当前位置:文档之家› 三维激光扫描测量技术探究及应用

三维激光扫描测量技术探究及应用

三维激光扫描测量技术探究及应用
三维激光扫描测量技术探究及应用

三维激光扫描测量技术探究及应用

如何快速、准确、有效地获取空间三维信息,是许多学者深入研究的课题。随着信息技术研究的深入及数字地球、数字城市、虚拟现实等概念的出现,尤其在当今以计算机技术为依托的信息时代,人们对空间三维信息的需求更加迫切。基于测距测角的传统工程测量方法,在理论、设备和应用等诸多方面都已相当成熟,新型的全站仪可以完成工业目标的高精度测量,GPS可以全天候、一天24小时精确定位全球任何位置的三维坐标,但它们多用于稀疏目标

如何快速、准确、有效地获取空间三维信息,是许多学者深入研究的课题。随着信息技术研究的深入及数字地球、数字城市、虚拟现实等概念的出现,尤其在当今以计算机技术为依托的信息时代,人们对空间三维信息的需求更加迫切。基于测距测角的传统工程测量方法,在理论、设备和应用等诸多方面都已相当成熟,新型的全站仪可以完成工业目标的高精度测量,GPS可以全天候、一天24小时精确定位全球任何位置的三维坐标,但它们多用于稀疏目标点的高精度测量。随着传感器、电子、光学、计算机等技术的发展,基于计算机视觉理论获取物体表面三维信息的摄影测量与遥感技术成为主流,但它在由三维世界转换为二维影像的过程中,不可避免地会丧失部分几何信息,所以从二维影像出发理解三维客观世界,存在自身的局限性。因此,上述获取空间三维信息的手段难以满足应用的需求,如何快速、有效地将现实世界的三维信息数字化并输入计算机成为解决这一问题的瓶颈。

三维激光测量技术的出现和发展为空间三维信息的获取提供了全新的技术手段,为信息数字化发展提供了必要的生存条件。激光测量技术出现于上世纪80年代,由于激光具有单色性、方向性、相干性和高亮度等特性,将其引入测量装置中,在精度、速度、易操作性等方面均表现出巨大的优势,它的出现引发了现代测量技术的一场革命,引起相关行业学者的广泛关注,许多高技术公司、研究机构将研究方向和重点放在激光测量装置的研究中。随着激光技术、半导体技术、微电子技术、计算机技术、传感器等技术的发展和应用需求的推动,激光测量技术也逐步由点对点的激光测距装置发展到采用非接触主动测量方式快速获取物体表面大量采样点三维空间坐标的三维激光扫描测量技术。随着三维激光扫描测量装置在精度、速度、易操作性、轻便、抗干扰能力等性能方面的提升及价格方面的逐步下降,20世纪90年代,其在测绘领域成为研究的热点,扫描对象不断扩大,应用领域不断扩展,逐步成为快速获取空间实体三维模型的主要方式之一,许多公司都推出了不同类型的三维激光扫描测量系统。上世纪90年代中后期,三维激光扫描仪已形成了颇具规模的产业。

三维激光扫描测量技术克服了传统测量技术的局限性,采用非接触主动测量方式直接获取高精度三维数据,能够对任意物体进行扫描,且没有白天和黑夜的限制,快速将现实世界的信息转换成可以处理的数据。它具有扫描速度快、

实时性强、精度高、主动性强、全数字特征等特点,可以极大地降低成本,节约时间,而且使用方便,其输出格式可直接与CAD、三维动画等工具软件接口。目前,生产三维激光扫描仪的公司有很多,典型的有瑞士的Leica公司、美国的3D DIGITAL公司和Polhemus公司,奥地利的RIGEL公司、加拿大的OpTech公司、瑞典的TopEye公司、法国的MENSI公司、日本的Minolta公司、澳大利亚的I-SITE公司、中国的北京容创兴业科技发展公司等。它们各自的产品在测距精度、测距范围、数据采样率、最小点间距、模型化点定位精度、激光点大小、扫描视场、激光等级、激光波长等指标会有所不同,可根据不同的情况如成本、模型的精度要求等因素进行综合考虑之后,选用不同的三维激光扫描仪产品。

利用三维激光扫描仪获取的点云数据构建实体三维几何模型时,不同的应用对象、不同点云数据的特性,三维激光扫描数据处理的过程和方法也不尽相同。概括地讲,整个数据处理过程包括数据采集、数据预处理、几何模型重建和模型可视化。数据采集是模型重建的前提,数据预处理为模型重建提供可靠精选的点云数据,降低模型重建的复杂度,提高模型重构的精确度和速度。数据预处理阶段涉及的内容有点云数据的滤波、点云数据的平滑、点云数据的缩减、点云数据的分割、不同站点扫描数据的配准及融合等;模型重建阶段涉及的内容有三维模型的重建、模型重建后的平滑、残缺数据的处理、模型简化和纹理映射等。实际应用中,应根据三维激光扫描数据的特点及建模需求,选用相应的数据处理策略和方法。现有各种类型的点云数据处理软件,如三维激光扫描仪配带的相应点云数据处理软件或逆向工程领域比较著名的商业点云处理软件,一般都具有点云数据编辑、拼接与合并、数据点三维空间量测、点云数据可视化、空间数据三维建模、纹理分析处理和数据转换等功能,但它们往往具有通用的处理功能,对于特定的数据处理效果有一定的不足之处,在功能和性能上也或多或少存在一定缺陷,且一般比较昂贵。目前尽管三维激光扫描测量技术应用领域广泛,但相关的理论与方法研究仍有待于完善。

三维激光扫描测量技术在测绘领域有广泛的应用。激光扫描技术与惯性导航系统(INS)、全球定位系统(GPS)、电荷耦合(CCD)等技术相结合,在大范围数字高程模型的高精度实时获取、城市三维模型重建、局部区域的地理信息获取等方面表现出强大的优势,成为摄影测量与遥感技术的一个重要补充。现在在工程、环境检测和城市建设方面等均有成功的应用实例,如断面三维测绘、绘制大比例尺地形图、灾害评估、建立3D城市模型、复杂建筑物施工、大型建筑的变形监测等。随着三维激光扫描测量技术、三维建模的研究以及计算机硬件环境的不断发展,其应用领域日益广泛,如制造业、文物保护、逆向工程、电脑游戏业、电影特技等,逐步从科学研究发展到进入了人们日常生活的领域。三维激光扫描技术的介入促进了应用领域的发展,同时应用领域的大量需求成为研究的动力。

北京建筑工程学院测绘与城市空间信息学院充分利用学院相应的硬件条件,组建了专门从事三维激光扫描测量技术的研究团队,在三维激光扫描数据后处

理、三维重建等算法研究、软件开发、基于三维激光扫描测量技术的应用研究等方面进行了研究,并取得了一定的研究成果。测绘与城市空间信息学院基于承担的故宫古代建筑数字化保护项目和国家体育场的钢结构的激光扫描变形监测和建模项目,积累了较丰富的理论知识和实践经验,其研究成果具有重要的社会和现实意义。学院目前取得的研究成果,为三维激光扫描测量技术在文物保护、工程建设、三维场景重建等领域的成功应用提供了重要的技术支持。

(助编:xiaohu)

三维激光扫描测量技术及其在测绘领域的应用

三维激光扫描测量技术及其在测绘领域的应用 徐晓雄刘松林李白 随着信息技术研究的深入及数字地球、数字城市、虚拟现实等概念的出现,人们对空间三维信息的需求更加迫切。基于测距测角的传统工程测量方法,在理论、设备和应用等诸多方面都已相当成熟,新型的全站仪可以完成工业目标的高精度测量,GPS可以全天候、一天24小时精确定位全球任何位置的三维坐标,但它们多用于稀疏目标点的高精度测量。随着传感器、电子、光学、计算机等技术的发展,基于计算机视觉理论获取物体表面三维信息的摄影测量与遥感技术成为主流,但它在由三维世界转换为二维影像的过程中,不可避免地会丧失部分几何信息,所以从二维影像出发理解三维客观世界,存在自身的局限性。因此,上述获取空间三维信息的手段难以满足应用的需求,如何快速、有效地将现实世界的三维信息数字化并输入计算机成为解决这一问题的瓶颈。三维激光测量技术的出现和发展为空间三维信息的获取提供了全新的技术手段,为信息数字化发展提供了必要的生存条件。20世纪90年代,随着三维激光扫描测量装置在精度、速度、易操作性、轻便、抗干扰能力等性能方面的提升及价格的逐步下降,它在测绘领域成为研究的热点,应用领域不断扩展,逐步成为快速获取空间实体三维模型的主要方式之一。

使用国产地面激光扫描仪扫描的输电线三维模型 三维激光扫描测量技术的特点 三维激光扫描测量技术克服了传统测量技术的局限性,采用非接触主动测量方式直接获取高精度三维数据,能够对任意物体进行扫描,且没有白天和黑夜的限制,快速将现实世界的信息转换成可以处理的数据。它具有扫描速度快、实时性强、精度高、主动性强、全数字特征等特点,可以极大地降低成本,节约时间,而且使用方便,其输出格式可直接与CAD、三维动画等工具软件接口。目前,生产三维激光扫描仪的公司有很多,它们各自的产品在测距精度、测距范围、数据采样率、最小点间距、模型化点定位精度、激光点大小、扫描视场、激光等级、激光波长等指标会有所不同,可根据不同的情况如成本、模型的精度要求等因素进行综合考虑之后,选用不同的三维激光扫描仪产品。

三维激光扫描仪使用说明

瑞士徕卡三维激光扫描仪 产品型号:ScanStation c10 徕卡测量系统股份有限公司HDS高清晰测量系统部门是三维激光扫描解决方案的供应商,她是全球范围内将三维激光扫描技术应用于改建工程、细部测量、工程设计与咨询以及地形测量项目的领导者。其先进的高清晰测量扫描仪、软件以及“交钥匙”系统是高精度、确保投资回报、容易使用以及手段灵活的完美结合。除了这些产品之外,徕卡也向客户提供最全 面的客户服务和支持,并把客户介绍给业内最大也是经验最丰富的服务商网络。 徕卡测量系统的HDS产品家族包括:基于时间测量的HDS3000和ScanStationc10测量系统,基于相位测量的超高速系统HDS6000.这样的产品组合再结合Cyclone软件和CAD 插件Cloudworx,我们为用户提供完整的工程解决方案,用户可以获得符合徕卡品质的测量成果、完整的CAD工具集成、高精度的可提交成果以及海量工扫描数据管理能力。 徕卡ScanStation 全球第一个带有全站仪功能的三维激光扫描仪 全方位视场角 360°×270°双轴补偿±5′ 全站仪级别的单点测量精度 有效的测距范围 300米 模型表面精度±2mm 全新四大特点: 1、全方位视角:360°×270° 徕卡ScanStation c10全站式扫描仪能够扫描建筑的天花板或顶棚、桥梁下底面、架空管道支撑架、高大物体的立面、柱状或塔式建筑物。全站仪的视场角没有限制,因此,测量员和其它专业人员在安置徕卡ScanStation 全站式扫描仪时,不需为视场角问题费心劳神。 2、高精度双轴(倾斜)补偿器:双轴补偿±5′分辨率1” 比全站仪更加灵活和自由,徕卡ScanStation c10全站式扫描仪可以根据测量控制点完成高精度的导线测量,因为它使用了和徕卡全站仪一样高精度的双轴(倾斜)补偿器。 3、测量级的点位精度:模型表面的精度±2mm 和有些扫描仪通过“多次测量取平均”的方法达到测量级的精度不同,徕卡ScanStation c10全站式扫描仪测量的单点精度也能达到测量级的精度。在远距离扫描时,徕卡ScanStation c10全站式扫描仪的超精细扫描保证了标靶扫描的精度以及扫描拼接的精度,用户会切身体会到其中的好处。

三维激光扫描技术及其应用探讨

【摘要】本文首先对三维激光扫描技术的理论、系统组成、工作原理进行分析,对三维激光扫描技术的特点进行总结,对三维激光扫描流程进行探讨,并对三维激光扫描技术的应用进行研究。 【关键词】三维激光扫描;应用;测量 引言 三维激光扫描技术是对激光测距技等原理进行利用并以此获得数据的一种新型技术,广泛应用于变形监测、工程测量、地形测量、断面和体积测量等领域,具有一些优势,包括无需合作目标、精度较高、密度较高、效率较高以及全数字特征等。三维激光扫描技术能够真实描述扫描对象的整体结构,以及形态特性,能够迅速准确的生成三维数据模型,防止基于点数据的分析方法导致的片面性。把三维激光扫描技术和控制策略相互结合在一起,能够得到扫描目标的坐标。本文对有关三维激光扫描技术及其应用进行分析和探讨,不足之处,敬请指正。 1 三维激光扫描技术 三维激光扫描技术选用的是非接触式高速激光测量的方法,对相关物体几何数据及影音资料进行获取,最后利用后处理软件对数据进行处理和分析,转换成具有坐标系的三维空间坐标及模型,并能够用多种数据格式输出,满足空间数据库的数据源,以及三维激光扫描技术的不同应用需求。 1.1 系统组成 (1)三维激光扫描仪;(2)数码相机;(3)后处理软件;(4)电源以及附属设备。 1.2 工作原理 三维激光扫描技术利用设备内部的激光脉冲发射器,向相关目标物体发射一束激光脉冲,通过反光镜旋转,发射出的激光脉冲扫描目标,信号接收器接收反射回来的激光脉冲,对相关数据进行记录,包括每个激光脉冲从发射到被测物表面,然后返回设备所经过的时间,以此获取目标到扫描中心的距离,除此之外扫描控制模块对每一个激光脉冲的水平扫描角α和竖向扫描角β进行控制,最后经过后处理软件自动解算,得出目标的相对三维坐标,也就是云点,经过转换后,在绝对坐标系中表现为三维空间位置坐标或者模型。 1.3 三维激光扫描技术的特点 三维激光扫描技术的特点,可以总结为高精度、高速度、高分辨率、非接触式以及优良的兼容性等优势,甚至称之为测绘领域继gps技术之后的一次具有影响力的技术革命。利用和传统测量技术进行对比,包括全站仪、近景摄影测量以及航空摄影测量等,具体而言具有以下特点: (1)非接触式 三维激光扫描技术是一种非接触式的高速激光测量手段,无需布置反射棱镜,直接扫描目标体即可,通过对目标体表面云点的三维坐标数据进行采集。假如被测目标处于环境恶劣、人员甚至无法到达现场的情况,常规测量技术无法胜任此项任务,那么三维激光扫描技术的优势就被凸显出来。 (2)数字化程度较高、可扩展性 三维激光扫描技术所获取的数据均为数字信号数据,具有较高的数字程度,处理起来较为简便,可以便利的用于数据的分析、输出以及显示,后处理软件人机友好的用户界面,可以和其它软件及时进行数据共享,能够和外接数码相机、gps等设备相互配合使用,从而拓宽了各自的应用范围,因此三维激光扫描技术具有较好的可扩展性。 (3)高分辨率 三维激光扫描技术的分辨率较高,能够方便快捷的采集高质量、高密度的数据,这是高

三维激光扫描系统

三维激光扫描系统 基本介绍 三维测量可定义为“一种具有可作三个方向移动的探测器,可在三个相互垂直的导轨上移动,此探测器以接触或非接触等方式传送讯号,三个轴的位移测量系统经数据处理器或计算机等计算出工件的各点坐标(X、Y、Z)及各项功能的测量”。三维测量的测量功能应包括尺寸精度、定位精度、几何精度及轮廓精度等。 应用领域 机械、汽车、航空、军工、家具、工具原型等测量高精度的几何零部件以及测量复杂形状的机械零部件。 三维测量技术的应用领域: 最近几年,三维激光扫描技术不断发展并日渐成熟,目前三维扫描设备也逐渐商业化,三维激光扫描仪的巨大优势就在于可以快速扫描被测物体,不需反射棱镜即可直接获得高精度的扫描点云数据。这样一来可以高效地对真实世界进行三维建模和虚拟重现。因此,其已经成为当前研究的热点之一,并在文物数字化保护、土木工程、工业测量、自然灾害调查、数字城市地形可视化、城乡规划等领域有广泛的应用。 (1)测绘工程领域:大坝和电站基础地形测量、公路测绘,铁路测绘,河道测绘,桥梁、建筑物地基等测绘、隧道的检测及变形监测、大坝的变形监测、隧道地下工程结构、测量矿山及体积计算。 (2)结构测量方面:桥梁改扩建工程、桥梁结构测量、结构检测、监测、几何尺寸测量、空间位置冲突测量、空间面积、体积测量、三维高保真建模、海上平台、测量造船厂、电厂、化工厂等大型工业企业内部设备的测量;管道、线路测量、各类机械制造安装。 (3)建筑、古迹测量方面:建筑物内部及外观的测量保真、古迹(古建筑、雕像等)的保护测量、文物修复,古建筑测量、资料保存等古迹保护,遗址测绘,赝品成像,现场虚拟模型,现场保护性影像记录。 (4)紧急服务业:反恐怖主义,陆地侦察和攻击测绘,监视,移动侦察,灾害估计,交通事故正射图,犯罪现场正射图,森林火灾监控,滑坡泥石流预警,灾害预警和现场监测,核泄露监测。 (5)娱乐业:用于电影产品的设计,为电影演员和场景进行的设计,3D游戏的开发,虚拟博物馆,虚拟旅游指导,人工成像,场景虚拟,现场虚拟。 三维测量方式 1)将被测物体置于三坐标测量空间,可获得被测物体上各测点的坐标位置,这项技术就是三坐标测量机的原理。三坐标测量机是测量和获得尺寸数据的最有效的方法之一,可以替代多种表面测量工具,减少复杂的测量任务所需的时间,为操作者提供关于生产过程状况的有用信息。

三维激光扫描仪的原理与其应用

三维激光扫描仪 2.1三维激光扫描仪研究背景 自上个世纪60年代激光技术已经开始出现,激光技术以其单一性和高聚积度在20世纪获得巨大发展。实现了从一维到二维直至今天广泛应用的三维测量的发展,实现了无合作目标的快速高精度测量。而且数字地球,数字城市等一系列概念的提出,我们可以看到:信息表达从二维到三维方向的转化,从静态到动态的过渡将是推动我国信息化建设和社会经资源环境可持续发展的重要武器。目前,各种各样的三维数据获取工具和手段不断地涌现,推动着三维空间数据获取向着实时化、集成化、数字化、动态化和智能化的方向不断地发展,三维建模和曲面重构的应用也越来越广泛[1]。传统的测绘技术主要是单点精确测量,难以满足建模中所需要的精度、数量以及速度的要求。而三维激光扫描技术采用的是现代高精度传感技术,它可以采用无接触方式,能够深入到复杂的现场环境及空间中进行扫描操作。可以直接获取各种实体或实景的三维数据,得到被测物体表面的采样点集合“点云”,具有快速、简便、准确的特点。基于点云模型的数据和距离影像数据可以快速重构出目标的三维模型,并能获得三维空间的线、面、体等各种实验数据,如测绘、计量、分析、仿真、模拟、展示、监测、虚拟现实等。 其中,地面三维激光扫描技术的研究,已经成为测绘领域中的一个新的研究热点。它采用非接触式高速激光测量的方式,能够获取复杂物体的几何图形数据和影像数据,最终由后处理数据的软件对采集的点云数据和影像数据进行处理,并转换成绝对坐标系中的空间位置坐标或模型,能以多种不同的格式输出,满足空间信息数据库的数据源和不同项目的需要。目前这项技术已经广泛应用到文物的保护、建筑物的变形监测、三维数字地球和城市的场景重建、堆积物的测定等多个方面。 2.2 三维激光扫描技术研究现状 2.2.1 主要的三维激光扫描仪介绍 随着三维激光扫描技术研究领域的不断扩大,生产扫描仪的商家也越来越多。主要的有瑞士Leica公司,美国的FARO公司和3D DIGITAL公司、奥地利的RIGEL公司、加拿大的OpTech公司、法国MENSI公司、中国的北京荣创兴业科技发展公司等。这些扫描仪在扫描距离、扫描精度、点间距和数量、光斑点的大小等指标有所不同[2]。主要的分类见图1-1和表1-1。

三维激光扫描技术

三维激光扫描技术 三维激光扫描技术 三维激光扫描技术又被称为实景复制技术,作为20 世纪90 年代中期开始出现的一项高新技术,是测绘领域继GPS技术之后的又一次技术革命,通过高速激光扫描测量的方法,大面积、高分辨率地快速获取物体表面各个点的(x.y.z)坐标、反射率、(R.G.B)颜色等信息,由这些大量、密集的点信息可快速复建出1:1的真彩色三维点云模型,为后续的业处理、数据分析等工作提供准确依据。具有快速性,效益高、不接触性、穿透性、动态、主动性,高密度、高精度,数字化、自动化、实时性强等特点,很好的解决了目前空间信息技术发展实时性与准确性的颈瓶。它突破了传统的单点测量方法,具有高效率、高精度的独特优势。三维激光扫描技术能够提供扫描物体表面的三维点云数据,因此可以用于获取高精度高分辨率的数字地形模型,主要通过高速激光扫描测量的方法,大面积高分辨率地快速获取被测对象表面的三维坐标数据,大量的空间点位信息。是快速建立物体的三维影像模型的一种全新的技术手段。三维激光扫描技术使工程大数据的应用在众多行业成为可能。如工业测量的逆向工程、对比检测;建筑工程中的竣工验收、改扩建设计;测量工程中的位移监测、地形测绘;考古项目中的数据存档与修复工程等等。 三维激光扫描原理 三维激光扫描仪利用激光测距的原理,通过高速测量记录被测物体表面大量的密集的点的三维坐标、反射率和纹理等信息,可快速复建出被测目标的三维模型及线、面、体等各种图件数据。由于三维激光扫描系统可以密集地大量获取目标对象的数据点,因此相对于传统的单点测量,三维激光扫描技术也被称为从单点测量进化到面测量的革命性技术突破。 三维激光扫描技术引入建筑工程的意义 随着三维扫描技术的发展与成熟,它很快成为空间数据获取的一种重要技术手段,并在很多行业引起技术性变革的热潮。目前,国建筑行业处于变革的阶段,BIM在我们从事的行业中引爆,但是都处于一种建模,碰撞分析,检测等方面,但都没有深入衔接现实,忽略施工工地数据流与建筑信息模型间的流通转化,何谈运维,所以bim模型去哪了?并没有贯穿到bim 的全生命周期中去。三维激光扫描技术在BIM中的应用是最基础的一个重要环节,对现场实际数据的采

地面三维激光扫描测量技术及其应用分析

地面三维激光扫描测量技术及其应用分析 宋宏1,2 (1.武汉大学测绘学院 武汉 430079;2.中煤航测遥感局 西安 710054) 摘 要:三维激光扫描技术是国际上近期发展的一项高新技术。目前许多发达国家已将这一先进技术用于空对地观测及工业测量系统,快速获取特定目标的主体模型,我国在863计划中也重点支持了这一研究方向。本文论述地面三维激光扫描技术的原理分类和应用现状,比较了相关技术方法之异同,评价了地面扫描仪优缺点,指出该技术面临的诸多挑战。 关键词:三维激光扫描技术 LIDAR激光雷达 地面激光扫描仪 近景摄影测量 三维建模 1 引言 激光扫描系统平台分为机载和地面两大类型。地面三维激光扫描系统,与激光测距技术点对点的距离测量不同,激光扫描技术的发展为人们在空间信息获取方面提供了全新的技术手段,使人们从传统的人工单点数据获取变为连续自动获取批量数据,提高了量测的精度与速度。 2 地面三维激光扫描技术的基本原理,仪器技术指标和分类 2.1 三维激光扫描仪测量原理 径向三维激光扫描仪是一种集成了多种高新技术的新型三维坐标测量仪器,采用非接触式高速激光测量方式,以点云形式获取地形及复杂物体表面的阵列式几何图形的三维数据。仪器要包括激光测距系统、扫描系统和支架系统,同时也集成CCD数字摄影和仪器内部校正等系统。典型的径向三维激光扫描仪有很多,如Optech ILRIS-36D、Leica HDS 3000、Mensi GX RD 200+等。 目前三维激光扫描仪主要采用TOF脉冲测距法(Time of Flight),是一种高速激光测时测距技术,采用脉冲测距法的三维激光点坐标计算方法,如式(1)所示。三维激光扫描仪通过脉冲测距法获得测距观测值S,精密时钟控制编码器同步测量每个激光脉冲横向扫描角度观测值α和纵向扫描角度观测值θ。三维激光扫描测量一般使用仪器内部坐标系统,X轴在横向扫描面内,Y轴在横向扫描面内与X轴垂直,Z轴与横向扫描面垂直。由此可得三维光脚点P 坐标(X s,Ys,Zs)的计算公式: 图1三维激光扫描系统工作原理 图2 采用脉冲测距法的三维激光点坐标 2.2 地面扫描仪技术指标 1) 典型的地面三维激光扫描仪毫米级精度仪器见表1。 表1:中远距离的毫米级仪器装备主要技术指标 生产厂家 Optech Leica Mensi 产品 ILRIS-36D HDS3000 GX RD200+ 激光安全性 Class 1 1500nm Class 3 Class 3 532nm 距离精度 7mm@100m 单点4mm@50 单点7mm@100m 定位精度 8mm@100m 6mm@50 单点12mm@100m

浅谈三维激光扫描技术原理及应用

浅谈三维激光扫描技术原理及应用 摘要:三维激光扫描技术是—种新型的测绘技术,被称为“实景复制技术”。本文介绍了三维激光扫描仪的系统分类、基本原理、技术特点,探讨了三维激光扫描技术的应用。 关键词:三维激光扫描技术工作原理技术特点应用 1、引言 近年来,随着工程测量服务领域的不断拓宽以及三维设计制造对测量精度的要求,传统的测量仪器如全站仪、断面仪等已不能满足高精度的三维坐标采集和“逆向工程”的需要。相比这些传统的测量技术,三维激光扫描技术具有极大的技术优势,特别是在数据采集方面,具有高效、快捷、精确、简便等特点,被广泛的应用于各个领域。 2、三维激光扫描技术 随着三维激光扫描仪在工程领域的广泛应用,这项国际上近期发展的高新技术已经引起了广大科研人员的关注。这种技术采用非接触式高速激光测量方式,来获取地形或复杂物体的几何图形数据和影像数据,最终通过后处理软件对采集的点云数据和影像数据进行处理分析,转换成绝对坐标系中的三维空间位置坐标或者建立结构复杂、不规则场景的三维可视化模型,既省时又省力,同时点云还可输出多种不同的数据格式,做为空间数据库的数据源和满足不同应用的需要。 2.1 三维激光扫描系统组成 整个系统通常由以下四部分组成:1)三维激光扫描仪;2)数码相机;3)后处理软件;4)电源以及附属设备。如图1: 图1 地面激光扫描仪系统组成与坐标系 2.2 三维激光扫描仪的分类 三维激光扫描仪按照扫描平台可以分为:机载(或星载)激光扫描系统、地面型激光扫描系统、便携式激光扫描系统。 三维激光扫描仪作为现今时效性最强的三维数据获取工具,按照其有效扫描距离可进行如下分类: (1)短距离激光扫描仪:其最长扫描距离不超过3m,一般最佳扫描距离为

三维激光扫描测量技术探究及应用

三维激光扫描测量技术探究及应用 如何快速、准确、有效地获取空间三维信息,是许多学者深入研究的课题。随着信息技术研究的深入及数字地球、数字城市、虚拟现实等概念的出现,尤其在当今以计算机技术为依托的信息时代,人们对空间三维信息的需求更加迫切。基于测距测角的传统工程测量方法,在理论、设备和应用等诸多方面都已相当成熟,新型的全站仪可以完成工业目标的高精度测量,GPS可以全天候、一天24小时精确定位全球任何位置的三维坐标,但它们多用于稀疏目标 如何快速、准确、有效地获取空间三维信息,是许多学者深入研究的课题。随着信息技术研究的深入及数字地球、数字城市、虚拟现实等概念的出现,尤其在当今以计算机技术为依托的信息时代,人们对空间三维信息的需求更加迫切。基于测距测角的传统工程测量方法,在理论、设备和应用等诸多方面都已相当成熟,新型的全站仪可以完成工业目标的高精度测量,GPS可以全天候、一天24小时精确定位全球任何位置的三维坐标,但它们多用于稀疏目标点的高精度测量。随着传感器、电子、光学、计算机等技术的发展,基于计算机视觉理论获取物体表面三维信息的摄影测量与遥感技术成为主流,但它在由三维世界转换为二维影像的过程中,不可避免地会丧失部分几何信息,所以从二维影像出发理解三维客观世界,存在自身的局限性。因此,上述获取空间三维信息的手段难以满足应用的需求,如何快速、有效地将现实世界的三维信息数字化并输入计算机成为解决这一问题的瓶颈。 三维激光测量技术的出现和发展为空间三维信息的获取提供了全新的技术手段,为信息数字化发展提供了必要的生存条件。激光测量技术出现于上世纪80年代,由于激光具有单色性、方向性、相干性和高亮度等特性,将其引入测量装置中,在精度、速度、易操作性等方面均表现出巨大的优势,它的出现引发了现代测量技术的一场革命,引起相关行业学者的广泛关注,许多高技术公司、研究机构将研究方向和重点放在激光测量装置的研究中。随着激光技术、半导体技术、微电子技术、计算机技术、传感器等技术的发展和应用需求的推动,激光测量技术也逐步由点对点的激光测距装置发展到采用非接触主动测量方式快速获取物体表面大量采样点三维空间坐标的三维激光扫描测量技术。随着三维激光扫描测量装置在精度、速度、易操作性、轻便、抗干扰能力等性能方面的提升及价格方面的逐步下降,20世纪90年代,其在测绘领域成为研究的热点,扫描对象不断扩大,应用领域不断扩展,逐步成为快速获取空间实体三维模型的主要方式之一,许多公司都推出了不同类型的三维激光扫描测量系统。上世纪90年代中后期,三维激光扫描仪已形成了颇具规模的产业。 三维激光扫描测量技术克服了传统测量技术的局限性,采用非接触主动测量方式直接获取高精度三维数据,能够对任意物体进行扫描,且没有白天和黑夜的限制,快速将现实世界的信息转换成可以处理的数据。它具有扫描速度快、

三维激光扫描测量技术及其在测绘领域的应用

三维激光扫描测量技术及其在测绘领域的应用三维信息获取技术,也称为三维数字化技术。它研究如何获取物体表面空间坐标,得到物体三维数字化模型的方法。这一技术广泛应用于国民经济和社会生活的许多领域,如在自动化测控系统中,可以测微小、巨大、不规则等常规方法难以测量物体。 随着信息技术研究的深入及数字地球、数字城市、虚拟现实等概念的出现,人们对空间三维信息的需求更加迫切。基于测距测角的传统工程测量方法,在理论、设备和应用等诸多方面都已相当成熟,新型的全站仪可以完成工业目标的高精度测量,GPS 可以全天候、一天24小时精确定位全球任何位置的三维坐标,但它们多用于稀疏目标点的高精度测量。随着传感器、电子、光学、计算机等技术的发展,基于计算机视觉理论获取物体表面三维信息的摄影测量与遥感技术成为主流,但它在由三维世界转换为二维影像的过程中,不可避免地会丧失部分几何信息,所以从二维影像出发理解三维客观世界,存在自身的局限性。因此,上述获取空间三维信息的手段难以满足应用的需求,如何快速、有效地将现实世界的三维信息数字化并输入计算机成为解决这一问题的瓶颈。三维激光测量技术的出现和发展为空间三维信息的获取提供了全新的技术手段,为信息数字化发展提供了必要的生存条件。20世纪90年代,随着三维激光扫描测量装置在精度、速度、易操作性、轻便、抗干扰能力等性能方面的提升及价格的逐步下降,它在测绘领域成为研究的热点,应用领域不断扩展,逐步成为快速获取空间实体三维模 型的主要方式之一。

使用国产地面激光扫描仪扫描的输电线三维模型 三维激光扫描测量技术的特点 三维激光扫描测量技术克服了传统测量技术的局限性,采用非接触主动测量方式直接获取高精度三维数据,能够对任意物体进行扫描,且没有白天和黑夜的限制,快速将现实世界的信息转换成可以处理的数据。它具有扫描速度快、实时性强、精度高、主动性强、全数字特征等特点,可以极大地降低成本,节约时间,而且使用方便,其输出格式可直接与CAD、三维动画等工具软件接口。目前,生产三维激光扫描仪的公司有很多,它们各自的产品在测距精度、测距范围、数据采样率、最小点间距、模型化点定位精度、激光点大小、扫描视场、激光等级、激光波长等指标会有所不同,可根据不同的情况如成本、模型的精度要求等因素进行综合考虑之后,选用不同的三维激光扫描仪产品。

三维激光扫描技术

激光扫描仪是借着扫描技术来测量工件的尺寸及形状等工作的一种仪器,激光扫瞄仪必须采用一个稳定度及精度良好的旋转马达,当光束打 ( 射) 到由马达所带动的多面棱规反射而形成扫瞄光束。由于多面棱规位于扫瞄透镜的前焦面上,并均匀旋转使激光束对反射镜而言,其入射角相对地连续性改变,因而反射角也作连续性改变,经由扫瞄透镜的作用,形成一平行且连续由上而下的扫瞄线。 由于扫瞄法系以时间为计算基准,故又称为时间法。它是一种十分准确、快速且操作简单的仪器,且可装置于生产在线,形成边生产边检验的仪器。激光扫瞄仪的基本结构包含有激光光源及扫瞄器、受光感 ( 检) 测器、控制单元等部分。激光光源为密闭式,较不易受环境的影响,且容易形成光束,目前常采用低功率的可见光激光,如氦氖激光、半导体激光等,而扫瞄器为旋转多面棱规或双面镜,当光束射入扫瞄器后,即快速转动使激光光反射成一个扫瞄光束。光束扫瞄全程中,若有工件即挡住光线,因此可以测知直径大小。测量前,必须先用两支已知尺寸的量规作校正,然后所有测量尺寸若介于此两量规间,可以经电子信号处理后,即可得到待测尺寸。因此,又称为激光测规。 激光扫瞄仪在工业生产在线检测产品时,利用这种非接触式而不需停机,甚至设有自动警报及回馈控制等功能。测量范围从0.25 mm~457 mm之间,精度可达。 激光扫描的原理是什么? 原理比较简单,事实上和全息照片有着相同的原理,首先,需要将激光分成两束,一束光照射物件,一束直接照到底片上,使感光原件感光。从这是利用了从物体后部反射的激光束与物体前部反射的激光束所走过的距离不同,因此与直接照射的参考光束所形成的干涉条纹不同,而三维型激光扫描仪则记录了全部的条纹,也就记下了物体的立体形象,只要再用激光去照射全息图片,就可以显出物体的真面目。观看这样的图片时,只要改变观察的角度,就可以看到被前面物体挡住的部分,而且从这机关报照片中任意剪下一小块,都可从它看到物体的全貌,只是观察的窗口较窄,就好比从钥匙口看室内的情况一样。 三维激光扫描仪测控技术及回波信号处理方法的研究 近些年来,随着数字化技术的迅速发展,各种不同领域对于获取原始数据信息的需求也日益增多。其它相关技术如计算机、机械制造等的进步和发展,使人们获取信息的方法和技术变得多种多样。三维激光扫描技术是其中一种利用激光脉冲对物体表面进行扫描从而获取其表面特征信息的技术,它适用于中近距离的宽场景、大物体的快速高精度扫描,为建立场景的三维模型提供了必要而且准确的工具。通过与计算机的连接,三维激光扫描的后处理技术可以使扫描结果得到更为广泛的应用。本文对三维激光扫描仪的测控系统技术及通过对回波信号进行处理来提高测距精度的方法进行了深入的研究。首先介绍了三维激光扫描的特点以及国内外有关发展趋势、技术特点及难点等,根据系统要求对测控系统步进电机的细分驱

三维激光扫描

9.3三维激光扫描仪及其在地形测量中的应用 三维激光扫描仪是无合作目标激光测距仪与角度测量系统组合的自动化快速测量系统,在复杂的现场和空间对被测物体进行快速扫描测量,直接获得激光点所接触的物体表面的水平方向、天顶距、斜距、和反射强度,自动存储并计算,或得点云数据。最远测量距离可达数千米,最高扫描频率可达每秒几十万,纵向扫描角θ接近90o,横向可绕仪器竖轴进行360o全圆扫描,扫描数据可通过TCP/IP协议自动传输到计算机,外置数码相机拍摄的场景图像可通过USB数据线同时传输到电脑中。点云数据经过计算机处理后,结合CAD可快速重构出被测物体的三维模型及线、面、体、空间等各种制图数据。 目前,生产三维激光扫描仪的公司很多,典型的有瑞典的Leica公司、美国的3DDIGITAL公司和Polhemus公司、奥地利的RIGEL公司、加拿大的OpTech 公司等。它们各自产品的测距精度、测距范围、数据采样率、最小点间距、模型化点定位精度、激光点大小、扫描视场、激光等级、激光波长等指标会有所不同,可根据不同的情况如成本、模型的精度要求等因素进行综合考虑之后,选用不同的三维激光扫描扫描仪产品。图12-21是几种不同型号的地面三维激光扫描仪。 一、地面三维激光扫描仪测量原理 无论扫描仪的类型如何,三维激光扫描仪的构造原理都是相似的。三维激光扫描仪的主要构造是由一台高速精确的激光测距仪,配上一组可以引导激光并以均匀角速度扫描的反射棱镜组成。激光测距仪主动发射激光,同时接受由自然物表面反射的信号从而可以进行测距,针对每一个扫描点可测得测站至扫描点的斜距,再配合扫描的水平和垂直方向角,可以得到每一扫描点与测站的空间相对坐标。如果测站的空间坐标是已知的,则可以求得每一个扫描点的三维坐标。地面三维激光扫描仪测量原理图如图12-22所示。 地面三维激光扫描仪测量原理主要分为测距、扫描、测角和定向等4个方面。 1.测距原理 激光测距作为激光扫描技术的关键组成部分,对于激光扫描的定位、获取空间三维信息具有十分重要的作用。目前,测距方法主要有脉冲法和相位法。 脉冲测距法是通过测量发射和接收激光脉冲信号的时间差来间接获得被测目标的距离。激光发射器向目标发射一束脉冲信号,经目标反射后到达接收系统,

三维激光扫描在影视业中的应用

三维激光扫描技术在影视业应用 平面扫描仪只能将平面图片信息数字化,摄像机只能拍摄物体某 侧面的信息,而三维激光扫描仪则克服了这些传统技术的局限性,能够对立体实物进行扫描,解决了将立体彩色世界的信息数字化并输入计算机这一瓶颈问题,实现“真实物体捕捉”及建模重现。 、影视特技制作 电影特技指的是利用特殊的拍摄制作技巧完成特殊效果的电影画面。数字电影特技在制作电影影像时,可以把形成影像的内容、场景、动作分开单独拍摄下来,以构成影像素材,然后把影像素材有机地、按照人的意志随心所欲的复合在一起,也可以把虚拟的内容复合在一 起,形成一个天衣无缝如同单一镜头拍摄下来的电影影像。三维激光扫描技术在电影特技制作方面,有着广泛的应用。激光扫描的速度和精度可以在几分钟内采集高清、高精度的环境、场景、物体和人物的三维数据。演员、场景、道具等由扫描实物建立计算机三维模型后, 许多危险的镜头只需要在计算机前操作鼠标就可以完成, 度快、 而且制作速效果好。随着扫描技术和计算机图形图像技术的飞速发展,计算 机影视特技技术越来越广泛地应用于影视、广告业,给人们带来了全新的视觉感受,实现了过去无法想像的特技效果,已经成为高质量影视、广告制作中不可缺少的手段。按照电影的类型和风格可使用不同的特殊效果技法,大体分类如下: 1.虚拟特殊化妆

通过运用三维扫描、特殊的材料、高超的制作工艺和逼真的表面处理等塑形方法,改变演员原有的外貌,制作出效果真实而生动的人物造型。例如《阿凡达》,让主演们在专门摄影镜头前进行3D头部 扫描和表演捕捉,然后将其输入数据库运用最先进的计算机生成影像 技术把拍摄的人物头像转化成虚拟图像模型,以配合VFX技术做出各 种特效变化,最终把观众带到一个真实感十足的东方魔幻世界。 十 图:影片《阿凡达》 \ y 52 图:电影《霍比特人》咕噜姆扮演者安迪-瑟金斯

三维激光扫描技术及其应用探讨

三维激光扫描技术及其应用探讨 三维激光扫描技术及其应用探讨 三维激光扫描技术是对激光测距技等原理进行利用并以此获得数据的一种新型技术,下面是小编搜集整理的一篇探究三维激光扫描技术应用的论文范文,欢迎阅读查看。 本文首先对三维激光扫描技术的理论、系统组成、工作原理进行分析,对三维激光扫描技术的特点进行总结,对三维激光扫描流程进行探讨,并对三维激光扫描技术的应用进行研究。 三维激光扫描;应用;测量 引言 三维激光扫描技术是对激光测距技等原理进行利用并以此获得数据的一种新型技术,广泛应用于变形监测、工程测量、地形测量、断面和体积测量等领域,具有一些优势,包括无需合作目标、精度较高、密度较高、效率较高以及全数字特征等。三维激光扫描技术能够真实描述扫描对象的整体结构,以及形态特性,能够迅速准确的生成三维数据模型,防止基于点数据的分析方法导致的片面性。把三维激光扫描技术和控制策略相互结合在一起,能够得到扫描目标的坐标。本文对有关三维激光扫描技术及其应用进行分析和探讨,不足之处,敬请指正。 1 三维激光扫描技术 三维激光扫描技术选用的是非接触式高速激光测量的方法,对相关物体几何数据及影音资料进行获取,最后利用后处理软件对数据进行处理和分析,转换成具有坐标系的三维空间

坐标及模型,并能够用多种数据格式输出,满足空间数据库的数据源,以及三维激光扫描技术的不同应用需求。 1.1 系统组成 (1)三维激光扫描仪;(2)数码相机;(3)后处理软件;(4)电源以及附属设备。 1.2 工作原理 三维激光扫描技术利用设备内部的激光脉冲发射器,向相关目标物体发射一束激光脉冲,通过反光镜旋转,发射出的激光脉冲扫描目标,信号接收器接收反射回来的激光脉冲,对相关数据进行记录,包括每个激光脉冲从发射到被测物表面,然后返回设备所经过的时间,以此获取目标到扫描中心的距离,除此之外扫描控制模块对每一个激光脉冲的水平扫描角α和竖向扫描角β进行控制,最后经过后处理软件自动解算,得出目标的相对三维坐标,也就是云点,经过转换后,在绝对坐标系中表现为三维空间位置坐标或者模型。 1.3 三维激光扫描技术的特点 三维激光扫描技术的特点,可以总结为高精度、高速度、高分辨率、非接触式以及优良的兼容性等优势,甚至称之为测绘领域继GPS技术之后的一次具有影响力的技术革命。利用和传统测量技术进行对比,包括全站仪、近景摄影测量以及航空摄影测量等,具体而言具有以下特点: (1)非接触式 三维激光扫描技术是一种非接触式的高速激光测量手段,无需布置反射棱镜,直接扫描目标体即可,通过对目标体表面云点的三维坐标数据进行采集。假如被测目标处于环境恶劣、人员甚至无法到达现场的情况,常规测量技术无法胜任此项任务,那么三维激光扫描技术的优势就被凸显出来。 (2)数字化程度较高、可扩展性 三维激光扫描技术所获取的数据均为数字信号数据,具有较高的数字程度,处理起来较为简便,可以便利的用于数据的分析、输出以及显示,后处理软件人机友好的用户界面,可

三维激光扫描技术的发展及应用本科论文

三维激光扫描技术的发展及应用 摘要:三维激光扫描技术是一种新型的测绘技术,被称为“实景复制”技术,是测绘领域继GPS开发之后后又一项技术革命,通过和传统的测量技术的比较,介绍了三维激光扫描仪的基本原理,技术特点,及其与传统测量比较的技术优势,特别是在数据采集方面,具有高效,快捷,精确,简便等特点,被广泛的应用于测绘行业各个领域。本文探讨了三维激光扫描技术在土地复垦领域的应用的优缺点,并且就瑞士Leica三维激光扫描仪及其数据处理软件Cyclone的操作流程进行探讨研究。本文主要介绍了三维激光扫描技术的工作原理、技术特点、主要应用和发展方向等几方面的状况,重点介绍三维激光扫描技术在工程测量领域的应用。 关键词:三维激光扫描定义,工作原理,技术特点,主要应用,现状发展趋势引言: 近些年来,随着测量服务领域的不断拓宽以及三维设计制造对测量精度的要求,传统的坐标测量仪器如全站仪、断面仪等已不能满足高精度的三维坐标采集和逆向工程的需要相比这些传统的测量技术,三维激光扫描技术具有极大的技术优势,特别是在数据采集方面,具有高效、快捷、精确、简便等特点,被广泛的应用于各个领域三维激光扫描技术。 主题 三维激光扫描技术是一门新兴的测绘技术,是测绘领域GPS 技术之后的又一次技术革命。它是从传统测绘计量技术并经过精密的传感工艺整合及多种现代高科技手段集成而发展的,是对多种传统测绘技术的概括及一体化。三维激光扫描系统一般由扫描仪、控制器(计算机)和电源供应系统三部分构成,激光扫描仪本身主要包括激光测距系统和激光扫描系统,同时也集成CCD和仪器内部控制和校正系统等。

1.工作原理 三维激光扫描测绘技术的测量内容是高精度测量目标的整体三维结构及空间三维特性,并为所有基于三维模型的技术应用而服务;传统三维测量技术的测量内容是高精度测量目标的某一个或多个离散定位点的三坐标数据及该点三维特性。前者可以重建目标模型及分析结构特性,并且进行全面的后处理测绘及测绘目标结构的复杂几何内容。如:几何尺寸、长度、距离、体积、面积、重心、结构形变,结构位移及变化关系、复制、分析各种结构特性等;而后者仅能测量定位点数据并且测绘不同定位点间的简单几何尺寸,如:长度、距离、点位形变、点位移等。 三维激光扫描测量原理:每一个扫描云点的测量都是基于三角测量原理进行的,并且根据激光扫描的传感驱动进行三维方向的自动步进测量。三角测量原理的实现是通过激光发射器发出的激光束经过反光镜(三角形的第一个角点)发射到目标上,形成反光点(三角形的第二个角点),然后通过CCD(三角形的第三个角点)接受目标上的反光点,最后,基于两个角度及一个三角底边计算出目标的景深距离(Y坐标),再经过激光束移动的反光点的位移角度差及Y坐标等计算出Z,X坐标。参见图4。 反光镜的作用在于将激光束进行水平偏转,以便实现激光水平方向的扫描测绘功能。扫描仪主体本身的周向自旋转功能可以实现纵向的扫描,每当水平扫描一个周期后,扫描仪主题将步进一次,以便进行第二次水平扫描,如此同步下去,最终实现对所有空间的扫描过程。 每扫描一个云点后,CCD将云点信息转化成数字电信号并直接传送给计算机系统进行计算。进而得到被测点的三维坐标数据。 扫描仪采用自动的、实时的、自适应的激光束聚焦技术(在不同的视距中),以保证每个扫描云点的测距精度及位置精度足够高。它可以工作在非常广域的照度下及各种复杂环境中进行操作。 根据目标大小及精度要求,徕卡可以把不同视点采集的点云信息经过拼接处理后合并到同一个坐标系中,合并办法是通过多个定标球来完成的。 操作员使用一个便携计算机便可在现场遥控操作。传感器中的视频微摄像机可以提供实时获取观测景象。

三维激光扫描技术

m e d i a 三维激光扫描技术简介 1三维激光扫描技术 三维激光扫描仪主要是一部快速准确的激光测距仪加上一组可导引激光以等速度扫描的反光棱镜,加高清晰摄像机组成。激光测距仪采用脉冲式测量,可以主动发射激光同时接受来自自然物体的反射信号进行测距,针对每一扫描点可测得测站至扫描点的斜距,配合扫描的水平角和竖直角,可以求得每一扫描点与测站点之间的坐标差,若测站点和一个定向点的坐标为已知值,则可以求得每一扫描点的三维坐标。 三维激光扫描技术也被称为从单点测量进化到面测量的革命性技术突破。该技术在文物古迹保护、建筑、规划、土木工程、工厂改造、室内设计、建筑监测、交通事故处理、法律证据收集、灾害评估、船舶设计、数字城市、军事分析等领域也有了很多应用。2技术优势 (1)非接触测量。 三维激光扫描技术采用非接触扫描目标的方式进行测量,对扫描目标物体不需进行任何表面处理,直接采集物体表面的空间三维数据且真实可靠。可以用于解决危险目标、环境(或柔性目标)及人员难以企及的情况,具有传统测量方式难以完成的技术优势。 (2)数据采样率高。 三维激光扫描仪可以达到数十万点/秒。采样速率是传统测量方式难以比拟的。

m e d i a (3) 主动发射扫描光源。 三维激光扫描技术采用主动发射扫描光源(激光),通过探测自身发射的激光回波信号来获取目标物体的数据信息,因此在扫描过程中,可以实现不受扫描环境的时间和空间的约束。 (4) 高分辨率、高精度。 三维激光扫描技术可以快速、高精度获取海量点云数据,可以对扫描目标进行高密度的三维数据采集,从而达到高分辨率的目的。 (5) 数字化采集,兼容性好。 三维激光扫描技术所采集的数据是直接获取的数字信号,具有全数字特征,易于后期处理及输出。用户界面友好的后处理软件能够与其它常用软件进行数据交换及共享。 (6) 可与GPS 系统配合使用。 这些功能大大扩展了三维激光扫描技术的使用范围,对信息的获取更加全面、准确。内置数码摄相机的使用,增强了彩色信息的采集,使扫描获取的目标信息更加全面。GPS 定位系统的应用,使得三维激光扫描技术的应用范围更加广泛,与工程的结合更加紧密,近一步提高了测量数据的准确性。 3技术路线 数据获取 用三维激光扫描仪以每秒约1百万个点的扫描速度,对被扫物体进行快速高效的扫描,迅速得到被扫物体的各点三维坐标,得到反映被扫物体空间位置信息的点云数据。

三维激光扫描技术

三维激光扫描技术 Document number:PBGCG-0857-BTDO-0089-PTT1998

三维激光扫描技术 三维激光扫描技术 三维激光扫描技术又被称为实景复制技术,作为20 世纪90 年代中期开始出现的一项高新技术,是测绘领域继GPS技术之后的又一次技术革命,通过高速激光扫描测量的方法,大面积、高分辨率地快速获取物体表面各个点的坐标、反射率、颜色等信息,由这些大量、密集的点信息可快速复建出1:1的真彩色三维点云模型,为后续的内业处理、数据分析等工作提供准确依据。具有快速性,效益高、不接触性、穿透性、动态、主动性,高密度、高精度,数字化、自动化、实时性强等特点,很好的解决了目前空间信息技术发展实时性与准确性的颈瓶。它突破了传统的单点测量方法,具有高效率、高精度的独特优势。三维激光扫描技术能够提供扫描物体表面的三维点云数据,因此可以用于获取高精度高分辨率的数字地形模型,主要通过高速激光扫描测量的方法,大面积高分辨率地快速获取被测对象表面的三维坐标数据,大量的空间点位信息。是快速建立物体的三维影像模型的一种全新的技术手段。三维激光扫描技术使工程大数据的应用在众多行业成为可能。如工业测量的逆向工程、对比检测;建筑工程中的竣工验收、改扩建设计;测量工程中的位移监测、地形测绘;考古项目中的数据存档与修复工程等等。 三维激光扫描原理 三维激光扫描仪利用激光测距的原理,通过高速测量记录被测物体表面大量的密集的点的三维坐标、反射率和纹理等信息,可快速复建出被测目标的三维模型及线、面、体等各种图件数据。由于三维激光扫描系统可以密集地大量获取目标对象的数据点,因此相对于传统的单点测量,三维激光扫描技术也被称为从单点测量进化到面测量的革命性技术突破。 三维激光扫描技术引入建筑工程的意义 随着三维扫描技术的发展与成熟,它很快成为空间数据获取的一种重要技术手段,并在很多行业引起技术性变革的热潮。目前,国内建筑行业处于变革的阶段,BIM在我们从事的行业中引爆,但是都处于一种建模,碰撞分析,检测等方面,但都没有深入衔接现实,忽略施工工地数据流与建筑信息模型间的流通转化,何谈运维,所以bim模型去哪了并没有贯穿到bim的全生命周期中去。三维激光扫描技术在BIM中的应用是最基础的一个重要环节,对

三维激光扫描测量系统

三维激光扫描测量系统 基本介绍 三维测量可定义为“一种具有可作三个方向移动的探测器,可在三个相互垂直的导轨上移动,此探测器以接触或非接触等方式传送讯号,三个轴的位移测量系统经数据处理器或计算机等计算出工件的各点坐标(X、Y、Z)及各项功能的测量”。三维测量的测量功能应包括尺寸精度、定位精度、几何精度及轮廓精度等。 2三维测量方式 1)将被测物体置于三坐标测量空间,可获得被测物体上各测点的坐标位置,这项技术就是三坐标测量机的原理。三坐标测量机是测量和获得尺寸数据的最有效的方法之一,可以替代多种表面测量工具,减少复杂的测量任务所需的时间,为操作者提供关于生产过程状况的有用信息。 2)三维激光扫描仪是通过发射激光来扫描被测物,以获取被测物体表面的三维坐标。三维激光扫描技术又被称为实景复制技术,具有高效率、高精度的测量优势。有人说,三维激光扫描是继GPS技术以来测绘领域的又一次技术革命。三维激光扫描仪被广泛应用于结构测量、建筑测量、船舶制造、铁路以及工程的建设等领域,近些年来,三维激光扫描仪已经从固定朝移动方向发展,最具代表性的就是车载三维激光扫描仪和机载三维激光雷达。 3)[1] 拍照式三维扫描仪采用一种结合结构光技术、相位测量技术、计算机视觉技术的复合三维非接触式测量技术。这种测量原理,使得对物体进行照相测量成为可能。所谓拍照测量,就是类似于照相机对视野内的物体进行照相,不同的是照相机摄取的是物体的二维图象,而研制的测量仪获得的是物体的三维信息。 3应用领域 机械、汽车、航空、军工、家具、工具原型等测量高精度的几何零部件以及测量复杂形状的机械零部件。 三维测量技术的应用领域: 最近几年,三维激光扫描技术不断发展并日渐成熟,目前三维扫描设备也逐渐商业化,三维激光扫描仪的巨大优势就在于可以快速扫描被测物体,不需反射棱镜即可直接获得高精度的扫描点云数据。这样一来可以高效地对真实世界进行三维建模和虚拟重现。因此,其已经成为当前研究的热点之一,并在文物数字化保护、土木工程、工业测量、自然灾害调查、数字城市地形可视化、城乡规划等领域有广泛的应用。 (1)测绘工程领域:大坝和电站基础地形测量、公路测绘,铁路测绘,河道测绘,桥梁、建筑物地基等测绘、隧道的检测及变形监测、大坝的变形监测、隧道地下工程结构、测量矿山及体积计算。

相关主题
文本预览
相关文档 最新文档