当前位置:文档之家› 固体物理第三章

固体物理第三章

固体物理第三章
固体物理第三章

班级 成绩

学号

Chapter 3 晶格振动与晶体的热学性质

姓名

(lattice vibration and its heat characteristics)

一、简要回答下列问题(answer the following questions):

1、在晶格常数为a 的一维单原子晶格中,波长λ=8a 和波长λ=8a/5的格波所对应的原子

振动状态有无不同? 试画图加以说明。

[答]对于一维单原子链,由q=2π/λ知,λ=8a 时,q =π/4a ,λ=8a /5时,q =5π

/4a ,二者的aq 相差π,不是2π的整数倍,因此,两个格波所对应的原子振动状态不同。

如上图,当两个格波的位相差为2π的整数倍时,则它们所对应的原子的振动状态相同。 2、什么叫简正振动模式?简正振动数目、格波数目或格波振动模式数目是否是一回事? [答]在简谐振动下,由N 个原子构成的晶体的晶格振动,可等效成3N 个独立的谐振子的

振动,每一个谐振子的振动模式称为简正振动模式。格波振动通常是这3N 个简正振动模式的线性叠加。

简正振动数目、格波数目或格波振动模式数目是是一回事,其数目等于晶体中所有原子的自由度之和,即等于3N 。

3、晶体中声子数目是否守恒?在极低温下,晶体中的声子数与温度T 之间有什么样的关

系?

[答]频率为ωi 的格波的平均声子数为 : 1

1)(/-=

T

k i B e

n ωω

即每一个格波的声子数都与温度有关,因此晶体中的声子数目不守恒,它随温度的改变而改变。

以德拜模型为例。晶体中的声子数目为

ωωωωd g n N D

)()('0

?

=

其中 令 T k x B ω

= 则 123'2/0

3

3233

-=

?

x T

B e dx

x C T k V N D θπ

在极低温度下,θD /T →∞,于是 3

3

133233

20

3

3233

)2(23123'T n

C T Vk e dx x C T k V N n B x B ∑

?

∞=∞

=-=

ππ 即在温度极低时,晶体中的声子数目与T 3

成正比。

4、爱因斯坦模型在低温下与实验存在偏差的根源是什么?而在极低温度下,德拜模型为

什么与实验相符?

[答]爱因斯坦模型的格波的频率大约为1013

Hz ,属于光学支频率。而光学格波在低温时对

热容的贡献非常小,低温下对热容贡献大的主要是长声学波。所以爱因斯坦模型在低温下与实验存在偏差的根源是没有考虑声学波对热容的贡献。

在极低温度下,不仅光学波得不到激发,而且声子能量较大的短声学格波因为未能被激发,得到的激发只是声子能量较小的长声学格波。长声学格波即弹性波。德拜模型只考虑弹性波对热容的贡献。因此,温度越低,德拜模型与实验结果符合得越好。 5、格波与弹性波有何不同?

[答]格波与弹性波相比都具有波的形式,但两者又有不同之处:

(1) 对于一维单原子链格波解为: )

(naq t i n Ae u -=ω

弹性波的解为: )

(qx t i n Ae u -=ω

在弹性波的解中, x 表示空间任意一点,而在格波解中只能取na 格点的位置. (2) 弹性波的色散关系是线性的,ω=cq, c 是弹性波的波速;

而格波的色散关系:|2

1

sin |2

aq m β

ω= 所表示的是周期函数:)()2(q a

q ωπ

ω=+

, 且ω 有极大值m m βω2= 。

但当q 很小时,一维单原子链的色散关系与连续弹性介质波的色散关系趋于一致:

cq q m

a

=≈β

ω

而且c 就是把原子链看成弹性链时,弹性波的波速.

ωωπωωd C

V d g 2

3

223

)(=

6、长声学波能否导致离子晶体的宏观极化?

[答]长光学波所以能导致离子晶体的宏观极化,其根源是长光学波使得原胞内不同的原子

(正负离子)产生了相对位移。长声学波的特点是,原胞内所有的原子没有相对位移。因此,长声学格波不能导致离子晶体的宏观极化。

7、在绝对零度时还有格波存在吗?若存在,格波间还有能量交换吗?

[答]频率为ωi 的格波的振动能为 i i i n ωε )2

1

(+= ,其中i i n ω 是由n i 个声子携带的热振动能,i ω 21是零点振动能,声子数 1

1

)(/-=T k i B

e n ωω ,在绝对零度时,声子数

为零,频率为ωi 的格波的振动能只剩下零点振动能。

格波间交换能量使靠声子实现的,在绝对零度时,声子数为零,格波间不再交换能量。

8、声子数代表的物理意义是什么?为什么说声子是玻色子?

[答]声子是指格波的量子,它的能量等于i ω 。一个格波,也就是一种振动模,称为一种声子。所以,声子数代表晶格振动的格波数。

在一定温度下,平均声子数遵从爱因斯坦——玻色分布, 二、填空题(fill in the blanks)(并用英语表示):

1、在一定温度下,晶格原子获得能量做热运动,于是各晶格原子将偏离其平衡位置;另

一方面,由于原子间存在相互作用,使各原子又受到使其回到平衡位置的恢复力作用,结果,晶格各原子都在其平衡位置附近做微振动,这就是

2、晶格振动的角频率ω随波数q 变化,即允许的振动频率与波长有关,晶格振动的这种

变化关系(ω~q 关系),称为晶格振动的色散关系 或晶格振动的 振动谱 。 3、晶格振动具有能量,其对固体比热的贡献,称为 晶格比热 。按照量子理论,晶格

比热为 .

4、 由N 个原胞组成的一维双原子链,q

q 对应

2 个解,因此总共有 2N 个不同的格波。

5、在三维晶格中,对一定的波矢q ,有 3 支声学波, 3(n -1) (n 为一个原胞中的原子数) 支光学波。

ωωωωωωd g e e T k k T E C T k T k B B V v B B m

)()1()()(2

//20

-=??=?

-

三、解释下列物理概念(explain the following physics concepts): 1、格波

[答] 晶格振动是晶体中诸原子(离子)集体地在作振动,由于晶体内原子间有相互作用,存在相互联系,各个原子的振动间都存在着固定的位相关系,从而形成各种模式的波,即各晶格原子在平衡位置附近作振动时,将以前进波的形式在晶体中传播,这种波称为格波。简单地说,由于晶格具有周期性,晶格的振动模具有波的形式,称为格波(lattice wave)。 2、长声学波和长光学波

[答]波长很长(比原胞的线度大得多),即波矢q 很小的声学波,称为长声学波。长声学波可以近似地被认为是弹性波。

波长很长(比原胞的线度大得多),即波矢q 很小的光学波,称为长光学波。对于光学波,原胞中不同原子的振动方向相反,容易产生极化,所以长光学波又称为极化波。 3、三声子过程

非谐作用是指势能展开式中三次以上的高阶项。势能三次方项对应三声子过程,指两个声子碰撞产生另一个声子或一个声子劈裂成两个声子的过程,而且声子之间的相互作用遵从能量守恒和动量守恒定律。 4、非简谐效应

当考虑到原子的相互作用势中的δ3

以上的高次项时出现的种种效应叫非简谐效应。这时格波之间可以有相互作用,声子之间也可以交换能量。非简谐项的存在是晶格振动达到热平衡的最主要的原因,只有考虑到非简谐项的存在也才能解释晶体的热膨胀和热传导等现象。 5★

、局域振动

当晶体中存在有杂质或缺陷时,就可能产生局域振动,这种局域振动只是局限在杂质(或缺陷)的附近,其振幅随着与杂质(或缺陷)的距离增大而指数的衰减。所以,局域振动是局限在杂质(或缺陷)附近的晶格振动称为局域振动(localized vibration )。

四、已知一维单原子链,其中第j 个格波,在第n 个格点引起的位移μnj

δj 为任意相位因子。并已知在较高温度下每个格波的平均能量为kT ,具体计算每个原子的平方平均位移。

[解]任一原子的位移是所有格波所引起的位移的叠加,

)

sin(j j j j nj naq t a δωμ++=

(1) 原子位移的长时间平均值

由于μnj ·μ

nj ’

的数目非常大,为N 2

(N 为原子数)数量级,而且取正或取负的几率

相等,因此上式中的第二项与第一项相比是一小量,可以略去不计,所以 由于μnj

是时间t 的周期性函数,其长时间平均等于一个周期内的时间平均值,因此

已知在较高温度下每个格波的能量为kT ,μnj 的动能的时间平均值为:

其中,L 是原子链的长度,ρ是质量密度,T 0为周期。 ∴

(3)

因此

将上式代入(2)式有

所以每个原子的平方平均位移为

而ρ=m/a,L=Na

)

sin(j j j j j

nj j

n naq t a δωμμ++==∑∑'

'

2''

2)()(nj nj j j nj j

nj j nj j

n μμμμμμ?+=?=∑∑∑∑≠2

2nj j

n μμ∑=222

2

2

1)(sin 1

j j j j j T nj

a dt naq t a T =

++=?

δωμdt dt

d dx T T nj T L nj ])(21[120

μρ?

?=

2220

2

4

1

)(cos 20

j j j j j T j j La dt naq t L

T a ρωδωρω=

++=

?

kT La T j j nj 2

1412

2==ρω22

2j j L kT

a ωρ=

2

2j nj L kT ωρμ=

2

2221

j j

j j

nj j

n L kT

L kT ωρωρμμ∑

∑===2

21

j j

n Nm

kT ωμ∑

=

五、求出一维原子链的频率分布函数。 [解] 1、一维单原子链的情况

对于一维情况,q 空间的密度为L /2π,L=Na 为单原子链的长度,其中a 为原子间距,N 为原子数目.则在dq 间隔内的振动模式数为(L /2π)dq. d ω 频率间隔内的振动模式数为

ωω

πd d dq L n ??

=?22 等式右边的2 来源于ω(q) 具有中心反演对称,q > 0与q < 0 区间是完全等价的.从而有

dq

d L g ωπω1

)(=

(1) 只考虑最近邻相互作用时,一维单原子链的色散关系为 |2

1

sin ||21sin |4)(aq aq m q m ωβω==

其中ωm 为最大频率.代入(1)式可以得到 2

1

2

2)(2)(-

-=ωωπ

ωm N

g

2、一维双原子链情况

}]sin )

(41[1{2

/122

2aq M m mM mM M m +-±+=±β

ω dq aq aq a M m mM aq M m mM mM M m d )cos (sin 2)(4]sin )(41[2122

2

1

22+?+-+±=-±±βωω所以 21

2

2

]sin )

(41[2sin )(-±±+-+±=aq M m mM aq M m a dq d ωβω 代入(1)式有

21

22

]sin )

(41[2sin )()(aq M m mM aq a M m L g +-+=±±βωπω 六、设三维晶格的光学振动在q =0附近的长波极限有 ω(q)=ω0-Aq 2

求证:频率分布函数为 ω<ω0

及 f(ω)=0 ω>ω0

2

/10

2

/32

)(14)(ωωπ

ω-=A V f

[证明] 由 ?

?=

|

)(|)2()(3

q dS V f q ωπω 以及 2

0)(Aq q -=ωω 有 Aq dq

d 2||

当ω<ω0 时, )(1

0ωω-=

A

q 所以 2

/102

/3223)(14421)2()(ωωπππω-=?=A

V q Aq V f

当ω>ω0 时, 根号下为负值,q 不存在, 所以有f(ω)=0

七、写出量子谐振子系统的自由能,证明在经典极限下,自由能为

[证明]

量子谐振子系统的自由能为

经典极限意味着(温度较高) 应用 ++-=-21x x e

x

所以 ++-

=-

2)(

1T

k T

k e

B q B q T

k B q ωωω

因此 )ln(

)11ln(2

1

T

k T k U

T k T k U F B q B B

q

B

q

q q

ωωω +?+-++?∑∑

其中 q q

U U ω 2

1

0∑

+=

)

ln(

0T

k T

k U F B q q

B ω ∑

+???

?

???-++=-∑

)1ln(21/T k B q q

B B q e T k T

k U F ωω q

B T k ω >>

八、设晶体中每个振子的能量为

,试用德拜模型求晶体的零点振动能。 [解] 根据量子力学, 零点正动能是谐振子所固有的,与温度无关, 故T=0 K 时的振动能就是各振动模零点能之和

?

=

m

d g E E ωωωω0

00)()( 而 ωω 2

1

)(0=

E 对于德拜模型 23

223)(ωπωp

v V

g =

所以有 4

3

230

32320

04

143432321m p

p

p v V d v V

d v V E m

m

ωπωωπωπωωωω?=

==?

?

但 p m v V

N 3

/12

)6(π

ω=

所以 D B m Nk N E Θ==8

9

890ω

九、试由格临爱森方程 V E

dV dU p -

+-

=γ 导出固体的体积热胀系数 V C k V 0

γα= 。 [解] 热膨胀是指在不施加力的情况下,体积的变化与温度的关系.

因此,令格林爱森方程中的P=0, 有

V

E

dV dU -

=γ (1) 对于大多数固体来说,体积的变化不大,因此可以将(dU/dV)在静止的晶格的平衡体积V 0

点展开

+?+=V dV

U

d dV dU dV dU V V 00)()(22 只取到ΔV 的线性项, 则有 V E

V dV U d V

-

=?γ0

)(

22

将上式写成

V E

V dV

U

d V V V -

?=?02200)(γ 并将两边对T 求微商, 则有 V

C K V

0γα=

式中K 0为T=0时的体弹性模量, C v 为固体的热容.

ω 2

1

十、对一维简单格子,按德拜模型,求出晶格热容,并讨论高低温极限。

[解] 按照德拜模型, 格波的色散关系为 ω=vq, 由模式密度的讨论知,对于一维情况

v L

dq

d L g πωπω==

1)( (1)

再利用

a

L

d v L N d g m

m ==

=?

?

ωπωωωω0

)( (N 为原子数,a 为晶格常数) 得 v a

m π

ω=

由量子理论的晶格比热公式,得其热容量的表达式为

ωωπωωωωωωωωωd e e T k v L k e d g e T k k C T k T

k B B T k T k B B V B B m

B B m

2

//20

2

//20

)1())(()

1()()(-=-=

?

?

作变量代换 T

k x B ω

=

, 并利用 B m D k ωθ =

得 2

20

2

)1(/-=

?

x x B V e dx x e v

T

Lk C T

D θπ (2)

(1) 高温时, x 是小量, 上式中的被积函数 1)

1(2

2

≈-x x e x e 晶格的热容量为 B B B B D B V Nk k a

L

a v T k v T Lk T v T Lk C ==?==ππθπ 2

2

(2)温度很低时,

∞→T

D

θ ,(2)式中的被积函数可以按二项式定理展开成级数

∑∞

=--=-=-1

2

222

2

)1()

1(n nx

x x x x ne

x e e x e x e

则积分 ?

?∑∞

=∞

-∞

====-0

1

2

2

2

1

2

2312

)1(n ex

n x x n

dx x ne

e dx

x e π 由此得到低温时晶格的热容量为 v

T

k L C B V 32

π=

《固体物理学答案》第一章晶体的结构

第一章、晶体的结构 习题 1.以刚性原子球堆积模型,计算以下各结构的致密度分别为: (1)简立方, 6 π ; (2)体心立方, ; 8 3 π (3)面心立方,; 6 2 π(4)六角密积,; 6 2 π (5)金刚石结构,; 16 3 π [解答] 设想晶体是由刚性原子球堆积而成,一个晶胞中刚性原子球占据的体积与晶胞体积的比值称为结构的致密度, 设n为一个晶胞中的刚性原子球数,r表示刚性原子球半径,V表示晶胞体 积,则致密度ρ= V r n3 3 4 π (1)对简立方晶体,任一个原子有6个最近邻,若原子以刚性球堆积,如图1.2所示,中心在1,2,3,4处的原子球将依次相切,因为 , , 4 33a V r a= = 面1.2 简立方晶胞 晶胞内包含1个原子,所以 ρ= 6 ) ( 3 3 2 3 4π π = a a (2)对体心立方晶体,任一个原子有8个最近邻,若原子刚性球堆积,如图1.3所示,体心位置O的原子8个角顶位置的原子球相切,因为晶胞空间对角线的长度为, , 4 33a V r a= =晶胞内包含2个原子,所以 ρ=π π 8 3 ) ( * 2 3 3 4 3 3 4 = a a

图1.3 体心立方晶胞 (3)对面心立方晶体,任一个原子有12个最近邻,若原子以刚性球堆积,如图 1.4所示,中心位于角顶的原子与相邻的3个面心原子球相切,因为3,42a V r a ==,1个晶胞内包含4个原子,所以 ρ=6 2)( *4334234 ππ=a a . 图1.4面心立方晶胞 (4)对六角密积结构,任一个原子有12个最近邻,若原子以刚性球堆积,如图1。5所示,中心在1的原子与中心在2,3,4的原子相切,中心在5的原子与中心在6,7,8的原子相切, 图 1.5 六角晶胞 图 1.6 正四面体 晶胞内的原子O 与中心在1,3,4,5,7,8处的原子相切,即O 点与中心在5,7,8处的原子分布在正四面体的四个顶上,因为四面体的高 h =2 23232c r a == 晶胞体积 V = 222 360sin ca ca =ο, 一个晶胞内包含两个原子,所以 ρ=ππ62) (*2223 3234 =ca a .

固体物理习题解答

《固体物理学》习题解答 ( 仅供参考) 参加编辑学生 柯宏伟(第一章),李琴(第二章),王雯(第三章),陈志心(第四章),朱燕(第五章),肖骁(第六章),秦丽丽(第七章) 指导教师 黄新堂 华中师范大学物理科学与技术学院2003级

2006年6月 第一章 晶体结构 1. 氯化钠与金刚石型结构是复式格子还是布拉维格子,各自的基元为何?写出 这两种结构的原胞与晶胞基矢,设晶格常数为a 。 解: 氯化钠与金刚石型结构都是复式格子。氯化钠的基元为一个Na +和一个Cl - 组成的正负离子对。金刚石的基元是一个面心立方上的C原子和一个体对角线上的C原子组成的C原子对。 由于NaCl 和金刚石都由面心立方结构套构而成,所以,其元胞基矢都为: 12 3()2()2()2a a a ? =+?? ?=+?? ?=+?? a j k a k i a i j 相应的晶胞基矢都为: ,,.a a a =?? =??=? a i b j c k 2. 六角密集结构可取四个原胞基矢 123,,a a a 与4a ,如图所示。试写出13O A A '、1331A A B B 、2255A B B A 、123456A A A A A A 这四个晶面所属晶面族的 晶面指数()h k l m 。 解: (1).对于13O A A '面,其在四个原胞基矢 上的截矩分别为:1,1,1 2 -,1。所以, 其晶面指数为()1121。

(2).对于1331A A B B 面,其在四个原胞基矢上的截矩分别为:1,1,1 2-,∞。 所以,其晶面指数为()1120。 (3).对于2255A B B A 面,其在四个原胞基矢上的截矩分别为:1,1-,∞,∞。所以,其晶面指数为()1100。 (4).对于123456A A A A A A 面,其在四个原胞基矢上的截矩分别为:∞,∞,∞,1。所以,其晶面指数为()0001。 3. 如将等体积的硬球堆成下列结构,求证球体可能占据的最大体积与总体积的 比为: 简立方: 6 π ;六角密集:6;金刚石: 。 证明: 由于晶格常数为a ,所以: (1).构成简立方时,最大球半径为2 m a R = ,每个原胞中占有一个原子, 3 34326m a V a π π??∴== ??? 36 m V a π∴ = (2).构成体心立方时,体对角线等于4倍的最大球半径,即:4m R ,每个晶胞中占有两个原子, 3 3 422348m V a π??∴=?= ? ??? 32m V a ∴ = (3).构成面心立方时,面对角线等于4倍的最大球半径,即:4m R ,每个晶胞占有4个原子, 3 3 444346 m V a a π??∴=?= ? ???

《固体物理学答案》第一章晶体的结构

第一章、 晶体的结构 1. 以刚性原子球堆积模型,计算以下各结构的致密度分别为: (1)简立方, 6π; (2)体心立方, ;8 3π (3)面心立方, ;62π (4)六角密积,;62 π (5)金刚石结构, ;16 3 π [解答] 设想晶体是由刚性原子球堆积而成,一个晶胞中刚性原子球占据的体积与晶胞体积的比值称为结构的致密度, 设 n 为一个晶胞中的刚性原子球数,r 表示刚性原子球半径,V 表示晶胞体 积,则致密度ρ=V r n 3 34π (1) 对简立方晶体,任一个原子有6个最近邻,若原子以刚性球堆积, 如图1.2所示,中心在1,2,3,4 处的原子球将依次相切,因为 ,,433a V r a == 面1.2 简立方晶胞 晶胞内包含1个原子,所以 ρ= 6 ) (3 3 23 4π π= a a (2)对体心立方晶体,任一个原子有8个最近邻,若原子刚性球堆积,如 图1.3所示,体心位置O 的原子8个角顶位置的原子球相切,因为晶胞空间对角线的长度为,,433a V r a ==晶胞内包含2个原子,所以 ρ= ππ8 3) ( *23 3 4 334= a a

图1.3 体心立方晶胞 (3)对面心立方晶体,任一个原子有12个最近邻,若原子以刚性球堆积,如图 1.4所示,中心位于角顶的原子与相邻的3个面心原子球相切,因为 3,42a V r a ==,1个晶胞内包含4个原子,所以 ρ= 6 2) ( *43 3 4 234ππ= a a . 图1.4面心立方晶胞 (4)对六角密积结构,任一个原子有12个最近邻,若原子以刚性球堆积,如图1。5所示,中心在1的原子与中心在2,3,4的原子相切,中心在5的原子与中心在6,7,8的原子相切, 图 1.5 六角晶胞 图 1.6 正四面体 晶胞内的原子O 与中心在1,3,4,5,7,8处的原子相切,即O 点与中心在5,7,8处的原子分布在正四面体的四个顶上,因为四面体的高 h =2 23 2 32c r a == 晶胞体积 V = 2 22 360sin ca ca = , 一个晶胞内包含两个原子,所以 ρ= ππ6 2)(*22 2 3 3 234= ca a .

固体物理第一章习题解答

固体物理学第一章习题解答 1、简述晶态、非晶态、准晶态、单晶、多晶的特征和性质。 答:晶态:内部质点在三维空间呈周期性重复排列的固体为晶体。其特征是原子排列具有周期性,表现为既有长程取向有序又有平移对称性。晶态的共性质:(1)长程有序;(2)自限性和晶面角守恒;(3)各向异性;(4)固定熔点。 非晶态特点:不具有长程序。具有短程序。短程序包括:(1)近邻原子的数目和种类;(2)近邻原子之间的距离(键长);(3)近邻原子配臵的几何方位(键角)。 准晶态是一种介于晶态与非晶态之间的新的状态。准晶态结构的特点:(1)具有长程的取向序而没有长程的平移对称序(周期性);(2)取向序具有周期性所不能容许的点群对称;(3)沿取向序对称轴的方向具有准周期性,由两个或两个以上不可公度的特征长度按着特定的序列方式排列。 晶体又分为单晶体和多晶体:整块晶体内原子排列的规律完全一致的晶体称为单晶体;而多晶体则是由许多取向不同的单晶体颗粒无规则堆积而成的。 2、什么是布喇菲格子?画出氯化钠晶体的结点所构成的布格子。说明基元代表点构 成的格子是面心立方晶体,每个原胞包含几个格点。 答:布喇菲格子(或布喇菲点阵)是格点在空间中周期性重复排列所构成的阵列。布喇菲格子是一种数学抽象,即点阵的总体,其特点是每个格点周围的情况完全相同。实际工作中,常是以具体的粒子(原子、离子等)做格点,如果晶体由完全相同的一种原子组成,则由这些原子所组成的格子,称为布喇菲格子。 NaCl晶体的结点构成的布格子实际上就是面心立方格子。每个原胞中包含一个格点。

3、指出下列各种格子是简单格子还是复式格子。 (1)底心六角(在六角格子原胞底面中心存在一个原子) (2)底心立方(3)底心四方 (4)面心四方(5)侧心立方 (6)边心立方 并指出它们分别属于十四种布拉菲格子中的哪一种? 答:要决定一个晶体是简单格子还是复式格子,首先要找到该晶体的基元,如果基元只包含一个原子则为简单格子。反之,则为复式格子。 (1)底心六角的原胞为AIBKEJFL所表示,它具有一个垂直于底面的四度旋转轴,它的原胞形状如图所示,是简单格子,属于单斜晶系。 (2)底心立方如下图所示,它的底面原子的排列情况可看出每个原子的周围情况都是相同的,因而都是等价的,所以它的基元也由一个原子组成,是简单格子,属于四角晶系。 (3)底心四方如下图所示,每个原子的周围情况完全相同,基元中只有一个原子,属于简单格子,属于四角晶系。

固体物理答案第3章

3.1 已知一维单原子链,其中第j 个格波,在第n 个格点引起的位移nj μ为: sin() nj j j j j a t naq μωδ=++ j δ为任意相位因子。并已知在较高温度下每个格波的平均能量为B k T 。具体计算每 个原子的平方平均位移。 解:(1)根据2011 sin ()2 T j j j t naq dt T ωδ?++= 其中2j T π ω= 为振动周期, 所以222 21 sin ()2 nj j j j j j a t naq a μωδ=++= (2) 第j 个格波的平均动能 (3) 经典的简谐运动有: 每个格波的平均动能=平均势能=1 2格波平均能量=12 B k T 振幅222B j j k T a Nm ω= , 所以 2 22 12B nj j j k T a Nm μω==。 而每个原子的平方平均位移为:222221 ()2 B n nj nj j j j j j j k T a Nm μμμω====∑∑∑∑ 。 3.2讨论N 个原胞的一维双原子链(相邻原子间距为a ),其2N 个格波的解。当m M =时与一维单原子链一一对应。 解:(1)一维双原子链: 22q a a π π - ≤< 声学波:1 222 2 411sin ()m M mM aq mM m M ωβ-????+??=--????+???? ?? 当m M =时,有 2 224(1cos )sin 2 aq aq m m ββω-= -= 。

光学波:1 222 2 411sin ()m M mM aq mM m M ωβ+????+??=+-????+???? ?? 当m M =时,有 2 2 24(1cos )cos 2 aq aq m m ββω+= += 。 (2)一维双原子链在m M =时的解 22224sin 2422cos 2aq m q aq a a m βωπ π βω-+?=??- ≤< ? ?=?? 与一维单原子链的解 224sin 2 aq q m a a βπ π ω=- ≤< 是一一对应的。 3.5已知NaCl 晶体平均每对离子的相互作用能为: 其中马德隆常数 1.75,9a n ==,平衡离子间距0 2.82r =?。 (1) 试求离子在平衡位置附近的振动频率。 (2) 计算与该频率相当的电磁波的波长,并与NaCl 红外吸收频率的测量只值 61μ进行比较。 解:(1)处理小振动问题,一般可采用简谐近似,在平衡位置附近,可将互作用能展开至偏差0r r δ=-的二次方项。 224 00002 00 ()()1()()()2U r U r U r U r O δδδδδδδδδδ==?+?++=+?+?+?? (1) 其中 00 () 0U r δδδ=?+=? 为平衡条件。 由0r 已知可确定β: 2 10n q r n αβ-= 。 (2) 根据(1)式,离子偏离平衡位置δ所受的恢复力为: 2' 002 ()()U r U r F δδδδβδδδ=?+?+=-=-?=-?? (3)

固体物理学答案详细版

《固体物理学》部分习题参考解答 第一章 1.1 有许多金属即可形成体心立方结构,也可以形成面心立方结构。从一种结构转变为另一种结构时体积变化很小.设体积的变化可以忽略,并以R f 和R b 代表面心立方和体心立方结构中最近邻原子间的距离,试问R f /R b 等于多少? 答:由题意已知,面心、体心立方结构同一棱边相邻原子的距离相等,都设为a : 对于面心立方,处于面心的原子与顶角原子的距离为:R f = 2 a 对于体心立方,处于体心的原子与顶角原子的距离为:R b a 那么, Rf Rb 31.2 晶面指数为(123)的晶面ABC 是离原点O 最近的晶面,OA 、OB 和OC 分别与基失a 1, a 2和a 3重合,除O 点外,OA ,OB 和OC 上是否有格点?若ABC 面的指数为(234),情况又如何? 答:根据题意,由于OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,那么 1.3 二维布拉维点阵只有5种,试列举并画图表示之。 答:二维布拉维点阵只有五种类型:正方、矩形、六角、有心矩形和斜方。分别如图所示: 1.4 在六方晶系中,晶面常用4个指数(hkil )来表示,如图所示,前3个指数表示晶面族中最靠近原点的晶面在互成120°的共平面轴a 1,a 2,a 3上的截距a 1/h ,a 2/k ,a 3/i ,第四个指数表示该晶面的六重轴c 上的截距c/l.证明:i=-(h+k ) 并将下列用(hkl )表示的晶面改用(hkil )表示:(001)(133)(110)(323)(100) (010)(213) 答:证明 设晶面族(hkil )的晶面间距为d ,晶面法线方向的单位矢量为n °。因为晶面族(hkil )中最靠近原点的晶面ABC 在a 1、a 2、a 3轴上的截距分别为a 1/h ,a 2/k ,a 3/i ,因此 123o o o a n hd a n kd a n id === ……… (1) 正方 a=b a ^b=90° 六方 a=b a ^b=120° 矩形 a ≠b a ^b=90° 带心矩形 a=b a ^b=90° 平行四边形 a ≠b a ^b ≠90°

固体物理课后习题与答案

第一章 金属自由电子气体模型习题及答案 1. 你是如何理解绝对零度时和常温下电子的平均动能十分相近这一点的? [解答] 自由电子论只考虑电子的动能。在绝对零度时,金属中的自由(价)电子,分布在费米能级及其以下的能级上,即分布在一个费米球内。在常温下,费米球内部离费米面远的状态全被电子占据,这些电子从格波获取的能量不足以使其跃迁到费米面附近或以外的空状态上,能够发生能态跃迁的仅是费米面附近的少数电子,而绝大多数电子的能态不会改变。也就是说,常温下电子的平均动能与绝对零度时的平均动能十分相近。 2. 晶体膨胀时,费米能级如何变化? [解答] 费米能级 3/222 )3(2πn m E o F = , 其中n 单位体积内的价电子数目。晶体膨胀时,体积变大,电子数目不变,n 变小,费密能级降低。 3. 为什么温度升高,费米能反而降低? [解答] 当K T 0≠时,有一半量子态被电子所占据的能级即是费米能级。除了晶体膨胀引起费米能级降低外,温度升高,费米面附近的电子从格波获取的能量就越大,跃迁到费米面以外的电子就越多,原来有一半量子态被电子所占据的能级上的电子就少于一半,有一半量子态被电子所占据的能级必定降低,也就是说,温度生高,费米能反而降低。 4. 为什么价电子的浓度越大,价电子的平均动能就越大? [解答] 由于绝对零度时和常温下电子的平均动能十分相近,我们讨论绝对零度时电子的平均动能与电子的浓度的关系。 价电子的浓度越大,价电子的平均动能就越大,这是金属中的价电子遵从费米—狄拉克统计分布的必 然结果。在绝对零度时,电子不可能都处于最低能级上,而是在费米球中均匀分布。由式 3/120)3(πn k F =可知,价电子的浓度越大费米球的半径就越大,高能量的电子就越多,价电子的平均动能 就越大。这一点从3 /2220)3(2πn m E F =和3/222)3(10353πn m E E o F ==式看得更清楚。电子的平均动能E 正比于费米能o F E ,而费米能又正比于电子浓度3 2l n 。所以价电子的浓度越大,价电子的平均动能就越大。 5. 两块同种金属,温度不同,接触后,温度未达到相等前,是否存在电势差?为什么? [解答] 两块同种金属,温度分别为1T 和2T ,且21T T >。在这种情况下,温度为1T 的金属高于费米能o F E 的电子数目,多于温度为2T 的金属高于费米能o F E 的电子数目。两块同种金属接触后,系统的能量要取最小值,温度为1T 的金属高于o F E 的部分电子将流向温度为2T 的金属。温度未达到相等前,这种流动一直持续,期间,温度为1T 的金属失去电子,带正电;温度为2T 的金属得到电子,带负电,两者出现电势差。

固体物理 第三章思考题--参考 不作要求

第三章 晶格振动与晶体热学性质习题课 1. 引入玻恩卡门条件的理由是什么? [解答] (1) 方便于求解原子运动方程. 由本教科书的(3.4)式可知, 除了原子链两端的两个原子外, 其它任一个原子的运动都与相邻的两个原子的运动相关. 即除了原子链两端的两个原子外, 其它原子的运动方程构成了个联立方程组. 但原子链两端的两个原子只有一个相邻原子, 其运动方程仅与一个相邻原子的运动相关, 运动方程与其它原子的运动方程迥然不同. 与其它原子的运动方程不同的这两个方程, 给整个联立方程组的求解带来了很大的困难. (2) 与实验结果吻合得较好. 对于原子的自由运动, 边界上的原子与其它原子一样, 无时无刻不在运动. 对于有N 个原子构成的的原子链, 硬性假定0 ,01==N u u 的边界条件是不符合事实的. 其实不论什么边界条件都与事实不符. 但为了求解近似解, 必须选取一个边界条件. 晶格振动谱的实验测定是对晶格振动理论的最有力验证(参见本教科书§3.2与§3.4). 玻恩卡门条件是晶格振动理论的前提条件. 实验测得的振动谱与理论相符的事实说明, 玻恩卡门周期性边界条件是目前较好的一个边界条件. 2. 什么叫简正振动模式?简正振动数目、格波数目或格波振动模式数目是否是一回事? [解答] 为了使问题既简化又能抓住主要矛盾,在分析讨论晶格振动时,将原子间互作用力的泰勒级数中的非线形项忽略掉的近似称为简谐近似. 在简谐近似下, 由N 个原子构成的晶体的晶格振动, 可等效成3N 个独立的谐振子的振动. 每个谐振子的振动模式称为简正振动模式, 它对应着所有的原子都以该模式的频率做振动, 它是晶格振动模式中最简单最基本的振动方式. 原子的振动, 或者说格波振动通常是这3N 个简正振动模式的线形迭加. 简正振动数目、格波数目或格波振动模式数目是一回事, 这个数目等于晶体中所有原子的自由度数之和, 即等于3N . 3. 长光学支格波与长声学支格波本质上有何差别? [解答] 长光学支格波的特征是每个原胞内的不同原子做相对振动, 振动频率较高, 它包含了晶格振动频率最高的振动模式. 长声学支格波的特征是原胞内的不同原子没有相对位移, 原胞做整体运动, 振动频率较低, 它包含了晶格振动频率最低的振动模式, 波速是一常数. 任何晶体都存在声学支格波, 但简单晶格(非复式格子)晶体不存在光学支格波. 4. 讨论晶体中声子数目与温度的关系 [解答] 频率为i ω的格波的(平均) 声子数为 11 )(/-= T k i B i e n ωω , 即每一个格波的声子数都与温度有关, 因此, 晶体中声子数目不守恒, 它是温度的变量. 按照德拜模型, 晶体中的声子数目N’为 ωνπωωωωωωωd 2311d )()('0 3 22 /0 ? ????? ????? ??-==D B i D p c T k V e D n N . 作变量代换 T k x B ω = ,

《固体物理学答案》第一章晶体的结构

《固体物理学答案》第一章晶体的结构

第一章、晶体的结构 习题 1.以刚性原子球堆积模型,计算以下各结构的致密 度分别为: (1)简立方, 6 π ; (2)体心立方, ; 8 3 π (3)面心立方,; 6 2 π(4)六角密积,; 6 2 π (5)金刚石结构,; 16 3 π [解答] 设想晶体是由刚性原子球堆积而成,一个晶胞中刚性原子 球占据的体积与晶胞体积的比值称为结构的致 密度, 设n为一个晶胞中的刚性原子球数,r表示 刚性原子球半径,V表示晶胞体积,则致密度 ρ= V r n3 3 4 π (1)对简立方晶体,任一个原子有6个最近邻,若原 子以刚性球堆积,如图1.2所示,中心在1,2, 3,4处的原子球将依次相切,因为 , , 4 33a V r a= = 面1.2 简立方晶胞 晶胞内包含1个原子,所以 ρ= 6 ) ( 3 3 2 3 4π π = a a (2)对体心立方晶体,任一个原子有8个 最近邻,若原子刚性球堆积,如图1.3所示,体 心位置O的原子8个角顶位置的原子球相切,

因为晶胞空间对角线的长度为,,433a V r a ==晶胞内包含2个原子,所以 ρ= ππ8 3) ( *23 3 4 334= a a 图1.3 体心立方晶胞 (3)对面心立方晶体,任一个原子有12个最近邻,若原子以刚性球堆积,如图1.4所示,中心位于角顶的原子与相邻的3个面心原子球相切,因为3,42a V r a ==,1个晶胞内包含4个原子,所以 ρ = 6 2) ( *43 3 4 234ππ= a a . 图1.4面心立方晶胞 (4)对六角密积结构,任一个原子有12个最近邻,若原子以刚性球堆积,如图1。5所示,中心在1的原子与中心在2,3,4的原子相切,中心在5的原子与中心在6,7,8的原子相切,

黄昆固体物理习题-第三章 晶体的热性质

第三章习题参考解答

3.1已知一维单原子链,其中第j 个格波,在第n 个格点引 起的位移μnj 为: δj 为任意位相因子。并已知在较高温度下每个格波的平均能量为kT ,具体计算每个原子的平方平均位移。 ) sin(j j j j nj naq t δωαμ++=2 1 )(sin 1 2 = ++? dt q n t T j j j T δαω根据 =2nj μ 2 2 22 1)(sin j j j j j q n t αδαωα=++解:其中T =2π/ωj 为振动周期,所以:

格波的平均动能: ∑?=n nj m E 2 2 1 μN m j j 224 1ωα=一维单原子链可以认为是经典的简谐运动,因此有: )(cos 212 22j j j j n j q n t m δαωωα++=∑平均动能=平均势能= 格波平均能量=kT 2 1 21其中:M =ρL

其中振幅 2 22j j Nm kT ωα=得: kT N m E j j 2 14122= =ωα所以有:2 2221j j nj Nm kT ωαμ ==所以,每个原子的平方平均位移: ∑∑∑===2 22 1 21j j nj n Nm kT ωαμμ其中:M =ρL

3.2 讨论N个原胞的一维双原子链(相邻原子间距为a),其2N个格波解,当M=m时与一维单原子链结果一一对应。 解:质量为M的原子位于2n-1,2n+1,2n+3……。 质量为m的原子位于2n,2n+2,2n+4 ……。

牛顿运动方程 体系有N个原胞,有2N个独立的方程方程的解: A,B有 非零解

固体物理学1~6章习题解答

《固体物理学》习题解答 第一章 1.1 有许多金属即可形成体心立方结构,也可以形成面心立方结构。从一种结构转变为另一种结构时体积变化很小.设体积的变化可以忽略,并以R f 和R b 代表面心立方和体心立方结构中最近邻原子间的距离,试问R f /R b 等于多少? 答:由题意已知,面心、体心立方结构同一棱边相邻原子的距离相等,都设为a : 对于面心立方,处于面心的原子与顶角原子的距离为:R f = 2 a 对于体心立方,处于体心的原子与顶角原子的距离为:R b 那么, Rf Rb 1.2 晶面指数为(123)的晶面ABC 是离原点O 最近的晶面,OA 、OB 和OC 分 别与基失a 1,a 2和a 3重合,除O 点外,OA ,OB 和OC 上是否有格点?若ABC 面的指数为(234),情况又如何? 答:根据题意,由于OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,那么 1.3 二维布拉维点阵只有5种,试列举并画图表示之。 答:二维布拉维点阵只有五种类型:正方、矩形、六角、有心矩形和斜方。分别如图所示: 1.4 在六方晶系中,晶面常用4个指数(hkil )来表示,如图所示,前3个指数表示晶面族中最靠近原点的晶面在互成120°的共平面轴a 1,a 2,a 3上的截距a 1/h ,a 2/k ,a 3/i ,第四个指数表示该晶面的六重轴c 上的截距c/l.证明:i=-(h+k ) 并将下列用(hkl )表示的晶面改用(hkil )表示:(001)(133)(110)(323)(100)(010) (213) 答:证明 设晶面族(hkil )的晶面间距为d ,晶面法线方向的单位矢量为n °。因为晶面族(hkil )中最靠近原点的晶面ABC 在a 1、a 2、a 3轴上的截距分别为a 1/h ,a 2/k ,a 3/i ,因此 正方 a=b a ^b=90° 六方 a=b a ^b=120° 矩形 a ≠b a ^b=90° 带心矩形 a=b a ^b=90° 平行四边形 a ≠b a ^b ≠90°

《固体物理学》房晓勇-习题01第一章 晶体的结构

第一章 晶体的结构 1.1试证明体心立方格子和面心立方格子互为正倒格子。 解:我们知体心立方格子的基矢为: () () () 123222a a i j k a a i j k a a i j k ?=-++?? ?=-+? ? ?=+-?? 根据倒格子基矢的定义,我们很容易可求出体心立方格子的倒格子基矢为: ()( )( ) 1232313122πΩ2πΩ2πΩb a a b a a b a a ?=??? ? =??? ?=??? () 3 1231Ω2 a a a a =??= 23222222222222 2 2 2 2 2 2 i j k a a a a a a a a a a a i j k a a a a a a a a a - - ?= - =++--- 22 22 a a j k =+ ()()() 223132π2π2πΩ22 a b a a j k j k a a =?=+=+ 同理 ()() 232π2π ,b i k b i j a a = +=+ () () () 1232π2π2πb j k a b i k a b i j a ?=+?? ?=+? ? ?=+?? 由此可知,体心立方格子的倒格子为一面心立方格子。

我们知面心立方格子的基矢为 () () () 123222a a j k a a i k a a i j ?=+?? ?=+? ? ?=+?? ()( )( ) 1232313122πΩ2πΩ2πΩb a a b a a b a a ? =??? ?=?? ? ?=??? () 31231Ω4 a a a a =??= 230 02222022 00 22 2 2 2 2 i j k a a a a a a a a i j k a a a a a a ?= =++- 222444 a a a i j k =-++ ()() 222223132π2π2π Ω24444 a a a a b a a i j k i j k a a ??=?=-+ +=-++ ???同理 ()() 232π2π,b i j k b i j k a a =-+=+- () () () 1232π2π2πb i j k a b i j k a b i j k a ?=-++?? ? =-+?? ?=+-?? 由此可得出面心立方格子的倒格子为一体心立方格子; 所以体心立方格子和面心立方格子互为正倒格子。 2.2在六角晶系中,晶面常用四个指数(hkil )来表示,如图所示,前三个指数表示晶面族中最靠近原点的晶面在互成1200的共面轴123,,a a a 上的截距为 3 12,,a a a h k i ,第四个指数表示该晶面在六重轴c 上的截距为c l 。证明: ()i h k =-+ 并将下列用(hkl )表示的晶面改用(hkil )表示:

固体物理第三章晶格振动与晶体的热力学函数

第三章 晶格振动与晶体的热力学函数 一、 填空体 1. 若在三维空间中,晶体由N 个原胞组成,每个原胞有一个原子,则共有_ 3 N_个独立的 振动,_ N__个波矢, 3N_支格波。 2. 体积为V 的ZnS 晶体,如果晶胞的体积为Ω,则晶格振动的模式书为24N/Ω 。 3. 三维绝缘体晶体的低温比热Cv 与温度T 的关系为Cv~T 3。 4. 某三维晶体由N 个原胞组成,每个原胞内有3个原子。考虑晶体的晶格振动,其色散关系共有 9N 支,其中 3N 支声学波,包括 2N 支横声学波, 1N 支纵声学波;另有 6N 支光学波。 5. 二维绝缘体晶体的低温比热Cv 与温度T 的关系为Cv~T 2。 6. 一维绝缘体晶体的低温比热Cv 与温度T 的关系为Cv~T 。 7. 三维绝缘体晶体的低温平均内能与温度T 的关系为U~T 4。 8.二维绝缘体晶体的低温平均内能与温度T 的关系为U~T 3。 9. 一维绝缘体晶体的低温平均内能温度T 的关系为U~T 2。 10.绝缘体中与温度有关的内能来源于 晶格振动能 。 11.导体中与温度有关的内能来源于 晶格振动能 和 价电子热运动动能 。 12. 某二维晶体由N 个原胞组成,每个原胞内有2个原子。考虑晶体的晶格振动,其色散关系共有 4N 支,其中 2N 支声学波,包括 N 支横声学波, N 支纵声学波;另有 2N 支光学波。 13. 某一维晶体由N 个原胞组成,每个原胞内有3个原子。考虑晶体的晶格振动,其色散关系共有 3N 支,其中 N 支声学波,包括 N 支横声学波, 0 支纵声学波;另有 2N 支光学波。 14.晶格振动的元激发为 声子 ,其能量为 ω ,准动量为 q 。 15德拜模型的基本假设为:格波作为弹性波、 介质是各向同性介质。 16.对三维体积为V 的晶体,波矢空间中的波矢密度为: 3 ) 2(V π ;对二维面积为S 的晶体,波矢空间中的波矢密度为:2 )2(S π ;对一维长度为L 的晶体,波矢空间中的波矢密度为: π 2L 。 二、基本概念 1. 声子 晶格振动的能量量子。 2.波恩-卡门条件 即周期性边界条件,设想在实际晶体外,仍然有无限多个相同的晶体相连接,各晶体中相对应的原子的运动情况都一样。 3.波矢密度 波矢空间单位体积内的波矢数目,三维时为3 c )2(V π,Vc 为晶体体积。 4. 模式密度 单位频率间隔内模式数目。 5.晶格振动。 答:由于晶体内原子间存在着相互作用,原子的振动就不是孤立的,而要以波的形式在晶体中传播,形成所谓格波,因此晶体可视为一个互相耦合的振动系统,这个系统的运动就叫晶格振动。

(完整版)固体物理第3章晶格振动参考答案2011

第三章 晶格振动 参考答案 2011 3.1 在单原子组成的一维点阵中,若假设每个原子所受的作用力左右不同,其力常数如图所示相间变化,且21ββ>。 试证明在这样的系统中,格波仍存在着声频支和光频 支,其格波频率为? ? ??????????????+-±+=212 21221212 )2(sin 411M )(ββββββωqa 证明: 第2n 个原子所受的力 1 21122221212121222)()()(-+-++++-=-+-=n n n n n n n n u u u u u u u F ββββββ 第2n+1个原子所受的力 n n n n n n n n u u u u u u u F 22121122112221222112)()()(ββββββ+++-=-+-=++++++ 这两个原子的运动方程:

n n n n n n n n u u u u m u u u u m 221211221121 211222212)()(ββββββββ+++-=+++-=+++-+&&&& 方程的解 ? ???? ? +-+? ???? ? -==q a n t i n q a n t i n Be u Ae u 2)12(122)2(2ωω 代入到运动方程,可以得到 B A e e B m A B e e A m q a i q a i q a i q a i )()(21222122122212ββββωββββω+-??? ? ??+=-+-??? ? ??+=--- 经整理,有 0)(0)(22122212221221=-+-??? ? ?? +=??? ? ??+--+--B m A e e B e e A m q a i q a i q a i q a i ωββββββωββ 若A ,B 有非零解,系数行列式满足 ,.,2 212 22 12 22 1221=-+++-+--ω ββββββωββm e e e e m q a i q a i q a i q a i 根据上式,有 ? ? ??????????????+-±+=212 2122 1212)2(sin 411M )(ββββββωqa

《固体物理学》房晓勇-思考题01第一章 晶体的结构

第一章 晶体的结构 思考题 1.1 为什么自然界中大多数固体以晶态形式存在?为什么面指数简单的晶面往往暴露在外表面? 解答: 在密勒指数(面指数)简单的晶面族中,面间距d 较大。对于一定的晶格,单位体积内格点数目一定,因此在晶面间距大的晶面上,格点(原子)的面密度必然大。面间距大的晶面,由于单位表面能量小,容易在晶体生长过程中显露在外表面,所以面指数简单的晶面往往暴露在外表面。 1.2 任何晶面族中最靠近原点的那个晶面必定通过一个或多个基矢的末端吗? 解答: 根据《固体物理学》式(1-10a ) ()()( ) ()111222333cos ,cos ,110cos ,a a n h d a a n h d a a a n h d ?=?? =-?? ?=? 1.3 解理面是面指数低的晶面还是指数高的晶面?为什么? 解答:晶体容易沿解理面劈裂,说明平行于解理面的原子层之间的结合力弱,即平行解理面的原子层的间距大. 因为面间距大的晶面族的指数低, 所以解理面是面指数低的晶面. 1.4在14种布喇菲格子中,为什么没有底心四方、面心四方和底心立方? 解答:参考陈金富P33页,徐至中1-13 1)图(a )代表向c 轴俯视所观察到的体心四方的格点分布。格点②距离由格点①组成的晶面的C/2处。如C=a ,则点阵为bcc;如图所示,为已经伸长的bcc ,c ≠a ,它是体心四方点阵。如 图(b )与图(a )代表同样的点阵,只是观察的角度不同,图中①构成四方面心格点, 面心格点间的距离a '= ,如2a C '= =,则点阵为fcc ;对于一般的C 值,图(b ) 是沿c 轴伸长后的点阵,因此相同的点阵从(a )是体心点阵,从(b )看是面心点阵,本质上相同,都称为体心四方点阵。 2)类似的底心四方和简单四方是同一种点阵。 3)底心立方不再具有立方对称性。所以不存在。 1.5 许多金属既可以形成体心立方结构,也可以形成面心立方结构。从一种结构转变为另一种结构时体积

固体物理答案第3章(20200511192744)

1 3 . 1已知一维单原子链,其中第j 个格波,在第n 个格点引起的位移nj 为: nj a j sin( j t naq j j ) (2)第j 个格波的平均动能 (3) 经典的简谐运动有: 1 -格波平均能量= 2 4ma2 2N 3.2讨论N 个原胞的一维双原子链(相邻原子间距为 时与一维单原子链 --- 对应。^m a 2 j 2cos 2 ( j t 2 n j naq j j ) lma 2 2N 4 振幅a 2 吧,所以 Nm j 2 nj 1 2aj k B T_ 2。 j Nm 而每个原子的平方平均位移为: (nj )2 j 2 nj 1 2 2aj j Nm j j 为任意相位因子。 并已知在较高温度下每个格波的平均能量为 k p T 。具体计算每个原子 的平方平均位移。 1 根据丄 T 解:(1) T ? 2 / . o sin ( j t naq j j )dt 其中T —为振动周期, j 所以2j a^sin 2( j t naq j 每个格波的平均动能=平均势能= a ),其2 N 个格波的解。当m M 解:(1) 一维双原子链: 2a q 2a 声学波: 2 m M mM 4mM .2 2sin aq (m M)2 当m M 时, 2 j m cosaq) m Jin 2 凹。 2 光学波: 2 7 1 mM 4mM (m M)2 2 sin aq

「0 3. 5已知NaCI 晶体平均每对离子的相互作用能为: u(r) 其中马德隆常数 a 1.75,n 9 ,平衡离子间距r 0 2.82?。 (1) 试求离子在平衡位置附近的振动频率。 (2) 计算与该频率相当的电磁波的波长,并与 比较。 解:(1)处理小振动问题,一般可采用简谐近似,在平衡位置附近,可将互作用能展开至偏 r r °的二次方项。 U(r 。 )U(r 。) U(r 。 1 2U(r 。 2 2 2 0( 4) 其中 U(r 。 2 q n r 。 n 根据 0为平衡条件。 由r 0已知可确定 (1)式,离子偏离平衡位置 所受的恢复力为: U(r 。 2U(r o 2 故恢复力常数为 2 U(r) 2 r n 3 r ° (1) (2) (3) ⑷ 当m M 时,有 cosaq) ?cos 2oq m 2 (2) —维双原子链在 m M 时的解 2 ^sin 20q m 2 2 4 2 aq 2a 2a cos - m 2 与一维单原子链的解 是 --- 对应的。 2 4 sin 2 凹 m 2 NaCl 红外吸收频率的测量只值 61进行

固体物理第三章

班级 成绩 学号 Chapter 3 晶格振动与晶体的热学性质 姓名 (lattice vibration and its heat characteristics) 一、简要回答下列问题(answer the following questions): 1、在晶格常数为a 的一维单原子晶格中,波长λ=8a 和波长λ=8a/5的格波所对应的原子 振动状态有无不同? 试画图加以说明。 [答]对于一维单原子链,由q=2π/λ知,λ=8a 时,q =π/4a ,λ=8a /5时,q =5π /4a ,二者的aq 相差π,不是2π的整数倍,因此,两个格波所对应的原子振动状态不同。 如上图,当两个格波的位相差为2π的整数倍时,则它们所对应的原子的振动状态相同。 2、什么叫简正振动模式?简正振动数目、格波数目或格波振动模式数目是否是一回事? [答]在简谐振动下,由N 个原子构成的晶体的晶格振动,可等效成3N 个独立的谐振子的 振动,每一个谐振子的振动模式称为简正振动模式。格波振动通常是这3N 个简正振动模式的线性叠加。 简正振动数目、格波数目或格波振动模式数目是是一回事,其数目等于晶体中所有原子的自由度之和,即等于3N 。 3、晶体中声子数目是否守恒?在极低温下,晶体中的声子数与温度T 之间有什么样的关 系? [答]频率为ωi 的格波的平均声子数为 : 1 1)(/-= T k i B e n ωω 即每一个格波的声子数都与温度有关,因此晶体中的声子数目不守恒,它随温度的改变而改变。 以德拜模型为例。晶体中的声子数目为

ωωωωd g n N D )()('0 ? = 其中 令 T k x B ω = 则 123'2/0 3 3233 -= ? x T B e dx x C T k V N D θπ 在极低温度下,θD /T →∞,于是 3 3 133233 20 3 3233 )2(23123'T n C T Vk e dx x C T k V N n B x B ∑ ? ∞=∞ =-= ππ 即在温度极低时,晶体中的声子数目与T 3 成正比。 4、爱因斯坦模型在低温下与实验存在偏差的根源是什么?而在极低温度下,德拜模型为 什么与实验相符? [答]爱因斯坦模型的格波的频率大约为1013 Hz ,属于光学支频率。而光学格波在低温时对 热容的贡献非常小,低温下对热容贡献大的主要是长声学波。所以爱因斯坦模型在低温下与实验存在偏差的根源是没有考虑声学波对热容的贡献。 在极低温度下,不仅光学波得不到激发,而且声子能量较大的短声学格波因为未能被激发,得到的激发只是声子能量较小的长声学格波。长声学格波即弹性波。德拜模型只考虑弹性波对热容的贡献。因此,温度越低,德拜模型与实验结果符合得越好。 5、格波与弹性波有何不同? [答]格波与弹性波相比都具有波的形式,但两者又有不同之处: (1) 对于一维单原子链格波解为: ) (naq t i n Ae u -=ω 弹性波的解为: ) (qx t i n Ae u -=ω 在弹性波的解中, x 表示空间任意一点,而在格波解中只能取na 格点的位置. (2) 弹性波的色散关系是线性的,ω=cq, c 是弹性波的波速; 而格波的色散关系:|2 1 sin |2 aq m β ω= 所表示的是周期函数:)()2(q a q ωπ ω=+ , 且ω 有极大值m m βω2= 。 但当q 很小时,一维单原子链的色散关系与连续弹性介质波的色散关系趋于一致: cq q m a =≈β ω 而且c 就是把原子链看成弹性链时,弹性波的波速. ωωπωωd C V d g 2 3 223 )(=

固体物理学 要点

固体物理复习要点 第一章,第二章的前三节,第三章的1,2,4节,第五章(第四节除外),第六章的前四节 第一章 1、晶体有哪些宏观特性? 答:自限性、晶面角守恒、解理性、晶体的各向异性、晶体的均匀性、晶体的对称性、固定的熔点 这是由构成晶体的原子和晶体内部结构的周期性决定的。说明晶体宏观特性是微观特性的反映 2、什么是空间点阵? 答:晶体可以看成由相同的格点在三维空间作周期性无限分布所构成的系统,这些格点的总和称为点阵。 3、什么是简单晶格和复式晶格? 答:简单晶格:如果晶体由完全相同的一种原子组成,且每个原子周围的情况完全相同,则这种原子所组成的网格称为简单晶格。复式晶格:如果晶体的基元由两个或两个以上原子组成,相应原子分别构成和格点相同的网格,称为子晶格,它们相对位移而形成复式晶格。 4、试述固体物理学原胞和结晶学原胞的相似点和区别。 答:(1)固体物理学原胞(简称原胞) 构造:取一格点为顶点,由此点向近邻的三个格点作三个不共面的矢量,以此三个矢量为边作平行六面体即为固体物理学原胞。 特点:格点只在平行六面体的顶角上,面上和内部均无格点,平均每个固体物理学原胞包含1个格点。它反映了晶体结构的周期性。 (2)结晶学原胞(简称晶胞) 构造:使三个基矢的方向尽可能地沿着空间对称轴的方向,它具有明显的对称性和周期性。 特点:结晶学原胞不仅在平行六面体顶角上有格点,面上及内部亦可有格点。其体积是固体物理学原胞体积的整数倍。 5、晶体包含7大晶系,14种布拉维格子,32个点群?试写出7大晶系名称;并写出立方晶系包含哪几种布拉维格子。 答:七大晶系:三斜、单斜、正交、正方、六方、菱方、立方晶系。 6.在晶体的宏观对称性中有哪几种独立的对称元素?写出这些独立元素。 答: 7.密堆积结构包含哪两种?各有什么特点? 答:(1)六角密积 第一层:每个球与6个球相切,有6个空隙,如编号1,2,3,4,5,6。 第二层:占据1,3,5空位中心。 第三层:在第一层球的正上方形成ABABAB······排列方式。 六角密积是复式格,其布拉维晶格是简单六角晶格。 基元由两个原子组成,一个位于(000),另一个原子位于 (2)立方密积 第一层:每个球与6个球相切,有6个空隙,如编号为1,2,3,4,5,6。

相关主题
文本预览
相关文档 最新文档