机指令控制下, 按照预先设置的扫描程序进行扫描,溶化喷洒出来的粉末,熔覆生成与这一 层形状、尺寸一致的熔覆层;最后,激光阵镜、同轴送粉喷嘴等整体上移 (或工作台下移)一个切片厚度并重复上述过程,逐层熔覆堆积直到形成CAD 模型所设计的形状,加工出所需的金属零件。

增材制造技术概述

3.1 增材制造技术概述 增材制造技术诞生于20世纪80年代后期的美国。一开始,增材制造技术的诞生源于模型快速制作的需求,所以经常被称为“快速成型”技术。历经三十年日新月异的技术发展,增材制造已从概念(沟通)模型快速成型发展到了覆盖产品设计、研发和制造的全部环节的一种先进制造技术,已远非当初的快速成型技术可比。 3.1.1概述 1.概念 增材制造(即Additive Manufacturing,简称AM):一种与传统的材料“去除型”加工方法截然相反的,通过增加材料、基于三维CAD模型数据,通常采用逐层制造方式,直接制造与相应数学模型完全一致的三维物理实体模型的制造方法。 增材制造的概念有“广义”和“狭义”之说,如图3-1所示。 “广义”增材制造则以材料累加为基本特征,以直接制造零件为目标的大范畴技术群。而“狭义”的增材制造是指不同的能量源与CAD/CAM技术结合、分层累加材料的技术体系。 目前,出现了许多令人眼花缭乱的多种称谓:快速成型(Rapid Proto-typing)、直接数字制造(Direct Digital Manufacturing)、增材制造(AdditiveFabrication)、“三维打印(3D—Printing )”、“实体自由制造(Solid Free-form Fabrication) ”、增层制造(Additive Layer Manufacturing)等。2009年美国ASTM专门成立了F42委员会,将各种RP统称为“增量制造“技术,在国际上取得了广泛认可与采纳。 2.原理与分类 实际上在我们的日常生产、生活中类似“增材”的例子很多,例如:机械加工的堆焊、建筑物(楼房、桥梁、水利大坝等)施工中的混凝土浇筑、元宵制法滚汤圆、生日蛋糕与巧克力造型等。 图3-1 增材制造概念 基本原理:首先将三维CAD模型模拟切成一系列二维的薄片状平面层。然后利用相关设

增减材制造综述

增减材制造综述Last revision on 21 December 2020

《精密与特种加工》 课程大作业 院系:机械工程学院授课老师: ****** 学号: ******** 姓名: ******** 分数(百分制):完成时间:********** 题目:增减材复合制造的基本原理、面临的挑战及其应用前景 增减材复合制造的基本原理、面临的挑战及其应用前景 前言 基于增减材制造的复合加工技术融合了增材制造(RP技术)和减材制造技术优势,具有高精度、高效率、高自动化的特点,但国内外针对该技术开展的研究较少,详细阐述了基于增减材制造的复合加工技术原理及特点,并系统分析了国内外基于增减材制造所面临的挑战,最后指出其发展方向。 1.增减材复合制造的基本原理 基于增减材制造的复合加工技术是从面向制造的产品设计阶段、软件控制设计阶段以及加工阶段将增材制造和减材制造相结合的一种新的技术。该技术是一种添加,去除材料的过程,以“离散一堆积一控制”的成型原理为基础,如图2所示。首先在计算机中生成最终功能零件的三维CAD模型;然后将该模型按一定的厚度分层切片,即将零件的三维数据信息转换为一系列的二维或三维轮廓几何信息,层面几何信息融合沉积参数和机加工参数生成扫描路径数控代码,成型系统按照轮廓轨迹逐层扫描堆积材料和加工控制(对轮廓或表面进行机加工);最终成型三维实体零件。 从复合加工技术的原理可以看出,该技术与RP技术的基本思路是一致的,其实质就是CAD软件驱动下的三维堆积和机加工过程。由于采用机加工控制来消除台阶效应,

并保证精度,因此在沉积过程中可以采取大喷头和大厚度等低分辨率的沉积来提高alto 速度。一个基本的复合加工快速成型系统应该由以下几个部分组成:3或5轴CNC立式加工中心(由于大部分RP系统都是立式结构,所以该加工中心也应该是立式结构),沉积制造部分,送料系统,软件控制系统,辅助系统。 图金属材料增材制造 2.增减材复合制造面临的挑战 增材/减材集成制造是指在产品设计阶段,就要统筹考虑增材制造中可能出现的问题,如材料收缩、零件各个方向的变形、表面形貌等,以及零件的形状特征,如复杂型腔、内孔、薄壁、弯曲管道等,同时也要考虑到现有的减才加工中工艺过程受到的各种制约,如刀具的几何形状,刀具运动轨迹、范围,以及刀具转向次数等。 在烧结功能梯度材料的过程中,需要适时、适量地传送多种不同粉末,以获得按梯度变化的材料配比。送粉系统必须分别控制每种(多达四种)粉末的流量和流速。控制精度与功能梯度材料的性能。 在激光增材制造过程中,需要精确控制送粉量的大小。粉末流量必须均匀一致,根据控制指令,送粉量大小实时可调。最低粉末流量要达到每分钟一克。现有的送粉系统流量太大,不够均匀一致,且流速不稳,不能够精确送粉。需要设计新的送粉系统,精确地控制粉末流量流速,实现极小流量送粉的均匀一致性与可重复性。(设计多种传感器的反馈系统) 3.增减材复合制造的应用前景 高效率、高精度、高性能、低成本的增材/减材集成制造已经成为工业生产的需求;增材/减材集成制造显着减轻结构重量、节省材料;增材/减材集成制造扩展设计与制造的想象空间;全新的设计原理、加工技术、质量与精度控制方法;

相关主题
文本预览
相关文档 最新文档