当前位置:文档之家› 层次分析法在软件过程度量中的应用_王志

层次分析法在软件过程度量中的应用_王志

层次分析法在软件过程度量中的应用_王志
层次分析法在软件过程度量中的应用_王志

2017年1月第38卷 第1期

计算机工程与设计

COMPUTER ENGINEERING AND 

DESIGNJan.2017

Vol.38 

No.1

层次分析法在软件过程度量中的应用

王 志,刘艳辉,杨 欢

(华北计算技术研究所,北京100083

)摘 要:为综合直观地度量软件过程,将层次分析法(analytic hierarchy process,AHP)与软件过程度量相结合,建立软件过程度量模型。在软件过程度量模型指标体系的研究基础上,采用因素成对比较法等手段,选择适合的权重值算法与一致性检验算法,辅以五分法和归一化算法,实现软件过程的定性和定量分析相结合、多目标综合度量的效果。将该方法应用于某软件集成方案的决策过程中,描述实际工作过程中该模型的使用方法,验证了该模型的适用性与有效性。关键词:层次分析法;软件过程度量;度量模型;度量指标体系;成对比较

中图法分类号:TP311.5 文献标识号:A 文章编号:1000-7024(2017)01-0144-05doi:10.16208/j

.issn1000-7024.2017.01.027收稿日期:2015-11-09;修订日期:2016-01-

25作者简介:王志(1980-),男,辽宁营口人,硕士研究生,研究方向为软件测试;刘艳辉(1972-),女,河北秦皇岛人,硕士研究生,研究方向为软件工程;杨欢(1977-),女,湖南益阳人,硕士研究生,研究方向为质量管理和标准化。E-mail:wang

zhi_nci@163.comApp

lication of AHP in software process measurementWANG Zhi,LIU Yan-

hui,YANG Huan(North China Computing Technology Institute,Beijing 

100083,China)Abstract:To synthesize and accurately measure the software process,the software process measurement model was establishedby integrating the analytic hierarchy process with the software process measurement.Based on the research of software processmeasurement index system,the method of factor analysis,the weight value and the consistency algorithm,five point method andnormalization algorithm were used,the combination of the qualitative analysis and quantitative analysis of the software processand the effect of multi objective synthesis measure were realized.The method was applied to the decision making process of asoftware integration scheme.Results of application show the applicability 

and effectiveness of the model.Key 

words:AHP;software process measure;measurement model;measurement index system;paired comparison0 引 言

现阶段,国内外对软件过程度量[1]

的研究仍存在着一

些不足,体现在以下几个方面:

(1

)多目标度量的支持。软件过程度量需要全面综合考虑项目质量、成本、进度等目标,但如何在软件度量过程中,处理交织多变且相互关联的几个目标,目前缺少科学方法指导。

(2

)定量度量支持。软件是人类智力过程成果,所以对软件过程的度量不可避免有定性因素,但如何将软件过程的定性评价与定量评价相结合,获得一定程度准确的量化评价结果,目前缺少科学方法指导。

(3

)团体评价支持。软件向规模化、协同化发展同时,软件项目干系人也日益复杂,使得软件过程度量也需要向团队化方向转变,但如何科学的整理、分析、归纳、综合团队评价的结果,并支持做出最后的综合评价,目前缺少

科学方法指导。

本文建立了软件过程度量指标体系,并引入AHP的成对比较、权重值计算、一致性修正方法,实现因素权重值的计算;然后,辅以五分法和归一化算法,实现对软件过程方案的量化评价。在实例应用部分,描述该模型的应用过程与效果,验证了其适用性与有效性。

1 软件过程度量模型

软件过程度量模型包括5个核心过程,如图1所示。(1

)指标体系建立过程。对软件过程度量目标进行分解,描述影响软件过程度量的因素,形成软件过程度量指标体系。

(2

)因素成对比较过程。按照两两比较的原则,对影响评价的因素进行重要度比较,构造判断矩阵,描述各因素的比较结果。

(3

)权重值计算过程。采用数学算法,将因素成对比

第38卷 第1期 王志,刘艳辉,杨欢:层次分析法在软件过程度量中的应用

 

图1 软件过程度量模型核心过程

较的判断矩阵值,转换为因素对软件过程度量目标的权重值。

(4

)一致性检验过程。对各因素的比对结果、权重值进行检验,并对不合理项进行修正与重新计算。

(5

)软件过程方案评价过程。度量不同软件过程方案在各因素方面的情况,结合各因素的权重值,计算不同软件过程方案量化度量值。1.1 指标体系建立过程

指标体系是解决软件过程度量问题的基础。软件过程改进目的是改善软件质量,减低成本和提高生产率,使软件项目满足质量、成本、进度目标要求。同时,软件项目是由软件团队承担的,软件过程是否为组织级的战略、过程资产做出贡献,也是非常重要内容。因此,本文设计如图2所示的指标体系,选择质量、成本、进度、资产作为第二层的因素,并根据第二层因素的内容分解为第三层的8个因素

图2 软件过程度量指标体系

(1

)产品生产效率因素。代表软件过程对产品特性和功能实现效率的影响,该因素是对单位时间内生产的产品规模的评价。

(2

)产品质量因素。代表软件过程对产品满足明确和隐含需要能力特性的影响,该因素是对用户期望与产品实现之间偏差的评价。

(3

)资金成本因素。代表软件过程对项目投入资金金额、时间段等内容的影响,该因素是对所耗现金规模的评价。

(4

)人力成本因素。代表软件过程对项目投入的人员类型、水平、时间段的影响,该因素是对项目组成规模的评价。对项目所需人力成本在某些情况下可以用资金成本代替计算,但某些情况下,则不成立,例如:在组织机构固定的情况下,资金成本很难转换成人力成本。

(5

)设备与场地成本因素。代表软件过程对固定资产投入情况的影响,该因素是对组织已有资产占用情况的评价。设备成本是以折旧费进行计算的,而不是以采购费用

计算,若场地为组织拥有的固定资产,则可以采用本地区平均租金价格计算。

(6

)时间进度因素。代表软件过程对项目所用时长的印象,该因素是对实际过程与计划过程的进度偏差情况的评价。在项目时间计划一定的情况下,采用是否满足项目时间进度作为评价结果;否则,使用各解决方案相对比较值作为评价结果。

(7

)组织战略因素。代表软件过程对组织战略目标的影响,该因素是对组织战略发展契合程度情况的评价。在组织管理过程中,存在项目成功,但组织失败的情况,所以过程改进应与组织的总体性谋划保持一致。

(8

)过程资产因素。代表软件过程对组织级知识数据库的影响,该因素是对未来指导其它项目的规程和规章情况的评价。组织过程资产是组织在不同领域、不同类型工作的知识与经验教训,对组织后续类似项目与产品成功具有较强的支持作用。

在软件过程度量模型的应用中,可对软件过程度量指标体系的阶数、因素进行调整,以适合实际情况。1.2 因素成对比较过程

因素成对比较是实现软件过程度量的定性与定量分析关键。按照两两比较的原则,在每一层的所有因素的进行成对比较,最终采用专家判断矩阵形式表达。1.2.1 评价尺度定义

因素间的成对比较需要依据一个统一的比较基准,软件过程度量模型采用见表1的9级比例尺作为比较基准。

表1 评价尺度[

2,3]

标准定义1甲与乙同等重要3甲比乙稍微重要5甲比乙明显重要7甲比乙显著重要9甲比乙绝对重要2、4、6、8用于上述标准之间的折中值

上述值的倒数

乙比甲的重要程度

1.2.2 成对比较

成对比较表是基于9级比例标尺,以各层因素两两成

对比较[

4-

6],由专家给出偏好的数量化判断。例如,在软件·

541·

 计算机工程与设计

2017年

过程度量模型应用过程中,若采纳产品生产效率、产品质量、资金成本等8个因素为第三层因素,则可将这8个因素分别表示为变量A1至A8,然后将在8个因素之间分别进行成对比较,最终建立判断矩阵A,其中数值aij表示因素

Ai与Aj比较的结果

A=1 a12…a18

a21

1…a28…

…a81a82

…烅

烄烆

烍烌

1(1

)(1)aij>0;(2)aij=1/aj

i;(3)矩阵对角线为因素自身比较,aii=

1;(4)aij值越大,表示因素Ai相对于Aj的重要性越大。1.3 权重值计算过程

权重值计算过程是通过对判断矩阵的数学计算,确定

各因素重要度。在软件过程度量模型中,采用方根法[7,8]

算各因子权重值,其步骤如下:

步骤1 计算判断矩阵每一行元素的乘积

mi=∏n

j=1

ij i=1,2,…n(2

)步骤2 计算mi的n次方根,求几何平均

wi=n

m槡

i(3)步骤3 将向量珡w=(珡w1,珡w2,…,珡wn)T,进行归一化处理,获得w=(w1,w2,…,wn),即为因素A1…An因素对于目标的重要度

wi=wi

/∑n

k=1

wk i=1,

2,…,n(4

)1.4 一致性检验过程

1.4.1 一致性检验

判断矩阵A=(aij)

n×n,满足如下特性aij=aik×akj 

i,j,k=1,2,…,n(5

)但是,由于判断对象的复杂性以及人的思维判断差异,判断矩阵会发生不一致现象,即存在违反上述公式的情况,所以需要对判断矩阵进行一致性检验。软件过程度量模型是采用随机一致性指标(random consistency index,RI)与一致性指标(consistence 

index,CI)的比值,即一致性比例(consistence 

ratio,CR)对判断矩阵进行检验[9,10]

。步骤1 计算判断矩阵的最大特征根

λmax=

1n∑n

i=1

(Aw)i

wi(6

)步骤2 计算C.I.

值C.I.=(λmax-n)/(n-1)(7

)步骤3 根据判断矩阵的n值,通过表2获得R.I.

值。表2 R.I.

值n 

3 

4 

5 

6 

7 

8 

R.I.0.58 0.89 1.12 1.24 1.32 1.41 1

.45 步骤4 计算C.

R.值C.R.=C.I./R.I.

(8

)当C.R.=0时,认为判断矩阵A是完全一致性矩阵;

C.R.<0.1时,认为判断矩阵A是满意一致性矩阵;当C.R.≥0.1时,认为判断矩阵A不具有一致性。1.4.2 一致性修正过程

当C.R.≥0.1时,即判断矩阵A不具有一致性,有必要对判断矩阵A的值进行修正。

步骤1 利用w=(w1,w2,…,wn)

,形成纠偏矩阵B,以bij表示wi与wj的比值

bij=w

i/wj(9

)步骤2 建立差值矩阵C,以cij代表纠偏矩阵B的bij

与判断矩阵A的aij之间差的绝对值

cij=bij-aij

(10

)步骤3 从差值矩阵C中间,选择差值较大的cij作为修正对象,既调整与cij对应的aij值,根据调整后的aij值,形成新的判断矩阵A。

步骤4 根据新的判断矩阵A,计算C.I.、C.R.是否在可接受范围内,若是则结束修正;若否则继续修正。1.5 软件过程方案评价过程

无论软件过程改进方案评价,还是多个软件过程方案的择优,都是两个以上方案的比较。软件过程度量模型使用“5分法”

(5=优、4=良、3=中、2=差、1=极

差)

[11]

,对被度量的多个软件过程方案在指标体系的各因素方面的表现情况,进行专家打分评价,形成量化评价向

量E,其中eij代表第i个软件过程方案,第j因素的量化评价值。最后,采用E与w乘积,作为最终量化评价值R,其中Ri代表第

i个软件过程方案的量化度量值R=Ew=e11e12…e1n

e21e22

…e2n

……

…en1en2…e烅

烄烆烍

烌烎nn

w1w2

…w烅烄烆

烍烌

烎n(11

)在软件过程方案评价过程中,可以提供一些与因素相关的原始量化值,降低主观因素对专家打分的影响。获得这些原始量化值后,需将原始量化值分为正向因素值、负向因素值,然后进行归一化处理,最终获得辅助专家打分的量化值。正向因素值代表第i个软件过程方案的原始量化值越大,则该软件过程方案在该因素方面越优,计算公式如下

eij=(rij-

rmin)×5/(rmax-rmin)(12

)(1)rij代表第i个软件过程方案,第j个因素的原始量化值;rmax是第j个因素期望的最大量化值;rmin是第j因素期望的最小量化值;

(2)rmin<rmax;(3)rmin≤rij≤

rmax。负向因素值代表第i个软件过程方案的该值越小,则

·

641·

第38卷 第1期 王志,刘艳辉,杨欢:层次分析法在软件过程度量中的应用

 

该软件过程方案在该因素方面越优,计算公式如下

eij=(rmax-rij)

×5/(rmax-rmin)(13

)(1)rij代表第i个软件过程方案,第j个因素的原始量化值;rmax是第j因素期望的最大量化值;rmin是第j因素期望的最小量化值;

(2)rmin<rmax;(3)rmin≤rij≤

rmax。2 实例应用

现阶段,越来越多的软件开发团队管理者在选择开发方法的时候都考虑使用敏捷开发方法,而持续集成是其一种重要而实用的实践。

某信息系统项目的软件集成工作采用统一集成方式,即由不同研发小组负责不同的模块开发,编码完成后再统一到联调环境进行调试,调试完成后由测试人员负责集成测试工作。为改善软件质量,减低成本和提高生产率,该项目经理计划引进持续集成实践到项目开发活动中,但是由于无法确定持续集成对项目与组织的影响,所以采用软件过程度量模型,辅助决策该项目现阶段引入持续集成是否正确。

2.1 指标体系建立过程

为更适合本项目实际情况,降低决策过程的复杂度,对软件过程度量模型指标体系做出如下调整:

(1

)资金成本因素修改为学习成本因素。资金成本主要是由于开展持续集成方法调研、培训引起,为有利于专家判断,修改资金成本因素为学习成本因素。

(2

)剔除设备与场地资源因素。设备与场地资源在统一集成方法建设中已具备,只是增设了一台持续集成服务器,对设备与场地资源因素影响很小,剔除该因素。

(3

)剔除组织战略因素。统一集成与持续集成影响的是开发实践层面,对组织战略层面的影响甚微,所以剔除该因素。

指标体系建立,如图3所示

图3 指标体系建立

2.2 因素成对比较过程

邀请高层管理者代表、用户代表、软件工程专家、项目经理、设计与开发人员代表等成立专家组。定义调整后指标体系的产品生产效率、产品质量、学习成本等6个因素为A1…A6,通过专家组会议讨论形成成对比较初始数据,以此建立判断矩阵,结果见表3。考虑到该项目是此类领域的首个项目,用户也是第一次合作,所以团队专家对产品质量与进度的相对倾斜。

表3 判断矩阵

集成方法

A1

A2

A3

A4

A5

A6

A11 1/5 3 1/2 1/5 1/2A25 1 7 3 1 3A31/3 1/7 1 1/4 1/7 1/4A42 1/3 4 1 1/3 1A55 1 7 3 1 3A6

2 

1/3 

4 

1 

1/3 

2.3 权重值计算与一致性检验过程

采用方根法计算各因素的重要度。权重值计算,见表4。

表4 权重值计算

集成方法

mi

珡wi

wi

A10.03 0.557 43 0.069 59A2315 2.608 47 0.325 66A30.000 43 0.274 22 0.034 24A40.888 89 0.980 56 0.122 42A5315 2.608 47 0.325 66A6

0.08 

0.656 42 

0.083 

85根据w计算最大特征根λmax值,以及C

.R.值λmax

=16∑6

i=1

(Aw)i

wi=16

∑6

i=i=1a1jwiw1

+∑6

i=i=1a2jwiw2+…+∑6

i=i=1a6jwiw烄烆烌烎6=6

.07797C.R.=C.I./R.I.=0.01559/1.24=0.01258可知C.R.<0.1,本次的判断矩阵是满意一致性矩阵。2.4 软件过程方案评价过程

对于统一集成、持续集成两种方案,采用调查表的方式,辅以两种集成方案的实验数据作为参考,使用“5分制”

,进行评价。评价过程中,专家组参考了如下因素:(1

)产品生产效率方面,持续集成方案主要增加的自动化测试脚本工作由新增的测试开发人员完成,所以对原团队的产品生产率影响较小;

(2

)产品质量方面,持续集成方案可以尽早开展测试,可以发现软件问题,降低了软件质量风险,所以相比统一

·

741·

 计算机工程与设计2017年

集成方案有优势;

(3)学习成本方面,项目组成员首次采用持续集成实践,所以从项目管理、配置管理、开发工具、环境配置等方面均需要学习,相较统一集成方案有一定成本;

(4)人力成本方面,由于持续集成方案的自动化测试脚本开发与维护、持续集成环境维护需要较多的人力,所以人力成本上比统一集成方案的花费多;

(5)时间进度方面,持续集成方案的建立阶段对项目时间进度稍有影响,但是极大的节约了后续测试活动的耗时,总的来说持续集成方案是更具优势;

(6)过程资产方面,持续集成实践是团队的一个尝试,具有一定的探索性,对组织过程资产库是一种贡献。

最终统计各专家的打分,将各项指标的值求和平均,两种方案的量化评价见表5。

表5 调查

集成方法A1A2A3A4A5A6评价结果统一集成3 2 4 4 3 1 2.59

持续集成3 4 2 3 5 4 4.07

所以,虽然持续集成方案在产品生产效率、成本方面有负面影响,但是对于项目的质量与时间进度都有好处,而且对组织过程资产也有所贡献,建议的决策结论为引入持续集成实践。

3 结束语

采用软件过程度量模型,可以结合定性与定量评价方法,有效地覆盖多个评价目标,并综合多个参与者的意见,对软件过程方案实施科学评价。在某信息管理系统的软件集成方法选择过程中,该模型对不同软件集成方案提供了直观、量化评价。

但是,软件过程度量模型还包括两个方面劣势:首先,软件过程度量模型只能从原有的多个方案中优选一个出来,无法主动创造新的方案;其次,从建立指标体系到给出判断矩阵,均依赖管理者与专家团队的主观判断,无法满足高精度的要求。

参考文献:

[1]ZHOU Weiliang.Research on quality measuring technique ofsoftware developing process and software product[D].Anhui:Hefei University of Technology,2012(in Chinese).[周伟良.软件开发过程质量与产品质量度量方法研究[D].安徽:合

肥工业大学,2012.]

[2]ZHANG Bingjiang.Analytic hierarchy process and its applica-tion[M].Beijing:Electronic Industry Press,2014:22-23(in Chinese).[张炳江.层次分析法及其应用案例[M].北

京:电子工业出版社,2014:22-23.]

[3]LIU Jun,LI Xiaonan.Handover algorithm for WLAN/cellularnetworks with analytic hierarchy process[J].Journal on Com-munications,2013,34(2):65-72(in Chinese).[刘军,李晓楠.基于层次分析法的WLAN/蜂窝网络切换判决算法[J].通信学报,2013,34(2):65-72.]

[4]WANG Jinxiang.Design and realization of quality comprehen-sive evaluation system based on AHP[D].Tianjin:TianjinUniversity,2013(in Chinese).[王金祥.基于层次分析法的质量综合评价系统设计与实现[D].天津:天津大学,2013.][5]JIANG Zhengwei,ZHAO Wenrui,LIU Yu,et al.Model forcloud computing security assessment based on classified protec-tion[J].Computer Science,2013,40(8):151-156(inChinese).[姜政伟,赵文瑞,刘宇,等.基于等级保护的云计算安全评估模型[J].计算机科学,2013,40(8):151-156.][6]HU Xiaoran,ZUO Jiaping,WANG Kun.Study on AHP-based quantification of software quality[J].Computer Appli-cations and Software,2013,30(11):138-141(in Chinese).[胡晓冉,左家平,王坤.基于层次分析法的软件质量量化研究[J].计算机应用与软件,2013,30(11):138-141.][7]LI Xin,LI Jingchun,ZHENG Xuefeng,et al.Analytic hierarchyprocess(AHP)-based vulnerability quantitative assessmentmethod for information systems[J].Computer Science,2012,39(7):58-63(in Chinese).[李鑫,李京春,郑雪峰,等.一种基于层次分析法的信息系统漏洞量化评估方法[J].计算机科学,2012,39(7):58-63.]

[8]FU Sha,SONG Dan.An information security risk assessmentmethod based on AHP and fuzzy comprehensive evaluation[J].Research and Exploration in Laboratory,2012,31(6):207-210(in Chinese).[付沙,宋丹.基于AHP和模糊综合评判的信息安全风险评估方法[J].实验室研究与探索,2012,31(6):207-210.]

[9]WANG Yangting,WANG Yanan.Research on softwareprocess improvement method based on AHP[J].Manufactu-ring Automation,2013,35(1):149-152(in Chinese).[王养廷,王亚楠.基于AHP的软件过程改进方法研究[J].制造业自动化,2013,35(1):149-152.]

[10]LIU Renshan,MENG Xianghong.Evaluation of informationsystem security based on AHP[J].Hebei Journal of IndustrialScience and Technology,2013,30(1):15-19(in Chinese).[刘仁山,孟祥宏.基于层次分析法的信息系统安全评价研究

[J].河北工业科技,2013,30(1):15-19.]

[11]WEI Lihao,WANG Tian,CHEN Fei,et al.Research of in-formation systems practical evaluation based on analyticalhierarchy process[J].Bulletin of Science and Technology,2014,30(2):143-148(in Chinese).[魏理豪,王甜,陈

飞,等.基于层次分析法的信息系统实用化评价研究[J].科技通报,2014,30(2):143-148.]

·

·

层次分析法步骤介绍

层次分析法整个计算过程包括以下五个部分。 (1)建立递阶层次结构 应用AHP解决实际问题,首先明确目标;接下来分析影响目标决策的各个因素,并将它们之间的关系条理化、层次化;最后,用线将各个层次、各个因素间的关系连接起来就构成了递阶层次结构。[25] 通常,递阶层次结构包括以下三个基本层次: 1.目标层:通过分析,明确目标就是什么,将其作为最高层的元素,必须就是唯一的, 如:选择最合适的供应商 2.准则层:即中间层,元素包含所有可能影响目标实现的准则,且会随着问题的复杂 程度增多。这时,需要详细分析各准则元素间的相互关系(就是同级关系还就是隶属关系)。如果就是隶属关系,则需要构建子准则层甚至更下一层准则。 3.措施层:即方案层。分析解决问题的方案有哪些,并将其作为最底层因素。 (2)构造判断矩阵并赋值 1.构造判断矩阵:将每一个具有向下隶属关系的元素作为判断矩阵的第一个元素(位 于左上角),隶属于它的各个元素依次排列在其后的第一行与第一列。 2.填写判断矩阵:最常用的方法就是咨询专家,将两个元素两两比较,按照重要性程 度表赋值(见下表)。 表3 重要性标度含义表 设填写后的判断矩阵为A=(a ij)n×n,判断矩阵具有如下三个性质: 1.a ii=1 2.a ji=1/a ij 3.a ij>0 (3)层次单排序与检验 1.层次单排序 利用数学方法将专家填写后的判断矩阵进行层次排序。层次单排序就是将每一个因素对于其准则的重要性进行排序,实际就就是计算权向量。计算权向量有特征根法、与法等,以下详细介绍特征根法的计算方法。 A.计算判断矩阵每一行元素的乘积

∏==n j ij i a M 1 (3、2) 式中: M i 第i 行各元素的乘积 a ij 第i 个元素与第j 个元素的关系比值

层次分析法案例

层次分析法的应用 层次分析法由美国著名运筹学家萨蒂于1982年提出,它综合了人们主观判断,是一种简明、实用的定性分析与定量分析相结合的系统分析与评价的方法。目前,该方法在国内已得到广泛的推广应用,广泛应用于能源问题分析、科技成果评比、地区经济发展方案比较,尤其是投入产出分析、资源分配、方案选择及评比等方面。它既是一种系统分析的好方法,也是一种新的、简洁的、实用的决策方法。 层次分析法的基本原理 人们在日常生活中经常要从一堆同样大小的物品中挑选出最重的物品。这时,一般是利用两两比较的方法来达到目的。假设有n 个物品,其真实重量用w 1,w 2 ,…表示。要想知道w 1 ,w 2 ,…的值, 最简单的就是用秤称出它们的重量,但如果没有秤,可以将几个物品两两比较,得到它们的重量比矩阵A。 如果用物品重量向量[w 1,w 2 ,…]T右乘矩阵A,则有:

由上式可知,n是A的特征值,W是A的特征向量。根据矩阵理论,n是矩阵A的唯一非零解,也是最大的特征值。这就提示我们,可以利用求物品重量比判断矩阵的特征向量的方法来求得物品真实的重量向量W。从而确定最重的物品。 将上述n个物品代表n个指标(要素),物品的重量向量就表示各指标(要素)的相对重要性向量,即权重向量;可以通过两两因素的比较,建立判断矩阵,再求出其特征向量就可确定哪个因素最重要。依此类推,如果n个物品代表n个方案,按照这种方法,就可以确定哪个方案最有价值。 应用层次分析法进行系统评价的主要步骤如下: (1)将复杂问题所涉及的因素分成若干层次,建立多级递阶的层次结构模型(目标层、判断层、方案层)。 (2)标度及描述。同一层次任意两因素进行重要性比较时,对它们的重要性之比做出判断,给予量化。 (3)对同属一层次的各要素以上一级的要素为准则进行两两比较,根据评价尺度确定其相对重要度,据此构建判断矩阵A。 (4)计算判断矩阵的特征向量,以此确定各层要素的相对重要度(权重)。 (5)最后通过综合重要度(权重)的计算,按照最大权重原则,确定最优方案。 具体案例: 市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区

层次分析法实例与步骤

层次分析法实例与步骤 结合一个具体例子,说明层次分析法的基本步骤和要点。 【案例分析】市政工程项目建设决策:层次分析法问题提出 市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。 1. 建立递阶层次结构 应用AHP解决实际问题,首先明确要分析决策的问题,并把它条理化、层次化,理出递阶层次结构。 AHP要求的递阶层次结构一般由以下三个层次组成: *目标层(最高层):指问题的预定目标; *准则层(中间层):指影响目标实现的准则; *措施层(最低层):指促使目标实现的措施; 通过对复杂问题的分析,首先明确决策的目标,将该目标作为目标层(最高层)的元素,这个目标要求是唯一的,即目标层只有一个元素。 然后找出影响目标实现的准则,作为目标层下的准则层因素,在复杂问题中,影响目标实现的准则可能有很多,这时要详细分析各准则因素间的相互关系,即有些是主要的准则,有些是隶属于主要准则的次准则,然后根据这些关系将准则元素分成不同的层次和组,不同层次元素间一般存在隶属关系,即上一层元素由下一层元素构成并对下一层元素起支配作用,同一层元素形成若干组,同组元素性质相近,一般隶属于同一个上一层元素(受上一层元素支配),不同组元素性质不同,一般隶属于不同的上一层元素。 在关系复杂的递阶层次结构中,有时组的关系不明显,即上一层的若干元素同时对下一层的若干元素起支配作用,形成相互交叉的层次关系,但无论怎样,上下层的隶属关系应该是明显的。 最后分析为了解决决策问题(实现决策目标)、在上述准则下,有哪些最终解决方案(措施),并将它们作为措施层因素,放在递阶层次结构的最下面(最低层)。 明确各个层次的因素及其位置,并将它们之间的关系用连线连接起来,就构成了递阶层次结构。 【案例分析】市政工程项目进行决策:建立递阶层次结构 在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综合效益最高,即决策目标是“合理建设市政工程,使综合效益最高”。 为了实现这一目标,需要考虑的主要准则有三个,即经济效益、社会效益和环境效益。但问题绝不这么简单。通过深入思考,决策人员认为还必须考虑直接经济效益、间接经济效益、方便日常出行、方便假日出行、减少环境污染、改善城市面貌等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。 假设本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以有哪些方案。根据题中所述,本问题有两个解决方案,即建高速路或建地铁,这两个因素作为措施层元素放在递阶层次结构的最下层。很明显,这两个方案于所有准则都相关。 将各个层次的因素按其上下关系摆放好位置,并将它们之间的关系用连线连接起来。同时,为了方便后面的定量表示,一般从上到下用A、B、C、D。。。代表不同层次,同一层次从左到右用1、2、3、4。。。代表不同因素。这样构成的递阶层次结构如下图。

层次分析法的应用实例

第二节 层次分析法的应用实例 层次分析法在解决定量与定性复杂问题时,由于方法的简单性、直观性,同时在解决各种领域的实际问题时又显示其有效性和可行性,因而深受广大工程技术人员和应用数学工作者的欢迎而被广泛采用。下面我们举例说明它的实用性。 设某港务局要改善一条河道的过河运输条件,要确定是否建立桥梁或隧道以代替现在的轮渡。 此问题可得到两个层次结构:过河效益层次结构和过河代价层次结构;由图5-3(a)和(b)分别表示。 例 过河的代价与效益分析。 (a) 过河效益层次结构 (b) 过河代价层次结构 图5-3 过河的效益与代价层次结构图 过河的效益 A 过河的效益 2B 经济效益 1B 过河的效益 3B 隧 道 2D 桥 梁 1D 渡 船 3D 美化 11 C 进出方便 10 C 舒适 9 C 自豪感 8 C 交往沟通 7C 安全可靠 6 C 建筑就业 5 C 当地商业4C 岸间商业3C 收入2C 节省时间1 C 过河的代价 A 社会代价 2B 经济代价 1B 环境代价 3B 隧 道 2D 桥 梁 1D 渡 船 3D 对生态的污染 9 C 对水的污染 8 C 汽车的排放物 7 C 居民搬迁 6 C 交往拥挤 5C 安全可靠 4 C 冲击渡船业 3 C 操作维护 2 C 投入资金 1 C

在过河效益层次结构中,对影响渡河的经济因素来说桥梁或隧道具有明显的优越性。一种是节省时间带来的效益,另一种是由于交通量的增加,可使运货增加,这就增加了地方政府的财政收入。交通的发达又将引起岸间商业的繁荣,从而有助于本地商业的发展;同时建筑施工任务又创造了大量的就业机会。以上这些效益一般都可以进行数量计算,其判断矩阵可以由货币效益直接比较而得。但社会效益和环境效益则难以用货币表示,此时就用两两比较的方法进行。从整体看,桥梁和隧道比轮渡更安全,更有助于旅行和交往,也可增加市民的自豪感。从环境效益看,桥梁和隧道可以给人们更大的舒适性、方便性,但渡船更具有美感。由此得到关于效益的各个判断矩阵如表5-9—表5-23所示。 表5-9 表5-10 表5-11 表5-12 表5-13 表5-14

层次分析法的计算步骤教学提纲

层次分析法的计算步 骤

8.3.2 层次分析法的计算步骤 一、建立层次结构模型 运用AHP进行系统分析,首先要将所包含的因素分组,每一组作为一个层次,把问题条理化、层次化,构造层次分析的结构模型。这些层次大体上可分为3类 1、最高层:在这一层次中只有一个元素,一般是分析问题的预定目标或理想结果,因此又称目标层; 2、中间层:这一层次包括了为实现目标所涉及的中间环节,它可由若干个层次组成,包括所需要考虑的准则,子准则,因此又称为准则层; 3、最底层:表示为实现目标可供选择的各种措施、决策、方案等,因此又称为措施层或方案层。 层次分析结构中各项称为此结构模型中的元素,这里要注意,层次之间的支配关系不一定是完全的,即可以有元素(非底层元素)并不支配下一层次的所有元素而只支配其中部分元素。这种自上而下的支配关系所形成的层次结构,我们称之为递阶层次结构。 递阶层次结构中的层次数与问题的复杂程度及分析的详尽程度有关,一般可不受限制。为了避免由于支配的元素过多而给两两比较判断带来困难,每层次中各元素所支配的元素一般地不要超过9个,若多于9个时,可将该层次再划分为若干子层。 例如,大学毕业的选择问题,毕业生需要从收入、社会地位及发展机会方面考虑是否留校工作、读研究生、到某公司或当公务员,这些关系可以将其划分为如图8.1所示的层次结构模型。 图8.1 再如,国家综合实力比较的层次结构模型如图6 .2: 图6 .2 图中,最高层表示解决问题的目的,即应用AHP所要达到的目标;中间层表示采用某种措施和政策来实现预定目标所涉及的中间环节,一般又分为策略层、约束层、准则层等;最低层表示解决问题的措施或政策(即方案)。 然后,用连线表明上一层因素与下一层的联系。如果某个因素与下一层所有因素均有联系,那么称这个因素与下一层存在完全层次关系。有时存在不完全层次关系,即某个因素只与下一层次的部分因素有联系。层次之间可以建立子层次。子层次从属于主层次的某个因素。它的因素与下一层次的因素有联系,但不形成独立层次,层次结构模型往往有结构模型表示。 二、构造判断矩阵

数学建模期末作业谈层次分析法在就业中的应用讲课稿

数学建模期末作业谈层次分析法在就业中 的应用

谈层次分析法在就业中的应用 摘要 近年高校毕业生数量急剧膨胀就业的难题似乎变得更加严峻和突出——全国就业工作座谈会传来消息,2010年应届毕业生规模是本世纪初的6倍,2011年高校毕业生人数为660万人,“十二五”时期应届毕业生年平均规模将达到近700万人。许多大学生处于就业十字路口,茫然不知所措。这种心态下的种种决策难免造成失误,所以需要一种可靠的定量的容易操作的,并且具体的有说服力的方法来帮助做出决策。本文提出了定性和定量相结合的层次分析法步骤,构成了工作满意度的评价指标体系,通过各因素重要程度比较与计算,最终确定出了6个具体指标在该体系下的权重并排序,这样在分析某种工作的满意程度时就可以按此权重进行衡量。为此我们建立了层次结构模型,做成对比较矩阵: 正互反矩阵为?????????? ????? ? ??? ?=wn wn w wn w wn wn w w w w w w w wn w w w w w w w A /...... 2/1//2........3/22/21/2/1........3/12/11/1M M M M 通过Matlab 等数学工具,得到特征向量 T w )083.0,201.0,139.0,154.0,076.0,347.0(1=,且∑==508.6)(max i i nw Aw λ,通过一致 性指标得出1016.0) 1() (max =--= n n CI λ,1.0082.024 .11016 .0<=== RI CI CR , 如果有CI 偏差,那偏差是否在满意的一致性范围,引进平均随机一致性指标RI 。 平均随机一致性指标RI 数值

层次分析法的计算步骤

8.3.2 层次分析法的计算步骤 一、建立层次结构模型 运用AHP进行系统分析,首先要将所包含的因素分组,每一组作为一个层次,把问题条理化、层次化,构造层次分析的结构模型。这些层次大体上可分为3类 1、最高层:在这一层次中只有一个元素,一般是分析问题的预定目标或理想结果,因此又称目标层; 2、中间层:这一层次包括了为实现目标所涉及的中间环节,它可由若干个层次组成,包括所需要考虑的准则,子准则,因此又称为准则层; 3、最底层:表示为实现目标可供选择的各种措施、决策、方案等,因此又称为措施层或方案层。 层次分析结构中各项称为此结构模型中的元素,这里要注意,层次之间的支配关系不一定是完全的,即可以有元素(非底层元素)并不支配下一层次的所有元素而只支配其中部分元素。这种自上而下的支配关系所形成的层次结构,我们称之为递阶层次结构。 递阶层次结构中的层次数与问题的复杂程度及分析的详尽程度有关,一般可不受限制。为了避免由于支配的元素过多而给两两比较判断带来困难,每层次中各元素所支配的元素一般地不要超过9个,若多于9个时,可将该层次再划分为若干子层。 例如,大学毕业的选择问题,毕业生需要从收入、社会地位及发展机会方面考虑是否留校工作、读研究生、到某公司或当公务员,这些关系可以将其划分为如图8.1所示的层次结构模型。 图8.1 再如,国家综合实力比较的层次结构模型如图6 .2: 图6 .2 图中,最高层表示解决问题的目的,即应用AHP所要达到的目标;中间层表示采用某种措施和政策来实现预定目标所涉及的中间环节,一般又分为策略层、约束层、准则层等;最低层表示解决问题的措施或政策(即方案)。 然后,用连线表明上一层因素与下一层的联系。如果某个因素与下一层所有因素均有联系,那么称这个因素与下一层存在完全层次关系。有时存在不完全层次关系,即某个因素只与下一层次的部分因素有联系。层次之间可以建立子层次。子层次从属于主层次的某个因素。它的因素与下一层次的因素有联系,但不形成独立层次,层次结构模型往往有结构模型表示。 二、构造判断矩阵 任何系统分析都以一定的信息为基础。AHP的信息基础主要是人们对每一层次各因素的相对重要性给出的判断,这些判断用数值表示出来,写成矩阵形式就是判断矩阵。判断矩阵是AHP工作的出发点,构造判断矩阵是AHP的关键一步。 当上、下层之间关系被确定之后,需确定与上层某元素(目标A或某个准则Z)相联系的下层各元素在上层元素Z之中所占的比重。 假定A层中因素Ak与下一层次中因素B1,B2,…,Bn有联系,则我们构造的判断矩阵如表8.16所示。 Ak B1 B2 …Bn

层次分析法在决策中的应用

数学在决策中的应用 ———层次分析法 学习应用数学后,我结合海运学院的相关专业,寻找数学应用的相关领域时,被利用数 学进行决策的层次分析法吸引住了,现在将所学习到的和所想到的做了总结,并将我学习层 次分析法的心得分享一下。 首先简单的介绍一下层次分析法,层次分析法(Analytic Hierarchy Process ,简称AHP) 是将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量 分析的决策方法。该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初,在为美 国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络 系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法[1]。 层次分析法是一种定性与定量相结合、系统化的决策方法。它将决策者的主观判断与实 践经验导入模型,并进行量化处理,体现了决策中分析、判断、综合的基本特征。该方法首 先将复杂问题按支配关系分层,然后两两比较每层各因素的相对重要性,最后确定各个因素 相对重要性的顺序,按顺序做出决策。 层次分析法的具体方法和步骤如下。[2] 1. 建立层次结构模型 通过深入分析实际问题,将问题分解成三个层级,即目标层、准则层(要素层)和方案层 , 同一层次的因素对上层因素有影响,同时又支配下层因素。目标层是最高层,通常只有 1 个 因素,最下层通常为方案措施,要素层可以不止一层,当要素过多时( 譬如多于 9 个) , 可以进一步分解出子要素层,并建立关联,见图1。 2. 构造判断(成对比较)矩阵 从第二层开始,把同一层级的因素用成对比较法和一定比较尺度构造判断矩阵 A ,直到 最后一层。 ji j i ij n n ij a a a a A 1,0,)(=>=?,其中i ,j=(1,2,3,……,n ) 矩阵 A 中,aij 表示因素 i 与因素 j 对上一层因素的重要性之比,aij 表示因素j 与因素i 的重要性之比,且aij= 1 / aji 。对于aij 的值,Saaty 等建议引用数字 1 至 9 及 其倒数作为标度,见表1。

层次分析法实例

层次分析法应用实例 问题描述:通讯交流在当今社会显得尤其重要,手机便是一个例子,现在每个人手里都有至少一部手机。但如今生产手机的厂家越来越多,品种五花八门,如何选购一款适合自己的手机这个问题困扰了许多人。 目标:选购一款合适的手机 准则:选择手机的标准大体可以分成四个:实用性,功能性,外观,价格。 方案:由于手机厂家有几十家,我们不妨可以将其归类:○1欧美(iphone);○2亚洲(索爱);○3国产(华为). 解决步骤: 1.建立递阶层次结构模型 图1 选购手机层次结构图 2.设置标度 人们定性区分事物的能力习惯用5个属性来表示,即同样重要、稍微重要、较强重要、强烈重要、绝对重要,当需要较高精度时,可以取两个相邻属性之间的值,这样就得到9个数值,即9个标度。

为了便于将比较判断定量化,引入1~9比率标度方法,规定用1、3、5、7、9

分别表示根据经验判断,要素i与要素j相比:同样重要、稍微重要、较强重要、强烈重要、绝对重要,而2、4、6、8表示上述两判断级之间的折衷值。 注:aij表示要素i与要素j相对重要度之比,且有下述关系: aij=1/aji ;aii=1; i,j=1,2,…,n 显然,比值越大,则要素i的重要度就越高。 3.构造判断矩阵 A B1B2B3B4 B11351 B2 1/313 1/3 B3 1/5 1/31 1/5 B41351 表1 判断矩阵A—B B1C1C2C3 C1 1 1/3 1/5 C2 3 1 1/3 C3 5 3 1 表2 判断矩阵B1—C

B2 C1 C2 C3 C1 1 3 3 C2 1/3 1 1 C3 1/3 1 1 表3 判断矩阵B2—C B3 C1 C2 C3 C1 1 3 6 C2 1/3 1 4 C3 1/6 1/4 1 表4 判断矩阵B3—C B4 C1 C2 C3 C1 1 1/4 1/6 C2 4 1 1/3 C3 6 3 1 表5 判断矩阵B4—C 4.计算各判断矩阵的特征值,特征向量和一致性检验 用求和发计算特征值: ○1将判断矩阵A 按列归一化(即列元素之和为1):bij= aij /Σaij; ○2将归一化的矩阵按行求和:ci=Σbij (i=1,2,3….n); ○3将ci 归一化:得到特征向量W=(w1,w2,…wn )T ,wi=ci /Σci , W 即为A 的特征向量的近似值; ○4求特征向量W 对应的最大特征值: 1).1 5 3 1 5 1131113111531 = A ,按列归一化后为 38 15145229381538 314 122138 3385143223539 151452293815 2).按行求和并归一化后得() T 389.0069 .0153 .0389 .0=W

层次分析法的基本步骤和要点

层次分析法的基本步骤和要点 结合一个具体例子,说明层次分析法的基本步骤和要点。 【案例分析】市政工程项目建设决策:层次分析法问题提出 市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。 1. 建立递阶层次结构 应用AHP解决实际问题,首先明确要分析决策的问题,并把它条理化、层次化,理出递阶层次结构。 AHP要求的递阶层次结构一般由以下三个层次组成: ●目标层(最高层):指问题的预定目标; ●准则层(中间层):指影响目标实现的准则; ●措施层(最低层):指促使目标实现的措施; 通过对复杂问题的分析,首先明确决策的目标,将该目标作为目标层(最高层)的元素,这个目标要求是唯一的,即目标层只有一个元素。 然后找出影响目标实现的准则,作为目标层下的准则层因素,在复杂问题中,影响目标实现的准则可能有很多,这时要详细分析各准则因素间的相互关系,即有些是主要的准则,有些是隶属于主要准则的次准则,然后根据这些关系将准则元素分成不同的层次和组,不同层次元素间一般存在隶属关系,即上一层元素由下一层元素构成并对下一层元素起支配作用,同一层元素形成若干组,同组元素性质相近,一般隶属于同一个上一层元素(受上一层元素支配),不同组元素性质不同,一般隶属于不同的上一层元素。 在关系复杂的递阶层次结构中,有时组的关系不明显,即上一层的若干元素同时对下一层的若干元素起支配作用,形成相互交叉的层次关系,但无论怎样,上下层的隶属关系应该是明显的。 最后分析为了解决决策问题(实现决策目标)、在上述准则下,有哪些最终解决方案(措施),并将它们作为措施层因素,放在递阶层次结构的最下面(最低层)。 明确各个层次的因素及其位置,并将它们之间的关系用连线连接起来,就构成了递阶层次结构。 【案例分析】市政工程项目进行决策:建立递阶层次结构 在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综合效益最高,即决策目标是“合理建设市政工程,使综合效益最高”。 为了实现这一目标,需要考虑的主要准则有三个,即经济效益、社会效益和环境效益。但问题绝不这么简单。通过深入思考,决策人员认为还必须考虑直接经济效益、间接经济效益、方便日常出行、方便假日出行、减少环境污染、改善城市面貌等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。 假设本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以有哪些方案。根据题中所述,本问题有两个解决方案,即建高速路或建地铁,这两个因素作为措施层元素放在递阶层次结构的最下层。很明显,这两个方案于所有准则都相关。 将各个层次的因素按其上下关系摆放好位置,并将它们之间的关系用连线连接起来。同时,为了方便后面的定量表示,一般从上到下用A、B、C、D。。。代表不同层次,同一层次从左到右用1、2、3、4。。。代表不同因素。这样构成的递阶层次结构如下图。

层次分析法的应用

层次分析法的一个应用 摘要 关键词: Abstract Keywords: 前言 1层次分析法理论概述 1.2层次分析法的概念 层次分析法是由美国运筹学家匹兹堡大学的 T.L.saaty教授于20世纪70年代提出的一种决策方法。它是将评价对象或问题视为一个系统,根据问题的性质和想要达到的总目标将问题分解成不同的组成要素,并按照要素间的相互关联度及隶属关系将要素按不同层次聚集组合,从而形成一个多层次的分析结构系统,把问题条理化、层次化。 层次分析法的结构符合人们思维的基本特征分解、判断、综合,把复杂的问题分解为各组成要素,再将这些要素按支配关系分组,从而形成有序的递阶层次结构,通过两两比较判断的方式确定每一层次中要素的相对重要性,然后在递阶层次结构内进行合成得到相对于目标的重要程度的总排序。因此,层次分析法从出现开始就受到了理论界广泛的支持和认可,并得到了不断的改进和完善。

1.3 AHP法下优点 (1)AHP对于解决多层次、多指标的递阶结构问题行之有效。保险公司绩效评价各指标之间相互作用,相互制约,且绩效受到多种因素的影响,可以分解成不同的子指标,例如我们从财务维度可将保险公司的绩效分解为增加盈利能力、偿付能力和发展能力三个层面,而各个层面又可以从多个角度来衡量,从而构成关联保险公司绩效评价指标体系的递阶结构体系。这样,我国上市保险公司绩效评价指标体系的递阶结构为层次分析法提供了“结构”基础。 (2)把定性分析和定量分析有机地结合起来,避免了单纯定性分析的主观臆断性和单纯利用定量分析时对数据资料的严格要求。 (3)层次分析法思路简单明了,将人们的思维数字化、系统化,便于接受并容易计算;同时,层次分析法是一种相对比较成熟的理论,有大量的是实践经验可以借鉴,这就避免了在保险公司绩效评价指标权重的确定过程中由于缺乏经验而产生的不足。 当然层次分析法也存在着缺陷:首先,其结论是建立在判断矩阵是一致性矩阵的基础上的,而在实际应用中所建立的判断矩阵,由于各方面的原因,往往不能一次性得到具有一致性的判断矩阵,而需要对其一致性进行检验,并进行多次的修改。因此,判断矩阵的建立过程比较复杂,且存在较大的主观性;其次是特征值的计算量较大;再次,许多专家认为层次分析法中采用的1-9标度法不能准确地反映专家和决策者的真实感觉和判断。采用层次分析法来确定两个指标的相对重要性时,当人们认为A1比A2重要(记为a),B1比B2明显重要(记为b),C1比C2强烈重要(记为c)时,则(c-b)比(b-a)要大得多,因而标度不应该的线性的,而是随着重要程度的增加差距越来越大。而1-9标度是等距的,所以Saaty 提出的线性评判标度与人们头脑中的实际标度并非一致。因此,这些问题都需要进行改进,但整体上不影响本文采用层次分析法确定评价指标权重。 1.4 AHP的基本步骤 用层次分析法作系统分析,首先需要把问题层次化,根据问题的性质和总目标把问题分解成为不同的因素,并且根据这些因素间的相互影响及隶属关系将因素按不同层次聚集组合,形成一个多层次的分析结构模型,并最终系统分析归结为最底层(供决策的方案、措施等)相对于最高层(总目标)的相对重要性权重的确

AHP层次分析法计算原理

AHP层次分析法计算原理 一般地,可以选用三层结构对发展战略作出整体评价。 第一层为目标层,它是企业要实现的战略目标,第二层是评价因素层,它包括战略目标实现进行评价的所考虑的各种因素以及各因素之间的相对比值,并求出各要素实现总体目标所占的权重。第三层是指标层,即个评价因素需考虑的具体指标。 首先,根据总目标确定各要素之间的相对重要关系,构建两两比较判断矩阵,其基本形式为: 其中,a j表示对于C来说,A对A相对重要性的数值体现,通常a j可取1、2、3……、9以及它们的倒数作为标度。其中, 1――表示两个元素相比,具有同样的重要性; 3――表示两个元素相比,一个元素比另一个元素稍微重要; 5――表示两个元素相比,一个元素比另一个元素明显重要; 7――表示两个元素相比,一个元素比另一个元素强烈重要; 9――表示两个元素相比,一个元素比另一个元素极端重要。 2、4、6、8为上述相邻判断的中值。 矩阵中的元素具有以下特征:①a j >0,②a j二丄,③a H=1o a ji 然后,根据判断矩阵计算相对于战略目标各评价元素的相对重要 性次序的权重,首先计算判断矩阵A的最大特征根入max和其对应的经归一化后的特征向量W=[W i, W2 , W3, , W n ]T,计算的公式为:(8 - 1)

归一化后的特征向量W=[W i, W2, W3, , W n]T即为各评价因素对于总目标的权重。 (8 - 2)W i - n W i i J 其 1 n 中,W = a j (8 - 3) 入max为判断矩阵A的最大特征根,计算公式为: (8 - 4) 其中,(AW)i表示AW的第i个元素。 最后,对矩阵A进行一致性检验。当a q二空时,称判断矩阵为a jk 致性矩阵。判断一致性的指标为C.R.的取值。 C.R.嚅 (8 - 5) (8 - 6) R丄为随机一致性指标,其值是通过多次重复进行随机判断矩阵特征值的计算后得到的。随机一致性指标R丄的取值见表8-2。 表8-2随机一致性指标R.I?的取值表 维数12 345 6 7 8 9 10 J (AW)i i吕nw

层次分析法决策问题中的应用

浅析层次分析法在多目标决策问题中的应用 周欣欣 [摘要]层次分析法是一种解决多目标决策问题很实用的方法。该方法能够解决多因素复杂系统的决策问题,有效地综合测度决策者的判断。本文先介绍了层次分析法的基本原理以及运用层次分析法分析问题时的基本步骤,然后运用层次分析法成功地解决了一个多目标决策问题,进一步证明了层次分析法的可行性和实用性。 [关键词]层次分析法;决策;一致性 [Abstract] AHP is a very practical method to solve multi-objective decision problems. This method can solve decision problems in multi-factor and complex system, and integrate the judge of decision-maker effectively. This paper describes the basic principle of AHP and the basic steps to solve decision problems at first, and then using AHP resolved a multi-objective decision problem successfully, evidenced the feasibility and practicality of AHP. [Key words]AHP; decision; consistency 1 引言 层次分析法(analytic hierarchy process,AHP)是Saaty教授于1971年提出的一种系统分析方法。1982年11月,在我国召开的能源、资源、环境学术会议上,美国Nezhed教授首次向我国学者介绍了层次分析法,层次分析法的理论研究和实际应用从此在我国得到了迅速展开[1]。该方法是一种综合定性与定量分析的多属性决策方法,能够模拟人的决策思维过程,解决多因素复杂系统特别是难以定量描述的社会系统的决策问题,有效地分析目标准则体系层次间的非序列关系,有效地综合测度决策者的判断和比较。随着层次分析法应用范围的扩大,它的理论也得到了发展并逐步完善。 2 层次分析法的基本原理 层次分析法是处理有限个方案的多目标决策问题时常用的也是最重要的方法之一。它是以层级架构来组织决策元素,进而融入专家与实际参与决策者的意见,帮助决策者作评估判断的思维方法。它的基本思想是把复杂问题分解为若干层次,即把决策问题按总目标、子目标、评价标准直至具体措施的顺序分解为不同层次

算法大全第08章 层次分析法

-167- 第八章 层次分析法 层次分析法(Analytic Hierarchy Process ,简称AHP )是对一些较为复杂、较为模糊的问题作出决策的简易方法,它特别适用于那些难于完全定量分析的问题。它是美国运筹学家T. L. Saaty 教授于上世纪70年代初期提出的一种简便、灵活而又实用的多准则决策方法。 §1 层次分析法的基本原理与步骤 人们在进行社会的、经济的以及科学管理领域问题的系统分析中,面临的常常是一个由相互关联、相互制约的众多因素构成的复杂而往往缺少定量数据的系统。层次分析法为这类问题的决策和排序提供了一种新的、简洁而实用的建模方法。 运用层次分析法建模,大体上可按下面四个步骤进行: (i )建立递阶层次结构模型; (ii )构造出各层次中的所有判断矩阵; (iii )层次单排序及一致性检验; (iv )层次总排序及一致性检验。 下面分别说明这四个步骤的实现过程。 1.1 递阶层次结构的建立与特点 应用AHP 分析决策问题时,首先要把问题条理化、层次化,构造出一个有层次的结构模型。在这个模型下,复杂问题被分解为元素的组成部分。这些元素又按其属性及关系形成若干层次。上一层次的元素作为准则对下一层次有关元素起支配作用。这些层次可以分为三类: (i )最高层:这一层次中只有一个元素,一般它是分析问题的预定目标或理想结果,因此也称为目标层。 (ii )中间层:这一层次中包含了为实现目标所涉及的中间环节,它可以由若干个层次组成,包括所需考虑的准则、子准则,因此也称为准则层。 (iii )最底层:这一层次包括了为实现目标可供选择的各种措施、决策方案等,因此也称为措施层或方案层。 递阶层次结构中的层次数与问题的复杂程度及需要分析的详尽程度有关,一般地层次数不受限制。每一层次中各元素所支配的元素一般不要超过9个。这是因为支配的元素过多会给两两比较判断带来困难。 下面结合一个实例来说明递阶层次结构的建立。 例1 假期旅游有1P 、2P 、3P 3个旅游胜地供你选择,试确定一个最佳地点。 在此问题中,你会根据诸如景色、费用、居住、饮食和旅途条件等一些准则去反复比较3个侯选地点。可以建立如图1的层次结构模型。 图1 层次结构模型

层次分析法介绍

2 层次分析法 2.1层次分析法的简单介绍 层次分析法(Analytic Hierarchy Process 简称AHP),是20世纪80年代由美国运筹学教授T. L. Satty 提出的一种简便、灵活而又实用的多准则决策方法,它根据问题的性质和要达到的目标分解出问题的组成因素,并按因素间的相互关系将因素层次化,组成一个层次结构模型,然后按层分析,最终获得最低层因素对于最高层(总目标)的重要性权值。 在经营决策中经常会遇到多指标、多方案的综合比较问题, 由于经常出现多个方案互有好坏的情况。因此要从成百上千个指标、方案中选择最佳的组合方案就成了一个较为麻烦的问题。在实际应用中,尽管人们还不能解决多个方案的综合比较问题, 但是如果就2个方案之间进行比较还是可以判断出相对好坏的。于是, 设法在数学上找到1种方法, 使之从多方案比较过渡到两两之间的比较,从而解决多方案比较的问题, 这就是AHP法的基本思想。 2.2层次分析法的基本层次结构 第一类:最高层,又称顶层、目标层。 第二类:中间层,又称准则层。 第三类:最底层,又称措施层、方案层。 层次结构图 (一)层次之间的支配关系是完全的结构模型层

(二) 层次之间的支配关系是不完全的结构模型 2.3 判断矩阵 设要比较n 个因素)...,,(21n y y y y =对目标z 的影响,从而确定它们在z 中所占的比重,每次取两个因素i y 和j y 用ij a 表示i y 与j y 对z 的影响程度之比,按1~9的比例标度来度量ij a ,n 个被比较的元素构成一个两两比较(成对比较)的判断矩阵.)(n n ij a ?=A 显然,判断矩阵具有性质: ?????? ? ??=A nn n n n n a a a a a a a a a ΛM M M ΛΛ212222111211 ,0>ij a ,1 ij ji a a = 1=ii a )...,2,1,(n j i = 所以又称判断矩阵为正互反矩阵(简称正互阵,又称成对比较阵)。 现在,来看看如何确定ij a 的取值?T.L.Satty 的做法是用数字1~9及其倒数作为标度 (见表2-1)。选择1~9方法是基与下述根据:

层次分析法具体应用与实例

层次分析法步骤与实例 1 层次分析法的思想:将所有要分析的问题层次化;根据问题的性质和所要到达的总目标,将问题分为不同的组成因素,并按照这些因素间的关联影响即其隶属关系,将因素按不同层次聚集组合,形成一个多层次分析结构模型;最后,对问题进行优劣比较排序. 2次分析法的步骤: 找准各因素之间的隶属度 关系建立递阶层次结构 构造判断矩阵(成对比较阵) 并赋值 层次单排序(计算权向量)与检验 (一致性检验) 层次总排序(组合权向量)与检验 (一致性检验) 结果分析

3以一个具体案例进行说明: 【案例分析】市政工程项目建设决策:层次分析法问题提出 市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。除了考虑经 济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层 次分析法解决。 【案例分析】市政工程项目进行决策:建立递阶层次结构 在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综 合效益最高,即决策目标是“合理建设市政工程,使综合效益最高”。 为了实现这一目标,需要考虑的主要准则有三个,即经济效益、社会效益和环境效益。但问题绝不这么简单。通过深入思考,决策人员认为还必须考虑直接经济效益、间接经济效益、方便日常出行、方便假日出行、减少环境污染、改善城市面貌等因素(准则),从相互 关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。 假设本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以 有哪些方案。根据题中所述,本问题有两个解决方案,即建高速路或建地铁,这两个因素作 为措施层元素放在递阶层次结构的最下层。很明显,这两个方案于所有准则都相关。 将各个层次的因素按其上下关系摆放好位置,并将它们之间的关系用连线连接起来。 同时,为了方便后面的定量表示,一般从上到下用A、 B、 C、 D。。。代表不同层次,同一层次从左到右用 1、 2、 3、 4。。。代表不同因素。这样构成的递阶层次结构如下图。 目标层 A 合理建设市政工程,使综合效益最高(A) 准则层 B 经济效益 (B1) 社会效益 (B2) 环境效益 (B3) 准则层 C 直接经间接带方便日方便假减少环改善城 济效益动效益常出行日出行境污染市面貌 (C1)(C2)(C3)(C4)(C5)(C6) 措施层 D 建高速路 (D1) 建地铁 (D2) 图1 递阶层次结构示意图 2.构造判断矩阵(成对比较阵)并赋值 根据递阶层次结构就能很容易地构造判断矩阵。 构造判断矩阵的方法是:每一个具有向下隶属关系的元素(被称作准则)作为判断矩阵的第一个元素(位于左上角),隶属于它的各个元素依次排列在其后的第一行和第一列。

层次分析法简单介绍

层次分析法 层次分析法(AHP)又称多层次权重分析法,是一种用于定性分析的多目标分析方法。它能有效地分析指标体系各层次之间排序关系,有效地综合衡量和判断评价者的意图.适用于多目标、多准则、多因素、难以量化的大型复杂系统,已广泛应用于资源系统分析、建设管理、交通、评标、经济评价等各个社会领域。 层次分析法解决复杂问题的基本思想是:首先,将总目标进行分层,并根据各个指标之间隶属关系和相关影响,将各个指标按不同层次进行分类。形成指标层、准则层和目标层,然后利用层次分析法,求本各层次的指标对上一层次指标的权重,然后利用最大特征值方法依次归并,最终求出总目标权重系数。指标越重要,其指标权重系数越大. 因此,层次分析方法的计算需要以下步骤: (1)建立层次结构模型 首先,将问题分解为不同的组成部分,并根据各个指标之间的相互影响和隶属关系,对各指标进行分组和组合,形成多层次结构,相对于确定最高层的综合相对重要性系数,即相对优序,系统分析被简化到最底层。 (2)调查问卷设计 ,对同一层次的指标将进行重要性等级进行两两访问对比,确定其重要性,然后利用比例标度法,。构成比较判断矩阵。 表1-1 比例标度法 Table4-1 Proportionalscalingmethod 两指标影响比较相等稍微重要明显重要非常重要极其重要δ1113579

(3)调查对象的构成 在选择范围上,主要选择具有绿色施工、绿色建筑、节能环保等研究领域的高校专家和学者、建设单位项目管理人员、工程项目施工单位工作人员和涉及环保监督政府人员。 (4)整理分析问卷并构建判断矩阵 整理出问卷中的信息,并将问卷中信息进行汇总分析,计算出各因素的要性程度,建立判断矩阵。见表1-2. 表1—2 各因素相对重要性判断矩阵 Table4—2 Relative importance judgment matrix B k B1B2B n B1δ11δ12。.. δ1n B2δ21δ22..。δ2n ......... ..。... Bnδn1δn2... δnn其中,δij是对于A k而言,Bi对B j的相对重要性的数值表示,δij是δi与δj 的比值. (5)排序一致性检验 层次分析法最主要的优点就是将调查问卷专家的主观定性思维过程定量化,因为不同方面的专家信息具有主观片面性以及层次分析法本身所存在的主观性,即使九级标度也无法完全保证每个判断矩阵都具有完全一致性,所以对各项指标的权重间是否存在着矛盾性还要经过一致性的检验。 检验一致性的步骤如下。

层次分析法方法介绍(有过程)

层次分析法(AHP) AHP(Analytic Hierarchy Process)方法,是由20世纪70年代由美国著名运筹学学家T.L.Satty提出的。它是指将决策问题的有关元素分解成目标、准则、方案等层次,在此基础上进行定性分析和定量分析的一种决策方法。这一方法的特点,是在对复杂决策问题的本质、影响因素及其内在关系等进行深入分析之后,构建一个层次结构模型,然后利用较少的定量信息,把决策的思维过程数学化,从而为求解多准则或无结构特性的复杂决策问题提供了一种简便的决策方法。 AHP十分适用于具有定性的,或定性定量兼有的决策分析。这是一种十分有效的系统分析和科学决策方法,现在已广泛地应用在企业信用评级、经济管理规划、能源开发利用与资源分析、城市产业规划、企业管理、人才预测、科研管理、交通运输、水资源分析利用等方面。 一、递阶层次结构的建立 一般来说,可以将层次分为三种类型: (1)最高层:只包含一个元素,表示决策分析的总目标,因此也称为总目标层。 (2)中间层:包含若干层元素,表示实现总目标所涉及的各子目标,包含各种准则、约束、策略等,因此也称为目标层。 (3)最低层:表示实现各决策目标的可行方案、措施等,也称为方案层。 典型的递阶层次结构如下: 一个好的递阶层次结构对解决问题极为重要,因此在建立递阶层次结构时,应注意到: (1)从上到下顺序地存在支配关系,用直线段(作用线)表示上一层次因素与下一层次因素之间的关系,同一层次及不相邻元素之间不存在支配关系。

(2)整个结构不受层次限制。 (3)最高层只有一个因素,每个因素所支配元素一般不超过9个,元素过多可进一步分层。 (4)对某些具有子层次结构可引入虚元素,使之成为典型递阶层次结构。 二、构造比较判断矩阵 设有m 个目标(方案或元素),根据某一准则,将这m 个目标两两进行比较,把第i 个目标(i=1,2,…,m )对第j 个目标的相对重要性记为a ij ,(j=1,2,…,m),这样构造的m 阶矩阵用于求解各个目标关于某准则的优先权重,成为权重解析判断矩阵,简称判断矩阵,记作A=(a ij )m ×m 。 Satty 于1980年根据一般人的认知习惯和判断能力给出了属性间相对重要性等级表(见表4-4)。利用该表取a ij 的值,称为1-9标度方法。 表4-4 目标重要性判断矩阵A 中元素的取值 若决策者能够准确估计a ij (i,j,k=1,2,…,m ),则有: a ij =1/a ji a ij= a ik ·a kj a ii =1 定义4-1 设A=(a ij )m ×m ,A>0,(即a ij >0;i,j=1,2,…,m ),如果满足条件(1)a ii =1(i =1,2,…,m );(2)a ij =1/a ji (i,j =1,2,…,m ),则称矩阵A 为互反正矩阵。 定义4-2 设A=(a ij )m ×m ,A>0,如果满足条件a ij= a ik ·a kj (i,j,k=1,2,…,m )则称矩阵A 为一致性矩阵。 定理4-1 对于任何一个m 阶互反正矩阵A ,均有max λ≥m ,其中max λ是矩阵A 的最大特征值。 定理4-2 m 阶互反正矩阵A 为一致性矩阵的充分必要条件是A 的最大特征根为m 。 三、单准则下的排序 层次分析法的信息基础是比较判断矩阵。由于每个准则都支配下一层若干因素,这样对于每一个准则及它所支配的因素都可以得到一个比较判断矩阵。因此

相关主题
文本预览
相关文档 最新文档