当前位置:文档之家› 含高比例可再生能源电力系统灵活性规划及挑战

含高比例可再生能源电力系统灵活性规划及挑战

含高比例可再生能源电力系统灵活性规划及挑战
含高比例可再生能源电力系统灵活性规划及挑战

蒙特卡洛法在电力系统可靠性评估中的应用

3 蒙特卡洛法在电力系统可靠性评估中的应用 3.1电力系统可靠性评估的内容与意义 可靠性指的是处于某种运行条件下的元件、设备或系统在规定时间内完成预定功能的概率。电力系统可靠性是指电网在各种运行条件下,向用户持续提供符合一定质量要求的电能的能力。电力系统可靠性包括充裕度(Adequacy)和安全性(seeurity)两个方面。充裕度是指在考虑电力元件计划与非计划停运以及负荷波动的静态条件下,电力系统维持连续供应电能的能力,因此又被称为静态可靠性。安全性指的是电力系统能够承受如突然短路或未预料的失去元件等事件引起的扰动并不间断供应电能的能力,安全性又被称为动态可靠性。目前国内外学者对充裕度评估的算法和应用关注较多,且在理论和实践中取得了大量的研究成果,但随着研究的深入也出现了很多函待解决的新课题。电力系统的安全性评估以系统暂态稳定性的概率分析为基础,在原理、建模、算法和应用等方面都处于起步和探索阶段。由于电力系统的规模很大,通常根据功能特点将其分为不同层次的子系统,如发电、输电、发输电组合、配电等子系统,对电力系统的可靠性评估通常也是对上述子系统单独进行。不同层次的子系统的可靠性评估的任务、模型、算法都有较大区别。电力系统在正常运行情况下,系统能够正常供电,不会出现切负荷的事件。如果系统受到某些偶发事件的扰动,如元件停运(包括机组、线路、变压器等电力元件的计划停运与故障停运)、负荷水平变化等,可能会引起系统功率失衡、线路潮流越限和节点电压越限等故障状态,进而导致切负荷。电力系统可靠性研究的主要内容是基于系统偶发故障的概率分布及其后果分析,对系统持续供电能力进行快速和准确的评价,并找出影响系统可靠性水平的薄弱环节以寻求改善可靠性水平的措施,为电力系统规划和运行提供决策支持。 3.2电力系统可靠性评估的基本方法 电力系统可靠性评估方法可分为确定性方法和概率性方法两类。确定性方法主要是对几种确定的运行方式和故障状态进行分析,校验系统的可靠性水平。在电源规划中,典型的确定性的可靠性判据有百分备用指标和最大机组备用指标;电网规划

新能源及可再生能源利用讲解

太阳能在建筑中的应用 范乐乐 (哈尔滨工业大学) 摘要:随着社会的发展,建筑对电、热、冷的需求越来越多,同时对环境的要求越来越高, 然而要维持良好的生活环境,则需要消耗大量的能源,所以对于目前能源和环境污染的双重压力下,太阳能作为一种取之不尽且无污染的可再生能源,已经成为当前国际能源开发利用中的一个新热点。本文介绍了太阳能光伏发电、太阳能热水、太阳能采暖和太阳能制冷等在建筑中的应用。 关键词:可再生能源,太阳能光伏发电,太阳能热水,太阳能采暖,太阳能制冷The application of solar energy in construction Fan lele (Harbin Institute of Technology) Abstract With the development of society, the need of electricity, heat and cold become more and more in construction,while more and more people are paying attention to environment.However,If we want to maintain a good living environment,we will consumes a lot of energy.Under the pressure of energy and environmental pollution , solar energy as an inexhaustible, renewable and no pollution energy,has become a new hotspot to international energy development and utilization. This paper introduces solar photovoltaic, solar hot water, solar heating and solar energy refrigeration application in construction. Keywords: renewable energy,solar photovoltaic,solar hot water,solar heating,solar energy refrigeration 绪论 建筑作为人类的基本居住空间,它对人类的生活环境有着直接、重要的影响,居住空间环境的优劣直接影响着人们的生活质量,然而要维持良好的生活环境,则需要消耗大量的能源,对于目前能源和环境污染的双重压力下,太阳能作为一种取之不尽且无污染的可再生能源,已经成为当前国际能源开发利用中的一个新热点。

电力系统规划试题 (2)

一、名词解释 1、净现值:是用折现率将项目计算期内各年的净效益折算到工程建设初期的现值之和。 2、净现值率:是反映该工程项目的单位投资取得效益的相对指标,使净效益现值与投资指之比。 3、将来值F:把资金换算为将来某时刻的等效金额,此金额称为将来值。资金的将来值有时也叫终值。 4、等年值A:把资金换算为按期等额支付的金额,通常每期为一年,故此金额称作等年值。 5、电力系统安全性:是指电力系统经受住突然扰动并且不间断地向用户供电的能力,也成为动态可靠性。 6、电力系统充裕性:是指电力系统在同时考虑到设备计划检修停运及非停运的的情况下,能够保证连续供给用户总的电能需求量的能力,这是不应该出现主要设备违反容量定额与电压越限的情况,因此又称为静态可靠性。 7、电力系统可靠性:电力系统按可接受的质量标准和所需的数量不间断地向用户提供电能的能力的度量。 8、电力系统的可靠性评价:通过一套定量指标来度量电力供应企业向用户提供连续不断的质量合格的电力的能力,包括对系统充裕性和安全性两方面的衡量。 二、填空题 1、电力工程投资方案的基础数据主要包括有____ 投资、年运行费、残值、使用年限等 2、电力系统备用容量包括__负荷备用______事故备用,____和检修备用_____ 。 3、电力系统规划按其环节划分包括有_ 电源规划、输电网规划、配电网规划______。 4、电源规划的优化模型类型主要包括有_按机组类型和电厂类型优化__________。 5、发电规划的等备用系数法是指 _备用容量____和__供电负荷_____比例大致相同方法。 6、分析可修复元件的可靠性特性包括_元件故障特性和元件修复特性 7、工程经济分析中的投资指标包括_概略指标____和__预算指标_______。 8、构成电力系统的需要容量包括有___ 系统工作容量和备用容量____________________。 9、灰色模型对原始数据进行生成的目的是__强化规律____和__削弱干扰____。 10、火电厂的技术经济特点有受__最小出力_____限制和__运行小时_____高。 11、影响线路输送能力的主要因素是__电压等级_____和__输电距离_____。 12、有效载荷容量少于机组额定容量的部分是用于_满足系统可靠性要求的需要______。 13、预测技术方法主要划分为_外推法______和__相关法_____两大类。 14、元件可用度和不可用度的表示式分别为_ A=u/λ+u=MTTF/MTTF+MTTR _____和__A=λ/λ+u=MTTR/MTTF+MTTR ____。 15、直流潮流方程主要的特点是__ 线性_____电路和_实数______运算。 16、指数平滑法是对整个_时间序列______进行__加权平均_____方法。 17、最小费用法的资金支出流包括___投资____和__年运行费用_____。 18、使用指数平滑法需要事先确定的两个数据是__平滑系数和初始值________。 19、计算发电机组有效载荷容量的方法包括有__绘图法和解析法________。 20、经济评价方法中的年费用法简明表示式为_ ()C P A K AC+ =, i, / _________。 三、判断题 1、AW与NPV法的主要区别是对资金的等值计算角度不同。√

新能源发电技术在电力系统中的应用

新能源发电技术在电力系统中的应用 发表时间:2018-12-04T14:34:15.217Z 来源:《河南电力》2018年12期作者:张玉琴1 程佳音2 [导读] 在电力系统之中加强新能源发电的实际应用,有助于改善目前的社会能源供应系统效率较低的情况,推动社会能源的高效利用。 (1.国网河北省电力有限公司涉县供电分公司河北邯郸 056400; 2.国网河北省电力有限公司邯郸供电分公司河北邯郸 056000) 摘要:在我国快速发展的过程中,我国的新能源在不断地出现,作为一种可再生环保能源,大力发展新能源能够有效地节约资源,推动现代社会的可持续发展,同时也有助于今后可持续发展理念的推广。所以,在电力系统之中加强新能源发电的实际应用,有助于改善目前的社会能源供应系统效率较低的情况,推动社会能源的高效利用。基于此,本文就新能源发电在电力系统中的实际应用方向以及相应的应用要求进行一定的探讨和分析,希望在今后新能源发电的发展过程之中对相关人员能够起到一定参考作用。 关键词:新能源发电;电力系统;应用 引言 人们的生活和工业生产离不开电能,可以说电能是支撑我国经济发展的重要能源。随着人民生活水平的提高以及工业生产的进步,未来阶段内我国用电数量会逐年增长,而发电需要消耗大量的能源,过去中,我国发电普遍使用的是化石燃料,如碳煤以及石油等,而这些化石燃料并非可再生资源,用多少就消耗多少,如果一直使用化石燃料的话,必然会导致化石燃料的枯竭。在这样的背景下,研究新能源的应用具有十分重要的意义。 1分布式光伏的特点与应用效果的阐述 以光生伏特效应为基础,充分利用太阳能电池元件,将太阳能转化为电能的技术,就是我们所说的光伏发电。由于半导体硅在加入了不同特性的半导体材料,最终导致半导体内部出现了多余的空穴或者自由电子。分布式光伏发电是除了风力发电外在发电中光伏应用的新能源发电技术之一。其主要是通过将光伏发电接入风电场用电系统中,负责照明电力的需求,这种新能源技术已经得到了的大范围的推广和应用。我们常说的光伏发电,实际上就是日常生活中常见的太阳能发电,风电场采取在综合办公楼、材料库等建筑物安装太阳能电池板的方式,采取就近接入或者分散接入的方式将光伏发电接入发电站用电系统中。为了确保就近接入、分散接入的顺利进行,发电站必须在确保自身建筑配电间配有光伏并网逆变器的基础上,将光伏发电电流有效的转化为符合发电站用电要求的电能。就目前而言,国内外普遍采用的是直接电流控制火灾间接电流控制等几种类型的逆变器控制策略。如果采取直接电流控制的话,则电流控制器在通过电力反馈闭环直接对电流输出进行调节,不仅不会影响电网电压的稳定性,同时也确保了电流的稳态与动态等各方面性能。但是,其对于电流控制器性能的要求相对较高。而间接电流控制,虽然对控制器要求较低,结构简单且不需要引入反馈电流,但是由于间接电流控制的稳定性较差,电路的动态响应较慢,因此应用这一方式就会导致并网电流跟踪精度的下降。 2新能源发电在电力系统中的应用 2.1利用燃烧电池进行发电技术 燃烧电池是现代技术发展出的众多新能源技术中的一类,其工作方式与传统电池的工作方式并无不同,都是将化学能转化为电能。虽然在机构之上与传统电池相差不大:都存在正负极,电池之中都具备电解质以供电解,然而在具体的核心结构之中仍然与传统电池有所不同,即燃烧电池在其正负极之上并没有像传统电池那样放置有一定量的活性物质来保持工作的稳定以及效率的提高。在实际工作过程中,燃烧电池主要以供给的燃料与电池内部的氧化剂进行反应,通过这一反应从而实现电能的输出。因此在燃烧电池工作过程中,要想保证足够多的电能的产生,只需保证发生反应的燃料以及内部的氧化剂充足即可,相较于传统能源的使用条件而言已经有了极大地简化。所以从理论上来讲这一发电技术能够实现百分百的能源利用效率,而且即便在实际使用过程中受到环境因素的影响,也仍然能够保持远高于传统能源使用效率的百分之八十的能源利用。 2.2海洋能源利用的可能性与前景调查 地球是人们赖以生存的唯一家园,海洋所占面积为71%,陆地所占面积为29%,海洋所蕴含的资源非常大。可以说,谁掌握了海洋技术,谁就掌握了话语权。我国新能源发电主要采用风力发电、太阳能发电这两种方式,忽视了海洋所蕴含的能源。其实,海洋的能量巨大,并且是现阶段找到可替代能源前唯一可依靠的能源。海洋不仅蕴含大量的生物和物种资源,还潜藏大量的能源,比如生物能、潮汐能等,这些能源值得人们进行开发和利用,能够有效地缓解社会对能源的需求压力。海洋能源并不完全指海洋自身,地球存在于太阳系中,只要其一直存在,海洋能源就永远不会枯竭。现阶段,以海洋能为基础进行发电主要有两种方法:第一种:施工人员将沸点较低的水质加热使其呈现为蒸汽;第二种:以温水为基础,将其运送到真空室内加热至沸腾状态,从而转变为蒸汽。液体水转换为蒸汽后具有强大的热能,推动汽轮发电机进行发电,再从600~1000m深处进行冷却水的抽取,从而实现冷凝蒸汽的目的。1930年,法国科学家借助海水存在的温差进行发电,并取得试验成功,但发出的电能与消耗的电能相比少之又少,不值得推广和使用。目前,大多数国家都在积极研究海水温差发电。大量的试验证明,其具备一定的优点:(1)将温海水作为基础进行发电,能有效避免化学物质对海水产生污染;(2)采用开放式循环能降低试验成本,提高发电效率;(3)采用塑料制造的直接接触热交换器,能有效提高设备的抗腐蚀性;(4)能产生大量的蒸馏水,为其他部门的使用节省资源。我国的潮汐能发电在国际上具有一定的地位,并且正常运营的潮汐发电站已达到几十座。经过5~10年的发展,我国的潮汐能发电站势必会超过100座。由此可以看出,海洋能发电和宽阔的海洋一样具有巨大的发展空间和发展前景。我国的海岸线较长,具有丰富的海洋能源,具有一定的优势。海洋能是可再生能源,并且永远不会枯竭,其与煤炭发电相比较,不会消耗现有的能源,也不会对环境产生污染;与太阳能发电进行比较,不会占有现有的土地资源,能过提高土地的利用率;与核能发电进行比较,不需要消耗稀有的能源,也不需要强大的保护措施和科学技术作为依靠。 2.3太阳光伏发电技术运用 我国现阶段的太阳光伏发电技术可以分为三种,具体如下:(1)由电压源电压控制的太阳能光伏系统,这种太阳能光伏发电系统结构被称为独立户用型。(2)由电压源电流控制的太阳能光伏系统,这种结构被称为并网型。(3)融合独立户用型以及并网型太阳能光伏发电系统结构,可在电压源电压和电压源电流控制之间进行切换。而太阳能光伏发电的工作原理如下:利用太阳能电池将太阳能转化为电能,再由功率变化装置把转化来的电能调节成可以接入电网的电能。太阳能电池转化来的电能为直流电,只能为直流负荷输出所需要的电

新能源发电在电力系统中的应用

新能源发电在电力系统中的应用 发表时间:2017-05-16T15:26:32.673Z 来源:《电力设备》2017年第4期作者:李翔波 [导读] 摘要:新能源发电技术是解决电力生产消耗过多煤炭等战略资源的最佳途径。 (广州艾博电力设计院有限公司广东广州 510080) 摘要:新能源发电技术是解决电力生产消耗过多煤炭等战略资源的最佳途径。本文以新能源发电形式为研究对象,着眼于电力系统运用实际情况,将简单阐述一下新能源对电力系统的影响,并对现行的几种新能源发电技术进行简单点的介绍。 关键词:新能源发电;原则;电力系统;应用 引言 能源危机日益严重的今天,人们迫切需要找到新的方法来进行发电,在相关的研究人员的努力下,分布式发电同新能源发电应运而生。为确保电力系统能够在整个现代经济社会建设发展中得到长时间且可持续性的发展,展开有关新型能源在电力系统中的应用研究势在必行。所以,随着我国能源需求的逐渐提高,新能源发电逐渐获得了政府的支持和人们的关注。利用新能源进行发电解决了传统发电过程中对环境的污染问题,并且减少了不可再生的化石燃料的使用,取而代之的是可再生的清洁的新能源,比如风能、太阳能等。但是在利用新能源进行发电的过程中,多个小型的发电站所产生的电流对电力系统会不可避免的产生一定的影响,所以,本文首先分析新能源发电对电力系统的影响,进而提出几种新能源发电技术。 一、新能源发电对电力系统的影响 在新能源发电的电力并入国家电网的过程中会对电力系统造成一定的冲击,这是因为由于部分地区的新能源发电机组容量有限,只能采用异步发电机,这种发电机因为缺少相对独立的励磁装置,所以在发电机所发出的电能并入电网之前发电机自身是没有电压的。在发电机并网前后其电压电流必然会出现一定范围内的波动。根据相关的数据资料记载,在并网时会出现大概比额定电流大5-6倍的并网冲击电流。在并网过程中,特别是对于容量较小的电网而言,数量比较大的异步发电机同时并入电网的瞬时会将电网电压大幅拉低,瞬间降低的电压会对在同一电网上运行的其它电气设备造成一定的影响,达到一定程度之后就会威胁到整个电网的运行安全和稳定。 在新能源发电的电力并网过程中,除了上文所介绍的对电力系统造成冲击以外,新能源电力并网还会对电力系统的稳定性造成一定的影响。当风力发电的电能并入大型电网的过程中,由于大型电网所配备的备用电容和调节电力的设备比较充足,因而风电并网不会对电网造成太大的影响。但是风电所并入的电网并不都是具有相当调节能力的大型电网,当风电将要并入小型电网的时候,并网所造成的频率改变和对电网的稳定性造成的影响不容忽视。同上文所介绍的情况一样,当多台大型风力发电机将其所发的电量同时并入电网中的时候,会造成电网电压的瞬间降低。风力发电过程中,风速是不稳定的,当风速超过切出值的时候,风力发电机就会从额定出力状态自动退出并网状态。由于风电的并入而造成的电网电压的下降无疑会对电网运行的稳定性带来一定的威胁。 二、新能源发电在电力系统的应用 1、利用开发风能发电 在目前的电力电子背靠背变频技术的支持下,风力发电系统能够对发电功率的各个参数的输出作业进行有效的调整和控制,风力发电的目标也是通过控制电磁转矩控制机组转速频率来实现的。风能在利用过程中因为没有产生辐射、也不会对空气产生污染是一种公认的清洁的可再生能源,风力发电基本原理,利用自然界的风力带动发电企业安装的风车叶片旋转,通过增速机把风车旋转的速度加快,从而带动发电机发电。 2、利用海洋能发电 (1)波浪发电 波浪发电需要利用转换装置,把波浪能转化为机械、气压或液压的能量,以催动机械的运行。其中,我国最典型的波浪发电案例,应该是广东油尾建成的100千瓦的振荡水柱式波浪发电站,当然,还有一些地区也取得了很好的效果,如海南、福建,现如今,很多沿海城市已经把建设100千瓦以上的波浪发电站,作为建设目标。虽然说波浪发电技术难度大、需要耗费大量资金,但是却符合我国经济市场的发展需要,具有广阔的发展空间。 (2)潮汐发电 潮汐是海洋水位受太阳和月球等天体的引力影响,发生变化,进而产生水位波动的一种自然现象。因而,潮汐发电的方式是:利用潮水涨落产生的水位差,创造势能,把势能转化为电能,来投入使用。可再生、存储量大、生产成本少是潮汐能的最大优势,同时,潮汐能是一种清洁能源,不会引起环境污染,把潮汐能发电水库建立在河口或海湾,不会占用地区的耕地。但是,在潮汐能发电方面,我国存在着电价高、成本高等问题,给潮汐能的推广和运用带来不利影响。 3、太阳能发电技术 目前世界储备量最多的自然资源就属太阳能了,当电力、煤炭、石油等资源存储量耗尽时,太阳能发电将成为解决能源危机的最佳方法。在地球外层空间建立太阳能发电基地是太阳能技术的基本构想,产生的电能将通过微波传输到地面上太阳能接受装置里。然后在经过相应的处理把太阳能从液态变为气态,用于汽轮发电机发电。其中太阳能发电形式包括:光伏发电和光热发电:光伏发电光伏技术随着科学技术的发展而不断得到更新,这不仅提升了电能产生的效率,同时各种能源的转化运用也得到了加快。由于光伏发电领域在国内起步比较早,所以经过长期的研究发展在太阳能电池组件的生产能力等方面取得了诸多成就,对于缓解国内能源危机提供了很有效的方式。太阳能电池把太阳能转变成电能的部件主要运用了光伏效应。太阳光的光子在电池里激发出点子空穴对,电子和空穴则会移动到了电池的两端,如果外部存在通路就会有电流的出现,最终生成电能;光热发电技术是指将自然界中所有的光能聚集在一起,然后结合聚光器汇集太阳能。由于受技术的限制,国家在研究光热发电方面进展迟缓,对光热发电能源尽管进行了全力研究但还是没有取得很突出的成绩。 4、利用生物质能发电 生物质发电时蕴含在生物中的能量,具有可再生、低污染、分布广等特点,在能源资源中占有比例重,是第四大能源。在中国,农村地区秸秆等资源丰富,大部分都是经过燃烧处理掉,造成了资源的严重浪费,如果将其利用与发电上,将会创造大量的电能。同样,在一部分的林区,可以实施林业生物质直燃的方式进行发电。在甘蔗种植面积较大的区域,可以变废为宝,利用蔗渣进行直燃发电。另外,在人口密集,土地资源匮乏的地区,可以利用垃圾焚烧进行发电,既能够有效解决发电问题,还可以同时解决了垃圾处理问题。最后,在大

电力系统可靠性作业二

电力系统可靠性第二次作业 电卓1501 杨萌201554080101 1.什么是电力系统可靠性 电力系统可靠性是对电力系统按可接受的质量标准和所需数量不间断地向电力用户供应电力和电能能力的度量。包括充裕度和安全性两个方面。 2.什么是充裕性 充裕度( adequancy,也称静态可靠性),是指电力系统维持连续供给用户总的电力需求和总的电能量的能力,同时考虑系统元件的计划停运及合理的期望非计划停运 3.什么是安全性 安全性( security,也称动态可靠性),是指电力系统承受突然发生的扰动的能力。 4.电力系统可靠性包括哪几大类 发电系统可靠性,发输电系统可靠性,输电系统可靠性,配电系统可靠性及发电厂变电所电气主接线可靠性。 5.可靠性的经典定义 指一个元件或一个系统在预定时间内和规定条件下完成其规定功能的能力。 6.元件 是构成系统的基本单位 7.系统 是由元件组成的整体,有时,如果系统太大,又可分为若干子系统。 8.电力系统可靠性的评价 通过一套定量指标来量度电力供应企业向用户提供连续不断的、质量合格的电能的能力,包括对系统充裕性和安全性两方面的衡量。 9.不可修复元件的寿命 不可修复元件的寿命是指从使用起到失效为止所经历的时间。 10.故障率 假设元件已工作到t时刻,则把元件在t以后的△t微小时间内发生故障的条件概率密度定义为该元件的故障率。 11.可靠度与不可靠度

可靠度:表示元件能执行规定功能的概率,通常用可靠度函数R(t)表示,在给定环境条件下时刻t前元件不失效的概率:R(t)=P[T>t],R(t)=1-F(t) 不可靠度:F(t)只元件的损坏程度,称为元件的故障函数或不可靠函数。 R(t)=e^(-λt) F(t)=1- e^(-λt) 12.什么是可修复元件 指投入运行后,如损坏,能够通过修复恢复到原有功能而得以再投入使用。 13.元件描述修复特性指标有哪些? 修复率、未修复率、修复度、平均修复时间 14.元件修复率 表明可修复元件故障后修复的难易程度及效果的量成为修复率。 通常用表示,其定义是:元件在t时刻以前未被修复,而在t时刻后的△t 微小时间内被修复的条件概率密度: 15.元件未修复率 元件为修复率定义式: 即实际修复时间大于预定修复时间的概率。 16.元件平均修复时间与修复率之间的关系 元件修复度: 元件平均修复时间MTTR:当元件的修复时间Tu呈指数分布时,其平均修复时间MMTR=

可再生能源利用技术发展趋势

可再生能源利用技术发展趋势 一、太阳能开发利用 1、太阳能光热利用 ⑴、太阳能热水器依然是太阳能低温热利用的主流,已经进入大规模、商业化的利用阶段<但在技术方面不断创新,在生产技术和工艺上不断改进。 热水器种类主要有: ①金属平板太阳热水器、热管式平板太阳热水器; ②真空管太阳热水器、真空管太阳热管热水器,真空管闷晒太阳热水器; ③太阳能热泵热水器,混合热源热泵热水器; ④四季型太阳热水器,带有辅助热源的四季型太阳热水器。在技术方面主要从热水器结构、材料、生产工艺和隔热方式等进行改进和创新。 ⑵、与建筑结合的太阳能利用技术,为太阳能建筑供热水、采暖、空气调节、制冷以及供电,解决建筑的部分或全部能耗,是今后太阳能利用的主要方向。 ①太阳能集热建筑模块; ②太阳能集热模块与建筑的接口技术; ③太阳能低温长期储热技术与储热介质的研究; ④太阳能热交换技术与热交换设备的研究; ⑤新型太阳能建筑保温技术与保温材料的研究; ⑥太阳能建筑照明和光伏并网技术的研究; ⑦太阳能建筑空调技术与制冷设备的开发。 ⑧太阳能建筑供能系统自动监控、能耗计量和节能管理的开发; ⑨太阳能建筑标准和规范的研究;

⑩太阳能建筑标准构件图集。 ⑶太阳热发电是将太阳辐射能聚集起来加热工质,经热交换器产生过热蒸汽,再由蒸汽驱动汽轮机带动发电机发电,其原理与普通热电站相同,主要区别在于用太阳辐射的热能来替代化石燃料燃烧产生的热能。太阳能热发电是21 世纪最具革命性的技术成果,是实现大规模可再生能源发电、替代常规能源发电最经济的手段之一。太阳能热发电技术经过30 多年的研究、示范,主要关键技术有了突破性的发展。预计到2010 年,我国的太阳能热发电成本可降到0.6元/kWh , 2015年,发电成本降至0.38元/kWh,可逐步替代煤电,实现我国多元化的电力结构。目前,太阳能热发电技术正处在工业化初期,商业化前期阶段。 ①盘式太阳能热发电技术的研究太阳能收集器由盘状抛物面聚焦反射镜及位于焦点的吸收器组 成,其聚光比可达数百到数 千,从而可产生高温。吸收器将所吸收的太阳热能传给热机回路中的工质,由工质驱动热机与发电机组发电。整个系统配有微机控制系统,对反射镜精确跟踪太阳及发电机组进行控制。 ②槽式太阳能热发电技术的研究 槽式太阳能发电系统由太阳场集热系统,热传输系统,蓄热与热交换蒸汽发生器系统以及汽轮发电机系统四部分组成。它由槽式抛物面聚光镜与位于焦点的真空管集热器组成,聚光镜配有自动跟踪系统可跟踪太阳,集热管内有流动的工质(通常为油)吸收辐射能而被加热。被加热的工质经输运管道进入蒸汽发生器,通过热交换产生所需的高温高压蒸汽,再用蒸汽驱动汽轮发电机组发电。 ③塔式太阳热发电技术的研究 塔式太阳热发电系统由定日镜系统、太阳跟踪装置、太阳能收集器(太阳锅炉)、储能系统与储热介质、过热蒸汽发生器和汽轮发电机组组成。在太阳场内设置大量定日镜,它们由跟踪装置控制将太阳辐射聚集到位于塔顶的集热接收器,使在接收器内产生所需的蒸汽或熔化硝酸盐作为传热介 质,以提高接收器的热效率和使贮热系统变得简单和高效;再由蒸汽驱动汽轮 发电机组发电

新能源电力系统的主要特征

新能源电力系统的主要特征 传统电力系统以煤炭、石油、天然气、水能等传统能源作为一次能源,由于其可储存的特性以及稳定可靠的发电技术,使得电力系统供应侧可控可调。随着可再生能源发电的大规模接入,风能、太阳能等可再生能源作为一次能源具有的不可储存及波动特性,使得风电等可再生能源发电出力具有较大的不确定性,电力系统供应侧可调控性降低,电力系统呈现出较强的供需双侧随机性。新能源电力系统就是通过电力系统结构、运行方式的根本性变革,使电力系统更够承受供需双侧不确定性对系统的冲击,保证可再生能源的安全高效利用。 新能源电力系统的主要特征有两点: 第一,高可再生能源利用比例。高渗透率的可再生能源电力是新能源电力系统的重要特征。由于风能、太阳能等可再生能源较低的能量密度以及我国可再生能源资源主要集中在“三北”地区的分布格局,未来我国的新能源电力系统应该是集中式与分布式可再生电源、远距离大电网输送与区域微网就地消纳相结合的形式,从而保证系统能够最大限度地利用可再生能源电力。 第二,供应侧的横向多能源互补,系统纵向源—网—荷

—储协调互动。安全高效利用可再生能源是新能源电力系统的重要目标。在供应侧,一方面,利用可再生能源发电精确预测技术、新型可再生能源发电设备及控制技术,最大程度上做到对风电等可再生能源发电出力的可调可控;另一方面,通过可再生能源与传统水火电、抽水蓄能电站之间,不同可再生能源之间,集中式与分布式可再生能源之间的协调控制,实现多类型能源电力互补,使得供应侧整体呈现出稳定的出力特性,减小可再生能源发电出力波动对系统造成的冲击。在输配环节,新型的电网结构、先进的输配电方式、控制和安全防御系统及储能设施的建设和应用,使得电网对可再生能源拥有足够的接纳能力,最大限度地避免物理通道对电力资源优化配置的影响。在需求侧,一方面,通过AMI 及先进的通信系统,使用户能够实时掌握自身用电情况与不同层级的系统运行情况,根据价格响应信号,调整自身的用电行为;另一方面,通过先进的控制技术,能够对用户的终端用电器做到精确计量与控制,最大程度的利用需求侧“暗储能”潜力。 综上所述,新能源电力系统核心特征就是要借助相关的技术手段,实现电力系统中真正意义上的“横向多源互补,纵向源网荷储协调”,从而最大限度地利用可再生能源,逐步提高可再生能源在电力一次能源消费中的比例,最终使得可再生能源在我国电力能源结构中占据主导地位。

含高比例可再生能源电力系统灵活性规划及挑战

http://www.aeps‐info.com 含高比例可再生能源电力系统灵活性规划及挑战 鲁宗相,李海波,乔 颖 (清华大学电机工程与应用电子技术系,北京市100084) 摘要:未来高比例可再生能源的随机变化特性将给电力系统运行灵活性带来前所未有的挑战,对 系统的灵活性资源进行规划成为必要的研究工作。对含高比例可再生能源电力系统灵活性规划的研究动态进行评述,首先分析了高比例可再生能源电力系统的基本特征,给出了电力系统灵活性的定义、主要灵活性资源类型和灵活性平衡原理,然后介绍了灵活性定量评价指标体系,最后,提出了电力系统灵活性协调规划的核心内容及求解思路、存在的关键难题及技术解决思路。关键词:高比例可再生能源;灵活性评价;多时空尺度;电力系统规划 收稿日期:2015‐12‐15;修回日期:2016‐01‐22。上网日期:2016‐03‐01。 国家科技支撑计划资助项目(2013BAA01B03);国家电网公司科技项目(SGTYHT/14‐JS‐188)。 0 引言 当今人类社会面临能源安全和气候变化的严峻挑战,传统能源发展方式难以为继,可再生能源大规模利用,推动了能源清洁化、低碳化、智能化发展,联合国2002年约翰内斯堡世界环境发展大会将可再 生能源发展纳入其千年发展目标[1] 。高比例可再生能源发电成为全球广泛关注的未来电力系统场景。欧洲专家提出2050年在欧洲和北非实现100%可再生能源电力系统的技术路线图[2];美国可再生能源国家实验室在可再生能源电力未来蓝图研究中提出美国2050年将实现80%电力来自可再生能源[3];中国相关研究机构发布的枟中国2050高比例可再生能源发展情景暨路径研究枠报告提出,中国 2050年要实现60%电力来自可再生能源[4] ,届时风电和太阳能发电装机容量将分别达到2396GW和2696GW,发电量占比分别为35.2%和28.35%,包括水电等在内的可再生能源发电量占比将达到85.8%。 高比例可再生能源接入的未来电力系统中,风电和太阳能将成为电力供应的重要支柱,其风、光资源的随机性和波动性,导致电力系统本征特性改变,需要重新探讨其规划和运行机制。枟中国2050高比例可再生能源发展情景暨路径研究枠报告中给出了2050年高比例可再生能源场景下典型日全国发电机组调度曲线(见附录A图A1),可以看出,高比例 可再生能源系统主要有以下特征:①基本取消了“基荷”发电厂(核电除外),常规火电机组在日内启停,可再生能源承担了较大的电力需求,并通过水电厂、燃气电厂灵活调节实现对新能源波动性的互补;②常规电源在大多数时刻(如09:00到19:00)渗透率较低(不足50%),甚至在中午光伏满出力时段,全部电力需求几乎全部由新能源承担,火电接近技术下限出力运行,下调潜力几乎用尽;③系统内的电力电子接口电源比例剧增,系统惯性大幅下降。这些特征对电力系统的影响是根本性的,整个电力系 统规划和运行机制必须进行革新[5] 。 从中国发展现状来看,充裕的灵活调节资源已成为系统运行的必需条件。目前的风电装机容量已经突破100GW,太阳能发电装机容量也突破30TW,处于世界领先地位,但是中国的弃风、弃光率一直居高不下。近5年全国弃风率统计平均值为12.6%,东北、华北和西北地区多数大型风电基地的 弃风率甚至超过20%[6‐8] ,而欧洲大多数国家及美 国的弃风率能保持在5%以下[9‐10] 。中国不同地区弃风的原因各异,如内蒙古、冀北和甘肃电网主要是由于外送通道不足,而东北三省严重弃风的主要原 因是调峰能力不足[11] ,但归根结底都是系统灵活性不足。调峰问题导致弃风的核心原因是电源结构灵活性不足,而外送问题导致弃风的核心原因是电网灵活性不足。引入储能乃至考虑负荷需求响应机制来减小弃风、弃光的研究,其本质也是增加系统的灵活调节能力。可见,中低比例可再生能源的现阶段,灵活性不足导致了局部区域局部时段的弃风、弃光问题,未来的高比例可再生能源电力系统场景下,若灵活性不足,后果会更加严重,甚至导致系统无法正 7 41第40卷 第13期 2016年7月10日Vol.40No.13July10,2016 DOI:10.7500/AEPS20151215008

电力系统可靠性评估指标

电力系统可靠性评估指标 1.1 大电网可靠性的测度指标 1. (电力系统的)缺电概率 LOLP loss of load probability 给定时间区间内系统不能满足负荷需求的概率,即 ∑∈=s i i P LOLP 式中:i P 为系统处于状态i 的概率;S 为给定时间区间内不能满足负荷需求的系统状态全集。 2. 缺电时间期望 LOLE loss of load expectation 给定时间区间内系统不能满足负荷需求的小时或天数的期望值。即 ∑∈=s i i T P LOLE 式中:i P 、S 含义同上; T 为给定的时间区间的小时数或天数。缺电时间期望LOLE 通常用h/a 或d/a 表示。 3. 缺电频率 LOLF loss of load frequency 给定时间区间内系统不能满足负荷需求的次数,其近似计算公式为 ∑∈=S i i F LOLF 式中:i F 为系统处于状态i 的频率;S 含义同上。LOLF 通常用次/年表示。 4. 缺电持续时间 LOLD loss of load duration 给定时间区间内系统不能满足负荷需求的平均每次持续时间,即 LOLF LOLE LOLD = LOLD 通常用小时/次表示。 5. 期望缺供电力 EDNS expected demand not supplied 系统在给定时间区间内因发电容量短缺或电网约束造成负荷需求电力削减的期望数。即 ∑∈=S i i i P C EDNS 式中:i P 为系统处于状态i 的概率;i C 为状态i 条件下削减的负荷功率;S 含义同上。期望缺供电力EDNS 通常用MW 表示。

新能源电力系统控制与优化 史学伟

新能源电力系统控制与优化史学伟 发表时间:2019-09-17T10:35:19.910Z 来源:《电力设备》2019年第7期作者:史学伟徐晓川苏长江 [导读] 摘要:随着社会的发展以及人们环境保护意识的提升,能源问题以及环境问题已经成为了当今社会所关注的焦点问题。 (国网新源张家口风光储示范电站有限公司张家口市 075000) 摘要:随着社会的发展以及人们环境保护意识的提升,能源问题以及环境问题已经成为了当今社会所关注的焦点问题。想要在保护环境,降低能耗的同时促进经济与社会的发展,大力的研发与利用清洁能源就成为了必然的发展趋势。太阳能、风能是典型的清洁能源,其没有任务污染,并且可以再生,因此可以满足可持续发展的要求。但是其也存在一定的缺陷,即其自身的稳定性不足。这就给电力系统的供应带来了较大的挑战。因此本文对新能源电力系统的控制与优化进行了研究与分析。首先阐述了新能源电力系统的概况与特点,其次则从四个方面对新能源电力系统的优化控制的方法进行了细致的分析。 关键词:新能源;电力系统;控制 前言 作为煤炭大国,煤炭在我国电力系统的供应中发挥了十分重要的作用。但是由于煤炭资源属于不可再生资源,我国的煤炭资源正在逐渐的减少。并且煤炭发电还会对环境造成严重的污染。而其他的能源例如石油、天然气等也应为电力供应量越来越大,导致其剩余量越来越少。所以我们应当充分的利用新能源进行发电,以满足社会的需求。风能、太阳能、地热能都是可再生资源,也是我们大力研发与利用的清洁能源,其在能源结构中所占的比例越来越大。但是由于新能源发电有着随机性以及不可控制性的特点,单纯的依靠传统的供给侧调度已经难以保证电力系统的安全性与稳定性发展。因此有必要对新能源电力系统的控制与优化进行研究。 一、新能源电力系统的概况与特点 天然气、煤炭以及石油等都是不可再生的资源。但是这些资源对于我们的生产生活而言是十分重要的,我国的电力系统就是利用其进行发电的。但是利用这些资源进行发电,一方面消耗了大量的不可再生资源,另一方面也给环境造成了严重的污染。这是不符合可持续发展战略的。因此为了减少对这些能源的消耗,保护环境,降低污染,人们开始研究并利用可再生的资源进行发电。但是实际上可再生资源也存在着一定的问题,就是其不能够进行存储,存在着很多的不稳定因素,进而使得电力系统的双侧供应可调控性相对较差。新能源的出现就是为了有效的解决这一问题,在保证稳定供电的情况下,更加高效与安全的应用可再生资源。 新能源电力系统的主要特点包括以下几点:第一,渗透率较高,资源可再生。目前,我国的新能源主要是在新疆、甘肃等地区应用,在地里位置上而言,这是相邻的两个省份,这样就不需要进行远距离的电网输送,一方面节省了成本,另一方面则高效的利用了可再生资源。第二,侧向供应多能源互补。其特点主要表现在两个方面。其一,供应。其二,需求。供应指的就是利用太阳能、风能等绿色能源与先进的科学技术进行发电。保证电力资源的绿色、安全、稳定的供应。并且通过科学技术可以使这些能源之间形成优势互补,如此就解决了由于稳定性较差所造成的一些问题。需求方面则主要指的是满足用户的具体需求。根据目前电力系统中的技术,用户可以详细的获知自身用电的情况,同时也可以准确的知道电力系统的运行情况,以便于用户对用电方式与策略等进行调整。 二、新能源电力系统的优化控制的方法 就目前而言,我国电力系统的控制方法还不完善,存在着资源浪费以及能源的不稳定性情况。要对新能源电力系统进行优化。该项工作中,应当从两个方面来考虑问题。其一,从整体的角度来分析。要促进整个新能源电力系统的完善,促进其各个部分各个环节的协调发展。其二,从局部来分析。要保证新能源电力系统的自主化。由于不稳定性的因素较多,因此随时有可能出现一些问题,所以新能源电力系统的控制要坚持部分与整体协调发展的原则,具体而言,可以从以下几个方面进行: (一)友好型控制方法 与传统的能源形势向比较而言,太阳能、地热能、风能等作为新能源,通过友好型的控制方法,可以提供更加稳定与高效的电力输出。具体而言,新能源电力系统友好型控制的方法,主要就是对历史记录的数据、对天文气象的预测数据等用先进的科学技术与经验进行解读,然后在分析出可控制的手段或者是方法。实际上这就是对新能源发电功率进行预测。利用友好型控制方法,可以有效的环节电网调峰的压力。从目前我国新能源发展的现状来看,优化其控制方法,对发电功率进行预测已经成为了一个十分重要的方式。因此为了促进新能源的发展,我们要从更加细致的角度出发,完善友好型控制方法。此外,太阳能发电、潮汐发电等各种新能源之间,还应当充分的利用自身的优势,形成优势互补,以促进新能源在我国电力系统中更好的应用。 (二)多源互补控制方法 新能源的形式是多样化的,例如太阳能、风能、地热能等,由于其形式不同,导致在利用其发电时,也存在着不同的优势与劣势。而想要促进新能源电力系统的优化,就应当采用多能源互补的方式。传统的能源,例如煤炭资源、水利资源等,其在发电时主要的优点就是稳定。而这些就可以同新能源中不稳定的电力输出形成互补。多个能源之间互相补充,协调发展,才能够使达到电力系统达到平衡的状态。从我国的实际情况来看,可以存储的又灵活的资源是极度匮乏的。我国的煤炭资源相对较多,但是由于人口基数大,能源利用率低,使得我们必须提升燃煤能源。如此才能够实现与可再生资源之间的互补。同时还可以提升对新能源的利用效率。 (三)双侧资源控制方法 就目前而言,我国各个企业、各个行业之间的竞争都十分激烈。与其他的生产方式向比较而言,电力资源的能耗低,污染少,可以有效的降低生产成本,提升竞争能力。所以各个行业的用电量也在迅速的增长。换言之,就是社会对电能的需求量在迅速增长。我们原来是采用单侧资源控制的方式来控制电力系统,但是面对庞大的电能需求,这一方式已经不再合适。针对新能源电力系统,我们可以采用双侧资源控制的方式。双侧资源控制的方式有着随机波动的特点,因此其就可以较短的时间内实现资源的合理配置。不但有效的减少了误差,同时还提升了电力系统的稳定性。 (四)基于分布式能源的微电网控制 微电网实际上就是一个小型的发配电系统。利用微电网的主要目的有二,一方面可以有效的促进对分布式电源的应用。另一方面,由于分布式电源的数量大、形式呈现出多样化的特点,导致出现电源并网难的问题。微电网则可以有效的解决这一问题。从实际上来讲,微电网中的分布式电源是十分巨大的。并且其每一个种类都存在一定的差异,但是我们却不能够明显的区分出其电压等级之间的差异。因此对其进行控制并非易事。对微电网进行整体上的控制,就是以对分布式电源、储能装置以及负荷的控制方法为基础,促使其各个设备与环

浅谈电力系统可靠性

浅谈电力系统可靠性 随着电力工业引入市场机制,市场条件下的电力系统可靠性和系统运营经济性之间的矛盾便逐渐显现出来,如何在电力市场的运营过程中保证系统运行的可靠性已成为研究的热点。本文简单论述了电力系统的可靠性以及在电力市场环境下电力系统可靠性的发展、所面临的问题、挑战等。 标签:电力系统可靠性发展挑战 1 基本概念 1.1 可靠性可靠性是指元件、设备、系统等在规定的条件下和预定的时间内完成其额定功能的概率。 1.2 电力系统可靠性电力系统可靠性包括两方面的内容:即充裕度和安全性。前者是指电力系统有足够的发电容量和足够的输电容量,在任何时候都能满足用户的峰荷要求,表征了电网的稳态性能,后者是指电力系统在事故状态下的安全性和避免连锁反应而不会引起失控和大面积停电的能力,表征了电力系统的动态性能。 2 电力系统可靠性的重要性 向用户提供源源不断、质量合格的电能是电力系统的主要任务。因为电力系统设备很复杂,包括发电机、变压器、输电线路、断路器等一次设备及与之配套的二次设备,这些设备都可能发生不同类型的故障,从而影响电力系统正常运行和对用户的正常供电。如果电力系统发生故障,将对电力企业、用户和国民经济,都会造成不同程度的经济损失。社会现代化速度越来越快,生产和生活对电源的依赖性也越来越强,停电造成的损失以及给人们带来的不便也将日益显现。因此,要求电力系统应有很高的可靠性。 3 电力市场环境下的可靠性 现如今人们普遍思索的问题是怎样揭示电力系统可靠性背后所隐含的经济意义。一些新的研究成果有:怎样将客户的可靠性需求货币化、如何评价发输电系统的可靠性以及新的适应电力市场需求的可靠性指标怎样设定等。这些研究仍面临一个普遍问题:即使人们已经认识到可靠性是一种稀缺的资源,并感觉到其背后所蕴涵的经济意义,但在对可靠性的价值研究时,却往往摆脱不了对可靠性进行“收费”的思想。我们应当在市场的环境中使电力系统的可靠性发挥作用。为此就要去探索如何利用市场的供给需求机制实现统一可靠性和经济性的目的。有些资料中提到了可靠性价值的概念,但并没有就在市场条件下的可靠性的供给和需求关系以及这种关系对系统可靠性带来的影响展开讨论,而这些也正是电力市场环境下可靠性研究面临的新挑战。

相关主题
文本预览
相关文档 最新文档