当前位置:文档之家› 常见聚合物的玻璃化转变温度和表面张力

常见聚合物的玻璃化转变温度和表面张力

常见聚合物的玻璃化转变温度和表面张力
常见聚合物的玻璃化转变温度和表面张力

常见高聚物的名称、重复结构单元、熔点与玻璃化转变温度Names, Constitutional Repeating Units, Melting Points and Glass-transition

Temperatures of Common High Polymers

序号(No.) , 名称(Name) , 重复结构单元

(Constitutional repeating unit) , 熔点

T m/℃ , 玻璃化转变温度T g/℃

1 , 聚甲醛, , ,

2 , 聚乙烯, , , , ,

3 , 聚乙烯基甲醚, , ,

4 , 聚乙烯基乙醚, , - ,

5 , 乙烯丙烯共聚物,乙丙橡胶, ,, - ,

6 , 聚乙烯醇, , ,

7 , 聚乙烯基咔唑, , - ,

8 , 聚醋酸乙烯酯, , - ,

9 , 聚氟乙烯, , , -

10 , 聚四氟乙烯(Teflon) , , ,

11 , 聚偏二氟乙烯, , ,

12 , 偏二氟乙烯与六氟丙烯共聚物(Viton) , ,

, - ,

13 , 聚氯乙烯(PVC) , , - ,

14 , 聚偏二氯乙烯, , ,

15 , 聚丙烯, , , , ,

16 , 聚丙烯酸, , - ,

17 , 聚甲基丙烯酸甲酯,有机玻璃, , ,

18 , 聚丙烯酸乙酯, , - ,

19 , 聚(α-腈基丙烯酸丁酯), , - ,

20 , 聚丙烯酰胺, , - ,

21 , 聚丙烯腈, , ,

22 , 聚异丁烯基橡胶, , ,

23 , 聚氯代丁二烯,氯丁橡胶, , ,

24 , 聚顺式-1,4-异戊二烯,天然橡胶, , ,

25 , 聚反式-1,4-异戊二烯,古塔橡胶, , ,

26 , 苯乙烯和丁二烯共聚物,丁苯橡胶, ,

,, - ,

27 , 聚己内酰胺,尼龙-6 , , , -

28 , 聚亚癸基甲酰胺,尼龙-11 , , ,

29 , 聚己二酰己二胺,尼龙-66 , , ,

30 , 聚癸二酰己二胺,尼龙-610 , , ,

31 , 聚亚壬基脲, , , -

32 , 聚间苯二甲酰间苯二胺, , , -

33 , 聚对苯二甲酸乙二酯, , ,

34 , 聚碳酸酯, , ,

35 , 聚环氧乙烷, , ,

36 , 聚2,6-二甲基对苯醚, , , -

37 , 聚苯硫醚, , ,

38 , 聚[双(甲基胺基)膦腈] , , - ,

39 , 聚[双(三氟代乙氧基)膦腈] , , ,

40 , 聚二甲基硅氧烷,硅橡胶, , ,

41 , 赛璐珞纤维素, , > , -

42 , 聚二苯醚砜, , , -

一些聚合物的临界表面张力系数参考值一些聚合物的临界表面张力r c(20℃)[3][4]

聚合物Yc(达因/厘米)

脲醛树脂61

纤维素45

聚丙烯腈44

聚氧化乙烯43

聚对苯二甲酸乙二醇酯43

尼龙66

尼龙642

聚砜41

聚甲基丙烯酸甲酯40

聚偏氯乙烯40

聚氯乙烯39

聚乙烯醇缩甲醛38

氯磺化聚乙烯37

聚醋酸乙烯酯37

聚乙烯醇37

聚苯乙烯

尼龙101032

聚丁二烯(顺式)32

聚乙烯31

聚氨酯29

聚氯化乙烯28

聚乙烯醇缩丁醛28

表2-2常用粘合剂的表面张力[5][6]

注:*通用环氧树脂,**未加说明

浸润性主要决定于胶粘剂和被粘物的表面张力,还与工艺条件、环境因素等有关。

四、粘接力

胶粘剂对被粘物的浸润只是粘接的前提,必须能够形成粘接力才能达到粘接的目的。

表1-13 不同结合的原子间距离与键能的关系[7]

注:*化学力即主价力,按键的形式可分为离子键、共价键、金属键三类。表中列出了处于这三类键中具有中等键能的共价键的数值。

**在有些文献上将氢键包括在次价力中

固体材料的表面张力

Surface Energy Material (dynes/cm)

#以上资料为Q-S提供!

玻璃化转变温度的测定

玻璃化转变温度的测定 玻璃化转变温度(T g)是高聚物的一个重要特性参数,是高聚物从玻璃态转变为高弹态的温度.在聚合物使用上,T g一般为塑料的使用湿度上限,橡胶使用温度的下限。从分子结构上讲,玻璃化转变是高聚物无定形部分从冻结状态到解冻状态的一种松弛现象,而不象相转变那样有相交热,所以其是一种二级相变(高分子动态力学内称主转变)。在玻璃化温度下,高聚物处于玻璃态,分子链和链段都不能运动,只是构成分子的原子(或基团)在其平衡位置作振动,而在玻璃化温度时,分子链虽不能移动,但是链段开始运动,表现出高弹性质。温度再升高,就使整个分子链运动而表观出粘流性质。在玻璃化温度时,高聚物的比热客、热膨胀系数、粘度、折光率、自由体积以及弹性模量等都要发生一个突变.DSC测定玻璃化转变温度T g就是基于高聚物在玻璃化温度转变时,热容增加这一性质.在DSC曲线上,其表现为在通过玻璃化转变温度时,基线向吸热方向移动,如图1.35所示.图中A点是开始偏离基线的点。把转变前和转变后的基线延长,两线间的垂直距离△J叫阶差,在△J/2处可以找到C点。从C点作切线与前基线延长线相交于B点。ICTA建议用B点作为玻璃化转变温度T g,实际上,也有取C点或取D点作为T g的。在测定过程中,△J阶差除了与试样玻璃化转变前后的热容C p之差有关外.还与升温速率β有关,此外与DSC灵敏度也有关。 玻璃化转变温度T g除了取决于聚合物的结构之外,还与聚合物的分子星,增塑剂的用量,共聚物或共混物组分的比例,交联度的多少以及聚合物内相邻分子之间的作用力等部有关系. T g与聚合物的重均分子量之间的关系,如下式所示:

玻璃化转变温度和SBS

一、玻璃化转变温度定义 1.从实验现象角度定义玻璃化转变温度: 玻璃化转变温度是指由高弹态转变为玻璃态、玻璃态转变为高弹态所对应的温度。 2.从测试角度定义玻璃化转变温度 玻璃化转变温度是指高聚物的力学性质(模量、力学损耗)、热力学性质(比热容、热膨胀系数、焓)、电磁性质(介电性、导电性、内耗峰)、形变(膨胀系数)、光学性质(折光指数)等物理性质发生突变点所对应的温度。 如果把玻璃化转变温度看作是一个转变温区,不是一个定值,这样比较容易理解玻璃化转变现象 二、测定方法 1.膨胀计法在膨胀计内装入适量的受测聚合物,通过抽真空的方法在负压下将对受测聚合物没有溶解作用的惰性液体充入膨胀计内,然后在油浴中以一定的升温速率对膨胀计加热,记录惰性液体柱高度随温度的变化。由于高分子聚合物在玻璃化温度前后体积的突变,因此惰性液体柱高度-温度曲线上对应有折点。折点对应的温度即为受测聚合物的玻璃化温度。 2.折光率法利用高分子聚合物在玻璃化转变温度前后折光率的变化,找出导致这种变化的玻璃化转变温度。 3.热机械法(温度-变形法)在加热炉或环境箱内对高分子聚合物的试样施加恒定载荷;记录不同温度下的温度-变形曲线。类似于膨胀计法,找出曲线上的折点所对应的温度,即为:玻璃化转变温度。 三、结论 前人做过很多实验,都观察到同一个现象:玻璃化转变温度随升温速率升高(升温速率>5℃/min)而增大、降温速率(降温速率>5℃/min)增大而增大。 一、SBS的合成 SBS的合成:以苯乙烯,丁二烯为单体原料,环己烷为溶剂、n-BuLi为引发剂、THF为活化剂,无终止阴离子聚合反应,SiCl4为偶联剂最后加入适量,反应终止加入防老剂。产品为白色半透明的弹性体。 二、SBS的玻璃化温度

聚合物的玻璃化转变

聚合物的玻璃化转变 高宇 (华东理工大学材料科学与工程学院,200237) 【摘要】玻璃化转变是高聚物的一种普遍现象,研究玻璃化转变现象,有着重要的理论和实际意义。本文先综述了玻璃化转变过程中的一些现象,然后简要介绍了玻璃化转变的三种主要理论:自由体积理论、热力学理论和动力学理论。 【关键词】玻璃化转变自由体积理论热力学理论动力学理论 聚合物试样上施加恒定载荷,在一定范围内改变温度,试样的形变将随温度变化,以形变或相对形变对温度作图,所得到的曲线,通常称为温度-形变曲线或热机械曲线。根据试样的力学性质随温度变化的特征,可以把非晶态聚合物按温度区域不同划为三种力学状态——玻璃态、高弹态和粘流态。玻璃态与高弹态之间的转变,称为玻璃化转变,对应的转变温度即玻璃化转变温度。 1. 玻璃化转变现象 玻璃化转变是聚合物的玻璃态与高弹态之间的转变,对应于含20~50个链节的链段的微布朗运动的“冻结”和“解冻”的临界状态。由于非晶态结构在聚合物中是普遍存在的,因此玻璃化转变是聚合物的一种普遍现象。在玻璃化转变前后,聚合物的体积性质、热力学性质、力学性质、电学性质等都将发生明显变化。跟踪这些性质随温度的变化,可确定玻璃化转变温度。 聚合物的玻璃化转变是链段运动随温度的升高被激发或随温度的降低被冻结造成的现象。也可以从另一个角度来理解玻璃化转变行为,分子运动具有时间依赖性,在较低温度下,链段的运动速度十分缓慢,在实验限定的观察时间尺度下觉察不到它的运动现象,随着温度的升高,运动速度加快,当链段的运动速度同检测时间标尺相匹配时,玻璃化转变行为就表现出来了。 玻璃化转变本质上讲是分子运动方式的改变。通过改变温度可以改变分子的运动方式,在温度恒定的前提下,也可改变其他因素以实现分子运动方式的变化,使材料处于不同的力学状态。这种可通过多种因素导致玻璃化转变的现象称为玻璃化转变的多维性。 在玻璃化转变时,聚合物材料的力学性质的变化相当显著。在只有几度的转变温度区前后,材料的模量可改变三到四个数量级。在玻璃态,材料是坚硬的固体,而在橡胶态,材料为具有较大变形性的柔软的弹性体。作为塑料使用的无定形聚合物,当温度升高到发生玻璃化转变时,便失去了塑料的性能,变成了橡胶;反之,橡胶材料在温度降低到Tg以下时,便失去了橡胶弹性,变成了坚硬的塑料。因此,玻璃化温度是非晶态热塑性塑料使用温度的上限,是橡胶使用温度的下限。因此,玻璃化转变是高聚物的一个非常重要的性质。研究玻璃化转变现象,有着重要的理论和实际意义。 2. 玻璃化转变理论 玻璃化转变有多种理论,主要有三种:Fox和Flory提出的自由体积理论;根据玻璃态的熵函数的热力学理论和根据与玻璃化转变同时发生的松弛现象的动力学理论。 2.1 自由体积理论 自由体积理论最初由Fox和Flory提出,认为液体乃至固体的宏观体积可分成两个部分:其主要部分是分子的占有体积,另一部分时分子堆砌形成的空隙,称为自由体积,它以“空穴”的形式分散在物质中。自由体积的存在提供了分子运动的余地,使分子能够进行构象重排和移动。在玻璃态,链段的运动被冻结,自由体积也处于冻结状态,自由体积的“空穴”尺寸和分布基本上保持固定。聚合物的玻璃化温度为自由体积降至最低值的临界温度,在此温度以下,自由体积提供的空间已不足够允许聚合物分子链发生构象调整。在玻璃态时聚合

聚合物的玻璃化转变温度

聚合物的玻璃化转变温度 姓名:罗新杰学号:班级:高分子材料与工程一班 摘要:在高分子科学中,聚合物的玻璃化转变是一个非常重要的现象,玻璃化转变是非晶 态高分子材料固有的性质,是高分子运动形式转变的宏观体现,它直接影响到材料的使用性能和工艺性能,因此长期以来它都是高分子物理研究的主要内容。本文主要简单地介绍玻璃化转变温度的相关知识和理论。 前言:玻璃化转变温度(Tg)是非晶态聚合物的一个重要的物理性质,也是凝聚态物理基础理论中的一个重要问题和难题,是涉及动力学和热力学的众多前沿问题。玻璃转变的理论一直在不断的发展和更新。从20世纪50年代出现的到现在还在不断完善的模态祸合理论及其他众多理论,都只能解决玻璃转变中的某些问题。一个完整的玻璃转变理论仍需要人们作艰苦的努力。 对于非晶聚物,对它施加恒定的力,观察它发生的形变与温度的关系,通常特称为温度-形变或热机械曲线。非晶聚物有四种力学状态,它们是玻璃态、粘弹态、高弹态和粘流态。在温度较低时,材料为刚性固体状,与玻璃相似,在外力作用下只会发生非常小的形变,此状态即为玻璃态,当温度继续升高到一定范围后,材料的形变明显地增加,并在随后的一定温度区间形变相对稳定,此状态即为高弹态,温度继续升高形变量又逐渐增大,材料逐渐变成粘性的流体,此时形变不可能恢复,此状态即为粘流态。我们通常把玻璃态与高弹态之间的转变,称为玻璃化转变,它所对应的转变温度即是玻璃化转变温度,或是。 高分子材料玻璃化转变的表征可提供丰富的信息,例如固化程度、热历史、材料的最高服役温度,共聚、共混物组分的相容性和相分离,组分的定性和定量等等,因此长期以来它都是高分子物理研究的主要内容。所以我们得研究和掌握不同高分子玻璃化转变温度的测试方法,并比较不同测试方法的优缺点。 通过对玻璃化转变温度的不断研究,人们逐渐了解了影响玻璃化转变温度的不同因素,从而能更加灵活的处理和运用聚合物的玻璃化转变温度。让玻璃化转变温度得到更加广泛的应用。 1、玻璃化转变 玻璃化转变是指无定形或半结晶的聚合物材料中的无定形区域在降温过程中从橡胶态或高弹态转变为玻璃态的一种可逆变化。在橡胶态/高弹态时,分子能发生相对移动(即分子重排);在玻璃态,分子重排被冻结。从分子结构上讲,玻璃化转变温度是高聚物无定形部分从冻结状态到解冻状态的一种松弛现象,而不像相转变那样有相变热,所以它是一种二级相变(高分子动态力学中称主转变)。在玻璃化转变温度以下,高聚物处于玻璃态,分子链和链段都不能运动,只是构成分子的原子(或基团)在其平衡位置作振动;而在玻璃化转变温度时分子链虽不能移动,但是链段开始运动,表现出高弹性质,如果温度再升高,进一步达到粘流温度,就使整个分子链运动而表现出粘流性质。所以在聚合物使用上,玻璃化转变温度一般为塑料的使用湿度上限,橡胶使用温度的下限。 2、玻璃化转变温度的测定方法 2.1热分析法

常见聚合物的玻璃化转变温度和表面张力

常见高聚物的名称、重复结构单元、熔点与玻璃化转变温度Names, Constitutional Repeating Units, Melting Points and Glass-transition Temperatures of Common High Polymers 序号(No.) , 名称(Name) , 重复结构单元 (Constitutional repeating unit) , 熔点 T m/℃, 玻璃化转变温度T g/℃ 1 , 聚甲醛, , 182.5 , -30.0 2 , 聚乙烯, , 140.0,95.0 , -125.0,-20.0 3 , 聚乙烯基甲醚, , 150.0 , -13.0 4 , 聚乙烯基乙醚, , - , -42.0 5 , 乙烯丙烯共聚物,乙丙橡胶, ,, - , -60.0 6 , 聚乙烯醇, , 258.0 , 99.0 7 , 聚乙烯基咔唑, , - , 200.0 8 , 聚醋酸乙烯酯, , - , 30.0

9 , 聚氟乙烯, , 200.0 , - 10 , 聚四氟乙烯(Teflon) , , 327.0 , 130.0 11 , 聚偏二氟乙烯, , 171.0 , 39.0 12 , 偏二氟乙烯与六氟丙烯共聚物(Viton) , , , - , -55.0 13 , 聚氯乙烯(PVC) , , - , 78.0-81.0 14 , 聚偏二氯乙烯, , 210.0 , -18.0 15 , 聚丙烯, , 183.0,130.0 , 26.0,-35.0 16 , 聚丙烯酸, , - , 106.0 17 , 聚甲基丙烯酸甲酯,有机玻璃, , 160.0 , 105.0 18 , 聚丙烯酸乙酯, , - , -22.0

玻璃化转变温度

玻璃化转变是非晶态高分子材料固有的性质,是高分子运动形式转变的宏观体现,它直接影响到材料的使用性能和工艺性能,因此长期以来它都是高分子物理研究的主要内容。由于高分子结构要比低分子结构复杂,其分子运动也就更为复杂和多样化。根据高分子的运动力形式不同,绝大多数聚合物材料通常可处于以下四种物理状态(或称力学状态):玻璃态、粘弹态、高弹态(橡胶态)和粘流态。而玻璃化转变则是高弹态和玻璃态之间的转变,从分子结构上讲,玻璃化转变温度是高聚物无定形部分从冻结状态到解冻状态的一种松弛现象,而不象相转变那样有相变热,所以它既不是一级相变也不是二级相变(高分子动态力学中称主转变)。在玻璃化转变温度以下,高聚物处于玻璃态,分子链和链段都不能运动,只是构成分子的原子(或基团)在其平衡位置作振动;而在玻璃化转变温度时分子链虽不能移动,但是链段开始运动,表现出高弹性质,温度再升高,就使整个分子链运动而表现出粘流性质。玻璃化转变温度(Tg)是非晶态聚合物的一个重要的物理性质,也是凝聚态物理基础理论中的一个重要问题和难题,是涉及动力学和热力学的众多前沿问题.玻璃转变的理论一直在不断的发展和更新.从20世纪50年代出现的自由体积理论到现在还在不断完善的模态涡合理论及其他众多理论,都只能解决玻璃转变中的某些问题.一个完整的玻璃转变理论仍需要人们作艰苦的努力. 对于非晶聚物,对它施加恒定的力,观察它发生的形变与温度的关系,通常特称为温度形变曲线或热机械曲线。非晶聚物有四种力学状态,它们是玻璃态、粘弹态、高弹态和粘流态。在温度较低时,材料为刚性固体状,与玻璃相似,在外力作用下只会发生非常小的形变,此状态即为玻璃态:当温度继续升高到一定范围后,材料的形变明显地增加,并在随后的一定温度区间形变相对稳定,此状态即为高弹态,温度继续升高形变量又逐渐增大,材料逐渐变成粘性的流体,此时形变不可能恢复,此状态即为粘流态。我们通常把玻璃态与高弹态之间的转变,称为玻璃化转变,它所对应的转变温度即是玻璃化转变温度,或是玻璃化温度。 2玻璃化转变温度的测定方法 1.膨胀计法在膨胀计内装入适量的受测聚合物,通过抽真空的方法在负压下将对受测聚合物没有溶解作用的惰性液体充入膨胀计内,然后在油浴中以一定的升温速率对膨胀计加热,记录惰性液体柱高度随温度的变化。由于高分子聚合物在玻璃化温度前后体积的突变,因此惰性液体柱高度-温度曲线上对应有折点。折点对应的温度即为受测聚合物的玻璃化温度。 2.折光率法利用高分子聚合物在玻璃化转变温度前后折光率的变化,找出导致这种变化的玻璃化转变温度。 3.热机械法(温度-变形法)在加热炉或环境箱内对高分子聚合物的试样施加恒定载荷;记录不同温度下的温度-变形曲线。类似于膨胀计法,找出曲线上的折点所对应的温度,即为:玻璃化转变温度。 4.DTA法(DSC)[1]以玻璃化温度为界,高分子聚合物的物理性质随高分子链段运动自

对聚合物玻璃化转变的几点新认识

化学教学 对聚合物玻璃化转变的几点新认识 何平笙 朱平平 杨海洋 (中国科学技术大学高分子科学与工程系 合肥 230026) 何平笙 男,64岁,教授,现从事高分子物理的教学与科研工作。E -mail :hpsm @https://www.doczj.com/doc/4e5561406.html, 2005206209收稿,2005208201接受 摘 要 基于聚合物玻璃化转变的定义,探讨了聚合物宏观单晶体和聚合物单链单晶的玻璃化转变问 题,指出玻璃化转变的温度依赖性不服从普适的Arrhenius 方程,可以把W LF 方程看作是聚合物玻璃化转变的特有温度依赖关系。介绍了二维状态下聚合物可能的玻璃化转变。 关键词 聚合物 玻璃化转变 W LF 方程 聚合物宏观单晶体 单链单晶 二维橡胶态 Some N e w U nderstandings on G lass T ransition of Polymers He Pingsheng ,Zhu Pingping ,Y ang Haiyang (Department of P olymer Science and Engineering ,University of Science and T echnology of China ,Hefei 230026) Abstract The glass transition of macroscopic single crystal and single-chain crystal of polymer is discussed based on definition of glass transition.The tem perature dependence of glass transition does not obey the general Arrhenius equation ,on the other hand ,W LF equation can be considered as a special tem perature dependence of glass transition of polymer with segment m otion.The glass transition of tw o-dimensional polymer film is introduced as well. K ey w ords P olymer ,G lass transition ,W LF equation ,S ingle crystal of polymer ,S ingle-chain crystal ,Rubbery state in tw o-dimensional polymer film 在高分子科学中,聚合物的玻璃化转变是一个重要的物理现象,几乎在所有的高分子科学教科书 中,编著者都给予极大的关注和很大的篇幅[1~3]。玻璃化转变最基本的定义是某些液体在温度迅速下 降时被固化成为玻璃态而不发生结晶作用,发生玻璃化转变的温度叫做玻璃化温度,记作T g 。就聚合物而言,可以简单表述为:非晶聚合物从玻璃态到橡胶态的转变(温度从低到高),或从高弹态到玻璃态的转变(温度从高到低),对晶态聚合物,是指其中非晶部分的这种转变。 自从80年代中期于同隐教授深入讨论聚合物的玻璃化转变以来[4],笔者对有关聚合物玻璃化转变 的认识又有了一些新的理解,供同仁讲授高分子物理课程时参考。 1 玻璃化转变的温度依赖性不服从普适的Arrhenius 方程,而是服从聚合物 特有的WLF 方程 聚合物的分子很“大”,量变导致质变,引起高聚物在结构、分子运动和一系列物理性能上与小分子化合物有着本质的差别,链段运动就是这许多差别中的一个。由于键角的限制和空间位阻,高分子链中的单键旋转时相互牵制,一个键转动,要带动附近一段链一起运动,内旋转不是完全自由的,这样即便在非常柔顺的高分子链中,每个键也不能成为一个独立的运动单元,但是只要高分子链足够长,由若干个键组成的一段链就会像一个独立的运动单元起作用,这种高分子链上能够独立运动的最小单元称为链段。

聚合物转变与松弛

第五章聚合物的转变与松弛 一、概念 1、玻璃化转变(温度): 玻璃态与橡胶态之间的转变称为玻璃化转变,对应的转变温度称 为玻璃化转变温度。从分子运动机理看,玻璃化转变温度是高分子链段运动被激发的温度。 2、次级转变:在玻璃化温度以下,比链段更小的运动单元所发生从冻结到运动或从运动到冻结的变化过程也是松弛过程,通常称这些过程为高聚物的次级转变,以区别于发生在玻璃化转变区的主转变过程。 3、均相成核与异相成核: (1)均相成核:由熔体中高分子链依靠热运动而形成有序排列的链束为晶核,因而有时间的依赖性,时间维数为1。 (2)异相成核:由外界引入的杂质或自身残留的晶种形成,它与时间无关,故其时间维数为零。 4、内增塑作用与外增塑作用 (1)内增塑作用:当聚合物中存在柔性侧基时,随着侧基的增大,在一定范围内,由于柔性侧基使分子间距离增大,相互作用减弱,既产生“内增塑”作用 (2)外增塑作用:添加某些低分子组分使聚合物的玻璃化温度下降的现象 二、选择答案 1D 2B 3A 4C 5A 6C 7D 8B 9D 10C 11A 12D 三、填空题 1、三,玻璃态、高弹态,粘流态 2、平衡 3、b分子运动的时间依赖性,c分子运动的温度依赖性。 4、自由体积理论,等自由体积分数 5、量热法,热机械法。 四、回答下列问题 1、由于玻璃化转变不是热力学的平衡过程,测量Tg时,随着升温速度的提高,所得数值偏高。因此所得Tg愈高。玻璃化温度是链段运动松弛时间与实验的观察时间相当的温度,快速升温,观察时间短,松驰时间也短,故在高温发生玻璃化转变。 2、(1)膨胀计法:玻璃化转变前后,热膨胀系数有显著的变化,用膨胀计法测量聚合物的体积或比容随温度的变化,从体积或比容对温度曲线两端的直线部分外推,其交点对应的温度为T g。 (2)量热法:玻璃化转变时,比热容发生突变,在DSC曲线上表现为基线向吸热方向偏移,产生一个台阶,出现台阶点对应的温度为T g。 (3)温度一形变法(热机械法):玻璃化转变时,模量有显著的变化。将一定尺寸的非晶态聚合物在一定应力作用下,以一定速度升高温度,同时测定样品形变随温度的变化,可以得到温度-形变曲线(也称为热-机械曲线),确定出T g。 3、(略) 4、结构式(略) 熔点高低顺序:C> D> A>B

常见聚合物的玻璃化转变温度和表面张力

常见高聚物的名称、重复结构单元、熔点与玻璃化转变温度 Names, Constitutional Repeating Units, Melting Points and Glass-transition Temperatures of Common High Polymers 序号(No.) , 名称(Name) , 重复结构单元 (Constitutional repeating unit) , 熔点 T m/℃, 玻璃化转变温度T g/℃ 1 , 聚甲醛, , 182.5 , -30.0 2 , 聚乙烯, , 140.0,95.0 , -125.0,-20.0 3 , 聚乙烯基甲醚, , 150.0 , -13.0 4 , 聚乙烯基乙醚, , - , -42.0 5 , 乙烯丙烯共聚物,乙丙橡胶, ,, - , -60.0 6 , 聚乙烯醇, , 258.0 , 99.0 7 , 聚乙烯基咔唑, , - , 200.0 8 , 聚醋酸乙烯酯, , - , 30.0

9 , 聚氟乙烯, , 200.0 , - 10 , 聚四氟乙烯(Teflon) , , 327.0 , 130.0 11 , 聚偏二氟乙烯, , 171.0 , 39.0 12 , 偏二氟乙烯与六氟丙烯共聚物(Viton) , , , - , -55.0 13 , 聚氯乙烯(PVC) , , - , 78.0-81.0 14 , 聚偏二氯乙烯, , 210.0 , -18.0 15 , 聚丙烯, , 183.0,130.0 , 26.0,-35.0 16 , 聚丙烯酸, , - , 106.0 17 , 聚甲基丙烯酸甲酯,有机玻璃, , 160.0 , 105.0 18 , 聚丙烯酸乙酯, , - , -22.0 19 , 聚(α-腈基丙烯酸丁酯), , - , 85.0

相关主题
文本预览
相关文档 最新文档