当前位置:文档之家› (完整word版)三维激光扫描测量技术及其在测绘领域的应用

(完整word版)三维激光扫描测量技术及其在测绘领域的应用

(完整word版)三维激光扫描测量技术及其在测绘领域的应用
(完整word版)三维激光扫描测量技术及其在测绘领域的应用

三维激光扫描测量技术及其在测绘领域的应用

三维信息获取技术,也称为三维数字化技术。它研究如何获取物体表面空间坐标,得到物体三维数字化模型的方法。这一技术广泛应用于国民经济和社会生活的许多领域,如在自动化测控系统中,可以测微小、巨大、不规则等常规方法难以测量物体。

随着信息技术研究的深入及数字地球、数字城市、虚拟现实等概念的出现,人们对空间三维信息的需求更加迫切。基于测距测角的传统工程测量方法,在理论、设备和应用等诸多方面都已相当成熟,新型的全站仪可以完成工业目标的高精度测量,GPS可以全天候、一天24小时精确定位全球任何位置的三维坐标,但它们多用于稀疏目标点的高精度测量。随着传感器、电子、光学、计算机等技术的发展,基于计算机视觉理论获取物体表面三维信息的摄影测量与遥感技术成为主流,但它在由三维世界转换为二维影像的过程中,不可避免地会丧失部分几何信息,所以从二维影像出发理解三维客观世界,存在自身的局限性。因此,上述获取空间三维信息的手段难以满足应用的需求,如何快速、有效地将现实世界的三维信息数字化并输入计算机成为解决这一问题的瓶颈。三维激光测量技术的出现和发展为空间三维信息的获取提供了全新的技术手段,为信息数字化发展提供了必要的生存条件。20世纪90年代,随着三维激光扫描测量装置在精度、速度、易操作性、轻便、抗干扰能力等性能方面的提升及价格的逐步下降,它在测绘领域成为研究的热点,应用领域不断扩展,逐步成为快速获取空间实体三维模型的主要方式之一。

使用国产地面激光扫描仪扫描的输电线三维模型

三维激光扫描测量技术的特点

三维激光扫描测量技术克服了传统测量技术的局限性,采用非接触主动测量方式直接获取高精度三维数据,能够对任意物体进行扫描,且没有白天和黑夜的限制,快速将现实世界的信息转换成可以处理的数据。它具有扫描速度快、实时性强、精度高、主动性强、全数字特征等特点,可以极大地降低成本,节约时间,而且使用方便,其输出格式可直接与CAD、三维动画等工具软件接口。目前,生产三维激光扫描仪的公司有很多,它们各自的产品在测距精度、测距范围、数据采样率、最小点间距、模型化点定位精度、激光点大小、扫描视场、激光等级、激光波长等指标会有所不同,可根据不同的情况如成本、模型的精度要求等因素进行综合考虑之后,选用不同的三维激光扫描仪产品。

机载激光雷达生成的三维地表模型

三维激光扫描技术发展

激光雷达(Light Detection and Ranging,简称LIDAR)是利用激光测距原理确定目标空间位置的新型测量仪器,通过逐点测定激光器发射信号与目标反射信号的相位(时间)差来获取激光器到目标的直线距离,再根据发射激光信号的方向和激光器的空间位置来获得目标点的空间位置。通过激光器对物体表面的密集扫描,可获得物体的三维表面模型。三维激光扫描测绘技术的测量内容是高精度测量目标的整体三维结构及空间三维特性,并为所有基于三维模型的技术应用而服务;传统三维测量技术的测量内容是高精度测量目标的某一个或多个离散定位点的三维坐标数据及该点三维特性。前者可以重建目标模型及分析结构特性,并且进行全面的后处理测绘及测绘目标结构的复杂几何内容。如:几何尺寸、长度、距离、体积、面积、重心、结构形变,结构位移及变化关系、复制、分析各种结构特性等;而后者仅能测量定位点数据并且测绘不同定位点间的简单几何尺寸,如:长度、距离、点位形变、点位移等。按照空间位置分类,三维激光扫描设备可分为:机载类和地面类。

1.机载扫描激光雷达

机载激光雷达简称LIDAR是指在飞机上搭载激光雷达、数字相机和定位定姿装置,以获取具有影像真实感的高精度数字表面模型(DSM)和数字高程模型(DEM)的新型测绘装备。

LIDAR系统通过扫描装置,沿航线采集地面点三维数据,通过特定方程解算处理成适当的影像值,生成LIDAR数据影像和地面高程模型DEM。系统可自动调节航带宽度,使其与航摄宽度精确匹配。在不同的实地条件下,平面精度可以达到0.15 至1米,高程精度可达到10厘米,间隔可达到2-12米。LIDAR是为综合航摄影像和空中数据定位而设计的,其独特性在于能快速为数字制图和GIS 应用提供精确的地面模型数据。由于激光脉冲不易受阴影和太阳角度影响,从而大大提高了数据采集的质量。其高程数据精度不受航高限制,比常规摄影测量更具优越性。LIDAR应用多光束返回采集高程,数据密度可达到常规摄影测量的三倍,可提供理想的数字高程模型DEM,大大提高了正射影像纠正精度。LIDAR 数据经过处理,可以直接与其它类型要素或影像数据合并,生产内容更为丰富的各类专题地图。机载激光雷达系统与数字航摄仪、机载GPS及惯性导航系统(INS)

相结合,使用大容量高速计算机,经过专用软件处理,可在空中完成地面高程模型DEM及数字正射影像图DOM的大规模生产,将大大提高航测成图的作业生产效率,减少生产环节,缩短生产周期,提高成图精度,提供更为丰富的地理信息。

2.地面激光扫描雷达(激光扫描仪)

地面激光扫描雷达也称激光扫描仪,地面激光扫描雷达按照平台分为地面、车载、船载和手持等类型。地面激光雷达(Ground一Based Light Detection and Ranging, Ground-Based LIDAR)小型便捷、精确高效、安全稳定、可操作性强,能在几分钟内对所感兴趣的区域建立详尽准确的三维立体影像,能提供准确的定量分析,可广泛应用于各相关领域,如快速建立局部城市三维模型、古建筑测量与文物保护、逆向工程应用、复杂建筑物施工、地质研究、建筑物形变监测等领域。地面三维激光扫描是在地面利用激光扫描装置自动、系统、快速(准实时) 获取对象表面的三维坐标的测量技术。它是一种高精度的测量手段,中、长距离的地面激光扫描仪的单点定位精度在±2 毫米至±25 毫米之间。激光扫描与传统的单点测量(如全站仪、GPS 测量) 不同,可以获取被扫对象表面成千上万个点的三维坐标,而且可以获取对象表面的深度影像信息。目前有瑞士Leica,美国的Tremble等公司有商用产品,每台在150万元左右,作用距离大多在100米以内。国内已经有很成功的地面激光扫描仪,当前最大测距为200米,成本是进口的一半,换装大功率激光器后可以增大测量距离,根据需要可以达到1000米以上。

三维激光扫描技术的数据处理

利用三维激光扫描仪获取的点云数据构建实体三维几何模型时,不同的应用对象、不同点云数据的特性,三维激光扫描数据处理的过程和方法也不尽相同。概括地讲,整个数据处理过程包括数据采集、数据预处理、几何模型重建和模型可视化。数据采集是模型重建的前提,数据预处理为模型重建提供可靠精选的点云数据,降低模型重建的复杂度,提高模型重构的精确度和速度。数据预处理阶段涉及的内容有点云数据的滤波、点云数据的平滑、点云数据的缩减、点云

数据的分割、不同站点扫描数据的配准及融合等;模型重建阶段涉及的内容有三维模型的重建、模型重建后的平滑、残缺数据的处理、模型简化和纹理映射等。实际应用中,应根据三维激光扫描数据的特点及建模需求,选用相应的数据处理策略和方法。

三维激光扫描技术的应用探讨

随着三维激光扫描测量技术、三维建模的研究以及计算机硬件环境的不断发展,其应用领域日益广泛,如制造业、文物保护、逆向工程、电脑游戏业、电影特技等,逐步从科学研究发展到进入了人们日常生活的领域。三维激光扫描技术的介入促进了应用领域的发展,同时应用领域的大量需求成为其研究的动力,三维激光扫描测量技术在测绘领域有广泛的应用。激光扫描技术与惯性导航系统(INS)、全球定位系统(GPS)、电荷耦合(CCD)等技术相结合,在大范围数字高程模型的高精度实时获取、城市三维模型重建、局部区域的地理信息获取等方面表现出强大的优势,成为摄影测量与遥感技术的一个重要补充。同时在工程、环境检测和城市建设等方面均有成功的应用实例,如断面三维测绘、绘制大比例尺地形图、灾害评估、建立3D城市模型、复杂建筑物施工、大型建筑的变形监测等。下面简要介绍一下主要应用:

①立体模型的建立:此项功能是三维激光扫描技术的强项,主要用于物体立体模型的建立(房屋、桥梁、城堡、厂区设备等)、考古与文物保护、工业设备计测、三维数字地面模型建立、三维城市漫游建立,满足未来3D数据采集等方面。

②借助机载和船载激光扫描设备可以完成水地和地面地形测量。

③滑坡监测和确定滑坡区域:通过比较两次或多次扫描数据,从而进行分析和确定滑坡区域和对滑坡区域检测,达到减灾防灾和对灾害造成范围的确定。

④逆向工程中的应用,是针对一现有工件样品或模型,利用手持三维激光扫描仪准确快速地将轮廓坐标测得,并加以建构曲面,编辑、修改后传输到CAD 模型系统,再由工路径送至加工机,制作所需模具或送到快速成型机将样品模型制作出来。

举世瞩目的北京二00八年奥运会主会场——国家体育场“鸟巢”工程,经历两年多的建设后,今天成功实施了钢结构施工的最后一个环节——整体卸载。卸载后,搭建“鸟巢”的“树枝”——钢结构,由被外力支撑的状态变成完全靠自己支

撑,意味着“鸟巢”真正从设计图纸变成自主矗立在大地上的巨型建筑,具有里程碑式的意义。

如下图:

结束语

三维激光扫描技术是快速获取三维空间信息的重要手段之一,特别对于测绘领域来说,伴随三维激光技术的不断完善与发展,以及三维控制信息需求的增加,三维空间技术将和现代经典测量技术相互融合,作为一种新的空间数据采集手段,三维激光扫描技术将具有广阔的发展空间,成为一种普遍在测绘领域应用的新技术手段。

城市三维遥感信息可以广泛应用于城市的规划设计、城市空气污染控制和环境保护、通讯网络的布设、城市光照研究、城市化进程的监测以及城市的现代化管理,城市建筑物的三维信息也是虚拟城市的关键信息之一。目前由于经济和社会的发展步伐明显加快,使得城市的动态变化速度也大大加快,许多应用中都迫切要求高效提供城市三维信息。像上海浦东的陆家嘴金融贸易区是“一月一个样,一年大变样”; “数字城市”的发展更要求能高效地获取城市信息,采用一般的方法和手段如地面人工测量、航空摄影测量需要投入大量的人力、物力,且速度慢,效果也不理想,与城市发展速度不匹配。因此,用传统的手段很难满足应用要求。机载三维仪可以准实时地获取地面的三维位置和光谱信息,以保证从信息获取

到提供三维建筑物信息在很短时间内完成。

三维激光扫描测量技术及其在测绘领域的应用

三维激光扫描测量技术及其在测绘领域的应用 徐晓雄刘松林李白 随着信息技术研究的深入及数字地球、数字城市、虚拟现实等概念的出现,人们对空间三维信息的需求更加迫切。基于测距测角的传统工程测量方法,在理论、设备和应用等诸多方面都已相当成熟,新型的全站仪可以完成工业目标的高精度测量,GPS可以全天候、一天24小时精确定位全球任何位置的三维坐标,但它们多用于稀疏目标点的高精度测量。随着传感器、电子、光学、计算机等技术的发展,基于计算机视觉理论获取物体表面三维信息的摄影测量与遥感技术成为主流,但它在由三维世界转换为二维影像的过程中,不可避免地会丧失部分几何信息,所以从二维影像出发理解三维客观世界,存在自身的局限性。因此,上述获取空间三维信息的手段难以满足应用的需求,如何快速、有效地将现实世界的三维信息数字化并输入计算机成为解决这一问题的瓶颈。三维激光测量技术的出现和发展为空间三维信息的获取提供了全新的技术手段,为信息数字化发展提供了必要的生存条件。20世纪90年代,随着三维激光扫描测量装置在精度、速度、易操作性、轻便、抗干扰能力等性能方面的提升及价格的逐步下降,它在测绘领域成为研究的热点,应用领域不断扩展,逐步成为快速获取空间实体三维模型的主要方式之一。

使用国产地面激光扫描仪扫描的输电线三维模型 三维激光扫描测量技术的特点 三维激光扫描测量技术克服了传统测量技术的局限性,采用非接触主动测量方式直接获取高精度三维数据,能够对任意物体进行扫描,且没有白天和黑夜的限制,快速将现实世界的信息转换成可以处理的数据。它具有扫描速度快、实时性强、精度高、主动性强、全数字特征等特点,可以极大地降低成本,节约时间,而且使用方便,其输出格式可直接与CAD、三维动画等工具软件接口。目前,生产三维激光扫描仪的公司有很多,它们各自的产品在测距精度、测距范围、数据采样率、最小点间距、模型化点定位精度、激光点大小、扫描视场、激光等级、激光波长等指标会有所不同,可根据不同的情况如成本、模型的精度要求等因素进行综合考虑之后,选用不同的三维激光扫描仪产品。

三维激光扫描仪使用说明

瑞士徕卡三维激光扫描仪 产品型号:ScanStation c10 徕卡测量系统股份有限公司HDS高清晰测量系统部门是三维激光扫描解决方案的供应商,她是全球范围内将三维激光扫描技术应用于改建工程、细部测量、工程设计与咨询以及地形测量项目的领导者。其先进的高清晰测量扫描仪、软件以及“交钥匙”系统是高精度、确保投资回报、容易使用以及手段灵活的完美结合。除了这些产品之外,徕卡也向客户提供最全 面的客户服务和支持,并把客户介绍给业内最大也是经验最丰富的服务商网络。 徕卡测量系统的HDS产品家族包括:基于时间测量的HDS3000和ScanStationc10测量系统,基于相位测量的超高速系统HDS6000.这样的产品组合再结合Cyclone软件和CAD 插件Cloudworx,我们为用户提供完整的工程解决方案,用户可以获得符合徕卡品质的测量成果、完整的CAD工具集成、高精度的可提交成果以及海量工扫描数据管理能力。 徕卡ScanStation 全球第一个带有全站仪功能的三维激光扫描仪 全方位视场角 360°×270°双轴补偿±5′ 全站仪级别的单点测量精度 有效的测距范围 300米 模型表面精度±2mm 全新四大特点: 1、全方位视角:360°×270° 徕卡ScanStation c10全站式扫描仪能够扫描建筑的天花板或顶棚、桥梁下底面、架空管道支撑架、高大物体的立面、柱状或塔式建筑物。全站仪的视场角没有限制,因此,测量员和其它专业人员在安置徕卡ScanStation 全站式扫描仪时,不需为视场角问题费心劳神。 2、高精度双轴(倾斜)补偿器:双轴补偿±5′分辨率1” 比全站仪更加灵活和自由,徕卡ScanStation c10全站式扫描仪可以根据测量控制点完成高精度的导线测量,因为它使用了和徕卡全站仪一样高精度的双轴(倾斜)补偿器。 3、测量级的点位精度:模型表面的精度±2mm 和有些扫描仪通过“多次测量取平均”的方法达到测量级的精度不同,徕卡ScanStation c10全站式扫描仪测量的单点精度也能达到测量级的精度。在远距离扫描时,徕卡ScanStation c10全站式扫描仪的超精细扫描保证了标靶扫描的精度以及扫描拼接的精度,用户会切身体会到其中的好处。

激光跟踪测距三维坐标视觉测量系统建模讲解

激光跟踪测距三维坐标视觉测量系统建模讲解标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

激光跟踪测距三维坐标视觉测量系统建模 3 黄风山 1,233, 钱惠芬 1 (1. 河北科技大学机械电子工程学院 , 河北石家庄 050054; 2. 天津大学精密测试技术与仪器国家重点实验室 , 天津 300072 摘要 :提出了一种激光跟踪测距视觉坐标测量系统 , 测量时摄像机测量光笔上各光反射点的方向 , , 由测得 ( , 激光测距仪测得的距离参数的引入 , 依据冗余技术给出了被测 :在 Z 、 Y 和 X 轴方向 0. 、 0. 和 0. 011mm 。 关键词 :; ; n 点透视问题 (P n P ; 冗余技术 Mod el for a Laser Distance T racking 3D C oordinates V ision M easu ring System HUAN G Feng 2shan 1,233, QIAN Hui 2fen 1 (1. Mechanical and Electronic Engineering C ollege , Hebei University of S cience and T echnology , Shijiazhuang 050054,China ; 2. State K ey Laboratory of Precision Measuring T echnology and Instrument , Tianjin University , Tianjin 300072,China Abstract :Alaser distance tracking 3D coordinates vision measuring system is proposed. It mainly consists of a CCD camera , a laser rangefinder ,a computer and a light pen. When measuring ,the CCD camera registers the direction of every light 2re 2 flecting point m ounted on the light pen. According to these measured directions ,the laser rangefinder can track and capture each light 2reflecting point ,and record the distance between one of the four light 2reflecting points and the laser rangefinder. Using the measured directions and distance ,the system can calculate the 3D coordinates of the point touched by the pen 2 on the perspective 2n 2point problem (P n P principle ,the system ′ s mathematic model is of the distance parameter ,this m odel can be solved linearly ,and its solution is

三维激光扫描系统

三维激光扫描系统 基本介绍 三维测量可定义为“一种具有可作三个方向移动的探测器,可在三个相互垂直的导轨上移动,此探测器以接触或非接触等方式传送讯号,三个轴的位移测量系统经数据处理器或计算机等计算出工件的各点坐标(X、Y、Z)及各项功能的测量”。三维测量的测量功能应包括尺寸精度、定位精度、几何精度及轮廓精度等。 应用领域 机械、汽车、航空、军工、家具、工具原型等测量高精度的几何零部件以及测量复杂形状的机械零部件。 三维测量技术的应用领域: 最近几年,三维激光扫描技术不断发展并日渐成熟,目前三维扫描设备也逐渐商业化,三维激光扫描仪的巨大优势就在于可以快速扫描被测物体,不需反射棱镜即可直接获得高精度的扫描点云数据。这样一来可以高效地对真实世界进行三维建模和虚拟重现。因此,其已经成为当前研究的热点之一,并在文物数字化保护、土木工程、工业测量、自然灾害调查、数字城市地形可视化、城乡规划等领域有广泛的应用。 (1)测绘工程领域:大坝和电站基础地形测量、公路测绘,铁路测绘,河道测绘,桥梁、建筑物地基等测绘、隧道的检测及变形监测、大坝的变形监测、隧道地下工程结构、测量矿山及体积计算。 (2)结构测量方面:桥梁改扩建工程、桥梁结构测量、结构检测、监测、几何尺寸测量、空间位置冲突测量、空间面积、体积测量、三维高保真建模、海上平台、测量造船厂、电厂、化工厂等大型工业企业内部设备的测量;管道、线路测量、各类机械制造安装。 (3)建筑、古迹测量方面:建筑物内部及外观的测量保真、古迹(古建筑、雕像等)的保护测量、文物修复,古建筑测量、资料保存等古迹保护,遗址测绘,赝品成像,现场虚拟模型,现场保护性影像记录。 (4)紧急服务业:反恐怖主义,陆地侦察和攻击测绘,监视,移动侦察,灾害估计,交通事故正射图,犯罪现场正射图,森林火灾监控,滑坡泥石流预警,灾害预警和现场监测,核泄露监测。 (5)娱乐业:用于电影产品的设计,为电影演员和场景进行的设计,3D游戏的开发,虚拟博物馆,虚拟旅游指导,人工成像,场景虚拟,现场虚拟。 三维测量方式 1)将被测物体置于三坐标测量空间,可获得被测物体上各测点的坐标位置,这项技术就是三坐标测量机的原理。三坐标测量机是测量和获得尺寸数据的最有效的方法之一,可以替代多种表面测量工具,减少复杂的测量任务所需的时间,为操作者提供关于生产过程状况的有用信息。

激光跟踪测距三维坐标视觉测量系统建模讲解

激光跟踪测距三维坐标视觉测量系统建模 3 黄风山 1,233, 钱惠芬 1 (1. 河北科技大学机械电子工程学院 , 河北石家庄 050054; 2. 天津大学 精密测试技术与仪器国家重点实验室 , 天津 300072 摘要 :提出了一种激光跟踪测距视觉坐标测量系统 , 测量时摄像机测量光 笔上各光反射点的方向 , , 由测得 ( , 激光测距仪测得的距离参数的引入 , 依据冗余技术给出了被测 :在 Z 、 Y 和 X 轴方向 0. 、 0. 和 0. 011mm 。 关键词 :; ; n 点透视问题 (P n P ; 冗余技术 Mod el for a Laser Distance T racking 3D C oordinates V ision M easu ring System HUAN G Feng 2shan 1,233, QIAN Hui 2fen 1 (1. Mechanical and Electronic Engineering C ollege , Hebei University of S cience and T echnology , Shijiazhuang 050054,China ; 2. State K ey Laboratory of Precision Measuring T echnology and Instrument , Tianjin University , Tianjin 300072,China Abstract :Alaser distance tracking 3D coordinates vision measuring system is proposed. It mainly consists of a CCD camera , a laser rangefinder ,a computer and a light pen. When measuring ,the CCD camera registers the direction of every light 2re 2 flecting point m ounted on the light pen. According to these measured directions ,the laser rangefinder can track and capture each light 2reflecting point ,and record the distance between one of the four light 2reflecting points and the laser rangefinder. Using the measured directions and distance ,the system can calculate the 3D coordinates of the point touched by the pen 2 on the perspective 2n 2point problem (P n P principle ,the system ′ s mathematic model is of the

三维激光扫描技术

三维激光扫描技术 三维激光扫描技术 三维激光扫描技术又被称为实景复制技术,作为20 世纪90 年代中期开始出现的一项高新技术,是测绘领域继GPS技术之后的又一次技术革命,通过高速激光扫描测量的方法,大面积、高分辨率地快速获取物体表面各个点的(x.y.z)坐标、反射率、(R.G.B)颜色等信息,由这些大量、密集的点信息可快速复建出1:1的真彩色三维点云模型,为后续的业处理、数据分析等工作提供准确依据。具有快速性,效益高、不接触性、穿透性、动态、主动性,高密度、高精度,数字化、自动化、实时性强等特点,很好的解决了目前空间信息技术发展实时性与准确性的颈瓶。它突破了传统的单点测量方法,具有高效率、高精度的独特优势。三维激光扫描技术能够提供扫描物体表面的三维点云数据,因此可以用于获取高精度高分辨率的数字地形模型,主要通过高速激光扫描测量的方法,大面积高分辨率地快速获取被测对象表面的三维坐标数据,大量的空间点位信息。是快速建立物体的三维影像模型的一种全新的技术手段。三维激光扫描技术使工程大数据的应用在众多行业成为可能。如工业测量的逆向工程、对比检测;建筑工程中的竣工验收、改扩建设计;测量工程中的位移监测、地形测绘;考古项目中的数据存档与修复工程等等。 三维激光扫描原理 三维激光扫描仪利用激光测距的原理,通过高速测量记录被测物体表面大量的密集的点的三维坐标、反射率和纹理等信息,可快速复建出被测目标的三维模型及线、面、体等各种图件数据。由于三维激光扫描系统可以密集地大量获取目标对象的数据点,因此相对于传统的单点测量,三维激光扫描技术也被称为从单点测量进化到面测量的革命性技术突破。 三维激光扫描技术引入建筑工程的意义 随着三维扫描技术的发展与成熟,它很快成为空间数据获取的一种重要技术手段,并在很多行业引起技术性变革的热潮。目前,国建筑行业处于变革的阶段,BIM在我们从事的行业中引爆,但是都处于一种建模,碰撞分析,检测等方面,但都没有深入衔接现实,忽略施工工地数据流与建筑信息模型间的流通转化,何谈运维,所以bim模型去哪了?并没有贯穿到bim 的全生命周期中去。三维激光扫描技术在BIM中的应用是最基础的一个重要环节,对现场实际数据的采

地面三维激光扫描测量技术及其应用分析

地面三维激光扫描测量技术及其应用分析 宋宏1,2 (1.武汉大学测绘学院 武汉 430079;2.中煤航测遥感局 西安 710054) 摘 要:三维激光扫描技术是国际上近期发展的一项高新技术。目前许多发达国家已将这一先进技术用于空对地观测及工业测量系统,快速获取特定目标的主体模型,我国在863计划中也重点支持了这一研究方向。本文论述地面三维激光扫描技术的原理分类和应用现状,比较了相关技术方法之异同,评价了地面扫描仪优缺点,指出该技术面临的诸多挑战。 关键词:三维激光扫描技术 LIDAR激光雷达 地面激光扫描仪 近景摄影测量 三维建模 1 引言 激光扫描系统平台分为机载和地面两大类型。地面三维激光扫描系统,与激光测距技术点对点的距离测量不同,激光扫描技术的发展为人们在空间信息获取方面提供了全新的技术手段,使人们从传统的人工单点数据获取变为连续自动获取批量数据,提高了量测的精度与速度。 2 地面三维激光扫描技术的基本原理,仪器技术指标和分类 2.1 三维激光扫描仪测量原理 径向三维激光扫描仪是一种集成了多种高新技术的新型三维坐标测量仪器,采用非接触式高速激光测量方式,以点云形式获取地形及复杂物体表面的阵列式几何图形的三维数据。仪器要包括激光测距系统、扫描系统和支架系统,同时也集成CCD数字摄影和仪器内部校正等系统。典型的径向三维激光扫描仪有很多,如Optech ILRIS-36D、Leica HDS 3000、Mensi GX RD 200+等。 目前三维激光扫描仪主要采用TOF脉冲测距法(Time of Flight),是一种高速激光测时测距技术,采用脉冲测距法的三维激光点坐标计算方法,如式(1)所示。三维激光扫描仪通过脉冲测距法获得测距观测值S,精密时钟控制编码器同步测量每个激光脉冲横向扫描角度观测值α和纵向扫描角度观测值θ。三维激光扫描测量一般使用仪器内部坐标系统,X轴在横向扫描面内,Y轴在横向扫描面内与X轴垂直,Z轴与横向扫描面垂直。由此可得三维光脚点P 坐标(X s,Ys,Zs)的计算公式: 图1三维激光扫描系统工作原理 图2 采用脉冲测距法的三维激光点坐标 2.2 地面扫描仪技术指标 1) 典型的地面三维激光扫描仪毫米级精度仪器见表1。 表1:中远距离的毫米级仪器装备主要技术指标 生产厂家 Optech Leica Mensi 产品 ILRIS-36D HDS3000 GX RD200+ 激光安全性 Class 1 1500nm Class 3 Class 3 532nm 距离精度 7mm@100m 单点4mm@50 单点7mm@100m 定位精度 8mm@100m 6mm@50 单点12mm@100m

三维激光扫描测量系统

三维激光扫描测量系统 基本介绍 三维测量可定义为“一种具有可作三个方向移动的探测器,可在三个相互垂直的导轨上移动,此探测器以接触或非接触等方式传送讯号,三个轴的位移测量系统经数据处理器或计算机等计算出工件的各点坐标(X、Y、Z)及各项功能的测量”。三维测量的测量功能应包括尺寸精度、定位精度、几何精度及轮廓精度等。 2三维测量方式 1)将被测物体置于三坐标测量空间,可获得被测物体上各测点的坐标位置,这项技术就是三坐标测量机的原理。三坐标测量机是测量和获得尺寸数据的最有效的方法之一,可以替代多种表面测量工具,减少复杂的测量任务所需的时间,为操作者提供关于生产过程状况的有用信息。 2)三维激光扫描仪是通过发射激光来扫描被测物,以获取被测物体表面的三维坐标。三维激光扫描技术又被称为实景复制技术,具有高效率、高精度的测量优势。有人说,三维激光扫描是继GPS技术以来测绘领域的又一次技术革命。三维激光扫描仪被广泛应用于结构测量、建筑测量、船舶制造、铁路以及工程的建设等领域,近些年来,三维激光扫描仪已经从固定朝移动方向发展,最具代表性的就是车载三维激光扫描仪和机载三维激光雷达。 3)[1] 拍照式三维扫描仪采用一种结合结构光技术、相位测量技术、计算机视觉技术的复合三维非接触式测量技术。这种测量原理,使得对物体进行照相测量成为可能。所谓拍照测量,就是类似于照相机对视野内的物体进行照相,不同的是照相机摄取的是物体的二维图象,而研制的测量仪获得的是物体的三维信息。 3应用领域 机械、汽车、航空、军工、家具、工具原型等测量高精度的几何零部件以及测量复杂形状的机械零部件。 三维测量技术的应用领域: 最近几年,三维激光扫描技术不断发展并日渐成熟,目前三维扫描设备也逐渐商业化,三维激光扫描仪的巨大优势就在于可以快速扫描被测物体,不需反射棱镜即可直接获得高精度的扫描点云数据。这样一来可以高效地对真实世界进行三维建模和虚拟重现。因此,其已经成为当前研究的热点之一,并在文物数字化保护、土木工程、工业测量、自然灾害调查、数字城市地形可视化、城乡规划等领域有广泛的应用。 (1)测绘工程领域:大坝和电站基础地形测量、公路测绘,铁路测绘,河道测绘,桥梁、建筑物地基等测绘、隧道的检测及变形监测、大坝的变形监测、隧道地下工程结构、测量矿山及体积计算。

浅谈三维激光扫描技术原理及应用

浅谈三维激光扫描技术原理及应用 摘要:三维激光扫描技术是—种新型的测绘技术,被称为“实景复制技术”。本文介绍了三维激光扫描仪的系统分类、基本原理、技术特点,探讨了三维激光扫描技术的应用。 关键词:三维激光扫描技术工作原理技术特点应用 1、引言 近年来,随着工程测量服务领域的不断拓宽以及三维设计制造对测量精度的要求,传统的测量仪器如全站仪、断面仪等已不能满足高精度的三维坐标采集和“逆向工程”的需要。相比这些传统的测量技术,三维激光扫描技术具有极大的技术优势,特别是在数据采集方面,具有高效、快捷、精确、简便等特点,被广泛的应用于各个领域。 2、三维激光扫描技术 随着三维激光扫描仪在工程领域的广泛应用,这项国际上近期发展的高新技术已经引起了广大科研人员的关注。这种技术采用非接触式高速激光测量方式,来获取地形或复杂物体的几何图形数据和影像数据,最终通过后处理软件对采集的点云数据和影像数据进行处理分析,转换成绝对坐标系中的三维空间位置坐标或者建立结构复杂、不规则场景的三维可视化模型,既省时又省力,同时点云还可输出多种不同的数据格式,做为空间数据库的数据源和满足不同应用的需要。 2.1 三维激光扫描系统组成 整个系统通常由以下四部分组成:1)三维激光扫描仪;2)数码相机;3)后处理软件;4)电源以及附属设备。如图1: 图1 地面激光扫描仪系统组成与坐标系 2.2 三维激光扫描仪的分类 三维激光扫描仪按照扫描平台可以分为:机载(或星载)激光扫描系统、地面型激光扫描系统、便携式激光扫描系统。 三维激光扫描仪作为现今时效性最强的三维数据获取工具,按照其有效扫描距离可进行如下分类: (1)短距离激光扫描仪:其最长扫描距离不超过3m,一般最佳扫描距离为

三维激光扫描测量技术探究及应用

三维激光扫描测量技术探究及应用 如何快速、准确、有效地获取空间三维信息,是许多学者深入研究的课题。随着信息技术研究的深入及数字地球、数字城市、虚拟现实等概念的出现,尤其在当今以计算机技术为依托的信息时代,人们对空间三维信息的需求更加迫切。基于测距测角的传统工程测量方法,在理论、设备和应用等诸多方面都已相当成熟,新型的全站仪可以完成工业目标的高精度测量,GPS可以全天候、一天24小时精确定位全球任何位置的三维坐标,但它们多用于稀疏目标 如何快速、准确、有效地获取空间三维信息,是许多学者深入研究的课题。随着信息技术研究的深入及数字地球、数字城市、虚拟现实等概念的出现,尤其在当今以计算机技术为依托的信息时代,人们对空间三维信息的需求更加迫切。基于测距测角的传统工程测量方法,在理论、设备和应用等诸多方面都已相当成熟,新型的全站仪可以完成工业目标的高精度测量,GPS可以全天候、一天24小时精确定位全球任何位置的三维坐标,但它们多用于稀疏目标点的高精度测量。随着传感器、电子、光学、计算机等技术的发展,基于计算机视觉理论获取物体表面三维信息的摄影测量与遥感技术成为主流,但它在由三维世界转换为二维影像的过程中,不可避免地会丧失部分几何信息,所以从二维影像出发理解三维客观世界,存在自身的局限性。因此,上述获取空间三维信息的手段难以满足应用的需求,如何快速、有效地将现实世界的三维信息数字化并输入计算机成为解决这一问题的瓶颈。 三维激光测量技术的出现和发展为空间三维信息的获取提供了全新的技术手段,为信息数字化发展提供了必要的生存条件。激光测量技术出现于上世纪80年代,由于激光具有单色性、方向性、相干性和高亮度等特性,将其引入测量装置中,在精度、速度、易操作性等方面均表现出巨大的优势,它的出现引发了现代测量技术的一场革命,引起相关行业学者的广泛关注,许多高技术公司、研究机构将研究方向和重点放在激光测量装置的研究中。随着激光技术、半导体技术、微电子技术、计算机技术、传感器等技术的发展和应用需求的推动,激光测量技术也逐步由点对点的激光测距装置发展到采用非接触主动测量方式快速获取物体表面大量采样点三维空间坐标的三维激光扫描测量技术。随着三维激光扫描测量装置在精度、速度、易操作性、轻便、抗干扰能力等性能方面的提升及价格方面的逐步下降,20世纪90年代,其在测绘领域成为研究的热点,扫描对象不断扩大,应用领域不断扩展,逐步成为快速获取空间实体三维模型的主要方式之一,许多公司都推出了不同类型的三维激光扫描测量系统。上世纪90年代中后期,三维激光扫描仪已形成了颇具规模的产业。 三维激光扫描测量技术克服了传统测量技术的局限性,采用非接触主动测量方式直接获取高精度三维数据,能够对任意物体进行扫描,且没有白天和黑夜的限制,快速将现实世界的信息转换成可以处理的数据。它具有扫描速度快、

结构光三维视觉测量

结构光三维视觉测量 1、应用简介结构光视觉方法的研究最早出现于20 世纪70 年代。在诸多的视觉方法中,结构光三维视觉以其大量程、大视场、较高精度、光条图像信息易于提取、实时性强及主动受控等特点,近年来在工业三维测量领域得到了广泛的应用。 2、系统设计原理、方框图、原理图结构光三维视觉是基于光学的三角法测量原理。如图所示,光学投射器(可以是激光器,也可以是投影仪)将一定模式的结构光投射于物体的表面,在表面形成由被测物体表面形状所调制的光条三维图像。该三维图像由处于另一位置的摄像机摄取,从而获得光条二维畸变图像。光条的畸变程度取决于取决于光学投射器与摄像机之间的相对位置和物体表面形廓(高度)。直观上,沿光条显示出的位移(或偏移)与物体的高度成比例,扭结表示了平面的变化,不连续显示了表面的物理间隙。当光学投射器与摄像机之间的相对位置一定时,由畸变的二维光条图像坐标便可重现物体表面的三维形廓。结构光三维视觉测量系统由光学投射器、摄像机、和计算机系统三部分构成。根据光学投射器所投射的光束模式的不同,结构光模式可分为点结构光模式、线结构光模式、多线结构光模式和网格结构光模式。线结构光模式复杂度低、信息量大,应用最为广泛。下图为线结构光打在标定板和被测物体的光条图像。 3、选型原则、精度分析结构光视觉传感器的测量精度受诸多因素的影响,如摄像机本身的光学物理参数、光学投射器特征参数、传感器本身的结构参数及外界干扰源等等。在摄像机、光学投射测量环境一定的情况下,测量系统的结构参数对测量精度影响很大。实验和相关理论推导表明,测量点的定位误差和系统结构相关性如下:1)摄像机光轴和光 平面垂直时,深度方向的测量误差最小。2)摄像机与光学投射器距离越远, 测量误差越小。3)摄像机镜头放大倍率越小,测量误差越小;这也表面被测

三维激光扫描技术

激光扫描仪是借着扫描技术来测量工件的尺寸及形状等工作的一种仪器,激光扫瞄仪必须采用一个稳定度及精度良好的旋转马达,当光束打 ( 射) 到由马达所带动的多面棱规反射而形成扫瞄光束。由于多面棱规位于扫瞄透镜的前焦面上,并均匀旋转使激光束对反射镜而言,其入射角相对地连续性改变,因而反射角也作连续性改变,经由扫瞄透镜的作用,形成一平行且连续由上而下的扫瞄线。 由于扫瞄法系以时间为计算基准,故又称为时间法。它是一种十分准确、快速且操作简单的仪器,且可装置于生产在线,形成边生产边检验的仪器。激光扫瞄仪的基本结构包含有激光光源及扫瞄器、受光感 ( 检) 测器、控制单元等部分。激光光源为密闭式,较不易受环境的影响,且容易形成光束,目前常采用低功率的可见光激光,如氦氖激光、半导体激光等,而扫瞄器为旋转多面棱规或双面镜,当光束射入扫瞄器后,即快速转动使激光光反射成一个扫瞄光束。光束扫瞄全程中,若有工件即挡住光线,因此可以测知直径大小。测量前,必须先用两支已知尺寸的量规作校正,然后所有测量尺寸若介于此两量规间,可以经电子信号处理后,即可得到待测尺寸。因此,又称为激光测规。 激光扫瞄仪在工业生产在线检测产品时,利用这种非接触式而不需停机,甚至设有自动警报及回馈控制等功能。测量范围从0.25 mm~457 mm之间,精度可达。 激光扫描的原理是什么? 原理比较简单,事实上和全息照片有着相同的原理,首先,需要将激光分成两束,一束光照射物件,一束直接照到底片上,使感光原件感光。从这是利用了从物体后部反射的激光束与物体前部反射的激光束所走过的距离不同,因此与直接照射的参考光束所形成的干涉条纹不同,而三维型激光扫描仪则记录了全部的条纹,也就记下了物体的立体形象,只要再用激光去照射全息图片,就可以显出物体的真面目。观看这样的图片时,只要改变观察的角度,就可以看到被前面物体挡住的部分,而且从这机关报照片中任意剪下一小块,都可从它看到物体的全貌,只是观察的窗口较窄,就好比从钥匙口看室内的情况一样。 三维激光扫描仪测控技术及回波信号处理方法的研究 近些年来,随着数字化技术的迅速发展,各种不同领域对于获取原始数据信息的需求也日益增多。其它相关技术如计算机、机械制造等的进步和发展,使人们获取信息的方法和技术变得多种多样。三维激光扫描技术是其中一种利用激光脉冲对物体表面进行扫描从而获取其表面特征信息的技术,它适用于中近距离的宽场景、大物体的快速高精度扫描,为建立场景的三维模型提供了必要而且准确的工具。通过与计算机的连接,三维激光扫描的后处理技术可以使扫描结果得到更为广泛的应用。本文对三维激光扫描仪的测控系统技术及通过对回波信号进行处理来提高测距精度的方法进行了深入的研究。首先介绍了三维激光扫描的特点以及国内外有关发展趋势、技术特点及难点等,根据系统要求对测控系统步进电机的细分驱

三维激光扫描

9.3三维激光扫描仪及其在地形测量中的应用 三维激光扫描仪是无合作目标激光测距仪与角度测量系统组合的自动化快速测量系统,在复杂的现场和空间对被测物体进行快速扫描测量,直接获得激光点所接触的物体表面的水平方向、天顶距、斜距、和反射强度,自动存储并计算,或得点云数据。最远测量距离可达数千米,最高扫描频率可达每秒几十万,纵向扫描角θ接近90o,横向可绕仪器竖轴进行360o全圆扫描,扫描数据可通过TCP/IP协议自动传输到计算机,外置数码相机拍摄的场景图像可通过USB数据线同时传输到电脑中。点云数据经过计算机处理后,结合CAD可快速重构出被测物体的三维模型及线、面、体、空间等各种制图数据。 目前,生产三维激光扫描仪的公司很多,典型的有瑞典的Leica公司、美国的3DDIGITAL公司和Polhemus公司、奥地利的RIGEL公司、加拿大的OpTech 公司等。它们各自产品的测距精度、测距范围、数据采样率、最小点间距、模型化点定位精度、激光点大小、扫描视场、激光等级、激光波长等指标会有所不同,可根据不同的情况如成本、模型的精度要求等因素进行综合考虑之后,选用不同的三维激光扫描扫描仪产品。图12-21是几种不同型号的地面三维激光扫描仪。 一、地面三维激光扫描仪测量原理 无论扫描仪的类型如何,三维激光扫描仪的构造原理都是相似的。三维激光扫描仪的主要构造是由一台高速精确的激光测距仪,配上一组可以引导激光并以均匀角速度扫描的反射棱镜组成。激光测距仪主动发射激光,同时接受由自然物表面反射的信号从而可以进行测距,针对每一个扫描点可测得测站至扫描点的斜距,再配合扫描的水平和垂直方向角,可以得到每一扫描点与测站的空间相对坐标。如果测站的空间坐标是已知的,则可以求得每一个扫描点的三维坐标。地面三维激光扫描仪测量原理图如图12-22所示。 地面三维激光扫描仪测量原理主要分为测距、扫描、测角和定向等4个方面。 1.测距原理 激光测距作为激光扫描技术的关键组成部分,对于激光扫描的定位、获取空间三维信息具有十分重要的作用。目前,测距方法主要有脉冲法和相位法。 脉冲测距法是通过测量发射和接收激光脉冲信号的时间差来间接获得被测目标的距离。激光发射器向目标发射一束脉冲信号,经目标反射后到达接收系统,

基于三维激光雷达技术的大比例尺地形图解决方案

基于三维激光雷达技术的大比例尺地形图解决方案 一激光雷达技术 1.1 综述 激光雷达测量技术(LiDAR)是当今测绘业界先进的遥感测量手段,是继GPS空间定位系统之后又一项测绘技术新突破。自20世纪60年代末世界第一部激光雷达诞生以来,激光雷达技术作为一种重要的航空遥感技术,与成像光谱、成像雷达共同被誉为对地观测三大核心技术。迄今为止,激光雷达的研究与应用均取得了相当大的进展,已成为航空遥感领域主流之一,其应用已超出传统测量、遥感以及近景测量所覆盖的范围,成为一种独特的数据获取方式。LIDAR技术具有高精度、高分辨率、高自动化且高效率的优势,集激光扫描、全球定位系统和惯性导航系统技术于一身,同时配备高分辨率数码相机,可实现对目标的同步测量,生成高密度激光点云数据,已成为世界各国进行大面积地表数据采集的重要主流与趋势。与传统摄影测量技术相比,激光雷达技术生成三维信息更快、更准确,特别能穿透地表覆盖的森林植被快速获取地形信息的能力,具有其他技术无可比拟的优势。采用激光雷达技术获取地面及其覆盖物(植被、电力线等)的精确三维坐标,生成高精度地形信息,可作为土地利用、工程建设规划、城市管理、河海地形、水库大坝、山坡检测、防灾、矿业、农业、林业、公共管理等方面数字化、自动化等应用基础。 1.2 激光雷达技术基本原理 激光雷达是一种有效的主动遥感技术,通过发射激光脉冲及精准的量测回波所经过的时间计算传感器与目标物之间的距离,再结合飞行器姿态信息、位置信息进行相关解算和坐

标转换可以得到高精度的三维数据。机载激光雷达系统主要由飞行平台、激光测距系统、全球定位系统(GPS)、惯性导航系统(INS)以及相关的控制存储单元组成。 激光测距系统是激光雷达的核心组成部分,通过发射、接收激光信号可以精确测量发射器和目标物的距离。激光测距一般采用方式:脉冲测距和连续波的相位差测距。连续波激光器市场上较为少见,因此现有的激光雷达系统多采用脉冲测距的方式。通过激光器发射一束窄脉冲,与目标物接触后产生反射,并通过接收器接收回波信号。由于脉冲的速度已知(光速),接收器可以精确测量脉冲发射到接收到反射信号的时间,从而获得目标物与激光器的距离,其测量精度常常可以达到毫米级。 随着激光雷达技术的发展,激光雷达的飞行平台可以根据需要和实际作业条件进行多种选择,目前常见的搭载平台有小型飞机、固定翼飞机、直升飞机、无人机、动力三角翼、无人飞艇等。 激光雷达系统工作原

三维激光扫描测量技术及其在测绘领域的应用

三维激光扫描测量技术及其在测绘领域的应用三维信息获取技术,也称为三维数字化技术。它研究如何获取物体表面空间坐标,得到物体三维数字化模型的方法。这一技术广泛应用于国民经济和社会生活的许多领域,如在自动化测控系统中,可以测微小、巨大、不规则等常规方法难以测量物体。 随着信息技术研究的深入及数字地球、数字城市、虚拟现实等概念的出现,人们对空间三维信息的需求更加迫切。基于测距测角的传统工程测量方法,在理论、设备和应用等诸多方面都已相当成熟,新型的全站仪可以完成工业目标的高精度测量,GPS 可以全天候、一天24小时精确定位全球任何位置的三维坐标,但它们多用于稀疏目标点的高精度测量。随着传感器、电子、光学、计算机等技术的发展,基于计算机视觉理论获取物体表面三维信息的摄影测量与遥感技术成为主流,但它在由三维世界转换为二维影像的过程中,不可避免地会丧失部分几何信息,所以从二维影像出发理解三维客观世界,存在自身的局限性。因此,上述获取空间三维信息的手段难以满足应用的需求,如何快速、有效地将现实世界的三维信息数字化并输入计算机成为解决这一问题的瓶颈。三维激光测量技术的出现和发展为空间三维信息的获取提供了全新的技术手段,为信息数字化发展提供了必要的生存条件。20世纪90年代,随着三维激光扫描测量装置在精度、速度、易操作性、轻便、抗干扰能力等性能方面的提升及价格的逐步下降,它在测绘领域成为研究的热点,应用领域不断扩展,逐步成为快速获取空间实体三维模 型的主要方式之一。

使用国产地面激光扫描仪扫描的输电线三维模型 三维激光扫描测量技术的特点 三维激光扫描测量技术克服了传统测量技术的局限性,采用非接触主动测量方式直接获取高精度三维数据,能够对任意物体进行扫描,且没有白天和黑夜的限制,快速将现实世界的信息转换成可以处理的数据。它具有扫描速度快、实时性强、精度高、主动性强、全数字特征等特点,可以极大地降低成本,节约时间,而且使用方便,其输出格式可直接与CAD、三维动画等工具软件接口。目前,生产三维激光扫描仪的公司有很多,它们各自的产品在测距精度、测距范围、数据采样率、最小点间距、模型化点定位精度、激光点大小、扫描视场、激光等级、激光波长等指标会有所不同,可根据不同的情况如成本、模型的精度要求等因素进行综合考虑之后,选用不同的三维激光扫描仪产品。

三维激光扫描技术的发展及应用本科论文

三维激光扫描技术的发展及应用 摘要:三维激光扫描技术是一种新型的测绘技术,被称为“实景复制”技术,是测绘领域继GPS开发之后后又一项技术革命,通过和传统的测量技术的比较,介绍了三维激光扫描仪的基本原理,技术特点,及其与传统测量比较的技术优势,特别是在数据采集方面,具有高效,快捷,精确,简便等特点,被广泛的应用于测绘行业各个领域。本文探讨了三维激光扫描技术在土地复垦领域的应用的优缺点,并且就瑞士Leica三维激光扫描仪及其数据处理软件Cyclone的操作流程进行探讨研究。本文主要介绍了三维激光扫描技术的工作原理、技术特点、主要应用和发展方向等几方面的状况,重点介绍三维激光扫描技术在工程测量领域的应用。 关键词:三维激光扫描定义,工作原理,技术特点,主要应用,现状发展趋势引言: 近些年来,随着测量服务领域的不断拓宽以及三维设计制造对测量精度的要求,传统的坐标测量仪器如全站仪、断面仪等已不能满足高精度的三维坐标采集和逆向工程的需要相比这些传统的测量技术,三维激光扫描技术具有极大的技术优势,特别是在数据采集方面,具有高效、快捷、精确、简便等特点,被广泛的应用于各个领域三维激光扫描技术。 主题 三维激光扫描技术是一门新兴的测绘技术,是测绘领域GPS 技术之后的又一次技术革命。它是从传统测绘计量技术并经过精密的传感工艺整合及多种现代高科技手段集成而发展的,是对多种传统测绘技术的概括及一体化。三维激光扫描系统一般由扫描仪、控制器(计算机)和电源供应系统三部分构成,激光扫描仪本身主要包括激光测距系统和激光扫描系统,同时也集成CCD和仪器内部控制和校正系统等。

1.工作原理 三维激光扫描测绘技术的测量内容是高精度测量目标的整体三维结构及空间三维特性,并为所有基于三维模型的技术应用而服务;传统三维测量技术的测量内容是高精度测量目标的某一个或多个离散定位点的三坐标数据及该点三维特性。前者可以重建目标模型及分析结构特性,并且进行全面的后处理测绘及测绘目标结构的复杂几何内容。如:几何尺寸、长度、距离、体积、面积、重心、结构形变,结构位移及变化关系、复制、分析各种结构特性等;而后者仅能测量定位点数据并且测绘不同定位点间的简单几何尺寸,如:长度、距离、点位形变、点位移等。 三维激光扫描测量原理:每一个扫描云点的测量都是基于三角测量原理进行的,并且根据激光扫描的传感驱动进行三维方向的自动步进测量。三角测量原理的实现是通过激光发射器发出的激光束经过反光镜(三角形的第一个角点)发射到目标上,形成反光点(三角形的第二个角点),然后通过CCD(三角形的第三个角点)接受目标上的反光点,最后,基于两个角度及一个三角底边计算出目标的景深距离(Y坐标),再经过激光束移动的反光点的位移角度差及Y坐标等计算出Z,X坐标。参见图4。 反光镜的作用在于将激光束进行水平偏转,以便实现激光水平方向的扫描测绘功能。扫描仪主体本身的周向自旋转功能可以实现纵向的扫描,每当水平扫描一个周期后,扫描仪主题将步进一次,以便进行第二次水平扫描,如此同步下去,最终实现对所有空间的扫描过程。 每扫描一个云点后,CCD将云点信息转化成数字电信号并直接传送给计算机系统进行计算。进而得到被测点的三维坐标数据。 扫描仪采用自动的、实时的、自适应的激光束聚焦技术(在不同的视距中),以保证每个扫描云点的测距精度及位置精度足够高。它可以工作在非常广域的照度下及各种复杂环境中进行操作。 根据目标大小及精度要求,徕卡可以把不同视点采集的点云信息经过拼接处理后合并到同一个坐标系中,合并办法是通过多个定标球来完成的。 操作员使用一个便携计算机便可在现场遥控操作。传感器中的视频微摄像机可以提供实时获取观测景象。

3D激光测量技术的发展及应用

如何快速、准确、有效地获取空间三维信息,是许多学者深入研究的课题。随着信息技术研究的深入及数字地球、数字城市、虚拟现实等概念的出现,尤其在当今以计算机技术为依托的信息时代,人们对空间三维信息的需求更加迫切。基于测距测角的传统工程测量方法,在理论、设备和应用等诸多方面都已相当成熟,新型的全站仪可以完成工业目标的高精度测量,GPS 可以全天候、一天24小时精确定位全球任何位置的三维坐标,但它们多用于稀疏目标点的高精度测量。随着传感器、电子、光学、计算机等技术的发展,基于计算机视觉理论获取物体表面三维信息的摄影测量与遥感技术成为主流,但它在由三维世界转换为二维影像的过程中,不可避免地会丧失部分几何信息,所以从二维影像出发理解三维客观世界,存在自身的局限性。因此,上述获取空间三维信息的手段难以满足应用的需求,如何快速、有效地将现实世界的三维信息数字化并输入计算机成为解决这一问题的瓶颈。 三维激光测量技术的出现和发展为空间三维信息的获取提供了全新的技术手段,为信息数字化发展提供了必要的生存条件。激光测量技术出现于上世纪80年代,由于激光具有单色性、方向性、相干性和高亮度等特性,将其引入测量装置中,在精度、速度、易操作性等方面均表现出巨大的优势,它的出现引发了现代测量技术的一场革命,引起相关行业学者的广泛关注,许多高技术公司、研究机构将研究方向和重点放在激光测量装置的研究中。随着激光技术、半导体技术、微电子技术、计算机技术、传感器等技术的发展和应用需求的推动,激光测量技术也逐步由点对点的激光测距装置发展到采用非接触主动测量方式快速获取物体表面大量采

样点三维空间坐标的三维激光扫描测量技术。随着三维激光扫描测量装置在精度、速度、易操作性、轻便、抗干扰能力等性能方面的提升及价格方面的逐步下降,20世纪90年代,其在测绘领域成为研究的热点,扫描对象不断扩大,应用领域不断扩展,逐步成为快速获取空间实体三维模型的主要方式之一,许多公司都推出了不同类型的三维激光扫描测量系统。上世纪90年代中后期,三维激光扫描仪已形成了颇具规模的产业。 三维激光扫描测量技术克服了传统测量技术的局限性,采用非接触主动测量方式直接获取高精度三维数据,能够对任意物体进行扫描,且没有白天和黑夜的限制,快速将现实世界的信息转换成可以处理的数据。它具有扫描速度快、实时性强、精度高、主动性强、全数字特征等特点,可以极大地降低成本,节约时间,而且使用方便,其输出格式可直接与CAD、三维动画等工具软件接口。目前,生产三维激光扫描仪的公司有很多,典型的有瑞士的Leica公司、美国的3D DIGITAL公司和Polhemus公司,奥地利的RIGEL公司、加拿大的OpT ech公司、瑞典的T opEye公司、法国的MENSI 公司、日本的Minolta公司、澳大利亚的I-SITE公司、中国的北京容创兴业科技发展公司等。它们各自的产品在测距精度、测距范围、数据采样率、最小点间距、模型化点定位精度、激光点大小、扫描视场、激光等级、激光波长等指标会有所不同,可根据不同的情况如成本、模型的精度要求等因素进行综合考虑之后,选用不同的三维激光扫描仪产品。 利用三维激光扫描仪获取的点云数据构建实体三维几何模型时,不同的应用对象、不同点云数据的特性,三维激光扫描数据处理的过程和方法也不尽相同。概括地讲,整个数据处理过程包括数据采集、数据预处理、

相关主题
文本预览
相关文档 最新文档