当前位置:文档之家› 线性代数论文

线性代数论文

线性代数论文
线性代数论文

线性代数论文

一:行列式

学习线性代数最先接触的是行列式,行列式出现于线性方程组的求解,解一组线性方程组最基本的方法是消元,而行列式只是方程求解的一种速记表达式。由多代数学家研究和完善,给出了n 阶行列式的定义:

-=

n

n n j j j nj j j j j j nn

n n n

n

a a a a a a a a a a a a 21212121)(21

2222111211

)1(τ

因此在这之前必须提出逆序数的概念:在一个n 级排列)(21n s t i i i i i 中,若数,s t i i > 则称数t i 与s i 构成一个逆序。一个n 级排列中逆序的总数称为该排列的逆序数, 记

为).(21n i i i τ一个排列逆序数为偶数则为偶排列,否则为奇排列。

有定义可以看出n 阶行列式表示所有取自不同行、不同列的n 个元素乘积n

nj j j a a a 2121的代数和, 各项的符号是: 当该项各元素的行标按自然顺序排列后, 若对应的列标构成的排列是偶排列则取正号; 是奇排列则取负号.由此则可推出行列式的几个性质: 1:行列互换行列式的值不变,行列地位是对称的;

2:用一个数乘行列式的某一行等于用这个数乘此行列式。因此相反的行列式的某一行有公因子可以提出来;

3:如果行列式中某一行是两组数的和,则这个行列式等于两个行列式的和,这两个行列式分别以这两组数作为该行,而其余各行与原行列式对应相同; 4:对换行列式中两行的位置,行列式反号;

5:如果行列式中有两行成比例饿,则行列式等于0; 6:把一行的某个倍数加到另一行,行列式的值不变;

有上述六条性质可以很好的对一些高阶行列式进行化简,进而求值。简化行列式计算的另一条途径则是降阶,即把高阶行列式的计算化为低低阶行列式运算。在这方面则是发现了行列式的展开公式。

首先为方便表达计算有如下定义:

在一个n 级行列式D 中,把元素aij (i,j=1,2,.....n)所在的行与列划去后,剩下的(n-1)^2个元素按照原来的次序组成的一个n-1阶行列式Mij,称为元素aij 的余子式,Mij 带上符号(-1)^(i+j)称为aij 的代数余子式,记作Aij=(-1)^(i+j)Mij

之后则有行列式展开公式:行列式等于它的任意一行(列)的各元素与对应的代数余子式乘积之和,即 :

最后则回到最原先的问题,用行列式表示方程的解: 由克拉默法则知:

D 不等于0时,那么方程(1) 有唯一解

其中 D j ( j = 1,2,…,n ) 是把系数行列式中第 j 列的元素用方程右端的自由项代替后所得到的 n 阶行列式,即

证明:

用 D 中第 j 列元素代数余子式A 1j , A 2j , … , A nj 依次乘方程组(1) 的 n 个方程,再把它们相加,得

根据代数余子式的重要性质可知,上式中 x j 的系数等于D ,而其余 x i ( i ≠ j ) 的系数均为零;又等右端即是 D j ,于是 D x j = D j , ( j = 1 , 2 , … , n ). (3)

当D ≠ 0 时,方程组(3)有唯一的一个解 (2) 。

由于方程组(10) 是由方程组(1) 经乘数与相加两种运算而得,故(1) 的解一定是(10) 的解,

今(3) 仅有一个解 (2) ,故(1) 如果有解的话,就只可能是解(2) 。 下面验证解(2) 是方程组(1) 的解。 也就是要证明:

为此考虑两行相同的 n + 1 阶行列式

它的值等于 0 ,

把它按第一行展开,由于第 1 行中 a ij 的代数余子式为

,111111??

? ??=??? ??++??? ??++???

??∑

∑∑

====n

k kj k n n k kn kn j n k kj kj n

k kj k A b x A a x A a x A a )2(,,,,2

211D D x D D x D D x n n

=== ).

,,2,1(,2211n i b D D a D D

a D D a i n in i i ==+++),,,2,1(111111n i a a

b a a b a a b nn n n n

in i i

=.

1,1

,111,11

,111nn

j n j n n n

j j j a a a a a a a a D

+-+-=1b

n

b

得证.

行列式发展于方程组求解,但是行列式的运用却不仅仅在于方程组,行列式在数学分析、

几何学、二次型理论等多方面都有着重要应用。

随着对行列式的计算应用,发展出了矩阵理论。

二:矩阵

矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究和应用的一个重要工具,许多实际问题都可以化为矩阵模型来运算。 简单地说矩阵就是指纵横排列的二维数据表格,

方阵A 的行列式称为矩阵的行列式。

之后就有一系列矩阵运算定义:

1矩阵加法: 设A ,B ,C 是三个同型矩阵,则 A+(B+C )=(A+B )+C ; A+B=B+A ;

A+0=0+A=A ,其中0是与A 同型的矩阵。 2矩阵的数乘:设A ,B 是个同型矩阵,k,l 是两个常数,则 lA=A,0A=0;

k(lA)=(kl)A;

nn

j n j n n n n

j j j a a a a b a a a a b

1,1,111,11,111111)1(+-+-++-,

)1()1(1

2j j j j D D -=--=-+,

011n in i i D a D a D b ---= 所以有

).,,2,1(,2

211n i b D

D a D D a D D a i n in i i ==+++即

k(A+B)=kA+kB; (k+l)A=kA+lA;

3维数相容的两个矩阵可以相乘,具体要求是第一个矩阵的列数应等于第二个矩阵的行数。若A 是N*M 矩阵,B 是M *L 矩阵,则C=AB 是N*L 矩阵,其第个元素是。矩阵乘法一般不满足交换率(即一般ij 1Mijikkjk ==Σ

CA ≠ABBA )

4 矩阵的转置则是将矩阵的行列互换;

逆矩阵的定义:设A 是n 阶方阵,若存在n 阶方阵B ,使得AB=BA=I , 则称A 可逆的,B 为A 的逆矩阵;

其中逆矩阵有着重要的应用,初等矩阵即是可逆矩阵,可逆矩阵也可拆成多个初等矩阵的乘积,因此在对矩阵进行初等变换、考虑矩阵的相似性、相抵型、相向型、二次型等等都需要用到可逆矩阵的性质。

求可逆矩阵的最基础的方法则是待定系数法,解方程组求解; 显然待定系数比较繁琐,容易出错;还有一种则是用伴随矩阵;

对任意n 阶矩阵A ,称 =

为A 的伴随矩阵,其中,

是A 中元素 的代数余子式。

=

=

I

因此

A

可逆的充要条件是

≠ 0,可逆矩阵为

=

伴随矩阵性质证明:设A=(aij),记AA*=(bij),则bij=ai1Ai1+ai2Ai2+…+ainAin=,其中i=j≠0,当i ≠j 时bij=0;故AA*=I,同理 A*A=

I

可逆矩阵的证明:

必要性。若A 可逆,则有B ,使得AB=I ,两边取行列式,可推出

≠0;

充分性。若≠ 0,则有=

由上述定义性质可推出矩阵的初等变换和分块矩阵的运算,分块矩阵的运算等同于矩阵运算。

当数学研究领域扩展到N 维向量空间、线性空间时,矩阵起着重要作用!一组向量组可以理解为一个矩阵,同时研究向量组的极大线性无关组时也可以转换成矩阵来求;因此先得引入矩阵秩的概念,矩阵的非零子式的最高阶数r 称为矩阵的秩,记为r(A)=r.零矩阵的秩规定为0;通过计算可以得出矩阵秩的一些性质:

1:max{r (A ), r (B )}≤ r (A | B ) ≤ r (A ) + r (B ), 特别当B = b 时, r (A )≤ r (A | b ) ≤ r (A ) + 1. 2 3

之后向量组的极大线性无关组则转化为对应矩阵的列秩,也等于矩阵的秩。而矩阵是相对熟悉的的东西,并且有一系列性质。而线性变换也等同于方阵,因此只要解决矩阵的问题,

则线性空间、线性变换也可对应解决!

海涛,不想写了,写不下去了,符号太难打了,你再写写!! sorry !

()

()()A O r r A r B C B ≥+()()()r A B r A r B ±≤+

线性代数论文

一、线性代数的定义 线性代数(Linear Algebra)是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。线性代数是理工类、经管类数学课程的重要内容。在考研中的比重一般占到22%左右。 二、线性方程组简介 线性方程组是各个方程关于未知量均为一次的方程组(例如2元1次方程组)。对线性方程组的研究,中国比欧洲至少早1500年,记载在公元初《九章算术》方程章中。 解线性代数方程组是线性代数最主要的任务之一,行列式研究的便是线性方程组的一种特殊形式,即线性方程组所含方程的个数等于未知量的个数,且方程组的系数行列式不等于零,这时可以用克拉默法则。 三、线性方程组的解法 ①克莱姆法则.用克莱姆法则求解方程组有两个前提,一是方程的个数要等于未知量的个数,二是系数矩阵的行列式要不等于零。用克莱姆法则求解方程组实际上相当于用逆矩阵的方法求解线性方程组,它建立线性方程组的解与其系数和常数间的关系,但由于求解时要计算n+1个n阶行列式,其工作量常常很大,所以克莱姆法则常用于理论证明,很少用于具体求解。

②矩阵消元法.将线性方程组的增广矩阵通过行的初等变换化为行简化阶梯形矩阵,则以行简化阶梯形矩阵为增广矩阵的线性方程组与原方程组同解。当方程组有解时,将其中单位列向量对应的未知量取为非自由未知量,其余的未知量取为自由未知量,即可找出线性方程组的解。 关于未知量是一次的方程组,其一般形式为 ⑴ 式中x1,x2,…,xn代表未知量,αij(1≤i≤m,1≤j≤n)称为方程⑴的系数,bi(1≤i≤m)称为常数项。系数和常数项都是任意的复数或某一个域的元素。 当常数项b1,b2,…,bn都等于零时,则方程组⑴称为齐次线性方程组。 方程组⑴的系数所构成的m行n列矩阵 线性方程组 称为方程组⑴的系数矩阵。在A中添加由常数项组成的列而得到一个m 行n+1列矩阵称为方程组⑴的增广矩阵。

线性代数结课论文

华北水利水电大学 线性代数发展简史 课程名称:线性代数 专业班级: 成员组成:姓名 学号 联系方式: 年月日

摘要:一次方程也叫线性方程,讨论线性方程及线性运算的代数就是线性代数,它是高等代数的一大分支,同时也是大学数学教育中一门主要基础课程。线性代数的主要内容有行列式、矩阵、向量、线性方程组、线性空间、线性变换、欧式空间和二次型等。 关键词:线性代数行列式矩阵向量线性方程组二次型群论 正文: 1.引言:线性代数是大学数学教育中一门主要基础课程,对于培养面向21世纪人才起着重要作用。通过了解线性代数的发展简史可以让我们更好地理解数学,从而更好地学习并应用它。 2.1 行列式 我们知道,在线性代数中最重要的内容之一就是行列式,它不仅是一种语言和速记,而且他的大多数生动的概念能对新的思想领域提供钥匙,同时人们已经证明了这个概念是数学、物理中非常有用的工具。 行列式出现于线性方程组的求解,它的概念最早是由十七世纪日本数学家关孝和在其著作《解伏题之法》中提出的。他于1683年写

了这本书,书里对行列式的概念和它的算法进行了清除的叙述。同时代的德国数学家莱布尼茨是欧洲提出行列式的第一人,也是微积分学的奠基人之一,他于1693年4月在写给洛比达的一封信中使用并给出了行列式,而且给出方程组的系数行列式为零的条件。 1750年,瑞士数学家克莱姆在其著作《线性带分析导引》中,比较完整、明确地阐述了行列式的定义与展开法,并且发表了求解线性系统方程的重要公式,即我们现在所称的解线性方程组的克莱姆法则。 1764年,数学家贝祖将确定行列式每一项符号的方法进行了系统化,利用系数行列式等于零这一条件判断对给定了含n个未知量的n 个齐次线性方程是否有非零解。 尽管上述几位数学家对行列式的提出与应用做出了很大的贡献,但仍在很长一段时间内,行列式只是作为解线性方程组的一种工具使用,并没有人意识到它可以独立于线性方程组之外,单独形成一门理论加以研究。 可喜的是,法国数学家范德蒙给出了一条法则,用二阶余子式和它们的余子式来展开行列式,从而把行列式理论与线性方程组求解相分离,他也因此成为了第一个对行列式理论做出连贯的系统的阐述的人。范德蒙自幼在父亲的指导下学习音乐,但他对数学却有浓厚的兴趣,后来终于成为了法兰西科学院院士,就对行列式本身这一点来说,他是这门理论的奠基人。 1772年,拉普拉斯在论文《对积分和世界体系的探讨》中证明了范德蒙的一些规则,并推广了他的展开行列式的方法。

大一线性代数论文

中国矿业大学银川学院机电动力与信息工程 线性代数论文 (2012-2013) 专业:电气及其自动化 班级:11级电气(2)班

姓名:薛成建 学号:120110516126 任课老师:马延福 日期:2012. 6.19 摘要 随着我国经济建设与科学技术的迅速发展,高等教育已进入了一个 飞速发展的时期,并且突破了以前的精英式教育模式,发展成为一种在终身学习的大背景下极具创造性和再创性的基础学科教育。高等学校教育教学观念不断更新,教学改革不断深入,办学规模不断扩大,数学课程开设的专业覆盖面不断增大。越来越需要一本高质量的高等学校非教学类专业的教材———《线性代数》。 为适应教学课程开设的专业覆盖面,逐渐引入了以求适应的知识点。n 阶行列式、矩阵、n 维向量与向量空间,应用数学模型等慢慢走进了专业覆盖面。在实际问题中,我们经常会碰到超过3个元素的数组,例如确定飞机的状态,需要以下几个参数:机身的仰角、机翼的转角、机身的水平转角、飞机重心在空间的位置参数等。因此,需要引入n 维向量的概念。n 个数组成的有序数组 (a a a n ,,,21 )或 a a a n 2 1 称为一个 n 维向量,简称向量。其中只有一行的称 为行向量,只有一列的称为列向量。数a a a n ,,,21 称为这个向量的分量,a i 称为这个向量的第i 个分量或坐标。分量都是实数的向量称为实向量,分量都是负数的向量称为负向量。

实际上,n 维行向量可以看成行矩阵,n 维列向量可以看成列矩阵。 如果两实向量相等,即称两个向量相等。 对于两个分量的各分量的和所组成的向量,称为两个向量的和。 一个数与向量的各分量相乘所组成的向量,称为向量e 与k 的数量乘积,简称数乘,记为k e 。 分量全为零的向量(000 )称为零向量,记为0。 α与-1的数乘(-1)α称为α的负向量,记为-α。 向量的加法与数乘具有下列性质: (1) a +b =b +a ; (交换律) (2) (a +b )+c =a +(b +c ); (结合律) (3) a +0=a ; (4) a +(-a )=0; (5) k (a +b )=k a +k b ; (6) (k+i)a = k a +i a ; (7) k(i a )=(ki)a ; (8) i a = a ; (9) 0a =0; (10) k 0=0 在数学中,满足(1)~(8)的运算称为线性运算。我们还可以证明: (11) 如果k ≠0且a ≠0,那么k a ≠0. 由若干个同维数的列向量(或同维数的行向量)所组成的集合叫做向量组。 例如一个mxn 矩阵A=) (a ij mxn 有n 个m 维列向量 a 1 = a a a m 1 21 11 , a 2 = a a a m 2 22 12 , ··· ,a n = a a a mn n n 21 , 我们称向量组a a a n 2 1为矩阵A 的列向量组。 对于行向量组也同样。

大学线性代数论文

线性代数论文 线性代数课程是高等学校理工科各专业学生的一门必修的重要基础理论课,它广泛应用于科学技术的各个领域。尤其是计算机日益发展和普及的今天,使线性代数成为工科学生所必备的基础理论知识和重要的数学工具。线性代数是讨论矩阵理论、与矩阵结合的有限维向量空间及其线性变换理论的一门学科。 主要理论成熟于十九世纪,而第一块基石(二、三元线性方程组的解法)则早在两千年前出现(见于我国古代数学名著《九章算术》)。①线性代数在数学、力学、物理学和技术学科中有各种重要应用,因而它在各种代数分支中占居首要地位;②在计算机广泛应用的今天,计算机图形学、计算机辅助设计、密码学、虚拟现实等技术无不以线性代数为其理论和算法基础的一部分;③该学科所体现的几何观念与代数方法之间的联系,从具体概念抽象出来的公理化方法以及严谨的逻辑推证、巧妙的归纳综合等,对于强化人们的数学训练,增益科学智能是非常有用的;④随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,各种实际问题在大多数情况下可以线性化,而由于计算机的发展,线性化了的问题又可以计算出来,线性代数正是解决这些问题的有力工具。 行列式的计算方法. 定义法 在引进行列式的定义之前,,为了更加容易的理解行列式的定义,首先介绍排列和逆序的概念. (1) n级排列:由1,2.3…n组成的一个有序数组称为一个n级排列. (2) 在一个排列中,如果一对数的前后位置与大小顺序相反,即:前面的数大于后面 的数,那么它们就称为一个逆序,一个排列中逆序的总数称为这个排列的逆序 数. (3) 逆序数为偶数的排列称为偶排列,逆序数为奇数的排列称为奇排列. 在做好这些工作之后,来引入行列式的定义: 定义:n阶行列式 等于所有取自不同行不同列的n个元素的乘积. a1j1a2j2a3j3………anj n <Ⅱ> 的代数和,这里j1,j2,j3,……j n为1,2,3,……,n的一个排列,每一项<Ⅱ> j1,j2,j3,……j n是偶排列时, <Ⅱ>带有正号,当都按下列规则带有符号,当

线性代数论文

华北水利水电学院 题目:常见的矩阵及其计算 课程名称:线性代数(第二版) 专业班级: 成员组成: 联系方式: 2012年10月20 日

常见的矩阵及其计算 摘要:矩阵是线性代数理论中极其重要的组成部分,是高等数学的一个基本的概念。它在线性代数与数学的许多分支都有重要应用,许多实际问题都可以用有关理论得到解决。矩阵,是由个数组成行列的矩形表格,通常用大写字母表示,组成矩阵的每一个数,均称为矩阵的元素,通常用小写字母表示其元素,其中下标都是正整数,他们表示该元素在矩阵中的位置。 关键词:常见矩阵计算方法 Common matrix and calculation Abstract:The matrix in linear algebra theory is extremely important part, of higher mathematics is a basic concept. It in linear algebra and mathematical many branches have important application, many practical problems can be solved with related theory. Matrix, consisting of a line list of regular form, Usually use capital letters said matrixes of each number, are called matrix elements, usually use lowercase said its elements, the subscript are all positive integer, they said the elements in the position of the matrix. Key words:Common matrix Calculation method

线性代数发展简史论文范文

华北水利水电学院 线性代数发展简史 课程名称:线性代数 专业班级: 成员组成: 联系方式: 2011年11月6日

摘要:代数学可以笼统地解释为关于字母运算的学科。线性代数是高等代数的一大分支,是研究如何求解线性方程组而发展起来的。线性代数的主要内容有行列式、矩阵、向量、线性方程组、线性空间、线性变换、欧氏空间和二次型等。 关键词:高等代数行列式矩阵向量 线性代数发展简史 1 代数学可以笼统地解释为关于字母运算的学科。在中学所学的初等代数中,字母仅用来表示数。初等代数从最简单的一元一次方程开始,一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。沿着这两个方向继续发展,代数学在讨论任意多个未知数的一次方程组,也叫线性方程组的同时,还研究次数更高的一元方程及多元方程组。发展到这个阶段,就叫做高等代数。 线性代数是高等代数的一大分支,是研究如何求解线性方程组而发展起来的。线性代数的主要内容有行列式、矩阵、向量、线性方程组、线性空间、线性变换、欧氏空间和二次型等。在线性代数中,字母的含义也推广了,它不仅用来表示数,也可以表示行列式、矩阵、向量等代数量。笼统地说,线性代数是研究具有线性关系的代数量的一门学科。线性代数不仅在内容上,更重要的是在观点和方法上比初等代数有很大提高。 在线性代数中最重要的内容就是行列式和矩阵。虽然表面上看,行列式和矩阵不过是一种语言或速记,但从数学史上来看,优良的数学符号和生动的概念是数学思想产生的动力和钥匙。 行列式出现于线性方程组的求解。行列式的概念最早是由十七世纪日本数学家关孝和提出来的,他在1683年写了一部叫做《解伏题之法》的著作,标题的意思是“解行列式问题的方法”,书里对行列式的概念和它的展开已经有了清楚的叙述。欧洲第一个提出行列式概念的是德国的数学家、微积分学奠基人之一莱布尼兹(Leibnitz)。1750年克莱姆(Cramer)在他的《线性代数分析导言》中发表了求解线性方程组的重要基本公式(即人们熟悉的Cramer 克莱姆法则)。1764年,法国数学家贝佐特(Bezout)把确定行列式每一项的符号的

线性代数小论文

线性代数小论文 在学习了线性代数两个多月后,也算是对它有了一些了解。在此,我就从老师教学和我自身的学习方面谈谈我的体会,对教学改革提一些自己的意见。 首先,我想说明的是,大学里的学习是不能靠其他任何人的,只能靠自己,老师只是起到一个引导作用。所以教材是我们最重要的学习资源,如果没有书本,就是天才也不可能学好。我使用的线性代数教材是科学出版社出版李小刚主编的《线性代数及其应用》。我比较了一下这本书和其他线代教材的区别,它有个很大的特点就是,别的教材第一章讲的是行列式,而它却直接通过介绍高斯消元法引入了矩阵的概念,在学习了矩阵后才介绍行列式的计算。这是这本教材的优越之处,它包含了一个循序渐进的过程。但是,它也有许多的不足之处,就个人在看这本教材时,觉得它举得实例太少了,并且例子不太全面,本来线性代数是一门比较抽象的学科,加上计算量大,学时少,所以要学好它,就只有靠自己在课余时间多加练习,慢慢领悟那些概念性的东西。然后对于教材内容的侧重点,我觉得应该放在线性方程组这一块,因为它是其他问题的引出点,不管是矩阵,行列式,还是矩阵的秩和向量空间,都是为线性方程组服务的。我们对向量组的线性相关性的讨论,还有对矩阵的秩,向量组的秩的计算,都是为了了解线性方程组的解的情况。在线性方程组的求解过程中,我们运用了矩阵的行变换来求基础解系,当然这就相当于求极大无关组。还有对线性相关和线性无关的讨论,这也关系到线性方程组的解。所以在改革中,应该拿线性方程组为应用的实例,来一步一步的解剖概念和定理。当然一些好的、典型的解题方法,也应该用具体的例子来讲解,这是一本教材必须具备的。 其次,老师在教学中,也应该以一些具体的实例入手来教学,就像开尔文说的,数学只不过是常识的升华而已,所以如果脱离了实际应用,只是讲抽象的概念和式子,是很难明白的,并且有实例的对照,可以加深记忆理论知识。然后要注重易混淆概念的区别,必要时应该拿出来单独讲讲,比如矩阵和行列式的区别,矩阵只是为了计算线性方程而列的一个数据单而已,并无实际意义。而行列式和矩阵有本质的区别,行列式是一个具体的数值,并且行列式的行数和列数必须是相等的。其实老师在教学过程中,应该学会轻松一点,我不希望看到老师在讲台上讲得满头大汗,而学生坐在下面听得云里雾里的场面,这就需要老师能够精选一些内容讲解,不需要都讲,而其他相关的内容让学生自己通过举一反三就得到就可以了。老师可以自己选一些经典的例子来讲,而不一定要讲书上的例子。然后对于例子中的计算,老师就可以不用算了,多叫学生动动手,增加我们的积极性,并且这样也更能发现问题。再就是线性代数的课时少,这是一个客观存在的原因,所以更要精讲。而不需全部包揽。当然,若果能通过改革,增加课时是最好不过了。这也算一点小小的建议吧。 然后,自己在学习的过程中,也应该能够整体把握老师的意思,注意各个章节的联系,R.斯根普说过个别的概念一定要融入与其它概念合成的概念结构中才有效用。数学中的概念往往不是孤立的,理解概念间的联系既能促进新概念的引入,也有助于接近已学过概念的本质及整个概念体系的建立。如矩阵的秩与向量组的秩的联系:矩阵的秩等于它的行向量组的秩,也等于它的列向量组的秩;矩阵行(列)满秩,与向量组的线性相关和线性无关也有一定的联系。知识体系是一环扣一环,环环相连的。前面的知识是后面学习的基础,如用初等变换求矩阵的秩熟练与否,直接影响求向量组的秩及极大无关组,进一步影响到求由向量组生成的向量空间的基与维数;又如求解线性方程组的通解熟练与否,会影响到后面特征向量的求解,以及利用正交变换将二次型化为标准型等。因此,学习线性代数,一定要坚持温故而知新的学习方法,及时复习巩固,为此,老师课前的知识回顾以及学生提前预习是十分必要的。对于后来学的,应该多翻翻书看看前面是怎么说的,往往前面学习的内容是为后面做铺垫的,所以在学了后面的知识后,再看前面的知识,会对前面的知识有一个新的认识,会更

线性代数小论文

摘要:分析了若矩阵A 经过行初等变换化为矩阵B ,则A 与B 的列向量组具有完全相同的线性关系,以及此性质在线性代数的主要应用。 关键词:初等变换;线性相关;线性无关;线性表示 线性代数主要研究的是线性问题。一般而言,凡是线性问题常可以用向量空间的观点和方法加以讨论,因此向量空间成了线性代数的基本概念和中心内容。 向量空间理论的核心问题是向量间的线性关系。其基本概念有向量的线性表示、向量组线性相关与线性无关、向量组等价、向量组的极大无关组,以及向量空间的基与维数等。这些问题通常转化为解线性方程组或解齐次线性方程组。 1 线性相关性证明 设A =(α1,α2,··· ,αn ),αi ∈P m ,若矩阵A 经过行初等变换化为矩阵B ,则A 与B 的列向量组具有完全相同的线性关系。 证明:设A m ×n ,A 经过行初等变换化为B ,将A ,B 分别按列分块为A =(α1,α2,…,αn ),B=(β1, β2,···,βn )。由于对A 只进行有限次行初等变换,故可知有满秩矩阵P ,使PA =B ,即P(α1,α2, ···,αn )=(β1, β2, ···,βn ),于是有i 1 βj = P αj (j=1,2,3, ···,n) (1) 设A 和B 对应的列向量组为αi 1,αi 2, ···,αi r 和βi 1, βi 2,···,βi r (1≤i 1<i 2<···<i r ≤n),由(1)式得 βik = P αik (k=1,2,3, ···,r) 因此,如果αi 1,αi 2, ···,αi r 有线性关系式k 1αi 1+k 2αi 2+ ···+k r αi r =0(k r 为实数),则k 1,k 2…k r 也必使得 k 1βi 1+k 2 βi 2+···+k r βi r =k 1(P αi 1)+ k 2(P αi 2)+ ···+ k r (P αi r ) =P (k 1αi 1+k 2αi 2+ ···+k r αi r )=P 0=0 反之,如果βi 1, βi 2,···,βi r 有线性关系式,得 λ1βi 1+λ2βi 2+ ···+λr βi r =0 则由P 的满秩性可知αj =P -1βj (j=1,2,3, ···,n),于是有 λ1αi 1+λ2αi 2+ ···+λr αi r =λ1P -1βi 1 +λ2P -1βi 2 + ···+λr P -1βi r = P -1(λ1βi 1+λ2βi 2+ ···+λr βi r )= P -10=0 这表明向量组αi 1,αi 2, ···,αi r 与向量组βi 1, βi 2,···,βi r 有相同的线性相关性,证毕。 2 线性相关性在线性代数中的应用 2.1向量组的线性相关性与行列式的关系 若向量组α1,α2, ···,αn 的个数等于于向量的维数,即m=n 时,则

浅谈《高等数学》与《线性代数》课程的相通性

浅谈《高等数学》与《线性代数》课程的 相通性 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 《高等数学》和《线性代数》这两门课的内容差异大,但也有不少知识点具有相同性,很多方法和结论相互渗透,本文探讨了《高等数学》与《线性代数》课程内容的一些相通性。 随着科学技术的发展和计算机的广泛应用,《高等数学》和《线性代数》的作用越来越重要,它们是高等院校培养应用型人才重要的数学基础课。《高等数学》主要学习的是微积分方面的知识,《线性代数》主要学习的是几何方面的知识。由于课程内容的不同,部分高校在课程安排上往往一个教师要么只教《高等数学》,要么只教《线性代数》,从而在教学时往往忽略了引导学生去思考这两门课程中的一些相通性。实际上,看似两门完全不同的课程之间实有许多相通之处,而让学生了解和掌握这些相通性不但有利于更好地掌握这两门课程,而且还可以培养学生发现、思考和总结的能力,所学知识真正做到融会贯通。

几年来,笔者一直在教学一线,既承担《高等数学》的教学,也承担《线性代数》的教学。在教学实践中,笔者发现和总结了一些这两门课程的相通性,下面介绍几点。 一、《高等数学》和《线性代数》课程中部分定义和结论的相通性 4.方程解的结构。在《线性代数》中,当非齐次线性方程组Ax=b有无穷解时,其解可以表示为对应齐次方程组Ax=0的通解加上非齐次线性方程组Ax=b 的一个特解。在《高等数学》中,非齐次线性微分方程的通解也有类似的结构,即也可表示成对应齐次微分方程的通解加上非齐次微分方程的特解。线性方程组和线性微分方程除了解结构类似外,解的性质也完全一样。 二、《高等数学》和《线性代数》课程中部分量运算的相通性 在《线性代数》中有一个重要的量——矩阵,故对矩阵的运算作了大量的介绍,有矩阵的加法、矩阵

线性代数论文

线性代数论文 一:行列式 学习线性代数最先接触的是行列式,行列式出现于线性方程组的求解,解一组线性方程组最基本的方法是消元,而行列式只是方程求解的一种速记表达式。由多代数学家研究和完善,给出了n 阶行列式的定义: ∑ -= n n n j j j nj j j j j j nn n n n n a a a a a a a a a a a a 21212121)(21 2222111211 )1(τ 因此在这之前必须提出逆序数的概念:在一个n 级排列)(21n s t i i i i i 中,若数,s t i i > 则称数t i 与s i 构成一个逆序。一个n 级排列中逆序的总数称为该排列的逆序数, 记 为).(21n i i i τ一个排列逆序数为偶数则为偶排列,否则为奇排列。 有定义可以看出n 阶行列式表示所有取自不同行、不同列的n 个元素乘积n nj j j a a a 2121的代数和, 各项的符号是: 当该项各元素的行标按自然顺序排列后, 若对应的列标构成的排列是偶排列则取正号; 是奇排列则取负号.由此则可推出行列式的几个性质: 1:行列互换行列式的值不变,行列地位是对称的; 2:用一个数乘行列式的某一行等于用这个数乘此行列式。因此相反的行列式的某一行有公因子可以提出来; 3:如果行列式中某一行是两组数的和,则这个行列式等于两个行列式的和,这两个行列式分别以这两组数作为该行,而其余各行与原行列式对应相同; 4:对换行列式中两行的位置,行列式反号; 5:如果行列式中有两行成比例饿,则行列式等于0; 6:把一行的某个倍数加到另一行,行列式的值不变; 有上述六条性质可以很好的对一些高阶行列式进行化简,进而求值。简化行列式计算的另一条途径则是降阶,即把高阶行列式的计算化为低低阶行列式运算。在这方面则是发现了行列式的展开公式。 首先为方便表达计算有如下定义: 在一个n 级行列式D 中,把元素aij (i,j=1,2,.....n)所在的行与列划去后,剩下的(n-1)^2个元素按照原来的次序组成的一个n-1阶行列式Mij,称为元素aij 的余子式,Mij 带上符号(-1)^(i+j)称为aij 的代数余子式,记作Aij=(-1)^(i+j)Mij 之后则有行列式展开公式:行列式等于它的任意一行(列)的各元素与对应的代数余子式乘积之和,即 : 最后则回到最原先的问题,用行列式表示方程的解: 由克拉默法则知:

线性代数论文

关于线性代数的理解 线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。线性代数是理工类、经管类数学课程的重要内容线性代数起源于对二维和三维直角坐标系的研究。 在这里,一个向量是一个有方向的线段,由长度和方向同时表示。这样向量可以用来表示物理量,比如力,也可以和标量做加法和乘法。这就是实数向量空间的第一个例子。作为证明定理而使用的纯抽象概念,向量空间(线性空间)属于抽象代数的一部分,而且已经非常好地融入了这个领域。一些显著的例子有:不可逆线性映射或矩阵的群,向量空间的线性映射的环。线性代数也在数学分析中扮演重要角色,特别在向量分析中描述高阶导数,研究张量积和可交换映射等领域。向量空间是在域上定义的,比如实数域或复数域。线性算子将线性空间的元素映射到另一个线性空间(也可以是同一个线性空间),保持向量空间上加法和标量乘法的一致性。所有这种变换组成的集合本身也是一个向量空间。如果一个线性空间的基是确定的,所有线性变换都可以表示为一个数表,称为矩阵。对矩阵性质和矩阵算法的深入研究(包括行列式和特征向量)也被认为是线性代数的一部分。 我们可以简单地说数学中的线性问题——-那些表现出线性的问题——是最容易被解决的。比如微分学研究很多函数线性近似的问题。在实践中与非线性问题的差异是很重要的。 线性代数方法是指使用线性观点看待问题,并用线性代数的语言描述它、解决它(必要时可使用矩阵运算)的方法。这是数学与工程学中最主要的应用之一。 线性代数是讨论矩阵理论、与矩阵结合的有限维向量空间及其线性变换理论的一门学科。主要理论成熟于十九世纪,而第一块基石(二、三元线性方程组的解法)则早在两千年前出现(见于中国古代数学名著《九章算术》)。 线性代数课程是高等学校理工科各专业学生的一门必修的重要基础理论课,它广泛应用于科学技术的各个领域。尤其是计算机日益发展和普及的今天,使线性代数成为工科学生所必备的基础理论知识和重要的数学工具。线性代数是为培养中国社会主义现代化建设所需要的高质量专门人才服务的。 线代课本的前言上就说:“在现代社会,除了算术以外,线性代数是应用最广泛的数学学科了。”我们的线代教学的一个很大的问题就是对线性代数的应用涉及太少,课本上涉及最多的只能算解线性方程组了,但这只是线性代数很初级的应用。我自己对线性代数的应用了解的也不多。但是,线性代数在计算机数据结构、算法、密码学、对策论等等中都有着相当大的作用。 线性代数被不少同学称为“天书”,足见这门课给同学们造成的困难。在这门课的学习过程中,很多同学遇到了上课听不懂,一上课就想睡觉,公式定理理解不了,知道了知识但不会做题,记不住等问题。我认为,每门课程都是有章可循的,线性代也不例外,只要有正确的方法,再加上自己的努力,就可以学好它。 线性代数作为一门数学,体现了数学的思想。 数学上的方法是相通的。比如,考虑特殊情况这种思路。线性代数中行列式按行或列展开公式的证明就是从更简单的特殊情况开始证起;解线性方程组时先解对应的齐次方程组,这些都是先考虑特殊情况。高数上解二阶常系数线性微分方程时先解其对应的齐次方程,这用的也是这种思路。

线性代数的应用论文

论文:线性代数的应用与心得体会班级: 姓名: 学号: 指导老师: 完成时间:2014年10月20日

目录 【摘要】 (2) 【关键词】 (2) 一、线性代数被广泛运用的原因 (2) 二、线性代数在实际中的应用 (2) 1. 用二阶行列式求平行四边形面积,用三阶行列 式求平行六面面体 (2) 2. 希尔密码 (2) 3.在人们平常日常生活的应用——减肥配方的实 现 (3) 4、在城市人们出行的应用——交通流的分析 (4) 5、马尔可夫链 (5) 6、在人口迁移的应用人口迁徙模型 (5) 三、心得与体会 (7)

【摘要】我们对线性代数的了解大概是,线性代数理论有着悠久的历史和丰富的内容,还有其主要知识:矩阵、方程组和向量;我们也应该了解其在众多的科学技术领域和实际生活中的应用都十分广泛。下面就是看一些具体实例应用,和一些心得体会。 【关键词】线性代数;实际生活;应用实例;心得体会; 。 一、线性代数被广泛运用的原因 为什么线性代数得到广泛运用,也就是说,为什么在实际的科学研究中解线性方程组是经常的事,而并非解非线性方程组是经常的事呢? 原因之一,大自然的许多现象恰好是线性变化的,研究的是单个变量之间的关系。例如我们高中学过的物理学科中,物理可以分为机械运动、电运动、还有量子力学的运动。而比较重要的机械运动的基本方程是牛顿第二定律,即物体的加速度同它所受到的力成正比,其实这又恰恰符合基本的线性微分方程。再如电运动的基本方程是麦克思韦方程组,这个方程组表明电场强度与磁场的变化率成正比,而磁场的强度又与电场强度的变化率成正比,因此麦克思韦方程组也正好是线性方程组。 原因之二,之后随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,因为各种实际问题在大多数情况下可以线性化,而且由于计算机的发展,线性化了的问题又可以计算出来,所以,线性代数因这方面的成为了解决这些问题的有力工具而被广泛应用。 原因之三,在数学中线性代数与几何和代数有着不可分割的联系。线性代数所体现的几何观念与代数方法之间的联系,从具体概念变为抽象出来的公理化方法,对于强化人们的数学训练,增强科学性是非常有用的。 二、线性代数在实际中的应用 1.用二阶行列式求平行四边形面积,用三阶行列式求平行六面面体 2.希尔密码 希尔密码(Hill Password)是运用基本矩阵论原理的替换密码,由Lester S. Hill在1929年发明。每个字母当作26进制数字:A=0, B=1, C=2... 一串字母当成n维向量,跟一个n×n 的矩阵相乘,再将得出的结果模26。注意用作加密的矩阵(即密匙)在\mathbb_^n必须是可逆的,否则就不可能译码。只有矩阵的行列式和26互质,才是可逆的。 例题、 设明文为HPFRPAHTNECL,密钥矩阵为:

线性代数的应用论文

线性代数的应用论文 LELE was finally revised on the morning of December 16, 2020

论文:线性代数的应用与心得体会班级: 姓名: 学号: 指导老师: 完成时间:2014年10月20日

目录 【摘要】 (2) 【关键词】 (2) 一、线性代数被广泛运用的原因 (2) 二、线性代数在实际中的应用 (3) 1. 用二阶行列式求平行四边形面积,用三阶行列 式求平行六面面体 (3) 2. 希尔密码 (3) 3.在人们平常日常生活的应用——减肥配方的实 现 (4) 4、在城市人们出行的应用——交通流的分析 (5) 5、马尔可夫链 (7) 6、在人口迁移的应用人口迁徙模型 (8) 三、心得与体会 (10)

【摘要】我们对线性代数的了解大概是,线性代数理论有着悠久的历史和丰富的内容,还有其主要知识:矩阵、方程组和向量;我们也应该了解其在众多的科学技术领域和实际生活中的应用都十分广泛。下面就是看一些具体实例应用,和一些心得体会。 【关键词】线性代数;实际生活;应用实例;心得体会; 。 一、线性代数被广泛运用的原因 为什么线性代数得到广泛运用,也就是说,为什么在实际的科学研究中解线性方程组是经常的事,而并非解非线性方程组是经常的事呢? 原因之一,大自然的许多现象恰好是线性变化的,研究的是单个变量之间的关系。例如我们高中学过的物理学科中,物理可以分为机械运动、电运动、还有量子力学的运动。而比较重要的机械运动的基本方程是牛顿第二定律,即物体的加速度同它所受到的力成正比,其实这又恰恰符合基本的线性微分方程。再如电运动的基本方程是麦克思韦方程组,这个方程组表明电场强度与磁场的变化率成正比,而磁场的强度又与电场强度的变化率成正比,因此麦克思韦方程组也正好是线性方程组。 原因之二,之后随着科学的发展,我们不仅要研究单个之间的关系,还要进一步研究多个变量之间的关系,因为各种实际问题在大多数情况下可以线性化,而且由于计算机的发展,了的问题又可以计算出来,所以,线性代数因这方面的成为了解决这些问题的有力工具而被广泛应用。

线性代数的应用论文

论文:线性代数的应用与心得体会 班级: 姓名: 学号: 指导老师: 完成时间:2014 年10 月 20 日

目录 【摘要】 (2) 【关键词】 (2) 一、线性代数被广泛运用的原因 (2) 二、线性代数在实际中的应用 (2) 1.用二阶行列式求平行四边形面积,用三阶 行列式求平行六面面体 (2) 2.希尔密码 (2) 3.在人们平常日常生活的应用——减肥配方的实 现 (3) 4、在城市人们出行的应用——交通流的分析4 5、马尔可夫链 (5) 6、在人口迁移的应用人口迁徙模型 (5) 三、心得与体会 (7)

【摘要】我们对线性代数的了解大概是,线性代数理论有着悠久的历史和丰富的内容,还有其主要知识:矩阵、方程组和向量;我们也应该了解其在众多的科学技术领域和实际生活中的 应用都十分广泛。下面就是看一些具体实例应用,和一些心得体会。 【关键词】线性代数;实际生活;应用实例;心得体会; 。 一、线性代数被广泛运用的原因 为什么线性代数得到广泛运用,也就是说,为什么在实际的科学研究中解线性方程组是经常的事,而并非解非线性方程组是经常的事呢? 原因之一,大自然的许多现象恰好是线性变化的,研究的是单个变量之间的关系。例如我们高中学过的物理学科中,物理可以分为机械运动、电运动、还有量子力学的运动。而比较重要的机械运动的基本方程是牛顿第二定律,即物体的加速度同它所受到的力成正比,其实这又恰恰 符合基本的线性微分方程。再如电运动的基本方程是麦克思韦方程组,这个方程组表明电场强 度与磁场的变化率成正比,而磁场的强度又与电场强度的变化率成正比,因此麦克思韦方程组 也正好是线性方程组。 原因之二,之后随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,因为各种实际问题在大多数情况下可以线性化,而且由于计算机的发展, 线性化了的问题又可以计算出来,所以,线性代数因这方面的成为了解决这些问题的有力工具 而被广泛应用。 原因之三,在数学中线性代数与几何和代数有着不可分割的联系。线性代数所体现的几何观念与代数方法之间的联系,从具体概念变为抽象出来的公理化方法,对于强化人们的数学训练,增强科学性是非常有用的。 二、线性代数在实际中的应用 1.用二阶行列式求平行四边形面积,用三阶行列式求平行六面面体 2.希尔密码 希尔密码( Hill Password )是运用基本矩阵论原理的替换密码,由Lester S. Hill 在1929 年发明。每个字母当作26 进制数字:A=0, B=1, C=2... 一串字母当成n 维向量,跟一个 n×n 的矩阵相乘,再将得出的结果模26 。注意用作加密的矩阵(即密匙)在\mathbb_^n 必须是可逆的,否则就不可能译码。只有矩阵的行列式和26 互质,才是可逆的。 例题、 设明文为HPFRPAHTNECL, 密钥矩阵为:

线性代数论文

关于矩阵与行列式 线性代数就是数学的一个分支,它的研究对象就是:行列式 矩阵 空间向量与线性方程组。 矩阵与行列式就是两个完全不同的概念,行列式代表着一个数,而矩阵仅仅就是一些数的有顺序的摆法。利用矩阵这个工具,可以把线性方程组中的系数组成向量空间中的向量;这样对于一个多元线性方程组的解的情况,以及不同解之间的关系等等一系列理论上的问题,就都可以得到彻底的解决。矩阵的应用就是多方面的,不仅在数学领域里,而且在力学、物理、科技等方面都十分广泛的应用。 行列式与矩阵的本质区别在于它们的定义。行列式就是一种特殊的算式,它就是根据求解方程组个数与未知量个数相同的一次方程组的需要而定义的,经计算能算出其数值,而矩阵只就是一个数表,无法通过计算求得其值;而且两者的表示方法也不同。如下例: 432 1表示的就是一个2阶行列式;而??? ? ??4321则表示就是一个2×2的矩阵。而且432 1可以通过计算求得其值为-2;而???? ??4321只能表示一个数表,不能求出值。 行列式的行数与列数必须就是相等的;而矩阵的行数与列数可以相等也可以不相等。由n 2个数组成的n 行n 列行列式为n 阶行列式;由m 行n 列组成的数表为m ×n 矩阵。只有行数与列数相

等的矩阵即方阵才能计算其行列式。如:???? ?? ? ? ?620816732 531 就是一个3×4的矩阵;而6208167325 31这样的行列式就是不存在的,因此??? ??? ? ? ?620816 732 531无法求其行列式。 而且行列式与矩阵的性质与运算法则也不同。如下: (1)记D= nn n n n n a a a a a a a a a ???????21 2222111211 ,D T = nn n n n n a a a a a a a a a ???????212 2212 1 2111,则称D T 为D 的转置行列式,并有D= D T ,行列式中行与列具有同等的地位,因此,行列式的性质凡就是对行成立的对列也同样成立;同样的矩阵A 的转置矩阵A T 就是指把矩阵A 的行换成同序数的列得到的 新矩阵,即记A=??????? ?????????nn n n n n a a a a a a a a a 2 1 22221 11211 ,则A T =?? ? ? ? ? ? ?????????nn n n n a a a a a a a a a 2n 122212 12111 , 但有(A T )T =A 。且对方阵来说,T A =A 。 (2)互换行列式的两行(列),行列式变号,例 如:9876543 21=-9 873216 54,因此可以推出——如果行列式有两行(列)

线代小论文

线性代数在实际生活的应用 1.【线性代数的定义】 线性代数的理论是计算技术的基础,同系统工程,优化理论及稳定性理论等有着密切联系,随着计算技术的发展和计算机的普及,线性代数作为理工科的一门基础课程日益受到重视。线性代数这门课程的特点是概念比较抽象,概念之间联系很密切。内容包括行列式,矩阵,向量空间,线性方程组,矩阵的相似对角化,二次型,线性空间与线性变换等。 2.【学习线性代数的疑问】 线性代数被不少同学称为“天书”,足见这门课给同学们造成的困难,而且很大部分把学生认为高数无用,线性代数是高数的重要分支,自然成了首要被攻击的对象。有人常说“大学生学高数,学线性代数,有什么用处呢?就算有用,也往往是在用之前,就被遗忘和荒废了。”有人认为,以后的生活中,高中学的数学知识已经足够了,没有必要再在大学开设线性代数这门学科。 我相信大部分人都跟我一样,都会有这样的疑问——到底线性代数在我们现实生活中又有什么意义? 3.【线性代数的广泛使用】 1.在人们平常日常生活的应用——减肥配方的实现(详) 大学生在饮食方面存在很多问题,多数大学生不重视吃早餐,日常饮食也没有规律,为了身体的健康就需要注意日常饮食中的营养。大学生每天的配餐中需要摄入一定的蛋白质、脂肪和碳水化合物,下表给出了这三种食物提供的营养以及大学生的正常所需营养(它们的质量以适当的单位计量)。 设三种食物每100克中蛋白质、碳水化合物和脂肪的含量如下表,表中还给出了80年代美国流行的剑桥大学医学院的简捷营养处方。现在的问题是:如果用这三种食物作为每 设脱脂牛奶的用量为x 1个单位(100g ),大豆面粉的用量为x 2个单位(100g ),乳清的用量为x 3个单位(100g ),表中的三个营养成分列向量为: 12136511352,34,74,07 1.1a a a ????????????===?????????????????? 则它们的组合所具有的营养为

线性代数矩阵式总结论文

《线性代数》课程论文题目:矩阵及其应用

矩阵及其应用 摘要:本文主要介绍了矩阵的概念,运算方法两方面内容,在大量的文献基础上,给出了矩阵的运算及其逆矩阵的求解方法。最后通过具体的例子说明其应用,使其在计算时更加的简便,快捷。 关键词:矩阵矩阵的运算逆矩阵

1.矩阵的概念 1.1 矩阵的定义 由m ×n 个数a ij (i=1,2,...,m;j=1,2,...,n)排成m 行n 列的数表 mn m m n n a a a a a a a a a 21 2222111211 称为m ×n 矩阵,记作 mn m m n n a a a a a a a a a A 212222111211 简记为 a a A ij n m ij n m A 。这m ×n 个数称为A 的元素,简称为元。元素是 实数的矩阵称为实矩阵,元素是复数的矩阵为复矩阵。 1.2 几种特殊矩阵 (1)行数与列数都等于n 的矩阵A ,称为n 阶方阵。也可记作A n 。例如: 397622213765432221613 是一个4阶方阵。 (2)只有一行的矩阵 n a a a A ,...,,21 ,称为行矩阵(或行向量)。 只有一列的矩阵 n a a a B 21,称为列矩阵(或列向量)。 (3)如 2100 的方阵,称为对角矩阵(或对角阵)。 (4)元素全为零的矩阵称为零矩阵,记作n m O . (5)元素全为1的方阵称为单位矩阵(或单位阵)。 1.3 同型矩阵与矩阵相等

(1) 同型矩阵:两个矩阵的行数相等,列数相等时,称为同型矩阵。 如 397622213765432221613与 3976 6229 7658 4964 为同型矩阵。 (2)两个矩阵 ij a A 与 ij b B 为同型矩阵,并且对应元素相等,即 b a ij ij n j m i ,,2,1;,,2,1 ,则称矩阵A 与B 相等,记作A=B 。 2.矩阵的运算 2.1 矩阵的加法 设有两个m ×n 矩阵 ij a A , ij b B ,那矩阵A 与B 的和,记作A +B ,规定为 b b b b b b b b b mn mn m m m m n n n n a a a a a a a a a B A 221122222221211112121111。 (1)A B B A ; (2))()(C B A C B A ; (3))(,0)(B A B A A A . 2.2 数与矩阵相乘 数λ与矩阵A 的乘积记作A ,规定为 mn m m n n a a a a a a a a a A 2122221 11211,设B A 、为n m 矩阵, 、为实数: (1) A A ; (2) A A A ; (3) B A B A )(. 2.3 矩阵与矩阵相乘 设 ij a A 是一个s m 矩阵, ij b B 是一个n s 矩阵,规定矩阵A 与矩阵B 的 乘 积 是 一 个 n m 矩阵 ij c C ,其中

相关主题
文本预览