当前位置:文档之家› 高温超导材料的发展和应用现状_吴兴超

高温超导材料的发展和应用现状_吴兴超

高温超导材料的发展和应用现状_吴兴超
高温超导材料的发展和应用现状_吴兴超

耐磨材料的现状及未来发展趋势

耐磨材料的发展现状及未来发展趋势 正因为这些由本征特性TC、HC2所带来的在经济和技术上的巨大潜在能力,吸引了大量的科学工作者采用最先进的技术装备,对高TC超导机制、材料的物理特性、化学性质、合成工艺及显微组织进行了广泛和深入的研究。高温氧化物超导体是非常复杂的多元体系,在研究过程中遇到了涉及多种领域的重要问题,这些领域包括凝聚态物理、晶体化学、工艺技术及微结构分析等。一些材料科学研究领域最新的技术和手段,如非晶技术、纳米粉技术、磁光技术、隧道显微技术及场离子显微技术等都被用来研究高温超导体,其中许多研究工作都涉及了材料科学的前沿问题。高温超导材料的研究工作已在单晶、薄膜、体材料、线材和应用等方面取得了重要进展。 能源材料太阳能电池材料是新能源材料研究开发的热点,IBM公司研制的多层复合太阳能电池,转换率高达40%。美国能源部在全部氢能研究经费中,大约有50%用于储氢技术。固体氧化物燃料电池的研究十分活跃,关键是电池材料,如固体电解质薄膜和电池阴极材料,还有质子交换膜型燃料电池用的有机质子交换膜等,都是目前研究的热点。 生态环境材料生态环境材料是20世纪90年代在国际高技术新材料研究中形成的一个新领域,其研究开发在日、美、德等发达国家十分活跃,主要研究方向是:①直接面临的与环境问题相关的材料技术,例如,生物可降解材料技术,CO2气体的固化技术,SOX、NOX催化转化技术、废物的再资源化技术,环境污染修复技术,材料制备加工中的洁净技术以及节省资源、节省能源的技术;②开发能使经济可持续发展的环境协调性材料,如仿生材料、环境保护材料、氟里昂、石棉等有害物质的替代材料、绿色新材料等;③材料的环境协调性评价。 智能材料智能材料是继天然材料、合成高分子材料、人工设计材料之后的第四代材料,是现代高技术新材料发展的重要方向之一,将支撑未来高技术的发展,使传统意义下的耐磨材料和结构材料之间的界线逐渐消失,实现结构功能化、功能多样化。科学家预言,智能材料的研制和大规模应用将导致材料科学发展的重大革命。国外在智能材料的研发方面取得很多技术突破,如英国宇航公司在导线传感器,用于测试飞机蒙皮上的应变与温度情况;英国开发出一种快速反应形状记忆合金,寿命期具有百万次循环,且输出功率高,以它作制动器时、反应时间,仅为10分钟;在压电材料、磁致伸缩材料、导电高分子材料、电流变液和磁流变液等智能材料驱动组件材料在航空上的应用取得大量创新成果。 2、国内耐磨材料发展的现状和差距 我国非常重视耐磨材料的发展,在国家攻关、“863”、“973”、国家自然科学基金等计划中,耐磨材料都占有很大比例。在“九五”“十五”国防计划中还将特种耐磨材料列为“国防尖端”材料。这些科技行动的实施,使我国在耐磨材料领域取得了丰硕的成果。在“863”计划支持下,开辟了超导材料、平板显示材料、稀土耐磨材料、生物医用材料、储氢等新能源材料,金刚石薄膜,高性能固体推进剂材料,红外隐身材料,材料设计与性能预测等耐磨材料新领域,取得了一批接近或达到国际先进水平的研究成果,在国际上占有了一席之地。镍氢

高温超导体及其研究近况

高温超导体及其研究近况 姓名:高卓班级:材料化学09-1 学号:200901130805 所谓超导,是指在一定温度、压力下,一些金属合金和化合物的电阻突然为零的性质.利用此次性质做成的材料称为超导材料. 超导材料按其化学组成可分为:元素超导体,合金超导体,化合物超导体。近年来,由于具有较高临界温度的氧化物超导体的出现,有人把临界温度Tc达到液氮温度(77K)以上的超导材料称为高温超导体,上述元素超导体,合金超导体,化合物超导体均属低温超导体。以下就高温超导体作一个简要介绍。 一材料特点 自1964年发现第一个超导体氧化物SrTiO3以来,至今已发现数十种氧化物超导体。这些氧化物超导体具有如下共同的特征:(1)超导温度相对而言比较高,但载流子浓度低;(2)临界温度Tc随组分成单调变化,且在某一组分时会过渡到绝缘态;(3)在Tc以上温度区,往往呈现类似半导体的电阻-温度关系;(4)Tc和其他超导参量对无需程度敏感。 高温超导体在结构和物性方面具有以下特征;(1)晶体结构具有很强的地维特点,三个晶格常数往往相差3-4倍;(2)输运系数(电导率、热导率等)具有明显的各向异性;(3)磁场穿透深度远大于相干长度,是第二类超导体;(4)载流子浓度低,且多为空穴型导电;(5)同位素效应不显著;(6)迈斯纳效应不完全;(7)隧道实验表明能隙存在,且为库柏型配对。氧化物超导体的这些特征,引起人们的兴趣和关注。 二发展趋势 目前,在高温超导研究领域中,各国科学家正着重进行三个方面的探索,一是继续提高Tc,争取获得室温超导体;二是寻找适合高温超导的微观机理;三是加紧进行高温超导材料与器件的研制,进一步提高材料的Jc和Tc,改善各种性能,降低成本,以适用实用化的要求。 三国内外发展现状 超导材料技术是21世纪具有战略意义的高新技术,极具发展潜力和市场前景。世界各主要国家政府纷纷制订相关计划和加大研发投资,推动基础研究和产业化发展,竞争十分激烈。 一、美国 美国能源部(DOE)早在1988年就创建了超导计划,该计划将高科技公司、国家实验室和大学结合起来,进行具有高度复杂性的高温超导技术的应用研发工作,并在此基础上于1993年底制定了超导伙伴计划(Superconductivity Partnership Initiative,SPI)。SPI是整个超导计划的一部分,目的是加速高温超导(High temperature superconductors,HTS)电力设备走进市场。DOE 在2001年9月24日宣布了新一轮的高温超导计划——SPI二期,投入总资金达1.17亿美元,支持高温超导商业化示范电缆、100MVA高温超导发电机、1000英尺、3相长距离高温超导输电电缆、高温超导变压器、高温超导核磁共振成像装置、超导飞轮储能装置、高温超导磁分离器等7个项目的研发。 2003年7月,DOE在公布的《‘Grid 2030’A National Vision for Electricity’s Second 100 Years》报告中,把高温超导技术列为美国电力网络未来30年中发展的关键技术之一。该计划制订了2010年、2020年和2030年美国在电力方

中国能源现状

中国能源现状及发展前景分析 学号;作者: [ 摘要] 能源是人类社会生活和发展的物质基础,一直为世界各国所重视。本文从中国能源现状的分析入手,对石油、天然气、煤炭、电力四大主要能源现状作了初步考察,充分认识到我国能源面临着一系列挑战。同时对我国实现社会主义现代化征途中对能源的发展前景进行了展望和对策分析。 [ 关键词] 能源;现状;挑战;发展前景;中国 一直以来, 能源问题都被世界各个国家所重视, 因为能源是人类社会生活和发展进步的物质基础。在过去的20 世纪中, 人类使用的能源主要有四种, 就是原油、天然气、煤炭和电力。而根据国际能源机构的统计, 假使按目前的势头发展下去, 不加节制, 那么,地球上原油、天然气、煤炭三种能源供人类开采的年限, 分别只有40 年、60 年和220 年了。进入21 世纪, 能源问题的重要性更是越来越突出, 确切地说, 能源问题已经不仅仅是某一个国家的问题,而是整个世界, 整个人类社会所要面对和所要解决的问题。 一、我国能源的现状 我国既是能源的消费大国, 也是能源的生产大国。虽然1990年以来能源生产总量已名列前茅, 但人均占有能源消费量只有发达国家的5%-10%; 但在另一方面, 每万美元国民生产总值能耗方面则为世界各国之首, 为印度的2.2 倍, 为发达国家的4-6 倍; 使用能源的设备效率偏低, 又造成能源的浪费, 能源利用效率不高。[1]再者, 我国能源生产与消费以煤及石油为主, 造成严重的环境污染。 (一)煤炭资源 中国是世界最大煤炭生产国和消费国。我国以煤为主的能源结构在相当长的时间内难以改变。然而, 煤炭利用严重污染环境, 据统计, 每燃烧1 吨标准煤排放二氧化碳约26 公斤, 排放二氧化硫约24 公斤、排放氮氧化物约7 公斤。[2] 这不仅影响和危害人类的身体健康, 还直接影响人类赖以生存的条件。 (二)石油资源 我国石油资源相对短缺。中国目前有待发现和探明的石油资源比较丰富, 但勘查难度比较大。随着社会经济的发展, 我国的石油需求量将会越来越大。据有关部门预测, 到2020 年, 我国石油消费量最少也要4.5 亿t, 届时石油的对外依赖度将有可能接近60%。国际能源署公布的数据甚至称, 到2030 年中国进口石油占石油总需求的百分比将激增至80%以上。[3] (三)天然气资源 天然气是一种清洁和使用方便的能源, 我国是开发利用天然气最早的国家, 天然气资源储藏量达380000 亿立方米, 目前已探明储量仅占5%, 天然气在能源结构中的比重仅占2.1%, 为世界平均水平的十分之一。目前, 国家已开始全国天然气管网的大规模建设,特别是启动了西部大开发序幕性工程的"西气东输"工程, 为天然气的合理利用打下了坚实的基础。 (四)电力资源 过去十多年, 中国电力工业高速发展, 2003 年发电量为1990年的3 倍。2003 年, 发电装机容量391 40GW。到2004 年5 月, 发电装机容量达400GW。2004 年9 月, 水电装机容量达100GW, 居世界首位。全国1GW以上电站共有107 个, 最大水电站是三峡水电站, 已装机5 9GW; 最大火电站是山东德州电站, 2 4GW; 最大核电站是广东岭澳核电站, 1 98GW。[4] 但是, 中国20 世纪60 年代中期出现大范围缺电。造成严重缺电局面的原因是多方面的, 但主要是体制问题, 包括: 高耗电产业过度发展, 电力预测和规划失误, 以及电力改革尚未从根本上改变垄断经营格局等。

高温超导材料的发展及应用

高温超导材料的发展及应用 摘要:现代社会高度物质文明和材料科学进步密切有关,本文通过介绍超导及高温超导材料的相关知识阐述目前高温超导材料的发展和应用。 Abstract: the modern social highly material civilization Closely relates to the material's science progress, this paper is about the knowledge of superconducting and HTS materials,and it introduces High temperature superconducting materials 's development and application. 关键词:超导、高温超导材料、材料、技术。 Keywords: superconductivity, high temperature superconducting materials, materials, technology. 正文:日新月异的现代技术的发展需要很多新型材料的支持。自从第三次科技浪潮席卷全球以来,新型材料同信息、能源一起,被称为现代科技的三大支柱。新材料的诞生会带动相关产业和技术的迅速发展,甚至会催生新的产业和技术领域。 超导体由于其得天独厚的特性,使它可能在各种领域得到广泛的应用。但由于早期的超导体存在于液氦极低温度条件下,极大地限制了超导材料的应用,因而需要探索新的高温超导材料。所谓高温超导材料是指具有高临界转变温度(Tc)的超导材料,目前高温超导材料主要有:钇系(92 K)、铋系(110K)、铊系(125K)和汞系(135K)以及2001年1月发现的新型超导体二硼化镁(39K)。其中最有实用前途的是铋系、钇系(YBCO)和二硼化镁( Mg B)。氧化物高温超 2 导材料是以铜氧化物为组分的具有钙钦矿层状结构的复杂物质,在正常态它们都是不良导体。同低温超导体相比,高温超导材料具有明显的各向异性,在垂直和平行于铜氧结构层方向上的物理性质差别很大。高温超导体属于非理想的第II类超导体,且具有比低温超导体更高的临界磁场和临界电流,因此是更接近于实用的超导材料,特别是在低温下的性能比传统超导体高得多。 一、高温超导材料 1、高温超导线带材高温超导体在强电方面众多的潜在应用(如:磁体、电缆、限流器、电机等)都需要研究和开发高性能的长线带材(千米量级)。所以,人们先后在YBCO、BSCCO及 Mg B线材带化实 2

无机非金属材料的应用现状与发展趋势

非金属材料的应用现状与发展趋势 无机非金属材料(inorganic nonmetallic materials)是以某些元素的氧化物、碳化物、氮化物、卤素化合物、硼化物以及硅酸盐、铝酸盐、磷酸盐、硼酸盐等物质组成的材料。是除有机高分子材料和金属材料以外的所有材料的统称。无机非金属材料的提法是20世纪40年代以后,随着现代科学技术的发展从传统的硅酸盐材料演变而来的。无机非金属材料是与有机高分子材料和金属材料并列的三大材料之一。无机非金属材料工程是材料学中的一个专业。无机非金属材料工程是为了培养具备无机非金属材料及其复合材料科学与工程方面的知识,能在无机非金属材料结构研究与分析、材料的制备、材料成型与加工等领域从事科学研究、技术开发、工艺和设备设计、生产及经营管理等方面工作的高级工程技术人才。 本专业学生主要学习无机非金属材料及复合材料的生产过程、工艺及设备的基础理论、组成、结构、性能及生产条件间的关系,具有材料测试、生产过程设计、材料改性及研究开发新产品、新技术和设备及技术管理的能力。我国无机非金属材料工业的发展中存在很多问题,特别是传统的无机非金属材料与国外先进水平有非常大的差距,主要有: (1) 产品等级低 在传统无机非金属材料中,无论是水泥、玻璃还是陶瓷的产品等级普遍偏低。例如:发达国家的水泥熟料强度一般都在70MPa以上,而我国平均强度仅为50 MPa。我国高等级水泥(ISO≥)仅占18%,大量生产的是中、低等级水泥(ISO≤),而很多发达国家的高等级水泥占90%以上。 (2) 资源消耗高 在资源的消耗方面,水泥和陶瓷工业更为突出。由于大量的无序开采,未能充分利用有限资源,造成了极大浪费。例如:生产水泥熟料的主要原料是相对优质的石灰石,其化学成份须满足CaO含量不低于45%、MgO不高于3%等要求。我国符合水泥生产要求,可以使用的量仅约250亿吨。目前每年生产水泥消耗的优质石灰石约亿吨,因此该储量仅可生产水泥熟料约200亿吨,仅能提供约40年的水泥生产

工程材料的历史、现状与发展

工程材料的历史、现状与发展 §1 工程材料的历史、现状和发展 材料:人类用以制作有用物件的物质 新材料:主要是指最近发展起来或正在发展之中的具有特殊功能和效用的材料。 人类先后经历了:石器时代——铁器时代——钢铁时代(高分子时代半导体时代先进陶瓷时代复合材料时代),这说明以学一种类材料为主导的时代已经一不复返了。材料的发展已进入丰富多采的时代,而以保护资源、环境和生态为目的的材料设计思想已形成新的潮流,即“生态环境材料”。 材料分类:金属材料无机非金属材料(陶瓷)有机高分子材料复合材料 一、金属材料 1、特点:由于其主要通过金属键结合而成,因此金属有比高分子材料高得多的模量,有比陶瓷高得多的韧性、可加工性、磁性和导电性。 2、近年来金属材料的纵深发展: 1)高纯材料 2)高强度及超高强度金属材料 3)超易切削钢和超高易切削钢 4)硬质合金和金属陶瓷 5)高温合金与难熔合金 6)纤维增强金属基复合材料 7)共晶合金定向凝固材料 8)快速冷凝金属非晶及微晶材料 9)有序金属间化合物 10)超细纳米颗粒金属材料 11)形状记忆合金 12)贮氢合金 3、金属材料的发展趋势 二、无机非金属材料(陶瓷ceramic)的特点 陶瓷是泛指一切经高温处理而获得的无机非金属材料,除先进(特种)陶瓷外,还包括玻璃、搪瓷、水泥和耐火材料等。从狭义上讲,用无机非金属化合物粉体,经高温烧结而成,以多晶聚积体为主的固态物均称为陶瓷,即先进的陶瓷。 先进陶瓷的化学键是由共价键与离子键组成,具有优良的耐高温、耐磨、耐腐蚀的特点。 三、复合材料的特点 复合材料,是指由不同材料组合而成,在新制成的材料中,原来各材料的特性得到了充分的应用,而且复合后可望获得单一材料得不到的新功能材料。 近代复合材料包括: 1、软质复合材料,具有高强度、高质量的特点。如橡胶与纺织材料结合在一起,人造丝、尼龙、金属纤维 2、硬质复合材料,“玻璃钢”代表(又增强纤维与合成树脂制成的复合材料。 §2 制造(工艺)技术发展的历史、现状和趋势

中国能源现状分析

中国能源现状分析 1、能源消费需求不断增加 能源就是经济与社会发展得动力,人们对更高生活水平得追求导致能源消费需求得增加。2005~2009年,中国得GDP年增长率都在10%上下,与此想对应得就是,能源需求平均增速为7、45%,远高于同期世界能源消费得平均增速为1、65%(见图1)。 图1 世界与中国能源消费增加速度 资料来源:BP世界能源统计、中国能源统计年鉴 2、能源消费结构不合理

在能源消费需求不断增加得同时,我国得能源消费结构相对不合理,主要体现为:新能源比例低,常规能源“多煤、缺油、少气”。 2005~2009年,我国得能源消费结构中,新能源比例低于3、1%,而世界得平均水平为12%;常规能源中,煤炭得比例占74%以上,而世界能源消费结构中,以石油为主,煤炭比重略高于天然气(见图2、3)。 图2 2005~2009年世界能源消费结构

图3 2005~2009年中国能源消费结构 资料来源:BP世界能源统计、中国能源统计年鉴 3、能源危机与环境危机 能源消费需求得快速增加,使常规能源面临枯竭得危机。如果以2009年得能源探明储量、生产量、消费量为基础,中国已探明储量得常规能源仅能开采、消费不足35年,而这一数字得全世界平均值也仅不足80年。在无重大能源发现或能源消费结构无重大变化得情况下,全世界常规能源在未来100年内消耗殆尽,而石油可能就是最先枯竭得能源(见图4、5)。

图4 2009年中国、世界能源储产比 图5 2009年中国、世界能源储消比储产比=2009年已探明储量/2009年得生产量;

储消比=2009年已探明储量/2009年得消费量。 资料来源:BP世界能源统计2010年6月 常规能源得消费带来一系列得环境问题,如气候变化、酸雨。 常规能源得消费产生正在使全世界得温室气体浓度快速上升。根据世界气象组织WMO发布得《温室气体公报》,全球二氧化碳、甲烷、氧化亚氮得平均浓度比工业革命前(1750年前)分别增加了38%、158%与19%。温室气体增加带来得冰川融化,海平面上升,极端天气贫乏等诸多环境灾难。 2010年中国监测得443个城市中,189个城市出现酸雨,8个城市(区)酸雨频率为100%,也就就是说逢雨必酸。 4、新能源繁荣与困境 能源危机、环境危机已经引起世界各国得高度重视,发展新能源无疑就是不二选择,而目前技术最成熟得水电、核电、风电、太阳能发电与热利用成为各国最佳选择。 1)新能源得繁荣 今年年初得能源工作会议上提出,十二五能源发展得主要目标就是: 一次能源消费总量控制在40亿吨标煤,2009年这一数字为29、2亿吨标煤,即2010~2015年得年均增速低于7、4%(前文提到,2005~2009这一数字为7、45%)。就目前瞧来,这一目标基本可以实现。 非化石能源在一次能源消费中比重达十二五末达11、4%,十三五末达15%。即到2015年非化石能源消费折合标煤约4、6亿吨标煤(2009年这一数字为0、9

高温超导材料的特性与表征

四川理工学院 材料物理性能 高温超导材料论文 【摘要】 在本实验中我们的主要目的是通过通过氧化物高温超导材料特性的测量和演示,加深理解超导体的两个基本特性,即零电阻完全导电性和完全抗磁性。我们还通过此实验对不同的温度计(铂电阻温度计和硅二极管温度计)进行比较。我们采用的是四引线测量法,利用低温恒温器和杜瓦容器测量了超导电性,绘制了超导样品的电阻温度曲线,验证了超导在高温冷却电阻突然降为零的电特性。我们也绘制了磁悬浮力与超导体-磁体间距的关系曲线,对其进行了分析。在进行磁悬浮的实验中我们验证了超导体的混合态效应和完全抗磁性。 关键词: 超导体零电阻温度完全磁效应磁场 一、引言: 1911年H.K.Onnes首次发现在4.2K水银的电阻突然消失的超导现象,此温度也被称为临界温度。根据临界温度的不同,超导材料可以被分为:高温超导材料和低温超导材料。

但这里所说的高温,其实仍然是远低于冰点0℃的,对一般人来说算是极低的温度。1933年,迈斯纳和奥克森菲尔德两位科学家发现,如果把超导体放在磁场中冷却,则在材料电阻消失的同时,磁感应线将从超导体中排出,不能通过超导体,这种现象称为抗磁性。经过科学家们的努力,超导材料的磁电障碍已被跨越,下一个难关是突破温度障碍,即寻求高温超导材料1973年,发现超导合金――铌锗合金,其临界超导温度为23.2K,这一记录保持了近13年。此后,科学家们几乎每隔几天,就有新的研究成果出现。1987年底,铊-钡-钙-铜-氧系材料又把临界超导温度的记录提高到125K。 高温超导体具有更高的超导转变温度(通常高于氮气液化的温度),有利于超导现象在工业界的广泛利用。高温超导体的发现迄今已有16年,而对其不同于常规超导体的许多特点及其微观机制的研究,却仍处于相当“初级”的阶段。这一点不仅反映在没有一个单一的理论能够完全描述和解释高温超导体的特性,更反映在缺乏统一的、在各个不同体系上普遍存在的“本征”实验现象。 本实验中,我们通过对氧化物超导材料特性的测量和演示,加深理解超导体的两个基本特性;了解金属和半导体的电阻随温度的变化及温差电动势;了解超导磁悬浮的原理;掌握液氮低温技术。 二、原理: 物理原理: 1.超导现象及临界参数 (1)零电阻现象 1911年,卡麦林·翁纳斯用液氮冷却水银线并通以几毫安电流,在测量其电压时发现,当温度稍低于液氮沸点时,水银电阻突然降为零,这就是零电阻现象或超导现象。具有此现象的物体称为超导体。只有在直流条件下才会存在超导现象,在交流下电阻不为零。 临界温度是指当电流,磁场及其他外部条件保持为零或不影响测量时,超导体呈现超导态的最高温度。我们用电阻法测定超导临界温度。 (2)MERSSNER效应 1933年,迈斯纳和奥克森菲尔德两位科学家发现,如果把超导体放在磁场中冷却,则在材料电阻消失的同时,磁感应线将从超导体中排出,不能通过超导体,而且,不管加磁场的顺序如何,超导体内磁场总为零。这种现象称为抗磁性即MERSSNER效应。 3)超导体分类 超导体分为两类第1类超导体是随温度变化只分为超导态和正常态,第2类是在超导态和正常态中间部分还存在混合态。 纯金属材料的电阻特性 纯金属材料的电阻产生于晶体的电子被晶格本身和晶格中的缺陷的热振动所散射。ρ=ρL(T)+ρ R,其中ρL(T)表示晶格热振动对电子散射引起的电阻率,与温度有关。ρ r表示杂质和缺陷对电子的散射所引起的电阻率,不依赖与温度,与杂质和缺陷的密度成正比,称为剩余电阻率。 半导体材料电阻温度特性 ρi=1/nie(μe+μp) 本征半导体的电阻率ρi与载流子浓度ni及迁移率μ=μe+μp有关, 因ni随温度升高而成指数上升,迁移率μ随温度增高而下降较慢,故本证半导体电阻率随温度上升而电调下降。 实验仪器及其原理:

超导材料基础知识介绍

超导材料基础知识介绍 超导材料具有在一定的低温条件下呈现出电阻等于零以及排斥磁力线的性质的材料。现已发现有28种元素和几千种合金和化合物可以成为超导体。 特性超导材料和常规导电材料的性能有很大的不同。主要有以下性能。 ①零电阻性:超导材料处于超导态时电阻为零,能够无损耗地传输电能。如果用磁场在超导环中引发感生电流,这一电流可以毫不衰减地维持下去。这种“持续电流”已多次在实验中观察到。 ②完全抗磁性:超导材料处于超导态时,只要外加磁场不超过一定值,磁力线不能透入,超导材料内的磁场恒为零。 ③约瑟夫森效应:两超导材料之间有一薄绝缘层(厚度约1nm)而形成低电阻连接时,会有电子对穿过绝缘层形成电流,而绝缘层两侧没有电压,即绝缘层也成了超导体。当电流超过一定值后,绝缘层两侧出现电压U(也可加一电压U),同时,直流电流变成高频交流电,并向外辐射电磁波,其频率为,其中h为普朗克常数,e为电子电荷。这些特性构成了超导材料在科学技术领域越来越引人注目的各类应用的依据。 基本临界参量有以下 3个基本临界参量。 ①临界温度:外磁场为零时超导材料由正常态转变为超导态(或相反)的温度,以Tc表示。Tc值因材料不同而异。已测得超导材料的最低Tc是钨,为0.012K。到1987年,临界温度最高值已提高到100K左右。 ②临界磁场:使超导材料的超导态破坏而转变到正常态所需的磁场强度,以Hc表示。Hc与温度T 的关系为Hc=H0[1-(T/Tc)2],式中H0为0K时的临界磁场。 ③临界电流和临界电流密度:通过超导材料的电流达到一定数值时也会使超导态破态而转变为正常态,以Ic表示。Ic一般随温度和外磁场的增加而减少。单位截面积所承载的Ic 称为临界电流密度,以Jc表示。 超导材料的这些参量限定了应用材料的条件,因而寻找高参量的新型超导材料成了人们研究的重要课题。以Tc为例,从1911年荷兰物理学家H.开默林-昂内斯发现超导电性(Hg,Tc=4.2K)起,直到1986年以前,人们发现的最高的 Tc才达到23.2K(Nb3Ge,1973)。1986年瑞士物理学家K.A.米勒和联邦德国物理学家J.G.贝德诺尔茨发现了氧化物陶瓷材料的超导电性,从而将Tc提高到35K。之后仅一年时间,新材料的Tc已提高到100K左右。这种突破为超导材料的应用开辟了广阔的前景,米勒和贝德诺尔茨也因此荣获1987年诺贝尔物理学奖金。 分类超导材料按其化学成分可分为元素材料、合金材料、化合物材料和超导陶

国内外耐磨衬板发展现状

国内外耐磨衬板发展现状 摘要:本文针对冶金机械中刮板机衬板,铁矿烧结机衬板,球磨机衬板,运煤系统等的磨损问题,对国内外常用各类耐磨衬板进行对比,指出各类耐磨衬板的耐磨性能,耐高温性能,抗冲击性能及经济效益的优劣,并指出其所适合的工况类别,最后展望了国内外耐磨衬板领域研究的发展趋势。 关键词:耐磨白口铸铁衬板;高锰钢衬板;磁性衬板;双金属复合耐磨板;合金衬板 耐磨衬板,是指耐磨钢板通过切割、卷板变形、打孔和焊接等生产工艺加工,用于运输和丌采设备上的耐磨部件。冶金、矿山、机械、铁路、建材、煤炭、电力、化工、农机和军工等各部门均使用大量的耐磨材料。目前,国内外广泛使用高锰钢作为设备耐磨材料的首选。然而许多研究结果表明,在弱冲击载荷作用下,高锰钢并不耐磨。因为水韧处理后的高锰钢,初始硬度低(仅HRC20左右),在中等冲击载荷作用下不能产生足够的加工硬化,导致强度和韧性均不足。所以国内外纷纷研制新的耐磨材料取代高锰钢作为新的耐磨材料。选择适应不同情况的衬板材料可使物流顺畅,经久耐用,是实现安全、文明生产的一大课题。 1.耐磨白口铸铁衬板 耐磨白口铸铁可分为普通白口铸铁和高铬白口铸铁两个发展

阶段。是历史上主要的耐磨件。 1.1普通白口铸铁 在战国时期出土的农具文物金相组织中发现了蠕虫样石墨组织,这就是可锻铸铁,成分测定表明其为低硅高碳高锰高硫的完全白口组织[1]。普通白口铸铁合金元素含量很低,硬质点少,显微组织是P+网状渗碳体或低温莱氏体。网状渗碳体脆性大,裂纹倾向明显,极易断裂和磨损失效。但是由于它生产工艺简单,在历史上被应用了很长一段时间。一些学者对白口铸铁的微合金化做了不少研究,一定程度上改善了白口耐磨铸铁的力学性能和使用性能。白口铸铁在等温淬火热处理后得到贝氏体组织,内部的粒状的共晶碳化物可以提高冲击韧性,被用来制造小型耐磨衬板[2]。 不添加合金元素的普通白口铸铁,工程上被应用于: (1)耐磨性要求不高的抗磨铸件。 (2)可锻铸铁白口胚件。 用于抗磨铸件的化学成分特点为含碳量高、含硅量低,目的是增加渗碳体数量提高耐磨性。可锻铸铁白口胚件的成分却含硅相对偏高,含碳偏低,以加速石墨化退火过程,改善退火石墨形状。 1.2高铬铸铁 其基体组织硬度很高,在低冲击载荷下能较好地抵抗切削磨损,铁铬碳化物颗粒作为硬质相镶嵌在基体上,基体起了支撑作用并能减缓切削效果,从而使高铬铸铁具备了很好的耐磨性。其缺点是冲击韧性和抵抗裂纹扩展的能力差。当载荷增大时容易在碳化物颗粒处萌生微裂纹,有可能使工件断裂而整体失效。并且

高温超导材料临界转变温度

实验 预习说明 1.附录不必看,因为示波器改用Kenwood CB4125A 型,它的使用指南见实验室说明资料。 2.测量B-H 曲线,用示波器直接测出R 1上的电压值u 1(3.11.1)式和电容上电压值u C ()式。 3.由于R 1、R 2和C 值不确定,仍需要用教材方法标定B 0、H 0,但是(3.11.7)、()式中L x 、L y 分别用标 定时的电压u x 、u y 代替。u x 、u y 为电压的峰峰值。 选做实验 高温超导材料临界转变温度的测定 一.引言 1911年荷兰物理学家卡默林翁纳斯(Kamerling Onnes)首次发现了超导电性。这以后,科学家们在超导物理及材料探索两方面进行了大量的工作。二十世纪五十年代BCS 超导微观理论的提出,解决了超导微观机理的问题。二十世纪六十年代初,强磁场超导材料的研制成功和约瑟夫森效应的发现,使超导电技术在强场、超导电子学以及某些物理量的精密测量等实际应用中得到迅速发展。1986年瑞士物理学家缪勒(Karl Alex Muller)等人首先发现La-Ba-Cu-O 系氧化物材料中存在的高温超导电性,世界各界科学家在几个月的时间内相继取得重大突破,研制出临界温度高于90K 的 Y-Ba-Cu-O (也称YBCO )系氧化物超导体。1988年初又研制出不含稀土元素的Bi 系和Tl 系氧化物超导体,后者的超导完全转变温度达125K 。超导研究领域的一系列最新进展,特别是大面积高温超导薄膜和临界电流密度高于105A/cm 2 Bi 系超导带材的成功制备,为超导技术在各方面的应用开辟了十分广阔的前景。测量超导体的基本性能是超导研究工作的重要环节,临界转变温度T C 的高低则是超导材料性能良好与否的重要判据,因此T C 的测量是超导研究工作者的必备手段。 二.实验目的 1.通过对氧化物超导材料的临界温度T C 两种方法的测定,加深理解超导体的两个基本特性; 2.了解低温技术在实验中的应用; 3.了解几种低温温度计的性能及Si 二极管温度计的校正方法; 4.了解一种确定液氮液面位置的方法。 三.实验原理 1.超导现象及临界参数 1)零电阻现象 我们知道,金属的电阻是由晶格上原子的热振动(声子)以及杂质原子对电子的散射造成的。在低温时,一般金属(非超导材料)总具有一定的电阻,如图1所示,其电阻率 与温度T 的关系可表示为: 50AT +=ρρ (1) 式中0是T =0K 时的电阻率,称剩余电阻率,它与金属的纯度和晶格的完整性有关,对于实际的金属,其内部总是存在杂质和缺陷,因此,即使使温度趋于绝对零度时,也总存在 0。 1911年,翁纳斯在极低温下研究降温过程中汞电阻的变化时,出乎意料地发现,温度在附近,汞的 电阻急剧下降好几千倍(后来有人估计此电阻率的下限为1023cm ,而迄今正常金属的最低电阻率 仅为1013cm ,即在这个转变温度以下,电阻为零(现有电子仪表无法量测到如此低的电阻),这就是零电阻现象,如图2所示。需要注意的是只有在直流情况下才有零电阻现象,而在交流情况下电阻不为零。 目前已知包括金属元素、合金和化合物约五千余种材料在一定温度下转变为具有超导电性。这种材料称为超导材料。发生超导转变的温度称为临界温度,以T C 表示。 图1 一般金属的电阻率温度关系 图2 汞的零电阻现象 T 0 105 电 阻 ︵ ︶ T (K)

硬质合金刀具材料的研究现状与发展思路

硬质合金刀具材料的研究现状与发展思路 作者:佚名来源:不详发布时间:2008-11-21 23:35:38 发布人:admin 减小字体增大字体 材料、结构和几何形状是决定刀具切削性能的三要素,其中刀具材料的性能起着关键性作用。国际生产工程学会(CIRP)在一项研究报告中指出:“由于刀具材料的改进,允许的切削速度每隔10年几乎提高一倍”。刀具材料已从20世纪初的高速钢、硬质合金发展到现在的高性能陶瓷、超硬材料等,耐热温度已由500~600℃提高到1200℃以上,允许切削速度已超过1000m/min,使切削加工生产率在不到100 年时间内提高了100多倍。因此可以说,刀具材料的发展历程实际上反映了切削加工技术的发展史。 常规刀具材料的基本性能 1) 高速钢 1898 年由美国机械工程师泰勒(F.W.Taylor)和冶金工程师怀特(M.White)发明的高速钢 至今仍是一种常用刀具材料。高速钢是一种加入了较多W、Mo、Cr、V等合金元素的高合金工具钢,其含碳量为0.7%~1.05%。高速钢具有较高耐热性,其切削温度可达600℃,与碳素工具钢及合金工具钢相比,其切削速度可成倍提高。高速钢具有良好的韧性和成形性,可用于制造几乎所有品种的刀具,如丝锥、麻花钻、齿轮刀具、拉刀、小直径铣刀等。但是,高速钢也存在耐磨性、耐热性较差等缺陷,已难以满足现代切削加工对刀具材料越来越高的要求;此外,高速钢材料中的一些主要元素(如钨)的储藏资源在世界范围内日渐枯竭,据估计其储量只够再开采使用40~60年,因此高速钢材料面临严峻的发展危机。 2) 陶瓷 与硬质合金相比,陶瓷材料具有更高的硬度、红硬性和耐磨性。因此,加工钢材时,陶瓷刀具的耐用度为硬质合金刀具的10~20倍,其红硬性比硬质合金高2~6倍,且化学稳定性、抗氧化能力等均优于硬质合金。陶瓷材料的缺点是脆性大、横向断裂强度低、承受冲击载荷能力差,这也是近几十年来人们不断对其进行改进的重点。 陶瓷刀具材料可分为三大类:①氧化铝基陶瓷。通常是在Al2O3基体材料中加入TiC、WC、ZiC、TaC、ZrO2等成分,经热压制成复合陶瓷刀具,其硬度可达93~95HRC,为提高韧性,常添加少量Co、Ni等金属。②氮化硅基陶瓷。常用的氮化硅基陶瓷为Si3N4+TiC+Co复合陶瓷,其韧性高于氧化铝基陶瓷,硬度则与之相当。③氮化硅—氧化铝复合陶瓷。又称为赛阿龙(Sialon)陶瓷,其化学成分为77%Si3N4+13%Al2O3,硬度可达1800HV,抗弯强度可达1.20GPa,最适合切削高温合金和铸铁。 3) 金属陶瓷 金属陶瓷与由WC构成的硬质合金不同,主要由陶瓷颗粒、TiC和TiN、粘结剂Ni、Co、M o等构成。金属陶瓷的硬度和红硬性高于硬质合金,低于陶瓷材料;其横向断裂强度大于

超导材料研究现状及其应用

超导材料研究现状及其应用 [摘要]:本文主要介绍了超导现象,超导的应用及我国超导研究现状。 [关键词]:超导现象超导的应用超导研究现状 材料是人类赖以生存和发展的物质基础,某一种新材料的问世及其应用,往往会引起人类社会的重大变革因此使用什么样的材料制造工具往往成为人类文明发达程度的一个重要标志。人们把人类历史分为石器、青铜器和铁器时代。在群居洞穴的猿人旧石器时代,通过简单加工获得石器帮助人类狩猎护身和生存,随着对石器加工制作水平的提高,出现了原始手工业如制陶和纺织,人们称之为新石器时代。青铜时代大约源于4000-5000年前。青铜是铜锡铝等元素组成的合金,与纯铜相比,青铜熔点低,硬度高,比石器易制作且耐用。青铜器大大促进了农业和手工业的出现。铁器时代则被认为是始于2000多年前,春秋战国时代,由铁制作的农具、手工工具及各种兵器,得以广泛应用,大大促进了当时社会的发展。钢铁、水泥等材料的出现和广泛应用,人类社会开始从农业和手工业社会进入了工业社会。本世纪半导体硅、高集成芯片的出现和广泛应用,则把人类由工业社会推向信息和知识经济社会。 超导现象 1911年,荷兰物理学家昂尼斯发现,水银的电阻率并不象预料的那样随温度降低逐渐减小,而是当温度降到4.15K附近时,水银的电阻突然降到零.为了证实这一现象,他用磁铁在水银环路中感应出电流,经过长达一年多的观察发现,只要水银环路保持在4.15K的低温,环路中的电流就不会有能测量到的衰减,电流不断地沿着环路转起来,就像不知疲倦的一匹马一样.当温度降到某一温度时,金属的电阻变为零的现象叫超导现象,能够发生超导现象的物质,叫做超导体.超导体由正常态转变为超导态的温度称为这种物质的转变温度(或临界温度) T C.现已发现大多数金属元素以及数以千计的合金、化合物都在不同条件下显示出超导性.如钨的转变温度为0.012K,锌为0.75K,铝为1.196K,铅为7.193K.而且超导临界温度的纪录不断地被打破,例如,1975年,有人发现铌三锗的超导临界温度为23.2K.1986年,又有人发现钡镧铜氧化物的超导临界温度为30K,这个现象引起了科学家对氧化物高温超导陶瓷的高度重视.1986年12月,中国科学院的赵忠贤研究组获得了起始转变温度为48.6K的锶镧铜氧化物.1987年2月,美籍华裔科学家、美国休斯敦大学的朱经武教授获得了起始转变温度为90K的高温超导陶瓷.1987年3月,中国科学院公布了起始转变温度为93K的8种钡钇铜氧化物.1988年,中国科学院发现了超导临界温度 为120K的钛钡钙铜氧化物.这些成就显示了我国高 温超导材料的研究已经名列世界前茅 超导应用 寻找工业应用永远是推动研究的推动力。从应用角 度看,初期的超导材料很容易被外界磁场所抑制。 实际应用困难较多。被称为I型超导材料。能在强 Fig.4, Hc2 vs Tc [17]

耐磨金属材料的最新研究现状

耐磨金属材料的最新研究现状 关键词:耐磨材料;锰钢;抗磨白口铸铁;技术进展 摘要:耐磨金属材料被广泛地应用于工业生产的各个领域, 而随着科学技术和现代工业的高速发展,由于金属磨损而引起的能源和金属材料消耗增加等所造成的经济损失相当惊人。近年来,对金属磨损和耐磨材料的研究,越来越引起国内外人们的广泛重视。本文概述了国内外耐磨金属材料领域研究开发的现状及取得的一系列新进展。 0 引言 随着科学技术和现代工业的高速发展,机械设备的运转速度越来越高,受摩擦的零件被磨损的速度也越来越快,其使用寿命越来越成为影响现代设备(特别是高速运转的自动生产线)生产效率的重要因素。尽管材料磨损很少引起金属工件灾难性的危害,但其所造成的能源和材料消耗是十分惊人的。据统计,世界工业化发达的国家约30%的能源是以不同形式消耗在磨损上的。如在美国,每年由于摩擦磨损和腐蚀造成的损失约1000亿美元,占国民经济总收入的4%。而我国仅在冶金、矿山、电力、煤炭和农机部门,据不完全统计,每年由于工件磨损而造成的经济损失约400亿元人民币[1]。因此,研究和发展耐磨材料,以减少金属磨损,对国民经济的发展有着重要的意义。 1国外耐磨金属材料的发展 国外耐磨材料的生产和应用经过了多年研究与发展的高峰期,现已趋于稳定,并有自己的系列产品和国家标准、企业标准。经历了从高锰钢、普通白口铸铁、镍硬铸铁到高铬铸铁的几个阶段,目前已发展为耐磨钢和耐磨铸铁两大类。 耐磨钢除了传统的奥氏体锰钢及改性高锰钢、中锰钢以外,根据其含量的不同可分为中碳、中高碳、高碳合金耐磨钢;根据合金元素的含量又可分为低合金、中合金及高合金耐磨钢;根据组织的不同还可分为奥氏体、贝氏体、马氏体耐磨钢。而耐磨铸铁主要包括低合金白口铸铁和高合金白口铸铁两大类。二者中最具有代表性的是低铬白口铸铁和高铬白口铸铁,而且这两种材料目前在耐磨铸铁中占有主导地位。马氏体或贝氏体、马氏体组织的球墨铸铁在制作小截面耐磨件方面也占有一席之地,中铬铸铁则应用较少。从整体上看,合金白口铸铁的耐磨性优于耐磨铸钢,但后者韧性好,在诸如衬板、耐磨管道等方面有着广泛的应用[2]。 2 我国耐磨金属材料的发展 据统计,国内每年消耗金属耐磨材料约达300万吨以上,应用摩擦磨损理论防止和减轻摩擦磨损,每年可节约150亿美元。近年来,针对设备磨损的具体工况和资源情况,研制出多种新型耐磨材料。主要有改性高锰钢、中锰钢、超高锰钢

高温超导材料1.29

高温超导材料 高温超导材料,是具有高临界转变温度(Tc)能在液氮温度条件下工作的超导材料。因主要是氧化物材料,故又称高温氧化物超导材料。 1.结构 高温超导材料不但超导转变温度高,而且成分多是以铜为主要元素的多元金属氧化物,氧含量不确定,具有陶瓷性质。氧化物中的金属元素(如铜)可能存在多种化合价,化合物中的大多数金属元素在一定范围内可以全部或部分被其他金属元素所取代,但仍不失其超导电性。除此之外,高温超导材料具有明显的层状二维结构,超导性能具有很强的各向异性。 已发现的高温超导材料按成分分为含铜的和不含铜的。含铜超导材料有镧钡铜氧体系(Tc=35~40K)、钇钡铜氧体系(按钇含量不同,T发生复化。最低为20K ,高可超过90K)、铋锶钙铜氧体系(Tc=10~110K)、铊钡钙铜氧体系(Tc=125K)、铅锶钇铜氧体系(Tc约70K)。不含铜超导体主要是钡钾铋氧体系(Tc约30K)。已制备出的高温超导材料有单晶、多晶块材,金属复合材料和薄膜。高温超导材料的上临界磁场高,具有在液氦以上温区实现强电应用的潜力 2.特性 超导体得天独厚的特性,使它可能在各种领域得到广泛的应用。但由于早期的超导体存在于液氦极低温度条件下,极大地限制了超导材料的应用。人们一直在探索高温超导体,从1911年到1986年,75年间从水银的4.2K提高到铌三锗的23.22K,才提高了19K。

1986年,高温超导体的研究取得了重大的突破。掀起了以研究金属氧化物陶瓷材料为对象,以寻找高临界温度超导体为目标的“超导热”。全世界有260多个实验小组参加了这场竞赛。 1986年1月,美国国际商用机器公司设在瑞士苏黎世实验室科学家柏诺兹和缪勒首先发现钡镧铜氧化物是高温超导体,将超导温度提高到30K;紧接着,日本东京大学工学部又将超导温度提高到37K;12月30日,美国休斯敦大学宣布,美籍华裔科学家朱经武又将超导温度提高到40.2K。 2月15日美国报道朱经武、吴茂昆获得了98K超导体.2月20日,中国也宣布发现100K以上超导体.3月3日,日本宣布发现123K超导体.3月12日中国北京大学成功地用液氮进行超导磁悬浮实验.3月27日美国华裔科学家又发现在氧化物超导材料中有转变温度为240K的超导迹象.很快日本鹿儿岛大学工学部发现由镧、锶、铜、氧组成的陶瓷材料在14℃温度下存在超导迹象.高温超导体的巨大突破,以液态氮代替液态氦作超导制冷剂获得超导体,使超导技术走向大规模开发应用.氮是空气的主要成分,液氮制冷机的效率比液氦至少高10倍,所以液氮的价格实际仅相当于液氦的1/100.液氮制冷设备简单,因此,现有的高温超导体虽然还必须用液氮冷却,但却被认为是20世纪科学上最伟大的发现之一. 高温超导体通常是指在液氮温度(77 K)以上超导的材料。人们在超导体被发现的时候(1911年),就被其奇特的性质(即零电阻,反磁性,和量子隧道效应)所吸引。但在此后长达七十五年的时间内所有已发现的

超导材料应用与制备概况

摘要:新型超导材料一直是人类追求的目标。本文主要从超导材料的性质,制 备,应用等方面探索超导材料科学的发展概况。随着高温超导材料制备方法的不断成熟,超导材料将越来越多的应用于尖端技术中去,超导材料的应用将给电工技术带来质的飞跃,因此,超导材料技术有着重大的应用发展潜力,可解决未来能源,交通,医疗和国防事业中的重要问题。 关键词:超导材料强电应用弱电应用超导制备 1. 引言 1911年荷兰科学家onnes发现纯水银在附近电阻突然消失,接着发现其他一些金属也有这样的现象,随着人们在Pb和其它材料中也发现这种性质:在满足临界条件(临界温度Tc,临界电流Ic,临界磁场Hc)时物质的电阻突然消失,这种现象称为超导电性的零电阻现象。只是直流电情况下才有零电阻现象,这一现象的发现开拓了一个崭新的物理领域。 超导材料具有1)零电阻性2)完全抗磁效应3)Josephson效应。这些性质的研究与应用使得超导材料的性能不断优化,实现超导临界温度也越来越高。一旦室温超导达到实用化、工业化,将对现代科学技术产生深远的影响。 2. 超导材料主要制备技术 控制和操纵有序结晶需要充分了解原子尺度的超导相性能。有序、高质量晶体的超导转变温度较高 ,晶体质量往往强烈依赖于合成技术和条件。目前,常用作制备超导材料的技术主要有: 2.1.1单晶生长技术 新超导化合物单晶样品有多种生长方法。溶液生长和气相传输生长法是制备从金属间氧化物到有机物各类超导体的强有力工具。溶液生长的优点就是其多功能性和生长速度 ,可制备出高纯净度和镶嵌式样品。但是 ,它并不能生产出固定中子散射实验所需的立方厘米大小的样品。浮动熔区法常用来制备大尺寸的样品 ,但局限于已知的材料。这种技术是近几年出现的一些超导氧化物单晶生长的 主要技术。这种技术使La 2 - x Sr x CuO 4 晶体生长得到改善 ,允许对从未掺杂到高度 掺杂各种情况下的细微结构和磁性性能进行细致研究。在T 1Ba 2 Ca 2 Cu 3 O 9+d 和 Bi 2Sr 2 CaCu 2 O 8 中 ,有可能削弱无序的影响从而提高临界转变温度。最近汞基化合 物在晶体生长尺寸上取得的进展 ,使晶体尺寸较先前的纪录高出了几个数量级。但应该指出的是即使是高 Tc的化合物 ,利用溶液生长技术也可制备出高纯度的YBCO等单晶。 2.1.2高质量薄膜技术 目前 ,薄膜超导体技术包括活性分子束外延(MBE ) 、溅射、化学气相沉积和脉冲激光沉积等。MBE能制造出足以与单个晶体性能相媲美的外延超导薄膜。在晶格匹配的单晶衬底上生长的外延高温超导薄膜 ,已经被广泛应用于这些材料物理性质的基础研究中。在许多实验中薄膜的几何性质拥有它的优势 ,如可用光刻技术在薄膜上刻画细微的特征;具备合成定制的多层结构或超晶格的潜能。 在过去的 20年里 ,多种高温超导薄膜生长技术快速发展。有些技术已经适用于其它超导体的制备。目前所使用主要方法有溅射和激光烧蚀(脉冲激光沉积)。类似分子束外延这种先进薄膜生长技术也已经发展得很好。臭氧或氧原

相关主题
文本预览
相关文档 最新文档