当前位置:文档之家› 二氧化硫诱导大鼠海马神经元损伤效应及其分子机制研究

二氧化硫诱导大鼠海马神经元损伤效应及其分子机制研究

二氧化硫诱导大鼠海马神经元损伤效应及其分子机制研究
二氧化硫诱导大鼠海马神经元损伤效应及其分子机制研究

二氧化硫诱导大鼠海马神经元损伤效应及其分子机制研究

【摘要】:随着中国大中型城市能源结构的转变以及大气污染源的变化,煤炭大气污染对环境和人群健康的危害将变得更为隐蔽,更易被忽视。在中国燃煤所造成的大气污染中,二氧化硫(S02)排放贡献率为85%,依旧领先于烟尘、氮氧化物以及二氧化碳等其他大气污染物。山西省是我国以煤炭为主要能源的重化工基地之一,在全省城市、工矿区以及居民集中的地区,大气SO2污染普遍存在,因此长期接触低浓度SO2所引发的健康危害问题显得尤为突出。特别是近期相关研究显示SO2污染与中枢神经系统损伤和疾病发生有关,由于其超越了传统观念,提出了新的、更为严峻的危害理念,得到广泛关注。由此提出本课题,研究SO2对中枢神经元的损伤效应,在此基础上探讨效应发生的可能信号通路。1.本课题通过对雄性Wistar大鼠进行动式SO2熏气染毒,每天6h,连续7d,染毒剂量为7,14,28和56mg/m3,探讨了SO2诱导海马神经元损伤的效应。采用分光光度法测定大鼠海马组织蛋白质羰基含量,采用酶联免疫技术测定海马组织促炎症因子白介素-1β(IL-1β)和肿瘤坏死因子(TNF-α)水平,采用荧光标记法测定海马组织胞内钙离子水平,采用实时定量RT-PCR和Westernblot分别测定海马组织凋亡相关基因c-fos,c-jun,p53,Bax和Bcl-2的mRNA和蛋白表达,以及采用HE 和TUNEL染色考察海马区切片的病理损伤和神经元凋亡的数量;并进一步通过原代培养大鼠海马神经元进行不同时间(6,12和24h)和不同浓度(3,10,30,100和30OμM)的SO2衍生物暴露染毒,考察以上凋亡

基因在暴露染毒前后mRNA和蛋白表达水平的变化。结果表明:SO2可显著增加蛋白质羰基(PCO)含量;SO2可引起海马区促炎症因子IL-1β和TNF-a水平显著升高,且低浓度下作用明显;SO2可显著增加神经元胞内钙离子(Ca2+)浓度;SO2通过其衍生物显著上调海马神经元凋亡相关基因c-fos,c-jun和p53mRNA和蛋白表达,以及Bax和Bcl-2mRNA和蛋白的比值,且呈现明显的剂量-效应关系。这一结果分别从整体和细胞水平上,说明了SO2对大鼠海马神经元的损伤效应,并提示此效应的发生与氧化应激、炎症反应和神经元凋亡密切相关,但其分子调控机制还不清楚。2.为了进一步阐明SO2诱导海马神经元损伤的信号途径及环氧合酶-2(COX-2)作为此效应标记的可能性,本实验通过对原代培养大鼠海马神经元并进行SO2衍生物暴露染毒,考察了SO2诱导大鼠海马神经元凋亡效应及COX-2作为此效应标记的可能性。在此基础上,通过特异性阻断技术按照“COX-2表达增加→前列腺素E2(PGE2)通过其相应受体PGE2受体(EP24)调节谷氨酸释放→N-甲基-D-天冬氨酸(NMDA)受体通道激活→钙稳态改变→神经元凋亡”的递进顺序,探讨效应发生的可能信号通路,确立阻断此通路的可能靶位点。结果表明:(1)S02衍生物上调大鼠海马神经元COX-2表达,进而激活caspase-3诱导神经元凋亡;COX-2抑制剂NS398和ShRNA沉默COX-2基因表达可显著抑制SO2衍生物诱导凋亡效应的发生(2)SO2衍生物可造成COX-2催化AA合成的PGE2的过量释放并作用于其受体EP24,导致与其耦联的环腺苷酸(cAMP)水平明显上调,最终引发神经毒性;NS398和ShRNA沉默COX-2基因表达可显

著抑制此效应;(3)SO2衍生物诱导神经元损伤的可能信号途径为:SO2吸入→通过其代谢衍生物形成自由基造成氧化损伤→炎症反应-COX-2表达增加→突触后PGE2水平升高并作用于突触前膜EP2/EP4受体调节谷氨酸释放→激活NMDA受体通道→提高胞内游离钙离子浓度→神经元凋亡,在此过程中,COX-2介导的花生四烯酸(AA)脂质代谢反应是一个重要的调控环节。3.为了在体条件下验证上述可能的信号途径及以COX-2为标记的损伤效应,本实验通过对大鼠进行不同浓度SO2动式熏气染毒和腹腔注射NS398预处理后再对大鼠进行SO2熏气染毒,在体条件下考察该通路可能靶位点的表达变化。结果表明:SO2吸入可显著增加海马组织COX-2表达,PGE2含量,EP2/EP4受体表达,cAMP水平和NMDA受体表达,诱导凋亡发生;腹腔注射NS398预处理后可显著抑制S02吸入诱导的COX-2表达,PGE2含量,EP2/EP4受体蛋白表达,cAMP水平和NMDA受体(NR2B)蛋白表达的增加,及caspase-3的激活。本研究阐明了SO2对中枢神经元的损伤效应及COX-2作为此效应标记的可能性,建立了检测和评价指标;确立了损伤发生的信号途径,找出了阻断的靶位点,为SO2吸入后中枢神经系统损伤相关分子调控机制的研究和污染事件发生时的临床治疗提供理论依据。4.上述研究结果表明,SO2可诱导神经元凋亡的发生,在此过程中COX-2通过介导的AA代谢参与突触信号传递是细胞分子水平的重要调控环节。而大量研究表明,COX-2在神经元突触传递中扮演重要的角色。由此推断,SO2可能会参与突触信号传递过程,进而影响神经功能。为此,本实验通过对大鼠进行不同

浓度SO2动式熏气染毒,采用透射电镜观察海马区神经元突触超微结构的改变,并采用Westernblot分别测定大鼠海马神经元突触标记因子突触素(Syp)和突触后致密物-95(PSD-95)的表达,及考察突触可塑性维持因子胞外调节激酶(ERK)和cAMP反应元件结合蛋白(CREB)的激活。结果表明:(1)S02吸入暴露可诱导大鼠海马区神经元突触间隙减小,界面曲率增加,突触后致密物增厚,突触前突触小泡数目增多。

(2)S02吸入暴露可浓度依赖性地上调Syp和PSD-95的蛋白表达,及抑制p-ERK1/2和p-CREB的蛋白表达。这一结果表明SO2通过改变神经元突触信号传递效能,影响突触可塑性,诱导海马神经元损伤并影响其恢复。通过本项目研究,阐明了SO2通过其衍生物诱导海马组织氧化应激和炎性反应,并造成神经元凋亡效应及COX-2作为此效应标记的可能性,建立了进行检测和危险度评价的生物标记;确立了SO2诱导海马神经元损伤发生的信号途径,找出了阻断的靶位点,在此基础上探讨了SO2对突触信号传递过程的影响,为污染事件发生时的临床治疗提供理论依据。【关键词】:二氧化硫(SO_2)海马神经元环氧化酶-2(COX-2)神经元损伤信号途径突触可塑性

【学位授予单位】:山西大学

【学位级别】:博士

【学位授予年份】:2011

【分类号】:X174

【目录】:摘要11-14ABSTRACT14-18第一章文献综述18-331.1二氧化硫(SO_2)神经毒作用研究进展18-211.1.1典型燃煤大气污染物SO_2的污染现状18-191.1.2大气SO_2污染与中枢神经系统损伤和疾病发生的相关性研究19-211.2中枢神经系统损伤的分子机制研究21-261.2.1氧化损伤21-221.2.2炎性反应22-241.2.3神经元凋亡24-261.3环氧合酶-2(COX-2)参与神经元突触调节和毒性过程26-301.3.1COX-2在神经元突触传递过程中的重要作用26-271.3.2PGE_2是COX-2介导突触功能调节的重要因子27-291.3.3COX-2介导合成PGE_2在神经毒性过程中的重要作用29-301.4课题的提出及意义30-33第二章SO_2通过其衍生物诱导大鼠海马神经元损伤效应研究33-532.1前言332.2材料与方法33-392.2.1主要试剂与仪器33-342.2.2实验动物SO_2动态吸入染毒处理342.2.3原代海马神经元培养及SO_2衍生物暴露处理34-352.2.4蛋白羰基含量测定352.2.5实时定量RT-PCR测定mRNA表达水平35-372.2.6Westernblot方法测定目的蛋白的表达372.2.7组织病理学HE检测37-382.2.8炎性因子的ELISA检测382.2.9神经元胞内Ca~(2+)测定382.2.10免疫组化测定神经元凋亡38-392.2.11统计学数据处理392.3结果39-502.3.1SO_2吸入对PCO水平的影响39-402.3.2SO_2吸入对炎性因子IL-1β和TNF-α水平的影响40-412.3.3SO_2吸入对神经元胞内Ca~(2+)的影响412.3.4SO_2吸入对凋亡相关基因mRNA和蛋白表达水平的影响41-462.3.5SO_2吸入对大鼠海马组织病理学的影响46-472.3.6SO_2衍生物暴露对海马神经元凋亡相关基因表达水

平的影响47-502.4讨论与结论50-53第三章SO_2衍生物诱导大鼠海马神经元损伤的信号途径研究53-753.1前言533.2材料与方法53-573.2.1主要试剂和仪器53-543.2.2原代海马神经元培养及SO_2衍生物暴露处理54-553.2.3实时定量RT-PCR测定mRNA表达水平55-563.2.4Westernblot方法测定目的蛋白的表达56-573.2.5前列腺素含量测定573.2.6cAMP含量测定573.2.7COX-2基因沉默质粒构建及转染573.2.8统计学数据处理573.3结果与分析57-713.3.1COX-2参与SO_2衍生物诱导的海马神经元毒性过程57-623.3.2COX-2介导的SO_2神经毒性取决于PGE_2并作用于其EP_(2&4)受体62-683.3.3SO_2衍生物诱导海马神经元损伤的可能信号通路68-713.4讨论与结论71-75第四章在体条件下验证以COX-2为标记的SO_2神经毒性过程及其信号途径75-864.1前言754.2材料与方法75-774.2.1主要试剂与仪器75-764.2.2实验动物SO_2动态吸入染毒处理764.2.3PGE_2含量测定764.2.4cAMP含量测定764.2.5Westernblot方法测定目的蛋白的表达76-774.2.6统计学数报处理774.3结果与分析77-834.3.1SO_2吸入诱导大鼠海马神经毒性可能的信号通路77-804.3.2COX-2介导PGE_2释放参与SO_2吸入诱导的神经元毒性过程80-834.4讨论与结论83-86第五章SO_2暴露诱导大鼠海马神经元损伤的突触机制初探86-945.1前言86-875.2材料与方法87-885.2.1主要试剂与仪器875.2.2实验动物SO_2动态吸入染毒处理87-885.2.3Westernblot方法测定目的蛋白的表达885.2.4观察突触超微结构885.2.5统计学数据处理885.3结果与分析88-915.3.1SO_2吸

入对大鼠海马组织Syp和PSD-95蛋白表达的影响88-895.3.2SO_2吸入对大鼠海马组织p-ERK1/2和p-CREB蛋白表达的影响89-905.3.3SO_2吸入对大鼠海马组织突触结构的影响90-915.4讨论与结论91-94第六章结论94-966.1SO_2通过其衍生物诱导氧化应激和炎性反应,造成神经元凋亡效应946.2SO_2诱导海马神经元损伤信号途径及COX-2作为此效应标记的可能性94-956.3SO_2暴露改变大鼠海马神经元突触可塑性95-96参考文献96-112致谢112-113附录113-115博士研究生期间发表的论文113参编著作113-114主持与参与科研项目114-115个人简况115-117 本论文购买请联系页眉网站。

原代海马神经元细胞培养

原代海马神经元细胞培养 溶液的配制: (1) 4%多聚甲醛溶液:4g多聚甲醛溶于100ml pH=7.4的0.01mol/l PBS中,混匀过滤, 室温保存。 (2)磷酸盐缓冲液(PBS)(0.01mol?l-1):KH2PO4,0.1g;Na2HPO4?12H2O,1.7g;KCl, 0.1g;NaCl,4.0g,双蒸水加至500ml,pH=7.2~7.4。用0.2μm滤膜过滤,4℃保存。 (3) 1%蛋白酶的配制:用磷酸缓冲液(pH=7.2~7.4)配制成浓度为1%的胰蛋白酶母液 冻存。使用时,用解剖液稀释至0.25%。 (4) 培养皿涂被多聚赖氨酸:配制0.01%的多聚赖氨酸,分装冻存。将上述多聚赖氨酸 放入培养皿中涂两遍,自然晾干后备用。 (5) 解剖液:葡萄糖,3.0g;蔗糖,7.5g;NaCl,8.0g;KCl,0.4g;Na2HP04?7H20,0.18g; KH2PO4,0.03g;HEPES,2.14g;加双蒸水1000ml,调pH=7.0~7.4,过滤,4℃保存。 (6) 种植液:DMEM 79%,胎牛血清,10%;马血清,10%;谷氨酰胺培养液1%。 (7) 饲养液:Neurobasal培养基,97%;谷氨酰胺培养液,1%;B-27,2%。 (8) 阿糖胞苷:用双蒸水配制成浓度为l mg?ml-1的母液储存。用0.2μm滤膜过滤,-20℃ 储存。使用时,取6μl母液加入2ml培养液中,终浓度为3μg?ml-1。(根据实验情况调整浓度) 大鼠原代海马神经元细胞的培养 (1) 新生SD大鼠(<12h),75%酒精浸泡消毒后断头,剥离出全脑并将其放入盛有解 剖液的培养皿中。 (2) 在解剖液中解剖大脑,分离出海马,移入另一盛有解剖液的培养皿中。在分离出全 部的海马后,去除血管等组织,然后用剪刀将海马分成数小块,放入盛有0.25%胰蛋白酶的培养皿中,将培养皿放入9%CO2、37℃消化20min。 (3) 将培养皿中的海马碎片移入离心管中,去除含胰蛋白酶的液体并用种植液将海马碎 片冲洗2~3遍,终止酶的消化作用。

大鼠 海马 电生理学杂记

神经系统由大量的神经元构成。这些神经元之间在结构上并没有原生质相连,仅互相接触, 其接触的部位称为突触 细胞突起是由细胞体延伸出来的细长部分,又可分为树突和轴突。 树突棘是树突表面的棘状突起,也就是形成突触的部位 一般认为,NMDA受体主要分布在神经细胞的突触后膜。在兴奋性神经元,NMDA受体主要 分布在树突棘头的突触后膜,且主要分布在突触后致密区(postsynaptic density, PSD) 突触可塑性:突触在形态和传递效能上的改变 突触后致密区(PSD):在电镜下所见的突触后膜胞质面聚集的一层均匀而致密的物质,见 于cns中所有树突棘突触的突触后膜上。主要功能是细胞粘附性的调节,受体集聚的控制和 受体功能的调节。 旷场试验:用来观察小鼠自发性探索运动活性和焦虑行为 反应实验动物在陌生环境中的自主行为与探究行为,以尿便次数反应其紧张度。 开场实验,open field test,这个测的是5min内,动物在一个开阔环境中的行为学变化,我 们用一个强光打在开场中央,开场有方形和圆形两种。圆形是一个大缸,白色的,具体尺寸 我忘记了。需要用的指标是:跨格数、站立数、排便数和梳理数(也就是理毛次数),前两 个指标为主。这个实验可以用中央场次数作为焦虑样行为的观察指标。 运动能力(locomotion, open field test 主要是评价动物的焦虑状态,它主要以动物进入中央区的时间百分率来评价焦虑状态,它也可以度等。 物在一个开放的新的地方会很小心,rodent动物喜暗而避明的特性会让自己躲在暗处,也会 对开阔地方有探索行为(好奇心),同时又有害怕紧张担心和焦虑心理,具有一定的新奇性 同时又具有一定的害怕。如果动物焦虑少,停留在中间等位置时间长久一些,不然反之。比 较这些特性可以比较动物的焦虑程度。具有抗焦虑作用的药物会让动物有更多的对开阔地方 有探索行为,焦虑紧张的动物更喜欢停留在开场的边缘和暗处。 LTP定义:给突触前纤维一个短暂的高频刺激后,突触传递效率和强度增加几倍且能持续数 小时至几天保持这种增强的现象。按LTP的时程分①PTP,强直后增强,一般5分钟后衰减; ②STP,短时程增强,持续半小时左右;③,LTP长时程增强,持续一小时以上 CaMKII这个蛋白是个很特殊的蛋白,在脑内含量非常高,大约占总蛋白量的1-2%。在突触 部位的含量很高,并且是PSD(postsynaptic density)主要蛋白。但这个蛋白最特殊之处是 其具有自身调节能力,仿佛自己本身就是一个具有学习记忆的功能。 因为把随着神经等器官、组织的兴奋所产生的动作电位作为其活动指标是最容易记录的现 象,所以常常用记录动作电位来深入研究神经系统等的机能。 高频刺激可引发突触后细胞的持久增强反应——最初被称为“持久增强作用”(

氟西汀对海马神经元生长的影响

氟西汀对海马神经元生长的影响 各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢 【关键词】氟西汀;细胞培养;海马神经元;大鼠 氟西汀是5-羟色胺(5-HT)再摄取抑制剂之一,是应用较广的抗抑郁药。氟西汀除有抗抑郁作用外,尚可治疗其他中枢神经系统疾病。有研究表明,氟西汀对海马的神经保护作用是其发挥抗抑郁效应的机制之一[1]。关于氟西汀对体外培养的海马神经元生长的影响未见报道,本研究初步探讨了氟西汀对原代培养的海马神经元生长的影响。 1材料与方法 新生大鼠海马神经元的分离和培养 技术方法在参考文献[2]基础上加以改进。取出生24h内的新生SD大鼠(东南大学医学院动物实验中心提供),无菌分离出双侧海马,用显微剪剪碎,

D-Hank#39;s液清洗2或3次,将剪碎的海马组织转移至离心管中,加入等量%的胰酶(美国Sigma公司),37℃消化30min,中间振摇1或2次,加入10%的DMEM/F12(美国Gibco公司)5ml,轻轻吹打15次,然后1000r·min-1离心5min,制成单细胞悬液,置于CO2培养箱(德国Heraeus公司产品)中,差速贴壁30min,去除成纤维细胞,吸取未贴壁的细胞,并用200目的不锈钢滤网过滤,收集过滤后的单细胞悬液于培养皿中,然后至离心管中,取一滴单细胞悬液进行计数,并用DMEM/F12将细胞密度调到1×106ml-1,然后接种于200μg·ml-1多聚赖氨酸(美国Sigma公司)包被的6孔培养板中,转移至培养箱内培养,4h后换为无血清培养基,即含2%B27的Neurobasl培养基(美国Gibco公司),以后每3天半量换液1次。使用培养6d的神经元进行染色鉴定。 大鼠海马神经元的鉴定 烯醇化酶(NSE)免疫细胞化学染

胎鼠海马神经元培养及其鉴定

[作者简介]李玉(1965~),男,云南昆明市人,医学硕士,副教授,主要从事癫痫外科和功能神经外科临床研究 工作. 昆明医学院学报2011,(5):17~19Journal of Kunming Medical University CN 53-1049/R 胎鼠海马神经元培养及其鉴定 李玉1),王波1),但齐琴2 ) (1)昆明医学院第一附属医院神经外科,云南昆明650031;2)昆明医学院神经科学研究所,云南昆 明650031 )[摘要]目的建立胎鼠海马神经元体外培养方法,观察细胞生长情况,免疫组织化学染色鉴定神经元特 异性.方法取胎鼠海马,分裂获得细胞悬液,接种于24孔板,经2h 差速帖壁去除成纤维细胞,将细胞液转移并继续培养,以获娶纯度较高的海马神经元.培养第5、11、15天观察细胞和突起生长情况,用NeuN 抗体以免疫组化SP 二步法染色鉴立神经细胞.结果培养头3d .细胞生长缓慢,5d 时细胞开始生长,可见突起, 11d 时突起连成网状.经Neun 染色培养细胞呈阳性反应,证明是神经元.结论 本方法获取生长良好,纯度 较高的海马神经元. [关键词]胎鼠;海马神经元;Neun ;培养 [中图分类号]Q831.1+1[文献标识码]A [文章编号]1003-4706(2011)05-0017-03 I dent ificat ion and Cult ur e of Hippocampus Neur ons in Fet al Rat s LI Yu 1),WANG Bo 1),DAN Qi -qin 2 ) (1)Deat.of Neurosurgery ;2)Institute of Neuroscience ,Kunming Medical University , Kunming Yunnan 650031,China ) [Abstract ]Objective To establish the protocol for culturing hippocampus neurons in vitro and explore the neuronal growth character istics .Methods Tissues from hippocampus of fatal rats were harvested ,then digested into cell suspension by using 0.125%trypsin .After planted into wells for 2hours ,cell suspension was transferred into next well for continuing incubation .The cell growth was observed at day 5,11and 15.Neurons specific Enolase (NSE )antibody ,recognized specifically NSE antigen in cultured cells ,was used to identify neurons by SP-two-step staining method .Results After incubated for 2hours ,transferred suspensions in wells showed some pure neurons ,which is identified by NSE staining .However ,they grew slowly during 1~3days ,then grew well from 5th day ,with gradual increasing the neuritis outgrowth .Conclusion Purified neurons with neurite outgrowth states can be acquired by this method. [Key words ]Fetal rats ;Hippocampus neurons ;NSE staining ;Culture 海马神经元细胞培养是研究神经细胞生物学特性和外源干扰因素作用(细胞因子)的有效细胞模型,其在神经生物学,发育生物学体外实验研究中已被广泛应用[1-3].然而,要获得纯度较高, 生长状态较好的海马神经元也不是一件易事.本实验长期从事海马神经细胞生物特性及其应用研究,故需建立该细胞模型.鉴于胚胎来源的细胞 生长状态较成年动物来源者好[4,5] .本实验建立大

电针对脑功能障碍大鼠海马物质影响的研究进展

电针对脑功能障碍大鼠海马物质影响的 研究进展 (作者: _________单位:____________ 邮编:___________ ) 【摘要】目前,电针对脑缺血模型大鼠海马细胞影响的研究报道很多,对海马与学习记忆关系的研究已成为国内研究的重 点。本文就电针对脑功能障碍大鼠海马物质影响的研究作简要综述。 【关键词】电针海马物质 海马的生理功能目前仍在探讨之中.大量的动物模型研究表明,海马与学习记忆有关。当脑缺血等致海马受损时,可引起学习记忆功能的严重障碍。电针刺特定穴位可影响脑功能障碍大鼠海马物质的表达。现就目前电针对脑功能障碍大鼠海马物质影响的研究作一综述。 1电针对海马细胞凋亡相关蛋白表达的影响 1.1 Bel ]2是功能最为明确的细胞凋亡拮抗基因Bcl[2蛋白基本生物学功能为延长细胞的生命期限、增加细胞对多种凋亡刺激因素的抗性。Bax与Bcl]2作用相反,能够促进凋亡,Bcl〕2表达水平较高时,形成Bcl[2/Bcl[2同源二聚体,抑制细胞凋亡;Bax表达水平较高时,形成

Bax/Bax同源二聚体,加速细胞凋亡;BcL2和Bax水平相当 时,则形成Bcl[2/Bax异源二聚体,终止细胞凋亡。近年的研究提示 Bcl[2与Bax调节细胞凋亡,不仅取决于自身表达的高低,还与 Bax/Bcl_2比率有关,当比率增大时,细胞趋于凋亡[1 ]o caspase ]3 激活是触发凋亡的关键(有“分子开关”之称是凋亡的最终执行蛋白。Bcl]2家族基因在调节线粒体通透性上发挥重要作用,Bcl]2或其他 抗凋亡Bcl_2家族成员下调,或促凋亡Bcl_2家族成员如Bax在线粒体膜上过度表达和移位,均导致线粒体通透性增加,使细胞色素C 从线粒体释放入胞浆,与Apaf”、dADP形成复合体,再与胞浆中的caspase ]9前体形成凋亡小体,导致caspase[9被裂解激活,随后再裂解caspase家族其他成员包括caspase[3,引发凋亡。赵建新等[2] 报告电针刺激脑缺血小鼠“肾俞”膈腧”百会;各观察时点均可上调小鼠海马细胞Bcl[2表达,下调Bax表达,降低凋亡率。故电针可起到抑制凋亡、保护神经元的作用电针可显著上调内源性海马Bcl[2表达,降低Bax表达,有可能进一步抑制caspase [3的激活,或影响神经生长因子、过氧化物歧化酶、CHAT等促神经细胞存活相关基因的表达而发挥抗凋亡作用,有待今后动物实验验证。Noxa为BH3only 亚家族成员]3],脑缺血研究发现,Noxa在脑缺血引起的细胞凋亡中起重要作用[4 ]。朱燕珍等]5]报告,电针刺激血管性痴呆模型大鼠“大椎百会:海马CA1区的Noxa阳性细胞数增加,Caspase ]3 阳性细胞数增加,提示Noxa调节的线粒体凋亡途径促进血管性痴呆的发展;电针治疗抑制

海马神经元细胞免疫荧光检验

海马神经元细胞免疫荧光检验 神经元鉴定: 一、烯醇化酶鉴定: 培养细胞用100%乙醇固定---10min---PBS漂洗5min×3次---3%H2O2室温孵育30min,目的用于去除内源性过氧化物酶---PBS 漂洗5min×3次---5%羊血清(0.3%TritonPBS配制),室温封闭30min 以减少排特异背景颜色------加第一抗体特异烯醇化酶(chemicon,1:1000),4℃冰箱孵育18~24小时---PBS漂洗5min×3次---加入2步法:PV9000试剂Ⅰ,37℃,30min---PBS漂洗5min×3次---PV9000试剂Ⅱ,37℃,30min---PBS漂洗5min×3次---DAB显示红棕色;70%,80%,90%,100%I,100%II 梯度酒精透水;二甲苯Ⅰ,Ⅱ透明2次,每次30min---中性树胶灯片---镜下观察。 二、β-微管蛋白Ⅲ(β-tubulinⅢ)荧光显示: 培养细胞用预冷PBS液轻柔漂洗3次,4%多聚甲醛固定,1h,4℃---吸去多余甲醛---PBS漂洗5min×3次---0.25%triton,室温,15min---3%H2O2室温孵育30min,目的用于去除内源性过氧化物酶---PBS漂洗5min×3次---5%羊血清(0.3%TritonPBS配制),室温封闭30min以减少排特异背景颜色------弃血清,加入β-tubulinⅢ抗体(1:100稀释),4℃,过夜---PBS漂洗5min×3次---滴加FITC 标记的山羊抗小鼠lgG(体积比1:200稀释),37℃,1h---DAPI复染10min---抗荧光猝灭封片液封片---荧光显微镜观察---选择10个视野,统计学处理。

成年小鼠海马神经细胞培养及其鉴定

昆明医学院学报2011,(6):29~32 CN53-1049/R Journal of Kunming Medical University 成年小鼠海马神经细胞培养及其鉴定 李玉1),但齐琴2),习杨彦彬2) (1)昆明医学院第一附属医院神经外科,云南昆明650031;2)昆明医学院神经科学研究所, 云南昆明650031) [摘要]目的观察体外培养成年小鼠海马神经细胞生长情况及其形态学变化.方法获取成年海马组织,制成细胞悬液,接种于培养板,分别于1,3,7,10,13,15d观察细胞生长情况,用神经元特异烯醇化酶抗体经免疫组织化学染色技术鉴定神经元.结果成年海马神经元接种后1~3d,有较多的杂质和部分细胞漂浮,贴壁细胞较少量.每隔3d半量换液后,杂质不断减少,但第1周细胞生长缓慢,第7~10d才见细胞生长良好.培养15d后,大部分细胞出现有明显的颗粒等早期退化征象.免疫组化染色证实培养细胞呈现神经元特异烯醇化酶染色阳性染色,免疫阳性产物主要分布于细胞质;证明是神经元.结论体外培养成年海马神经元早期生长缓慢,7~10d才显示良好的生长状态,2周左右细胞则开始退变.提示10d以前的细胞是供体外研究用的理想细胞. [关键词]大鼠;神经细胞;海马;细胞培养;免疫组化 [中图分类号]Q813.1+1[文献标识码]A[文章编号]1003-4706(2011)06-0029-04 Cult ur e and Ident ificat ion of Hippocampus Neur ons in Adult Rat s LI Yu1),DAN Qi-qin1),XIYANG Yan-bin2) (1)Dept.of Neurosurgery,The1st Affiliated Hospital of Kunming Medical University,Kunming Yunnan 650032;2)Institute of Neuroscience,Kunming Medical University,Kunming Yunnan650031,China) [Abstract]Objective To observe the morphology and characteristics of hippocampus neurons in adult rats in vitro.Method The hippocampus tissues from adult rats were collected,then digested into cell suspension by using0.125%trypsin.Cell suspension was planted into wells and observed at day1,3,7,10,13,and15 after incubation.Neurons specific Enolase(NSE)antibody,recognized specifically NSE antigen in cultured cells,was used to identify neurons by SP-two-step staining method.Results During1-3days,the extensive bodies of floating cells and tissue blocks were seen,but a few cells attached to the bottom of well.The growth of attached cells was also extensively slow,specifically within1week,while it began to grow quickly after7days,and maintained till15days.Amazingly,cells exhibited aging character with more particles in cytoplasm after15 days.NSE staining showed that cultured cells were positive staining by neuronal specific enalose antibody.Conclusion Adult hippocampus neurons grow slowly during the first week,but they are better from7day to15,then begin to degenerate after15days in vitro.This suggests that neurons from hippocampus of adult rats cultured in10days could be better for related neurobiological studies. [Key words]Adult rats;Hippocampus neurons;NSE staining;Culture [作者简介]李玉(1965~),男,云南昆明市人,医学硕士,副教授,主要从事癫痫外科和功能神经外科临床研究工作.

大脑地解剖结构和功能——布鲁德曼分区

大脑的解剖结构和功能——布罗德曼分区系统 布罗德曼分区是一个根据细胞结构将大脑皮层划分为一系列解剖区域的系统。神经解剖学中所谓细胞结构(Cytoarchitecture),是指在染色的脑组织中观察到的神经元的组织方式。 布罗德曼分区1909年由德国神经科医生科比尼安·布洛德曼(Korbinian Brodmann)提出。根据皮质细胞的类型及纤维的疏密把大脑皮质分为52个区,并用数字给予表示。Brodmann Area 1, BA1 Brodmann Area 2, BA2 Brodmann Area 3, BA3 位置:位于中央后回 (postcentral gyrus) 和前顶叶区。 功能:分别为体感皮层内侧、末尾和前端区,BA1、BA2、BA3共同组成体感皮层; 具备基本体感功能(first somatic sensory area)接受对侧肢体的感觉传入。Brodmann Area 4, BA4 位置:位于中央前回(precentral gyrus),中央沟(central sulcus)的内侧面 功能:初级运动皮层(first somatic motor area),包含“运动小人”(motor homunculus )。 控制行为运动,与BA6 (前)和BA3 、BA2 、BA1、(后)相连,同时与丘脑腹外侧核相连。 体感小人(Somatosensory Homunculus ) 传入体感信息较多的身体区域获得的皮层代表区域较大。比如手部在初级体感皮层中的代表区域比背部的大。体感皮质定位可用“体感小人”(Somatosensory homunculus)来表示。 Brodmann Area 5, BA5 位置:位于顶叶前梨状皮质区(梨状皮质piriform cortex为下边缘皮质的组成部分)。功能:与BA7形成体感联合皮层。 Brodmann Area 7, BA7 位置:位于顶叶皮质顶部,体感皮层后方,视觉皮层(visual area)上方。 功能:将视觉和运动信息联合起来;与BA5形成体感联合皮层;视觉-运动协调功能。 Sensory Areas---------Somatosensory Association Area 位置:位于初级躯体感觉皮层后方(BA5、BA7)

海马结构及图

海马结构,希望有所帮助 海马结构(hippocampal formation,HF)属于脑的边缘系统(1imbic system)中的重要结构,与学习、记忆、认知功能有关,尤其是短期记忆与空间记忆。海马皮质从海马沟至侧脑室下角依次为分子层、锥体层和多形层。齿状回也分三层:分子层、颗粒细胞层和多形层。依据细胞形态、不同皮质区的发育差异以及纤维排列的不同,将海马分为4个区,即CAl、CA2、CA3、CA4区。海马结构是大脑边缘系统的重要组成部分.在进化上是大脑的古皮质,位于大脑内侧面颞叶的内侧深部,左右对称。一般认为海马结构由海马或称Ammon角、齿状回、下托及海马伞组成,结构比较复杂。在功能和纤维联系上,不仅与嗅觉有关,更与内脏活动.情绪反应和性活动有密切关系。细胞学研究表明,海马头部主要是由CAI区折叠而成,而CAI区对缺氧等损伤最为敏感,也被称为易损区,因此海马头部也是最易发生病变的部位。 海马结构由海马(hippoeampus)、齿状回(dentate gyrls)、下托(subiculum)和围绕胼胝体的海马残体(hippoeampal rudimerit)组成,其中海马为体积最大最主要的部分。 大脑海马(hippocampus)是位于脑颞叶内的一个部位的名称,人有两个海马,分别位于左右脑半球. 它是组成大脑边缘系统的一部分,担当着关于记忆以及空间定位的作用. 名字来源于这个部位的弯曲形状貌似海马(希腊语hippocampus). 在阿兹海默病中,海马是首先受到损伤的区域; 表现症状为记忆力衰退以及方向知觉的丧失。大脑缺氧(缺氧症)以及脑炎等也可导致海马损伤 . 在动物解剖中, 海马属于脑的演化过程中最古老的一部分。来源于旧皮质的海马在灵长类以及海洋生物中的鲸类中尤为明显。虽然如此, 与进化树上相对年轻的大脑皮层相比灵长类动物尤其是

海 马 神 经 元 培 养

海马神经元培养 (1)材料 ①孕鼠:海马:孕18d,皮层或纹状体:孕16d ②Neurobasal medium (Gibco-BRL, cat. no. 21103) L-Glutamine (Gibco-BRL, cat. no. 25030) 谷氨酰胺 Glutamic acid (Sigma, cat. no. G-1626) 谷氨酸 B27 (Gibco-BRL, cat. no. 17504) ③Poly-D-lysine (mol wt 30,000—70,000) (Sigma, cat. no. P-7280)多聚赖氨酸 ④Hank’s balanced salt solution (HBSS) (Gibco-BRL, cat. no. 14025) ⑤HBSS without Ca2+, Mg2+ (Gibco-BRL, cat. no. 14175) ⑥trypsin 胰酶 ⑦NaHCO 3 ⑧Na pyruvate (Gibco-BRL, cat. no. 11840)丙酮酸钠 ⑨Trypan blue, 0.4% 台盘蓝 ⑩巴氏吸管,前端用火抛光 刻度吸管 离心管 闪烁瓶 玻璃培养皿:小:3套 大:2套 冰袋、纱布 手术器械、筛网 培养瓶或培养板

(2)步骤 ①准备 a.配制试剂 i) Poly-D-lysine(需保存在聚苯乙烯容器中,不能保存在玻璃、聚碳酸酯或聚丙烯容器中) 配制硼酸缓冲液(pH8.4) A液(硼砂溶液):1.907g硼砂溶于100ml纯水(0.05M),0.22μm微孔滤膜过滤除菌,4℃保存 B液(硼酸溶液):1.237g硼砂溶于100ml纯水(0.2M)0.22μm微孔滤膜过滤除菌,4℃保存 4.5mlA液+ 5.5mlB液 5mg P-D-L溶于10ml硼酸缓冲液中,配制成0.5mg/ml贮存液,0.22μm微孔滤膜过滤除菌,-20℃保存使用时用硼酸缓冲液稀释10倍。 ii)HBSS without Ca2+, Mg2+(D-Hank’s溶液)配制 不含钙、镁的HBSS粉剂:4.75g溶于400ml纯水 NaHCO3:0.175g加入溶液 1M NaOH 调节pH至7.2-7.4 纯水定容至500ml,0.22μm微孔滤膜过滤除菌,4℃保存 iii)1M NaOH溶液配制 NAOH:4g 溶于100ml纯水 iv)0.125%胰酶+0.02%EDTA D-Hank’s溶液10ml EDTA 20mg 溶解后 D-Hank’s溶液80ml 胰酶125mg 溶解后 1M NaOH溶液调节pH至7.2 D-Hank’s溶液定容至100ml,0.22μm微孔滤膜过滤除菌,4℃保存 v)D-Hank’s溶液配制(0.035% NaHCO3,1mM Na pyrurate,10mM HEPES,pH7.4) 不含钙、镁的HBSS粉剂: 2.375g溶于200ml纯水 NaHCO3:0.088g加入溶液 HEPES:0.596g加入溶液 Na pyrurate(100mM): 2.5ml加入溶液 1M NaOH 调节pH至7.4 纯水定容至250ml,0.22μm微孔滤膜过滤除菌,4℃保存 vi)Hank’s溶液配制(0.035% NaHCO3,1mM Na pyrurate,10mM HEPES,pH7.4) 含钙、镁的HBSS粉剂: 2.45g溶于200ml纯水 NaHCO3:0.088g加入溶液 HEPES:0.596g加入溶液 Na pyrurate(100mM): 2.5ml加入溶液

基于海马神经元细胞研究宁神灵抗抑郁作用机制

基于海马神经元细胞研究宁神灵抗抑郁作用机制 发表时间:2019-03-07T16:26:29.280Z 来源:《心理医生》2019年第4期作者:王赫霆 [导读] 研究宁神灵对抑郁症大鼠行为学及海马神经元细胞的影响 (哈尔滨市第十一中学黑龙江哈尔滨 150000) 【摘要】目的:研究宁神灵对抑郁症大鼠行为学及海马神经元细胞的影响。方法:正常大鼠随机分为空白组、模型组。采用慢性、不可预知性温和刺激(CUMS)结合孤养模型制作抑郁症大鼠模型,分中药治疗组(高、中、低剂量),对照组,各组15只,于第0、7、14、21、28天观察行为学指标(体重、糖水消耗实验、敞箱得分、大鼠活动延迟时间)。28天取大鼠海马组织,观察CA1、CA2、CA3、CA4区形态学变化及HE染色后脑组织的病理改变(Figure)。结果:相同时间点组间比较第7、14、21、28天行为学指标空白组>中药高剂量组>中药中剂量组>中药低剂量组>对照组。组内比较行为学指标高、中、低剂量组与时间呈正相关,空白组与对照组与治疗时间无差异。抑郁大鼠海马CA1区锥体细胞偶见散在的胞体固缩,深染或胞质溶解、空泡变性。CA4区可见少量锥体细胞胞体固缩,深染。治疗组大鼠 海马区神经元排列整齐,细胞体呈椎体形,较大,核大而圆,且与中药剂量呈正相关。结论:宁神灵可能通过作用于大鼠海马神经元细胞,引起相关蛋白及递质的改变,具有抗抑郁作用。 【关键词】宁神灵;抑郁症;慢性不可预知刺激;行为学;海马神经元 【中图分类号】R749.05 【文献标识码】A 【文章编号】1007-8231(2019)04-0045-02 抑郁症是一种以显著而持久的情绪失常为特征的综合征,该病具有高患病率、高致残率、高自杀率的特点。据世界卫生组织进行的全球疾病负担调查估计,到2020年由抑郁症造成功能残疾的人数将仅次于心血管疾病,上升至所有病种的第2位,并将占到全球因精神因素致残患者的1/3,因此,抑郁症已成为亟待解决的最重要的精神障碍[1]。近年来,关于抑郁症发病机制的研究很多,大多集中在神经递质、基因和社会因素等方面,但对于抑郁症发生和发展的分子生物学机制仍尚不明确[2]。 1.材料与方法 1.1 实验材料 健康雄性大鼠75只,正常大鼠随机分为空白组、模型组,采用慢性、不可预知性温和刺激(CUMS)结合孤养模型制作抑郁症大鼠模型,模型组分中药高(宁神灵5.04g/kg)、中(宁神灵2.52g/kg)、低剂量组(宁神灵1.26g/kg)、对照组。 1.2 研究方法 1.2.1行为学指标观察 (1)体重测定 实验过程中每周称量一次体重观察各组大鼠体重变化及增长情况以判断抑郁状态与体重变化的关系。 (2)糖水消耗实验 根据文献所有大鼠首先受训饮用1%的蔗糖水在开始的48小时内将蔗糖水放入笼中以代替自来水接着禁食禁水24小时通过称饮水瓶重量测量大鼠在1小时内蔗糖水的饮用量此后每间隔一周均进行禁水禁食及1小时蔗糖水测试,此过程贯穿于整个实验。 (3)敞箱得分实验 将大鼠置于高40cm,直径80cm周壁为黑色底面被分成面积相等的25块方格组成的旷场里,60W灯泡照明观测每只大鼠3min内水平活动和垂直活动得分。7:30~12:00之间在安静的房间内进行此项试验观察将大鼠置于敞箱中间观察大鼠穿越方格数(四爪均进入的方格可记数,为水平活动得分)、后肢直立次数(两前爪腾空或攀附墙壁,为垂直运动得分)、清洁运动次数(理毛次数)、粪便次数。彻底清洁敞箱后再进行下一只大鼠的观察。每只大鼠测试3分钟。分别在造模前、给药前及给药后进行敞箱实验。 1.2.2标本采集 (1)HE染色 取大鼠脑组织,在4%甲醛溶液中固定24-48小时,用模具测量并用刀片切取海马区,石蜡包埋,进行切片和HE染色。使用光学显微镜对大鼠海马组织切片拍照,供分析使用。 (2)电镜显微结构观察 解剖获取大鼠脑组织,将脑组织迅速放入3%戊二醛固定液在4℃条件下固定过夜。用模具测量并用刀片切取海马区作为标本进行俄酸包埋,使用电子显微镜对大鼠海马组织切片拍照,供分析使用。 2.结果 本实验表明相同时间点组间比较第7、14、21、28天大鼠体重指数:空白组>中药高剂量组>中药中剂量组>中药低剂量组>对照组;糖水消耗实验:空白组>中药高剂量组>中药中剂量组>中药低剂量组>对照组;敞箱得分:空白组>中药高剂量组>中药中剂量组>中药低剂量组>对照组;大鼠活动延长时间:空白组>中药高剂量组>中药中剂量组>中药低剂量组>对照组。组内比较行为学指标、高、中、低剂量组与时间呈正相关,空白组与对照组与治疗时间无差异。脑组织HE染色后,显微镜拍照观察脑组织的病理改变(Figure)。结果显示,模型组大鼠海马CA1区锥体细胞偶见散在的胞体固缩,深染或胞质溶解、空泡变性。CA4区可见少量锥体细胞胞体固缩,深染。治疗组大鼠海马区神经元排列整齐,细胞体呈椎体形,较大,核大而圆,且与中药剂量呈正相关。 3.讨论 抑郁症患者常伴有一些生物性节律改变,如睡眠障碍、食欲不振、便秘、身体乏力、精力减退、性功能障碍等,这些生理症状应用西药抗抑郁药很难解决,甚至一些西药还会加重上述障碍,在上市销售明确用于抑郁症治疗的天然药物及中药复方制剂中,不是治疗单一,就是疗效不显著,而且用药一段时间极易出现病情反复的现象,同时症状更加严重。传统中药在复杂的抗抑郁治疗方面具有明显的优势,很多研究都表明祖国传统的经方名方对于抑郁症的治疗能够达到很好的疗效[3]。研究发现,柴胡加龙骨牡蛎汤复方具有较强的抗焦虑、抗抑郁作用,其作用机制可能与增加了脑内单胺类神经递质的含量密切相关[4]。宁神灵冲剂由二组药组成,一组舒肝郁、平肝火、清痰热,另一组扶心阳固心气。收敛神气之浮越,合之调节心、肝二脏之功能,使之趋于平衡,神志之病,脏腑辨证在于此二脏,二脏平和,消除各种精神神经症状。与西药作用迥然不同,它针对神经抑制和兴奋过程失调而组方,通过双向调节大脑皮层兴奋和抑制神经的过程,消除

抑郁模型大鼠海马内环境的研究

抑郁模型大鼠海马内环境的研究 发表时间:2011-07-13T16:28:59.267Z 来源:《中外健康文摘》2011年第16期供稿作者:郑晓霓1 单德红2 [导读] 海马神经元所处的细胞外液属于机体内环境,其成分和理化特性相对稳定是神经元发挥功能的前提。 郑晓霓1 单德红2 (1辽宁省沈阳市沈和区第二中医院110015;2辽宁省沈阳市中医药大学基础医学院110032)【中图分类号】R74【文献标识码】A【文章编号】1672-5085 (2011)16-0144-02 【摘要】目的研究海马内环境稳态在抑郁症中的作用。方法20只雌性Wistar大鼠分为对照组、模型组。ELISA法检测血清皮质醇、雌二醇,光镜和电镜观察海马CA3区形态学变化,免疫组化法检测海马脑源性神经生长因子和血管内皮生长因子表达。结果与对照组比较,模型组皮质醇水平显著升高,雌二醇水平明显下降,海马CA3区神经元损伤严重,脑源性神经生长因子和血管内皮生长因子表达明显降低。结论抑郁状态下,海马内环境稳态被破坏。【关键词】抑郁症海马内环境稳态脑源性神经生长因子血管内皮生长因子【Abstract】 Objective: To study the action of hippocampal internal enviroment in deprssion. Methods: 20 femal wistar rats were divided into the control, model group. Serum cortisol and estradiol were measured with ELISA. Hippocampal CA3 morphology were observed by light and electron miroscope. BDNF and VEGF expressions were detected by immunohistochemistry. Results: compared with those in the control, in the model group, the serum cortisol level increased obviously, serum estradiol level decreased significantly, and the CA3 neurons had severious structure damage, and the expressions of BDNF and VEGF decreased markedly. Conclusion: The homeostasis of hippocampal internal enviroment is disrupted in depression. 【Key words】 depression hippocampal internal enviroment homeostasis brain-derived neurotrophtic factor vascular endothelial growth factor 海马内环境指海马神经元的细胞外液,其理化性质和各种成分应保持相对稳定的状态,即稳态。海马内环境的理化特性包括温度、渗透压、酸碱度等,成分有各种离子、激素、递质、细胞因子等。海马内环境稳太破坏均会损伤海马功能和结构,进而影响行为、情绪和内脏功能。现代医学认为海马损伤在抑郁症发病中起重要作用[1-2],但抑郁状态下,海马内环境出现何种变化目前尚没有系统研究,这就是本课题的研究目标,而本文主要对海马内环境中相关成分进行初步观察。 1 材料和方法 1.1实验动物的选取和分组健康Wistar雌性大鼠,清洁级,体重226±20g,中国医科大学动物实验中心提供,合格证号:医大动物合格证SCXK(辽)2008-0005。适应性饲养1周后,选择行为学得分相近的20只大鼠,随机分为对照组、抑郁症模型组(模型组),每组10只。室温20℃~25℃,湿度40%~50%。 1.2抑郁症模型的建立模型组大鼠建立慢性不可预见性应激模型,即在21d内随机施加电击足底(36V交流电,5min)、冰水游泳(4℃,5min)、摇晃(1min)、夹尾(1min)、禁水(24h)、禁食(24h)等刺激,每种刺激4次。 1.3血清雌二醇和皮质醇检测在实验的d22,2组大鼠均腹腔注射20%氨基甲酸乙酯(0.4mL/100g)麻醉后,腹主动脉取血,离心后取血清,低温冻存。采用ELISA方法检测皮质醇和雌二醇(Estradiol,E2),此项工作由沈阳军区总医院内分泌实验室完成。 1.4海马组织学观察首先是HE染色:取完成1.3后2只大鼠,立即断头取双侧海马,置于10%甲醛中固定,石蜡切片,HE染色,观察海马CA3区神经元的形态学变化。其次电镜观察:取完成1.3后的2只大鼠,升主动脉插管,150ml生理盐水快速冲去血液,快速灌入4℃ 2.5%戊二醛固定液,取双侧海马,修块,再于戊二醛中固定2h,PBS反复清洗后,再经1%锇酸固定2h,双蒸水冲洗,梯度乙醇脱水,临界点干燥,离子溅射真空渡膜,扫描电镜下观察超微结构。 1.5脑源性神经生长因子和血管内皮生长因子表达取完成1.3的6只大鼠开胸,升主动脉插管,生理盐水快速冲去血液,取双侧海马,4%多聚甲醛固定4~6h,30%蔗糖溶液沉底。做海马石蜡冠状切片,片厚25μm,隔4片取1片,采用免疫组化SABC法检测脑源性神经生长因子(Brain-derived neurotrophtic factor,BDNF)和血管内皮生长因子(Vascular endothelial growth factor ,VEGF)表达,相关抗体和试剂盒均购于武汉博±德试剂公司,阴性对照选用PBS。利用BI-2000医学图像分析系统,测定海马CA3区BDNF和VEGF表达的平均灰度值。 1.6数据处理数据以x-±s表示,采用SPSS13.0中ANOVA检验进行统计学处理。 2 实验结果 实验过程中没有实验动物死亡及脱失现象。 2.1海马形态学变化 光镜下,对照组CA3区有大量致密锥体细胞,排列整齐,细胞完整,边缘清晰;模型组细胞层次减少、稀疏、排列紊乱,大量细胞坏死。电镜下,对照组细胞器丰富,轮廓清晰,细胞核呈圆形,核膜清晰光滑完整,核染色质分布均匀;模型组细胞器减少,线粒体空泡化,细胞核变小,不规则,且核膜增厚,核周电子密度降低。 2.2海马内环境相关成分变化 与对照组比较,模型组皮质醇显著升高,E2明显下降。BDNF和VEGF免疫阳性反应产物呈棕黄色,前者分布神经元胞浆内,后者主要分布于血管内皮细胞内。对照组BDNF和VEGF表达较多,模型组较少,二者灰度值均升高。具体数据见表1。表1 各组海马内环境相关成分的变化 注:与对照组比较:a P<0.05, b P<0.01

小鼠海马神经元细胞使用说明

小鼠海马神经元细胞 小鼠海马神经元细胞产品说明: 为使客户能尽快开展实验,派瑞金发货的原代细胞均处于对数生长期,且每次发货为汇合率达到70%的细胞,收到细胞后即可开展实验。 派瑞金提供的小鼠海马神经元细胞取自新鲜的组织,按照标准操作流程分离培养。研发的小鼠海马神经元细胞完全培养基能提供细胞最佳的生长条件,降低杂细胞污染,保证不同批次间细胞质量的稳定。 同时,派瑞金还建立了严格的细胞鉴定流程,所提供的原代细胞均需经过细胞类型特异性标记物、细胞形态学等检测,保证细胞纯度在90%以上;同时也需经过微生物检测,保证不含有HIV、HBV、HCV、支原体、真菌及其他类型的细菌。 注意事项: 1. 收到细胞后首先观察细胞瓶是否完好,培养液是否有漏液、浑浊等现象,若有上述现象发生请及时和我们联系。 2. 仔细阅读细胞说明书,了解细胞相关信息,如细胞形态、所用培养基、血清比例、所需细胞因子等。 3. 请客户用相同条件的培养基用于细胞培养。培养瓶内多余的培养基可收集备用,细胞传代时可以一定比例和客户自备的培养基混合,使细胞逐渐适应培养条件;建议使用派瑞金的完全培养基。 4. 建议客户收到细胞后前3天各拍几张细胞照片,记录细胞状态。 5. 该细胞只能用于科研,不得用于临床应用。 小鼠海马神经元细胞产品简介: 产品名称:小鼠海马神经元细胞(Mouse hippocampal neuron cells)组织来源:小鼠海马组织区 产品规格:5×105cells/25cm2 培养瓶 小鼠海马神经元细胞简介: 海马椎体神经元是海马区的主要成分,主要功能是参与近期记忆、情绪及内脏功能调节、是老年性痴呆、癫痫等疾病的主要病灶之一。海马神经元细胞培养是研究神经细胞生物学特性和外源干扰因素作用(细胞因子)的有效细胞模型,其在神经生物学,发育生物学体外实验研究中已被广泛应用。 本公司生产的小鼠海马神经元细胞采用胰酶消化制备而来,细胞总量约为 5×105 个/瓶,细胞纯度可达 80%以上,且不含有 HIV-1、HBV、HCV、支原体、细菌、酵母和真菌等。

相关主题
文本预览
相关文档 最新文档