当前位置:文档之家› 差分放大电路

差分放大电路

差分放大电路
差分放大电路

实验三差分放大电路

一、实验目的

1、加深对差动放大器性能及特点的理解

2、学习差动放大器主要性能指标的测试方法

二、实验原理

图3-1是差动放大器的基本结构。它由两个元件参数相同的基本共射放

大电路组成。当开关K拨向左边时,构成典型的差动放大器。调零电位器R

P

用来调节T

1、T

2

管的静态工作点,使得输入信号U

i

=0时,双端输出电压U

O

=0。

R

E

为两管共用的发射极电阻,它对差模信号无负反馈作用,因而不影响差模电压放大倍数,但对共模信号有较强的负反馈作用,故可以有效地抑制零漂,稳定静态工作点。

图3-1 差动放大器实验电路

当开关K 拨向右边时,构成具有恒流源的差动放大器。 它用晶体管恒流源代替发射极电阻R E ,可以进一步提高差动放大器抑制共模信号的能力。 1、静态工作点的估算

典型电路

E

BE

EE E R U U I -≈

(认为U B1=U B2≈0)

E C2C1I 2

1

I I ==

恒流源电路

E3

BE

EE CC 2

1

2

E3C3R U )U (U R R R I I -++≈≈ C3C1C1I 2

1

I I ==

2、差模电压放大倍数和共模电压放大倍数

当差动放大器的射极电阻R E 足够大,或采用恒流源电路时,差模电压放大倍数A d 由输出端方式决定,而与输入方式无关。

双端输出: R E =∞,R P 在中心位置时,

P

be B C

i

O d β)R (12

r R βR △U △U A +++-

==

单端输出

d i C1d1A 21

△U △U A ==

d i C2d2A 2

1

△U △U A -==

当输入共模信号时,若为单端输出,则有

若为双端输出,在理想情况下

0△U △U A i

O

C ==

实际上由于元件不可能完全对称,因此A C 也不会绝对等于零。 3、共模抑制比CMRR

为了表征差动放大器对有用信号(差模信号)的放大作用和对共模信号的抑制能力,通常用一个综合指标来衡量,即共模抑制比 c

d A A CMRR =

或()dB A A

20Log CMRR c d =

差动放大器的输入信号可采用直流信号也可采用交流信号。本实验由函数信号发生器提供频率f =1KHZ 的正弦信号作为输入信号。 三、实验设备与器件

1、±12V 直流电源

2、函数信号发生器

3、双踪示波器

4、交流毫伏表

5、直流电压表

6、晶体三极管3DG6×3,要求T 1、T 2管特性参数一致。 (或9011×3)。 电阻器、电容器若干。 四、实验内容

1.典型差动放大器性能测试

按图3-1连接实验电路,开关K 拨向左边构成典型差动放大器。 1) 测量静态工作点

E

C

E

P be B C i C1C2C12R R )2R R 2

1β)((1r R βR △U △U A A -≈++++-===

①调节放大器零点

信号源不接入。将放大器输入端A、B与地短接,接通±12V直流电源,用

直流电压表测量输出电压U

O ,调节调零电位器R

P

,使U

O

=0。调节要仔细,力

求准确。

②测量静态工作点

零点调好以后,用直流电压表测量T

1、T

2

管各电极电位及射极电阻R

E

两端

电压U

RE

,记入表3-1。

表3-1

2)测量差模电压放大倍数

断开直流电源,将函数信号发生器的输出端接放大器输入A端,地端接放大器输入B端构成单端输入方式,调节输入信号为频率f=1KHz的正弦信号,

并使输出旋钮旋至零,用示波器监视输出端(集电极C

1或C

2

与地之间)。

接通±12V直流电源,逐渐增大输入电压U

i

(约100mV),在输出波形无失

真的情况下,用交流毫伏表测 U

i ,U

C1

,U

C2

,记入表6-2中,并观察u

i

,u

C1

u C2之间的相位关系及U

RE

随U

i

改变而变化的情况。

3)测量共模电压放大倍数

将放大器A、B短接,信号源接A端与地之间,构成共模输入方式,调

节输入信号f=1kHz,U

i =1V,在输出电压无失真的情况下,测量U

C1

, U

C2

之值

记入表3-2,并观察u

i , u

C1

, u

C2

之间的相位关系及U

RE

随U

i

改变而变化的情

况。

表3-2

4)具有恒流源的差动放大电路性能测试

将图3-1电路中开关K拨向右边,构成具有恒流源的差动放大电路。

重复内容1-2)、1-3)的要求,记入表3-2。

五、实验总结

1、整理实验数据,列表比较实验结果和理论估算值,分析误差原因。

1) 静态工作点和差模电压放大倍数。

2) 典型差动放大电路单端输出时的CMRR实测值与理论值比较

3) 典型差动放大电路单端输出时CMRR的实测值与具有恒流源的差动放大器CMRR实测值比较。

2、比较u

i ,u

C1

和u

C2

之间的相位关系。

3、根据实验结果,总结电阻R

E

和恒流源的作用。

六、预习要求

1、根据实验电路参数,估算典型差动放大器和具有恒流源的差动放大器的静

态工作点及差模电压放大倍数(取β

1=β

2

=100)。

2、测量静态工作点时,放大器输入端A、B与地应如何连接?

3、实验中怎样获得双端和单端输入差模信号?怎样获得共模信号?画出A、B 端与信号源之间的连接图。

4、怎样进行静态调零点?用什么仪表测U

O

5、怎样用交流毫伏表测双端输出电压U

O

典型差分放大电路

典型差分放大电路 1、典型差分放大电路的静态分析 (1)电路组成 (2)静态工作点的计算 静态时:v s1=v s2=0, 电路完全对称,所以有 I B Rs1+U BE +2I E Re=V EE 又∵ I E =(1+β)I B ∴ I B1=I B2=I B = 通常Rs<<(1+β)Re ,U BE =0.7V (硅管): I B1=I B2=I B = 因: I C1=I C2=I C =βI B 故: U CE1=U CE2=V CC -I C Rc 静态工作电流取决于V EE 和Re 。同时,在输入信号为零时,输出信号电压也为零(u o= Vc1-VC2=0),即该差放电路有零输入——零输出。 2、差分放大电路的动态分析 ()e s BE EE R 12R U V β++-

(1)差模信号输入时的动态分析 如果两个输入端的信号大小相等、极性相反,即 v s1=- v s2= 或 v s1- v s2= u id u id 称为差模输入信号。 在输入为差模方式时,若一个三极管的集电极电流增大时,则另一个三极管的集电极电流一定减小。在电路理想对称的条件下,有:i c1=- i c2。 Re 上的电流为: i E =i E1+i E2=(I E1+ i e1)+(I E2+ i e2 ) 电路对称时,有I E1= I E2= I E 、i e1=- i e2,使流过Re 上的电流i E =2I E 不变,则发射极的电位也保持不变。差模信号的交流通路如图: 差模信号下不同工作方式的讨论: ① 双端输入—双端输出放大倍数: 当输入信号从两个三极管的基极间加入、输出电压从两个三极管的集电极之间输出时,称之为双端输入—双端输出,其差模电压 be s c s1o1s2s1o2o1id o ud r R R 22u u A +-==--== βv v v v v v

运放差分放大电路原理知识介绍

差分放大电路 (1)对共模信号的抑制作用 差分放大电路如图所示。 特点:左右电路完全对称。 原理:温度变化时,两集电极电流增量相等,即C2C1I I ?=?,使集电极电压变化量相等,CQ2CQ1V V ?=?,则输出电压变化量0C2C1O =?-?=?V V V ,电路有效地抑制了零点漂移。若电源电压升高时,仍有0C2C1O =?-?=?V V V ,因此,该电路能有效抑制零漂。 共模信号:大小相等,极性相同的输入信号称为共模信号。 共模输入:输入共模信号的输入方式称为共模输入。 (2)对差模信号的放大作用 基本差分放大电路如图。 差模信号:大小相等,极性相反的信号称为差模信号。 差模输入:输入差模信号的输入方式称为差模输入。 在图中, I 2I 1I 2 1 v v v = -=, 放大器双端输出电压 差分放大电路的电压放大倍数为 可见它的放大倍数与单级放大电路相同。 (3)共模抑制比 共模抑制比CMR K :差模放大倍数d v A 与共模放大倍数c v A 的比值称为共模抑制比。 缺点:第一,要做到电路完全对称是十分困难的。第二,若需要单端输出,输出端的零点漂移仍能存在,因而该电路抑制零漂的优点就荡然无存了。 改进电路如图(b )所示。在两管发射极接入稳流电阻e R 。使其即有高的差模放大 倍数,又保持了对共模信号或零漂强抑制能力的优点。 在实际电路中,一般都采用正负两个电源供电,如图所示(c )所示。 差分放大电路 一. 实验目的: 1. 掌握差分放大电路的基本概念; 2. 了解零漂差生的原理与抑制零漂的方法; 3. 掌握差分放大电路的基本测试方法。 二. 实验原理: 1. 由运放构成的高阻抗差分放大电路 图为高输入阻抗差分放大器,应用十分广泛.从仪器测量放大器,到特种测量放大器,几乎都能见到其踪迹。

差动放大器实验报告

差动放大电路的分析与综合(计算与设计)实验报告 1、实验时间 10月31日(周五)17:50-21:00 2、实验地点 实验楼902 3、实验目的 1. 熟悉差动放大器的工作原理(熟练掌握差动放大器的静态、动态分析方法) 2. 加深对差动放大器性能及特点的理解 3. 学习差动放大电路静态工作点的测量 4. 学习差动放大器主要性能指标的测试方法 5. 熟悉恒流源的恒流特性 6. 通过对典型差动放大器的分析,锻炼根据实际要求独立设计基本电路的能力 7. 练习使用电路仿真软件,辅助分析设计实际应用电路 8. 培养实际工作中分析问题、解决问题的能力 4、实验仪器 数字示波器、数字万用表、模拟实验板、三极管、电容电阻若干、连接线 5、电路原理 1. 基本差动放大器 图是差动放大器的基本结构。它由两个元件参数相同的基本共射放大电路组成。 部分模拟图如下 1.直流分析数据 2.直流分析仿真数据 3.交流分析数据 4.交流分析仿真数据 具有平衡电位器的 差动放大器 图是差动放大器的结 构。它由两个元件参数相 近的基本共射放大电路组 成。 1.直流分析数据 2.直流分析仿真数据

3.交流分析数据 4.交流分析仿真数据 具有恒流源的差动放大器 图2-3是差动放大器的结构。它由两个元件参数相近的基本共射放大电路组成。 1.直流分析数据 2.直流分析仿真数据 3.交流分析数据 4.交流分析仿真数据 图3.1 差动放大器实验电路 当开关K 拨向右边时,构成具有恒流源的差动放大器。晶体管 T 3 与电阻3E R 共同组成镜象恒流源电路 , 为差动放大器提供恒定电流E I 。用晶体管恒流源代替发射极电阻 E R ,可以进一步提高差动 放大器抑制共模信号的能 力。 1、差动电路的输入输 出方式 根据输入信号和输出信号的不同方式可以有四种连接方式,即 : (l) 双端输入 -双端输出,将差模信号加在1s V 、2s V 两端 , 输出取自1o V 、2o V 两端。 (2) 双端输入 -单端输出,将差模信号加在1s V 、2s V 两端 , 输出取自1o V 或2o V 到地。 (3) 单端输入一双端输出,将差模信号加在1s V 上,2s V 接地 ( 或1s V 接地而信号加在2s V 上 ), 输出取自1o V 、2o V 两端。 (4) 单端输入 -单端输出 将差模信号加在1s V 上,2s V 接地 ( 或1s V 接地而信号加在2s V 上 ), 输出取自1o V 或2o V 到地。

一种典型的差分放大电路设计与测试

一种典型的差分放大电路设计与测试 2011-01-12 10:12:26 来源:21ic 关键字:放大电路共模运放差分放大器低通滤波器保护器件失调电压输入偏置电流温度漂移寄生电感 摘要:简述一种典型的差分输入差分输出放大电路的设计、仿真和测试方法,讨论其设计原理及需要解决的问题。重点讲述差分滤波器的设计和计算,指出与单端放大电路在设计和测试中的不同之处,并结合实际工作中的经验,就直流信号和交流信号的测试分别给出了一种简易案例。 与普通单端放大器相比,差分放大器可以有效抑制输入信号中的共模噪声和地线电平电压浮动对电路的影响,因此,在工业应用中广受青睐。差分放大器中以仪表放大器应用最为广泛。随着技术的发展,支持差分输入的ADC、MCU 越来越多,由于差分传输能更好地抑制共模干扰,信号传输距离更远,越来越多的场合将使用差分传输。但是,一般的仪表放大器仅支持单端输出。 因此,采用双运放搭建了一种差分输入差分输出放大电路。与普通的单端放大电路相比,差分放大电路在设计、分析、仿真和测试中有许多不同之处,而这些知识在一般的模拟电路教材中很少介绍。 1 差分放大电路设计 根据被放大信号的不同, 可以将差分放大电路分成两种。一种是直流耦合差分放大电路,其输入端没有隔直电容,可以同时放大直流和交流信号,如图1 所示。另一种是交流耦合差分放大电路,其输入端有隔直电容,用来隔离直流分量,放大信号中的交流成分,如图2 所示。

直流耦合差分放大电路 交流耦合差分放大电路 1.1 直流耦合差分放大电路 直流耦合差分放大电路由差分比例放大电路、差分滤波器、保护器件和补偿电阻四部分组成。其输入-输出关系为:

差分放大电路解读

实验三差分放大电路 一、实验目的 1、加深对差动放大器性能及特点的理解 2、学习差动放大器主要性能指标的测试方法 二、实验原理 图3-1是差动放大器的基本结构。它由两个元件参数相同的基本共射放 大电路组成。当开关K拨向左边时,构成典型的差动放大器。调零电位器R P 用来调节T 1、T 2 管的静态工作点,使得输入信号U i =0时,双端输出电压U O =0。 R E 为两管共用的发射极电阻,它对差模信号无负反馈作用,因而不影响差模电压放大倍数,但对共模信号有较强的负反馈作用,故可以有效地抑制零漂,稳定静态工作点。 图3-1 差动放大器实验电路

当开关K 拨向右边时,构成具有恒流源的差动放大器。 它用晶体管恒流源代替发射极电阻R E ,可以进一步提高差动放大器抑制共模信号的能力。 1、静态工作点的估算 典型电路 E BE EE E R U U I -≈ (认为U B1=U B2≈0) E C2C1I 2 1 I I == 恒流源电路 E3 BE EE CC 2 1 2 E3C3R U )U (U R R R I I -++≈≈ C3C1C1I 2 1 I I == 2、差模电压放大倍数和共模电压放大倍数 当差动放大器的射极电阻R E 足够大,或采用恒流源电路时,差模电压放大倍数A d 由输出端方式决定,而与输入方式无关。 双端输出: R E =∞,R P 在中心位置时, P be B C i O d β)R (12 r R βR △U △U A +++- == 单端输出 d i C1d1A 21 △U △U A == d i C2d2A 2 1 △U △U A -==

差分放大电路

方案三差分放大电路 【项目目标】 知识目标 掌握场效应管的类型、场效应的电压控制作用及共源极放大电路的分析与应用。 能力目标 具有识别场效应管的能力,具有共源极放大的分析能力。

将J8、J9与 J6、J7之间分别加一毫安表,J10、J11连接与J12 改变电位器RP6.将测量的结果记录如下: A1间的电流 A2间的电流 知识点导入 镜像电流源的基本特性。 知识点讲解 基本镜像电流源电路如图所示。 T 1、T 2参数完全相同(即β1=β2,I CEO1=I CEO2)。 原理:因为V BE1=V BE2,所以I C1=I C2 β C1 C1B C1REF 2 2I I I I I +=+= I REF ——基准电流:C2REF C1/21I I I =+=β 推出,当β>>2 时,I C2= I C1≈ I REF ()6060B1 Rp R U U Rp R V BE CC ++--=+-= ≈6 CC Rp R V + 优点: (1)I C2≈I REF ,即I C2不仅由I REF 确定,且总与I REF 相等。 (2)T 1对T 2具有温度补偿作用,I C2温度稳定性能好(设温度增大,使I C2增大,则I C1增大,而I REF 一定,因此I B 减少,所以I C2减少)。 缺点: (1)I REF (即I C2)受电源变化的影响大,故要求电源十分稳定。 (2)适用于较大工作电流(mA 数量级)的场合。若要I C2下降,则R 就必须增大,这在集成电路中因制作大阻值电阻需要占用较大的硅片面积。 (3)交流等效电阻R o 不够大,恒流特性不理想。 (4)I C2与I REF 的镜像精度决定于β。当β较小时,I C2与I REF 的差别不能忽略。 巩固训练:将电路图中的值按照电位的阻值代入进行计算?看测量结果与理论之间的误差? 电路测试2 将J8、J9与 J6、J7之间分别加一毫安表,改变电位器RP6.将测量的结果A1间的电流 图3.1.4 基本镜像电流源电路

差分放大电路仿真

苏州市职业大学实验报告姓名:学号:班级:

图2 差分放大器电路调零 R12kΩ R2 2kΩ R36.8kΩ R46.8kΩ R55.1kΩ R6510Ω R7510Ω R812kΩ Rp1 100ΩKey=A 50% V112 V V212 V Q1 2N3903Q2 2N390316 710 11 0U1 DC 1e-009W 1.089m A + - 125 U3 DC 1e-009W -0.015m A +- 140 4U2 DC 10M W 5.303 V + - 3 2 图3差分放大器电路静态工作点测量

R1 2kΩ R2 2kΩR3 6.8kΩ R4 6.8kΩ R5 5.1kΩ R6 510|?R7 510Ω R8 12kΩ Rp1 100Ω Key=A 50% V1 12 V V2 12 V Q1 2N3903 Q2 2N3903 16 7 10 11 0 2 XFG1 XSC1 A B Ext Trig + + _ _+_ 8 5 12 4 3 图4 测量差模电压放大倍数 图5 差模输入差分放大电路输入、输出波形图 3.测量共模放大倍数

将函数信号发生器XFG1的“+”端接放大电路的共同输入端,COM 接地,构成共模输入方式,如图6所示。在输出负载端用万用表测量输出电压值,打开仿真开关,测得8R 两端输出电压值为pV 038.1,几乎为0,所以共模双端输出放大倍数也就近似为0。 图6 共模输入、双端输出电压放大倍数测量 示波器观察到的差分放大电路输入、输出波形如图7所示。

图7共模输入差分放大电路输入、输出波形 R1 2k|? R2 2k|?R3 6.8k|? R4 6.8k|? R5 5.1k|? R6 510|?R7 510|? R8 12k|? Rp1 100|? Key=A 50% V1 12 V V2 12 V Q1 2N3903 Q2 2N3903 16 7 10 11 0 2 XSC1 A B Ext Trig + + _ _+_ 5 XFG1 34 8 9 图8 单端输出差分放大电路

电流镜负载的差分放大器设计

《IC课程设计》报告 电流镜负载的差分放大器设计 摘要 在对单极放大器与差动放大器的电路中,电流源起一个大电阻的作用,但不消耗过多的电压余度。而且,工作在包河区的MOS器件可以当作一个电流源。 在模拟电路中,电流源的设计是基于对基准电流的“复制”,前提是已经存在一个精确的电流源可以利用。但是,这一方法可能引起一个无休止的循环。一个相对比较复杂的电路被用来产生一个稳定的基准电流,这个基准电流再被复制,从而得到系统中很多电流源。而电流镜的作用就是精确地复制电流而不收工艺和温度的影响。在典型的电流镜中差动对的尾电流源通过一个NMOS镜像来偏置,负载电流源通过一个PMOS镜像来偏置。电流镜中的所有晶体管通常都采用相同的栅长,以减小由于边缘扩散所产生的误差。而且,短沟器件的阈值电压对沟道长度有一定的依赖性。因此,电流值之比只能通过调节晶体管的宽度来实现。而本题就是利用这一原理来实现的。 目录 1设计目标 (1) 2相关背景知识 (2) 3设计过程 (6) 3.1 电路结构设计 (6) 3.2 主要电路参数的手工推导 (6) 3.3 参数验证(手工推导) (7) 4 电路仿真 (9) 4.1 用于仿真的电路图 (9) NMOS: (9) PMOS (9) 整体电路图 (10) 4.2 仿真网表(注意加上注释) (10) 4.3 仿真波形 (13) 5 讨论 (17) 6 收获和建议 (17) 参考文献 (19)

1设计目标 设计一个电流镜负载的差分放大器,参考电路图如下:

2相关背景知识 据题目所述,电流镜负载的差分放大器的制作为0.35um CMOS 工艺,要求在5v 的电源电压下,负载电容为2pF 时,增益带宽积大于25MHz ,低频开环增益大于100,同时功耗和面积越小表示性能越优。 我们首先根据0.35um CMOS 工艺大致确定单个CMOS 的性能,即在一定值的W/L 下确定MOS 管在小信号模型中的等效输出电阻和栅跨导,然后记下得到的参数并将其带入到整体电路中计算,推导电流镜负载的差分放大器电路中的器件参数,例如,小信号模型的增益、带宽、功耗等,再分析是否满足题目中的各项指标的要求。若不满足,则依据摘要理所说的,调节晶体管的宽度,然后用调整后的参数进行仿真、验证,直到符合要求为止。 相关背景知识: 1. 差分式放大器 差分式放大器是由两个各项参数都相同的三端器件(包括BJT 、FET )所组成的差分式放大电路,并在两器件下端公共接点处连接一电流源。差分式又分为差模和共模信号:输入电压Vid 为Vi1和Vi2的差成为共模电压;另外,若输入电压Vic 为VI1和Vi2的算术平方根,则称为共模电压。当输入电压是共模形式时,,即在两个输入端各加入相同的信号电压,在差分放大电路中,无论是温度变化,还是电源波动引起的变化,其效果相当于在两个输入端加入了共模信号,两输出端输出的共模电压相同,故双端输出时输出电压为零;当输入电压是差模形式时,即在电路的两个输入端各加一个大小相等、极性相反的信号电压,一管电流将增加,另一管电流则减小,所以在两输出端间有信号电压输出。而差分放大器正是利用共模输入的特点来克服噪声信号和零点漂移的。此题要求用双端差模信号输入,单端输出,相应的计算公式如下: 1. 差模输入电压:12 id i i v v v =- 2. 共模输入电压:() 122 i i ic v v v += 3. 差模输出电压:12 od o o v v v =- 4. 共模输出电压:12 2 o o oc v v v += 5. 双端输入——单端输出的差模电压增益: 2(2|| v d m d s d s A g r r = 6. 双端输入——单端输出的等效栅跨导:

差分放大电路的四种接法

1.双端输入单端输出电路 电路如右图所示,为双端输入、单端输出差分放大电路。由于电路参数不对称,影响了静态工作点和动态参数。 直流分析: 画出其直流通路如右下图所示,图中和是利用戴维宁定理进行变换得出的等效电源和电阻,其表达式分别为:

交流分析:

在差模信号作用时,负载电阻仅取得T1管集电极电位的变化量,所以与双端输出电路相比,其差模放大倍数的数值减小。 如右下图所示为差模信号的等效电路。在差模信号作用时,由于T1管与T2管中电流大小相等方向相反,所以发射极相当于接地。 输出电压 一半。如果输入差模信号极性不变,而输出信号取自T2管的集电极,则输出与输入同相。当输入共模信号时,由于两边电路的输入信号大小相等极性相同。与输出电压相关的 T1管一边电路对共模信号的等效电路如下

可见,单端输入电路与双端输入电路的区别在于:差模信号输入的同时,伴随着共模信号输入。 输出电压 静态工作点以及动态参数的分析完全与双端输入、双端输出相同。 3.单端输入、单端输出电路 如右图所示为单端输入、单端输出电路,该电路对静态工作点、差模增益、共模增益、输入

与输出电阻的分析与单端输出电路相同。对输入信号的作用分析与单端输入电路相同。 改进型差分放大电路 在差分放大电路中,增大发射极电阻Re的阻值,可提高共模抑制比。但集成电路中不易制作大阻值电阻;采用大电阻Re要采用高的稳压电源,不合适。如设晶体管发射极静态电流为0.5mA,则Re中电流为1mA。当Re为10kΩ时,电源VEE的值为10.7V。在同样的静态工作电流下,若Re=100kΩ,VEE的值约为100V。 为了既能采用较低的电源电压,又能采用很大的等效电阻Re,可采用恒流源电路来取代Re。

差动放大电路

建平县职业教育中心备课教案 课题模块(单元)项目(课)差动放大电路 授课班级11电子授课教师安森授课类型新授授课时数 2 教学目标知识目标差动放大电路中共模负反馈电阻Re的作用,及其对差模信号和共模 信号的不同处理方法 能力目标差动放大电路动态参数计算 情感态度目标培养学生的学习兴趣,培养学生的爱岗敬业精神 教学核心教学重点典型差动放大电路——长尾电路的特点,静态和动态计算。 教学难点1、差动放大电路中共模负反馈电阻Re的作用,及其对差模信号和 共模信号的不同处理方法; 2、差动放大电路动态参数计算; 思路概述本讲以教师讲授为主。用多媒体演示典型差动放大电路——长尾电路的特点、静态和动 态计算等,便于学生理解和掌握。 教学方法读书指导法、演示法。 教学工具电脑,投影仪 教学过程 一、组织教学:师生互相问候,安全教育,上实训课时一定要听从老师的指挥,在实训室不要乱动电源。 二、复习提问: 三、导入新课: 1、直接耦合放大电路的零点漂移 直接耦合放大电路的零点漂移主要是晶体管的温漂造成的。在基本差动放大电路中,利用参数的对称性进行补偿来抑制温漂。在长尾电路和具有恒流源的差动放大电路中,还利用共模负反馈或恒流源抑制每只放大管的温漂。 2、差动放大电路组成及特点 1)电路组成 差分放大器是由对称的两个基本放大电路通过射极公共电阻耦合构成的。“对称”的含义是两个三极管的特性一致,电路参数对应相等,即Rc1=Rc2,Rb1=Rb2,1=2,VBE1=VBE2,rbe1= rbe2,ICBO1=ICBO2。 2)电路特性 (1)差动放大电路对零漂在内的共模信号有抑制作用; (2)差动放大电路对差模信号有放大作用; (3)共模负反馈电阻Re的作用:①稳定静态工作点。②对差模信号无影响。③对共模信号有负反馈作用:Re越大对共模信号的抑制作用越强;也可能使电路的放大能力变差。 3、差动放大电路的输入和输出方式 1)差动放大电路可以有两个输入端:同相输入端和反相输入端。根据规定的正方向,在某输入端加上一定极性的信号,如果输出信号的极性与其相同,则该输入端称为同相输入端。反之,如果输出信号的极性与其相反,则该输入端称为反相输入端。 2)信号的输入方式:若信号同时加到同相输入端和反相输入端,称为双端输入;若信号仅从

一种典型的差分放大电路设计与测试

一种典型的差分放大电路设计与测试 姜鹏, 徐科军时间:2011年01月21日来源:微型机与应用2010 年第20期 字体: 大中小关键词:差分输入差分输出放大电路差分信号 摘要:简述一种典型的差分输入差分输出放大电路的设计、仿真和测试方法,讨论其设计原理及需要解决的问题。重点讲述差分滤波器的设计和计算,指出与单端放大电路在设计和测试中的不同之处,并结合实际工作中的经验,就直流信号和交流信号的测试分别给出了 一种简易案例。 关键词:差分输入;差分输出;放大电路;差分信号与普通单端放大器相比,差分放大器可以有效抑制输入信号中的共模噪声和地线电平电压浮动对电路的影响,因此,在工业应用中广受青睐。差分放大器中以仪表放大器应用最为广泛[1]。随着技术的发展,支持差分输入的ADC、MCU越来越多,由于差分传输能更好地抑制共模干扰,信号传输距离更远,越来越多的场合将使用差分传输。但是,一般的仪表放大器仅支持单端输出。因此,采用双运放搭建了一种差分输入差分输出放大电路。与普通的单端放大电路相比,差分放大电路在设计、分析、仿真和测试中有许多不同之处,而这些知识在一般的模拟电路教材中很少介绍。 1 差分放大电路设计

根据被放大信号的不同,可以将差分放大电路分成两种[2]。一种是直流耦合差分放大电路,其输入端没有隔直电容,可以同时放大直流和交流信号,如图1所示。另一种是交流耦合差分放大电路,其输入端有隔直电容,用来隔离直流分量,放大信号中的交流成分,如图 2所示。

1.1 直流耦合差分放大电路 直流耦合差分放大电路由差分比例放大电路、差分滤波器、保护器件和补偿电阻四部分组成。其输入-输出关系为:

差动放大电路解读

差动放大电路 教学目的: 1、掌握基本差动放大电路的组成、工作原理、静态工作情况的分析 2、掌握恒流源差动放大电路的组成、工作原理、静态工作情况的分析 教学重点、难点: 差动放大电路对差模信号的放大作用,对共模信号的抑制作用 教学内容: 1 直接耦合放大器存在的问题 1.1前后级静态工作点的相互影响 在直接耦合放大器中, 由于级与级之间无隔直(流)电容, 因此各级的静态工作点相互影响, 从而要求在设计电路时, 合理安排, 使各级都有合适的静态工作点。 1.2零点漂移 若将直接耦合放大器的输入端短路(ui=0), 理论上讲, 输出端应保持某个固定值不变。然而, 实际情况并非如此, 输出电压往往偏离初始静态值, 出现了缓慢的、无规则的漂移, 这种现象称为零点漂移。 2 基本差分放大电路 2.1电路组成 2.2工作原理 输入信号为零, 即u i1=u i2=0, 放大电路处于静态, 由于电路完全对称, 由下式可知对共模信号具有抑制作用.

I BQ1=I BQ2=I BQ I EQ1=I EQ2=I EQ I CQ1=I CQ2=I CQ U CQ1=U CQ2=U CC -I CQ Rc U O =U CQ1-U CQ2=0 2.3 静态工作点的计算 当输入信号为零时, 放大电路的直流通路如图所示, 由基极回路可得直流电压方程式为 U R I U R I EE e BEQ b BQ =++Re β ++-= = 122 1 R R U U I I b e BEQ EE BQ EQ ) (22121 2 11 2 12 1 R R I U U U U I I I I I I R U I I e c CQ EE CC CEQ CEQ CQ BQ BQ EQ CQ CQ e EE EQ EQ +-+≈== =≈= ≈=β 2.4动态性能分析 (1) 输入信号的类型 1、差模输入信号 在放大器两输入端分别输入大小相等、 相位相反的信号,即u i1=-u i2时,差模输入信号用u id 来表示。 2、共模输入信号 在放大器两输入端分别输入大小相等、相位相同的信号,即u i1=u i2时,共模输入信号常用u ic 来表示。 u i1=-u i2=1/2u id u i1=u i2=u ic 3、输入任意大小信号 不敷出在放大器两输入端分别输入大小不相等时,将其分解成差模信号和共模信号。 u id = u i1-u i2 uic =1/2( u i1+u i2) (2) 对差模信号的放大作用 当从两管集电极取电压时,其差模电压放大倍数表示为 R r R u u u u u u u u A b be c i o i i o o id od ud +- ==--= =β221 12 1 21 当在两个管子的集电极接上负载R L 时, ) 2///(' 'R R R R r R A L c L b be L ud =+- =β )(2r R r be b id += R r c od 2=

全差分两级放大电路

综合课程设计研究报告 课题名称:全差分两级运放 研究人员: 指导教师:王向展宁宁 201 年1月1日 微电子与固体电子学院

目录 一、绪论 (1) (一)研究工作的背景与意义 (1) (二)国内外现状分析 (1) 二、研究目标、研究内容与技术指标 (1) (一)研究目标 (2) (二)研究内容 (2) (三)关键技术 (2) (四)技术指标 (3) 三、电路工作原理 (3) (一)电路结构理论 (4) (二)关键电路模块 (4) (三)非理想效应 (5) 四、电路设计与仿真 (6) (一)电路设计方案 (6) (二)电路设计结构 (9) (三)电路仿真及结果 (10) 五、全文总结与展望 (12) 参考文献 (13)

一、绪论 (一)研究工作的背景与意义 随着模拟集成电路技术的发展,高速、高精度运算放大器得到广泛应用。全差分运算放大器在输入动态范围、抑制共模信号和噪声的能力等方面,较单端输出运放有很大优势,成为应用很广的电路单元。另外,全差分输出时的输出电压信号幅度比单端输出时增大一倍,这对低电源电压供电的现代CMOS电路尤为重要,因为这可以扩大输出信号的动态范围。因此,本文讨论并设计了满足一定要求的全差分运算放大器。 (二)国内外现状分析 从第一颗运算放大器IC问世到现在,运算放大器技术已经在半导体制造工艺和电路设计两方面取得了巨大进展。在大约40年的发展过程中,IC制造商们利用上述先进技术设计出了近乎“完美”的放大器。虽然什么是理想放大器很难有一个精确定义,但它却为模拟设计工程师提供了一个目标。理想放大器应该无噪声、具有无穷大增益、无穷大输入阻抗、零偏置电流以及零失调电压,它还应该不受封装尺寸限制,不占用空间。上述这些,都是许多教科书为了得到简单的传递函数而做出的种种假设。 未来放大器市场增长的驱动力主要有三方面:其一,便携式应用的低功耗要求将推动具有低操作电源电压/电流的放大器增长;其二,高分辨率应用需要能降低噪声和失真度的放大器;其三,由于性能和价格压力持续上扬,因此能够集成其他功能的放大器前景乐观。测试和测量、通信、医疗影像等领域的先进应用是提升放大器性能的主要驱动力;DSL和消费类视频应用是最大的市场,而且未来将继续此趋势。其中,DSL运放的增长点主要在于线路驱动器。而整合了滤波、多路技术以及DC恢复等功能的消费类视频放大器也被看好。从应用的角度讲,不同的系统对运放有不同要求,选择合适的运放对于系统设计至关重要。对于通信、高速测量仪表及超声波设备等高速应用,交流特性极为重要。但对于低速的高精度系统,直流方面的特性则通常更为重要。衡量系统在交流特性方面的参数有信号带宽、失真率、噪声等;而衡量系统在直流特性方面的参数有输入补偿电压、开环增益、输入偏置电流及共模抑制比等。

基于Multisim的差分放大电路仿真分析

基于Multisim的差分放大电路仿真分析 差分放大电路利用电路参数的对称性和负反馈作用,有效地稳定静态工作点,以放大差模信号抑制共模信号为显著特征,广泛应用于直接耦合电路和测量电路的输入级。但是差分放大电路结构复杂、分析繁琐,特别是其对差模输入和共模输入信号有不同的分析方法,难以理解,因而一直是模拟电子技术中的难点。Muhisim作为著名的电路设计与仿真软件,它不需要真实电路环境的介入,具有仿真速度快、精度高、准确、形象等优点。因此,Multisim被许多高校引入到电子电路实验的辅助教学中,形成虚拟实验和虚拟实验室。通过对实际电子电路的仿真分析,对于缩短设计周期、节省设计费用、提高设计质量具有重要意义。 1 Multisim8软件的特点 Muhisim是加拿大IIT(Interactive Image Tech—nologies) 公司在EWB(Electronics Workbench)基础上推出的电子电路仿真设计软件,Muhisim现有版本为Muhisim2001,Muhisim7和较新版本Muhisim8。它具有这样一些特点: (1)系统高度集成,界面直观,操作方便。将电路原理图的创建、电路的仿真分析和分析结果的输出都集成在一起。采用直观的图形界面创建电路:在计算机屏幕上模仿真实验室的工作台,绘制电路图需要的元器件、电路仿真需要的测试仪器均可直接从屏幕上选取。操作方法简单易学。 (2)支持模拟电路、数字电路以及模拟/数字混合电路的设计仿真。既可以分别对模拟电子系统和数字电子系统进行仿真,也可以对数字电路和模拟电路混合在一起的电子系统进行仿真分析。

(3)电路分析手段完备,除了可以用多种常用测试仪表(如示波器、数字万用表、波特图仪等)对电路进行测试以外,还提供多种电路分析方法,包括静态工作点分析、瞬态分析、傅里叶分析等。 (4)提供多种输入/输出接口,可以输入由PSpice 等其他电路仿真软件所创建的Spice网表文件,并自动形成相应的电路原理图,也可以把Muhisim环境下创建的电路原理图文件输出给Protel等常见的印刷电路软件PCB进行印刷电路设计。 2 差分放大电路仿真分析 运行Muhisim 8,在绘图编辑器中选择信号源、直流电源、三极管、电阻,创建双端输入双端输出差分放大电路(双入双出差分放大电路)如图1所示,标出电路中的结点编号。 该次仿真中,采用虚拟直流电压源和虚拟晶体管,差分输入信号采用一对峰值为5 mV、频率为1 kHz的虚拟正弦波信号源。设置虚拟晶体管的模型参数BF= 150,RR=300Ω。

差分放大电路调试任务书解读

实践项目任务书 实践项目五:差分放大电路分析、制作与调试 教师姓名余红娟授课时数2 累计课时 2 一、实践目标 1.安装、分析并测试差分放大电路 2.爱护工具、器材、整理、清洁、习惯与素养 二、实践设备与材料 1.工具 2.器材 3.仪器仪表 三、实践过程 1.典型差动放大器性能测试Array 图1 按图1连接实验电路,开关K拨向左边构成典型差动放大器。 1)测量静态工作点 ①调节放大器零点 信号源不接入。将放大器输入端A、B与地短接,接通土12V直流电源,用直流电压表测量输出电压UO,调节调零电位器Rp,使UO=0。调节要仔细,力求准确。 ②测量静态工作点 零点调好以后,用直流电压表测量T1、T2管各电极电位及射极电阻RE两端电压URE, 记入表l。表1

2)测量差模电压放大倍数 断开直流电源,将函数信号发生器的输出端接放大器输入A端,地端接放大器输入B 端构成双端输入方式(注意:此时信号源浮地).调节输入信号频率f=lKHZ的正弦信号,输出旋钮旋至零,用示波器监视输出端(集电极C1或C2与地之间)。 表2 接通±12V直流电源,逐渐增大输入电压Ui(约l00mV),在输出波形无失真的情况下。用交流毫伏表测 Ui、Uc1、UC2,记入表2中,并观察Ui、Uc1、UC2之间的相位关系及URE 随Ui改变而变化的情况。(如测Ui时因浮地有干扰,可分别测A点和B点对地间电压,两者之差为U1)。 3)测量共模电压放大倍数 将放大器A、B短接,信号源接A端与地之间,构成共模输入方式,调节输入信号f=

1KHZ,Ui=lV,在输出电压无失真的情况下,测量Ucl,Uc2之值记入表2,并观察Ui,Uc1,Uc2之间的相位关系及URE随Ui变化而改变的情况。 2.具有恒流源的差动放大电路性能测试 将图1电路中开关K拨向右边;构成具有恒流源的差动放大电路。重复内容1—2)、1—3)的要求,记入表2。 四、实践总结 1.根据实验电路参数,估算典型差动放大器和具有恒流源的差动放大器的静态工作点及差模电压放大倍数(取βl=β2=100)。 2.测量静态工作点时,放大器输入端A、B与地应如何连接? 3.实验中怎样获得双端和单端输入差模信号?怎样获得共模信号?画出A、B端与信号源之间的连接图。 4.怎样进行静态调零点?用什么仪表测Uo? 5.怎样用交流毫伏表测双端输出电压Uo?

典型差分放大电路

典型差分放大电路 SANY GROUP system office room 【SANYUA16H-

典型差分放大电路 1、典型差分放大电路的静态分析 (1)电路组成 (2)静态工作点的计算 静态时:v s1=v s2=0, 电路完全对称,所以有 I B Rs1+U BE +2I E Re=V EE 又∵ I E =(1+β)I B ∴ I B1=I B2=I B = 通常Rs<<(1+β)Re ,U BE =0.7V (硅管): I B1=I B2=I B = 因: I C1=I C2=I C =βI B 故: U CE1=U CE2=V CC -I C Rc 静态工作电流取决于V EE 和Re 。同时,在输入信号为零时,输出信号电压也为零(u o= Vc1-VC2=0),即该差放电路有零输入——零输出。 2、差分放大电路的动态分析 (1)差模信号输入时的动态分析 ()e s BE EE R 12R U V β++-

如果两个输入端的信号大小相等、极性相反,即 v s1=- v s2= 或 v s1- v s2= u id u id 称为差模输入信号。 在输入为差模方式时,若一个三极管的集电极电流增大时,则另一个三极管的集电极电流一定减小。在电路理想对称的条件下,有:i c1=- i c2。 Re 上的电流为: i E =i E1+i E2=(I E1+ i e1)+(I E2+ i e2 ) 电路对称时,有I E1= I E2= I E 、i e1=- i e2,使流过Re 上的电流i E =2I E 不变,则发射极的电位也保持不变。差模信号的交流通路如图: 差模信号下不同工作方式的讨论: ① 双端输入—双端输出放大倍数: 当输入信号从两个三极管的基极间加入、输出电压从两个三极管的集电极之间输出时,称之为双端输入—双端输出,其差模电压增益与单管放大电路的电压增益相同,无负载的情况下: c o1o2o1o ud R 2u A -==-== βv v v

差分放大电路仿真分析

差分放大电路仿真分析 差分放大电路是集成运算放大器的主要单元电路之一,它具有很强的抑制零点漂移的能力。作为集成运算放大器的输入级,差分放大电路几乎完全决定着集成运算放大器的差模输入特性、共模抑制特性、输入失调特性和噪声特性。 差分放大电路经由两个参数完全相同的晶体管组成,电路结构对称。电路具有两个输入端和两个输出端,因此差分放大电路具有四种形式:单端输入单端输出、单端输入双端输出、双端输入单端输出以及双端输入双端输出。 实验内容: 一、理想差分放大电路 1、绘制电路图 启动Capture CIS程序,新建工程,利用Capture CIS绘图软件,绘制如下的电路原理图。 双击正弦电压源VS+的图标,在弹出的窗口中设置AC为10mV,DC为0V,VOFF为0,V AMPL为10m,VFREQ1kHz。VS-的设置除AC为-10mV外,其余均与VS+同。 2、直流工作点分析 选择Spice | New Simulation Profile功能选项或单击按钮,打开New Simulation对话框,在Name文本框中输入Bias,单击Create按钮,弹出Simulation Settings-Bias对话框,设置如下:

保存设置,启动PSpice A/D仿真程序,调出PSpice A/D窗口,可以在PSpice A/D窗口中选择View | OutPut Filse功能菜单选项,查看输出文件。

在Capture CIS窗口中,单击I 、V按钮,此时电路图中显示电路的静态工作电压与电流值,如下图: 3、双端输入是的基本特性 上面的电路是双端输入的形式,可以利用上面的电路来分析双端输入时的电路特性。 将分析类型设为交流扫描分析AC Sweep。选择PSpice | New Simulation

三运放组成的仪表放大器原理分析

三运放组成的仪表放大器原理分析 仪表放大器与运算放大器的区别是什么? 仪表放大器是一种具有差分输入和相对参考端单端输出的闭环增益单元。大多数情况下,仪表放大器的两个输入端阻抗平衡并且阻值很高,典型值≥109 Ω。其输入偏置电流也应很低,典型值为1 nA至50 nA。与运算放大器一样,其输出阻抗很低,在低频段通常仅有几毫欧(mΩ)。运算放大器的闭环增益是由其反向输入端和输出端之间连接的外部电阻决定。与放大器不同的是,仪表放大器使用一个内部反馈电阻网络,它与其信号输入端隔离。对仪表放大器的两个差分输入端施加输入信号,其增益既可由内部预置,也可由用户通过引脚连接一个内部或者外部增益电阻器设置,该增益电阻器也与信号输入端隔离。 专用的仪表放大器价格通常比较贵,于是我们就想能否用普通的运放组成仪表放大器?答案是肯定的。使用三个普通运放就可以组成一个仪用放大器。电路如下图所示: 输出电压表达式如图中所示。 看到这里大家可能会问上述表达式是如何导出的?为何上述电路可以实现仪表放大器?下面我们就将探讨这些问题。在此之前,我们先来看如下我们很熟悉的差分电路: 如果R1 =R3,R2 =R4,则VOUT = (VIN2—VIN1)(R2/R1)

这一电路提供了仪表放大器功能,即放大差分信号的同时抑制共模信号,但它也有些缺陷。首先,同相输入端和反相输入端阻抗相当低而且不相等。在这一例子中VIN1反相输入阻抗等于100 kΩ,而VIN2同相输入阻抗等于反相输入阻抗的两倍,即200 kΩ。因此,当电压施加到一个输入端而另一端接地时,差分电流将会根据输入端接收的施加电压而流入。(这种源阻抗的不平衡会降低电路的CMRR。) 另外,这一电路要求电阻对R1 /R2和R3 /R4的比值匹配得非常精密,否则,每个输入端的增益会有差异,直接影响共模抑制。例如,当增益等于1 时,所有电阻值必须相等,在这些电阻器中只要有一只电阻值有0.1% 失配,其CMR便下降到66 dB(2000:1)。同样,如果源阻抗有100 Ω的不平衡将使CMR下降6 dB。 为解决上述问题,我们在运放的正负输入端都加上电压跟随器以提高输入阻抗。如下图所示: 以上前置的两个运放作为电压跟随器使用,我们现在改为同相放大器,电路如下所示: 输出电压表达式如上图所示。上图所示的电路增加增益(A1 和A2)时,它对差分信号增加相同的增益,也对共模信号增加相同的增益。也就是说,上述电路相对于原电路共模抑制比并没有增加。 下面,要开始最巧妙的变化了!看电路先:

第5章运算放大电路答案解读

习题答案 5.1 在题图5.1所示的电路中,已知晶体管V 1、V 2的特性相同,V U on BE 7.0,20)(==β。求 1CQ I 、1CEQ U 、2CQ I 和2CEQ U 。 解:由图5.1可知: BQ CQ BQ )on (BE CC I I R R I U U 213 1 1+=-- 即 11CQ11.01.4 2.7k 20I -7V .0-V 10CQ CQ I I k +=Ω Ω ? 由上式可解得1CQ I mA 2≈ 2CQ I mA I CQ 21== 而 1CEQ U =0.98V 4.1V 0.2)(2-V 1031=?+=+-R )I I (U BQ CQ CC 2CEQ U =5V 2.5V 2-V 1042=?=-R I U CQ CC 5.2 电路如题图7.2所示,试求各支路电流值。设各晶体管701.U ,)on (BE =>>βV 。 解:图7.2是具有基极补偿的多电流源电路。先求参考电流R I , ()815 17 0266..I R =+?---=(mA ) 则 8.15==R I I (mA ) U CC (10V) V 1 R 3 题图5.1 I 56V 题图7.2

9.0105 3== R I I (mA ) 5.425 4==R I I (mA ) 5.4 对称差动放大电路如题图5.4所示。已知晶体管1T 和2T 的50=β,并设 U BE (on )=0.7V,r bb ’=0,r ce =∞。 (1)求V 1和V 2的静态集电极电流I CQ 、U CQ 和晶体管的输入电阻r b’e 。 (2)求双端输出时的差模电压增益A ud ,差模输入电阻R id 和差模输出电阻R od 。 (3)若R L 接V 2集电极的一端改接地时,求差模电压增益A ud (单),共模电压增益A uc 和共模抑制比K CMR ,任一输入端输入的共模输入电阻R ic ,任一输出端呈现的共模输出电阻R oc 。 (4) 确定电路最大输入共模电压范围。 解:(1)因为电路对称,所以 mA ...R R .U I I I B E EE EE Q C Q C 52050 21527 062270221=+?-=+?-=== V ...U U Q C Q C 35315520611=?-== Ω=?=? =k ..I U r Q C T e 'b 5252 026 501β (2)差模电压增益 差模输入电阻: 差模输出电阻:Ω=Ω?==k k R R C od 2.101.522 (3)单端输出差模电压增益: 题图5.4 + 2U od /2 (b) (c) 19 5 . 2 2 ) 1 . 5 2 1 //( 1 . 5 50 2 1 // ' - ≈ + ? ? - = + - = e b b L C ud r R R R A β Ω = Ω + = + = k k r R R e b id 9 ) 5 . 2 2 ( 2 ) ( 2 ' B

相关主题
文本预览
相关文档 最新文档