当前位置:文档之家› 强冲击荷载作用下混凝土材料动态本构模型

强冲击荷载作用下混凝土材料动态本构模型

强冲击荷载作用下混凝土材料动态本构模型
强冲击荷载作用下混凝土材料动态本构模型

第29卷第3期2008年9月

固体力学学报

C H IN ESE J OU RNAL O F SOL I

D M EC HAN ICS

Vol.29No.3

September2008

强冲击荷载作用下混凝土材料动态本构模型3

刘海峰1,233 宁建国1

(1北京理工大学爆炸科学与技术国家重点实验室,北京,100081)(2宁夏大学土木与水利工程学院,银川,750021)

摘 要 基于混凝土强冲击荷载作用下的实验研究,以修正Ottosen四参数破坏准则为流动法则,引入损伤,构造了一个塑性与损伤相耦合的动态本构模型用于描述混凝土材料的冲击特性.在该模型中,考虑了引起混凝土材料弱化的两种不同的损伤机制:拉伸损伤和压缩损伤.其中,拉伸损伤是由微裂纹的张开和扩展引起的,通过拉伸应变来控制;压缩损伤相关于微空洞体积分数比的演化,并通过微空洞塌陷引起的压缩应变来控制,由此压缩损伤和拉伸损伤就完全耦合了.通过模型计算模拟结果与实验结果比较发现,随着冲击速度的提高,混凝土的峰值应力显著增加,即混凝土材料的承载能力增大,同时混凝土内部产生显著的塑性变形.模拟曲线与实验曲线拟合良好,因而可以用该模型模拟混凝土材料在强冲击荷载下的动态特性.

关键词 混凝土,轻气炮,冲击特性,动态本构模型

0 引言

混凝土是目前工业与民用建筑中最常用的结构工程材料,已经被广泛地应用于高层建筑物,长跨桥,大坝,水电站,隧道和码头等.这些混凝土结构在其工作过程中除了承受正常的设计载荷外,往往还要承受诸如爆炸,冲击和撞击等动载荷.为了更好地设计和分析这些混凝土结构,必须对混凝土材料在冲击载荷作用下的力学性能及其本构特性进行研究.

目前,人们对混凝土材料的动态力学性能已经有了比较深刻的认识和研究,对其动态本构特性也做了许多研究工作.Wat stein[1]利用落锤装置进行了混凝土材料的动态力学性能实验,由于落锤本身的惯性,所测得的实验结果很难确保是材料动态性能的真实反应;Bischoff[2]和胡时胜等[3]利用SHPB 压杆对混凝土的动态力学性能进行了实验研究;商霖等[4,5]利用SH PB压杆和轻气炮动力实验装置分别对混凝土材料和钢筋混凝土材料在冲击荷载作用下的力学性能进行了系统深入的研究.混凝土材料动态本构模型是研究其在爆炸或冲击荷载作用下损伤破坏机理,应力波的传播规律和衰减规律,结构破坏效应等的理论基础.基于对混凝土材料变形机理的分析,混凝土材料动态本构模型分为粘塑性本构模型[6,7]和损伤型本构模型[8,9],但由于缺乏对混凝土材料在冲击荷载作用下破坏机理的全面认识,因此至今仍未有一种大家普遍接受的本构模型.为了更好地描述冲击荷载作用下混凝土材料的动态响应特性,商霖等[4,5]在理想各向同性的粘弹性本构关系的基础上,引入损伤,分别建立混凝土材料和钢筋混凝土材料的动态本构模型,但没有将定义的损伤与材料的微观损伤机制联系起来;宁建国等[10]提出了一个塑性与损伤相耦合的动态本构模型,在该模型中,认为拉伸损伤是由微裂纹的张开和扩展引起的;压缩损伤由微孔洞的塌陷引起,通过混凝土材料的塑性体应变控制,但并没有将这两种损伤有效的耦合起来.

本文基于损伤与塑性耦合理论,以修正的Otto sen四参数破坏准则为屈服法则,引入损伤,构造了一个动态本构模型用于描述混凝土材料的冲击特性,利用该模型对混凝土材料在强冲击荷载作用下的冲击特性进行数值模拟,并将该模型的预测曲线与宁建国等[10]提出的本构模型的预测曲线及实验结果进行比较,结果表明:模型预示结果无论在变形趋势上,还是数值精度上都与实验结果符合得很好.

3 33国家自然科学基金项目(10625208,10572024)资助.

2007209225收到第1稿,2008204204收到修改稿.

通信作者. Tel:010*********, E2mail:liuhaifeng1557@https://www.doczj.com/doc/4d5779103.html,.

1 本构模型建立

1.1 本构关系

在小应变的前提下,遵循应变分解假定,

将应变的增量可以分解为弹性部分和塑性部分,即

εij = εe ij + εp

ij (1)弹性变形与应力之间满足弹性关系εe ij =M ij kl σkl (2)

式中,M ij kl 为柔度张量,假设弹性和塑性之间不存在

耦合,则M ij kl 为常张量.

M ij kl =

12G I ij kl +1

9K

δij

δkl σkl (3)

其中,G 和K 为材料的剪切模量和体积模量,与材

料的杨氏模量E ,泊松比ν满足下列关系

G =E/2(1+ν

), K =E/3(1-2

ν) I ij kl 为特殊等同张量

I ij kl =I ij kl -δij δkl /3, I ij kl =(δik δjl +δjk

δil )/2将上述表达式代入式(3)得到以ν,E 表示的柔度张量 M ij kl =

1

E 1

2

(1+ν)(δik δjl +δil δjk )-νδij

δkl (4)

将式(4)代入式(2),并两边对时间求导得 εe

ij =

1E 1

2

(1+ν)(δik δjl +δil δjk )-νδij δkl σkl

(5)

将式(5)代入式(1)得 εij =

1E 12

(1+ν)(δik δjl +δil δjk )-νδij δkl σkl + εp

ij (6)塑性应变率由下式控制

εp

ij =γ〈<(F )〉5F σij

(7)

式中,γ为流变系数,F 为屈服函数,采用修正后Ottosen 屈服准则;函数<(F )=(e F -1)m 1,其中m 1

为常数;函数〈x 〉定义如下

〈x 〉=

0,

x ≤0x ,

x >0

将式(7)代入式(6)得 εij =

1

E 1

2

(1+ν)(δik δjl +δil δjk )-νδij δkl σkl + γ〈<(F )〉5F

σij

(8)

1.2 Otto sen 屈服法则及其修正

Ottosen [11]于1977年研究混凝土材料时提出

了如下的四参数破坏准则

F (σij )=A

J 2f 2c

+λJ 2f c +B I 1

f c -1=0(9)

其中,f c 为在准静态情况下混凝土的单轴抗压强

度;A 和B 为常数;λ=λcos (3

θ)>0,其中θ为应力角

θ=13arccos 33J 3

2J 3/2

2

I 1,J 2和J 3分别为应力张量第一不变量,应力偏量第二不变量和第三不变量

I 1=σkk , 

J 2=1

2

s ij s ij J 3=13s ij s jk s ki , s ij =σij -1

3

σkk

δij 函数δij 由下式定义

δij =

0,i ≠j 1,

i =j

根据等边三角形的薄膜比拟法则,可以得到偏平面λ的表达式为

λ=1γ=

k 1cos arccos k 2cos (3

θ)/3, co s (3θ)≥0

k 1cos π/3-arcco s -k 2co s (3θ), co s (3

θ)<0其中,k 1为尺寸因子,k 2为形状因子,其数值由λt (

θ=0)和λc (

θ=π/3)来确定.Otto sen 模型中的四个参数k 1,k 2,A 和B 由混凝土的单轴抗拉强度,单轴抗压强度,双轴等压强度和三轴等压强度的数据确定.取双轴等压强度f b c =1.16f c (Kupfer 等)[12];三轴强度ξ/f c =-5和r/f c =4(Balmer 和Richart [13,14]).当f 0=f t /f c 取不同

数值时,各参数的变化如表1所示.

表1 Ottosen 模型参数表

Table 1 Parameter table of Ottosen model

f 0=f t /f c

A

B

k 1

k 2

λt λc λc /λt 0.081.80764.096214.48630.991414.47257.78340.53780.101.27593.196211.73650.980111.71096.53150.55770.12

0.9218

2.5969

9.9110

0.9647

9.8720

5.6979

0.5772

在Ottosen 法则中:当A =0,λ为常数时,Otto 2sen 准则退化为经典Drucker 2Prager 准则;当A =B =0,λ为常数时,Ottosen 准则退化为von Mises 准

则;λ为常数时,和Hsieh 2Chen 混凝土弹塑性硬化

模型非常相似.同时由于该模型与他人实验数据拟合很好,因此得到广泛应用.

?232?固 体 力 学 学 报 2008年

借鉴Lemaitre 等[15]提出的三轴等效应力概念,用等效屈服应力Y d 替代式(9)中的f c ,得到如下修正后的Otto sen 屈服法则

F (σij )=A

J 2Y 2d

+λJ 2Y d +B I 1

Y d -1=0(10)

等效屈服应力Y d 定义如下Y d =σeq R 1/2

ν(11)

其中,σeq 为等效应力,σeq =3/2s ij s ij ;R ν为三轴函

数,用于揭示静水压力对塑性变形的影响,可以表示

如下

R ν=2

3(1+ν)+3(1-2ν)P σeq

2

(12)

冲击荷载作用下,在一维应力条件下σeq 等于动

态应力强度σd ,由大量实验研究可知[16218]

,混凝土材料在高应变率下单轴抗压强度σd 和准静态情况下的单轴抗压强度f c 具有如下关系

σd =f c f ( ε)(13)

其中,f (

ε)为应变率相关函数,目前常见的有幂数型和对数型[16218],本文采用如下形式

f ( ε)=H 1(lo

g ε)2+H 2log ε+H 3

其中,H 1,H 2和H 3为常数,由实验数据拟合得到.

将式(13)代入式(11)得到

Y d =

23

(1+ν)σ2

d +3(1-2

ν)P 2(14)

其中,P 为相应于动态应力强度σd 时的静水压力.

2 损伤的引入

混凝土各组成部分之间力学性能相差很大,而且内部存在大量的微裂纹和微空洞缺陷.在外荷载的作用下,由于微裂纹和微空洞缺陷的存在,使混凝土的力学性能产生弱化效应,为了表征这种弱化效应,把材料某种程度的弱化定义为损伤D.

Lemait re [19,20]应变等价性原理:损伤材料(D ≠0)在有效应力作用下产生的应变与同种材料无损

(D =0)时发生的应变等价.根据这一原理,受损材

料(D ≠0)应力2应变本构关系可以从无损材料(D =0)的本构方程来导出,只要用损伤后的有效应力

来取代无损材料本构关系中的名义应力.即通常所谓的Cauchy 应力

σij =

σij

1-D

(15)

其中, σij 为有效应力,σij 为名义应力,D 为损伤因子,

0≤D ≤1,当D =0时,表示材料无损伤,D =1时,表

示材料完全丧失承载能力.用式(15)中 σij 替代式

(8)中σij ,得到包含损伤的混凝土本构关系

εij

1E 12(1+ν)(δik δjl +δil δjk )-νδij δkl ? σkl (1-D )+σkl D

(1-D )2

+γ〈<(F 1)〉5F 15σij (16)其中

F 1(σij )=A

J 2(1-D )2Y 2d +λJ 2

(1-D )Y d +B

I 1

(1-D )Y d

-1

由于混凝土内部存在大量的微裂纹和微空洞缺

陷,因此损伤D 由两部分引起.一部分是由于混凝土内部微裂纹的张开和扩展引起的,通过拉伸应变来控制,设由于微裂纹引起的损伤部分为D t ;另一部分是由于混凝土内部的微空洞引起的,通过压缩应变来控制,设由于微空洞引起的损伤部分为D c .因此损伤D 为这两部分耦合,为简单计算,设损伤

D 为D t 和D c 的线性组合,即D =αD t +(1-α

)D c ,α为权重系数,0≤α≤1,α=0表示损伤D 完全由微空洞缺陷引起,α=1,表示损伤D 全部是由微裂纹的张开和扩展引起的.2.1 微裂纹损伤变量的描述2.1.1 微裂纹损伤的定义

混凝土内部存在大量随机分布的微裂纹,其大小和尺寸各不相同,在动态和冲击载荷作用下,这些微裂纹被激活,形成应力释放区,并产生累积损伤,导致材料强度和刚度的劣化,并最终开裂破坏.假设这些微裂纹符合理想微裂纹体系统条件,定义宏观损伤D t 为含裂纹材料中单位体积内微裂纹所占的比例,且损伤是不可逆,则

D t =V d V

=V -V s

V

, D t ≥

0(17)其中,V 是含损伤材料的体积,V s 是体积V 内无损

伤部分的体积,V d 是体积V 中微裂纹所占体积.

设含微裂纹代表性体积单元内单位体积微裂纹密度分布函数为n,则n d v 表示t 时刻体积在v 2v +d v 范围内的微裂纹数.因此损伤D t 可以表示如下

D t =

nv d v (18)

其中,v 为单个微裂纹的特征体积,n (a,t )是理想微裂

纹体系统中的数密度分布函数,满足下列演化方程

5n 5t +5(n a )

5t

=n N

(19)?

332?第3期 刘海峰等: 强冲击荷载作用下混凝土材料动态本构模型

其中,n N为微裂纹的成核率密度, a为微裂纹的扩展速率,对于理想微裂纹系统

n N=n N(a,σ(t)), a= a(a,σ(t))

对式(18)求导得

D t=( D t)g+( D t)n

(

D t)g=∫∞0n v d v (

D t)n=∫∞0n N v d v (20)

式(20)表明,损伤变量D t的变化是由裂纹线性尺度的长大和成核两个部分引起的.

2.1.2 微裂纹的扩展

微裂纹的成核过程是一个随机过程,并用成核率密度n N来描述,其大小与应力状态及微裂纹的尺寸有关,借鉴白以龙[21]给出的如下成核密度表达式

 n N=K th σ

t

σ

th

-1

a

a th

m-1

exp-a

a th

m

(21)

其中,K th,m和a th为材料常数,与材料的性质有关, a为微裂纹的尺寸,σth是微裂纹成核的阈值应力,只有应力σt>σth微裂纹成核,并且扩展,否则保持不变,上述参数均可以通过实验来确定.σt是混凝土内部引起微裂纹损伤演化的拉伸应力,与混凝土外部作用荷载σ不相同,但具有某种函数关系.为简单计算,采用σt=k|σ|,其中k为应力转化因子,表征材料内部微损伤对其内部场的影响.对于压缩情况,k <1;对于拉伸情况k>1,具体取值参见Ortiz 等[22,23]的工作.

根据文献[24]裂纹失稳脆性断裂临界条件,可以得到微裂纹损伤演化发展的阈值应力σth=K IC/

Yπa th,Y是形状系数,与试件几何形状,载荷条件和裂纹大小,位置等有关系,本文取Y=1;K IC 是材料的断裂韧度,表示材料抵抗裂纹失稳扩展能力的物理量,可以由实验确定.

假设混凝土材料内微裂纹是钱币状,则单个微裂纹的特征体积可以表示如下[25]

v=βa3(22)其中,β是几何因子,依赖于微裂纹的形状和尺寸.

将式(22),(21)代入式(20)第三式得到由于微裂纹成核引起损伤的增加为

(

D t)n=3K th σ

t

σ

th

-1?

∫∞0a a th m-1exp-a a th mβ2a5d a 当m=1时,上式简化为

(

D t)n=360K thβ2a6th

σ

t

σ

th

-1

由于a th为10-3m量级,因此可以忽略微裂纹成核引起的损伤增加,只考虑混凝土原有微裂纹长大引起的损伤增加.

王道荣[26]在I型裂纹扩展研究的基础上,提出了如下微裂纹扩展速率的计算公式

a

a

=

1-ν2

2λ1E

π(σ2

t-

σ2th)C R(23)其中,λ1为材料单位表面能;C R为瑞利波波速,由下式确定

C R=

0.862+1.14ν

1+ν

E

2(1+ν)ρ

其中,ρ为材料密度.其它参数同前.

将式(23)代入式(20)第二式得

(

D t)g=∫∞03nβa3 a a d v=

3(1-

ν2)

2λ1E

π(σ2

t-

σ2th)C R D t(24)代入式(20)第一式得

D t=3(1-ν2)

2λ1E

π(σ2

t-

σ2th)C R D t(25)积分得

 D t=D t0exp3(1-

ν2)

2λ1E

π(σ2

t-

σ2th)C R(t-t0)(26)其中,D t0是混凝土材料初始损伤值,t0是裂纹扩展的初始时间.

2.2 微空洞损伤变量的描述

2.2.1 微空洞损伤变量的定义

混凝土内部随机分布了大量的微空洞.在爆炸或冲击荷载作用下,随着微空洞的塌陷,混凝土材料压缩密实,体积模量也相应增大,由此出现了损伤为负值的情况,把这种损伤为负值的损伤称为负损伤D c.

假设这些微空洞的分布是均匀的,并以其体积百分比f3(表示为材料孔隙度δ与密度ρ的乘积)作为表征材料内部损伤的度量

D c=f3=δρ

2.2.2 微空洞损伤演化方程

G r jeu等[27]根据质量守恒定律推出了微空洞的演化方程,认为微空洞的演化由材料的体积应变控制.微空洞的扩展方程表示为

f3=(1-f3) εkk(27)利用以上演化方程,可得到微空洞体积百分比f3的

?

4

3

2

?固 体 力 学 学 报 2008年

表示形式

f3=1-(1-f30)e-εkk(28)其中,f30(=δ0ρ0)是初始微空洞体积百分比,δ0是混凝土材料的初始孔隙度,ρ0是混凝土材料的初始密度.

3 模型参数的确定

选用一级轻气炮动力实验装置在200m/s2500 m/s速度范围内冲击混凝土圆柱形靶板,靶板试件应变率响应范围达到了104s-12105s-1,横向约束围压应力范围在1GPa21.5GPa之间.研究中,共做了7发弹体冲击靶板的实验,其中3发实验取到了比较满意的实验信号.飞片和靶板采用同质材料,其原料配比和物理参数见表2和表3.飞片直径为75 mm,厚度为5mm,靶板由5块相同的圆盘形试件组成,试件直径为70mm,厚度为5mm,在圆盘形试件之间安装双螺旋形锰铜压阻传感器(共3个,分别对应于测试点No1,No2,No3),用于记录冲击信号.为了分析方便,取其加载段应变率平均值为实验响应应变率,实验可近似看作是恒应变率的.图12图3为不同冲击速度下混凝土材料应力应变曲线,并与本文提出的本构模型进行了比较,模型参数见表4.

表2 混凝土试件组份材料配合比

Table2 Composition of concrete specimens

组份水泥粉煤灰硅灰砂子水HSG A E 配比/g3005020540100 2.5 2.5

表3 混凝土物理参数表

Table3 Parameter table of concrete

杨氏模量E/GPa 泊松比

ν

材料密度

ρ/kg?m23

孔隙度

δ0/cm3?g-1

410.223500.041

表4中,参数k1,k2,A和B由混凝土的单轴拉伸、单轴压缩实验,结合表1确定;参数H1,H2和H3通过对实验数据拟合得到;断裂韧度K IC和λ1取自断裂力学手册;针对不同的加载情况,裂纹成核尺度a th的量级约取为1mm;由于没有相应的微观测试方法,参考文献[28]中岩石材料,混凝土材料初始损伤值D t0的具体取值见表4;参数k

可以通过在裂纹

?

5

3

2

?

第3期 刘海峰等: 强冲击荷载作用下混凝土材料动态本构模型

扩展阈值应力σth与混凝土材料弹性极限σs之间建立关系,将其粗略求得;屈服参数m1,γ和α通过利用试凑法不断拟合逼近已有实验结果得到.

表4 模型参数表

Table4 Table of model parameter for concrete

屈服参数材料参数m1γλ1/MJ?m-2

10.010.08

状态参数

A B k1k2

1.27593.196211.73650.9801

损伤参数

K IC/MPa?m k D t0a th/m

0.90.40.070.001

拟合参数

H1H2H3α

0.1340.1351.2960.8

图12图3为不同冲击速度下混凝土靶板内部在不同的测试点(测试点分别为No1,No2,No3)位置处的模型预测曲线与实验测试曲线的比较,从图中可以看出,模型预示结果无论在变形趋势上,还是数值精度上都与实验结果符合得很好.同时将本文提出的本构模型预测曲线与宁建国等[10]提出的本构模型预测曲线进行了比较,发现本文提出的本构模型预测曲线与实验结果拟合较好.

通过对图12图3不同靶板内同一测点处(如测点No1或No2或No3)在不同冲击速度下应力应变曲线的比较发现,随着冲击速度的提高,混凝土的承载能力显著增加,即图中峰值应力增大,相应的峰值应变亦显著增加,即混凝土材料的塑性变形增大.这主要是两方面的原因,一方面由于混凝土材料是率相关材料,受到应变率效应的影响,另一方面由于静水压力相关性的影响,横向的约束压力限制了混凝土材料裂纹的发展.

4 结论

混凝土材料在冲击荷载作用下的响应是一个非常复杂的过程,不仅涉及了材料内部微结构损伤缺陷的演化发展,而且还涉及了材料应变率敏感效应影响.进行混凝土材料特性研究的时候,不可能将所有的因素都考虑进去,因此必须根据混凝土材料在冲击荷载作用下的宏观现象作了一些假设,以此简化计算.

本文基于损伤与塑性耦合理论,以修正Otto sen 四参数破坏准则为屈服法则,引入损伤,发展了一个动态本构模型用于描述混凝土材料的冲击特性,在该模型中,考虑了引起混凝土材料弱化的两种不同的损伤机制:拉伸损伤和压缩损伤.其中,拉伸损伤是由微裂纹的张开和扩展引起的,通过拉伸应变来控制;压缩损伤相关于微空洞体积分数比的演化,并通过微空洞塌陷引起的压缩应变来控制,将总的损伤看成是这两种损伤的线性组合,由此压缩损伤和拉伸损伤就完全耦合了.宏观上,假设混凝土材料是一个均匀连续体;而从细观角度来看,混凝土材料内部则存在了大量随机分布的微裂纹和微空洞等损伤缺陷.假设微裂纹是均匀分布,且符合理想微裂纹体系统条件,定义含裂纹材料中单位体积内微裂纹所占的比例来表征微裂纹损伤所引起的混凝土材料宏观力学性能的劣化.基于裂纹扩展模型,微裂纹被激活、成核并扩展.当累积裂纹达到某一阈值时,混凝土材料发生粉碎性破坏.同时需要考虑微空洞的演化发展,且随着微空洞的塌陷,混凝土材料压缩密实.利用该模型对混凝土材料在强冲击荷载作用下的冲击特性进行数值模拟,并将该模型的预测曲线与宁建国等[10]提出的本构模型的预测曲线及实验结果进行比较,结果表明:该模型预示结果无论在变形趋势上,还是数值精度上都与实验结果符合得更好.因此,可以用该模型模拟混凝土材料在强冲击荷载下的动态特性.

参考文献

[1] Watstein D.Effect of strain rate on the compressive

strength and elastic properties of concrete[J].Journal

of American Concrete Institute,1953,49(8):7292

744.

[2] Bischoff P https://www.doczj.com/doc/4d5779103.html,pressive behavior of concrete at

high strain rates[J].Material and Structure,1991,144

(24):4252450.

[3] 胡时胜,王道荣,刘剑飞.混凝土材料动态力学性能实

验研究[J].工程力学,2001,18(5):1152118.(Hu S

S,Wang D R,Liu J F.Experimental study of dynamic

?

6

3

2

?固 体 力 学 学 报 2008年

mechanical behavior of concrete[J].Engineering Me2

chanics,2001,18(5):1152118.(in Chinese))

[4] 商霖,宁建国.强冲击载荷下混凝土动态本构关系

[J].工程力学,2005,22(2):1162119.(Shang L,Ning

J G.Dynamic constitutive relationship of concrete

subjected to shock loading[J].Engineering mechan2

ics,2005,22(2):1162119.(in Chinese))

[5] 商霖,宁建国,孙远翔.强冲击载荷作用下钢筋混凝土

本构关系的研究[J].固体力学学报,2005,26(2):

1752181.(Shang L,Ning J G,Sun Y X.The constitu2

tive relationship of reinforced concrete subjected to

shock loading[J].Acta Mechanics Solida Sinica,

2005,26:1752181.(in Chinese))

[6] Perzyna P.Fundamental problems in visco2plasticity

[J].Advances in Applied Mechanics,1966,9:2432

377.

[7] 李兆霞.一个综合模糊裂纹和损失的混凝土应变软化

本构模型[J].固体力学学报,1995,16(1):22230.(Li

Z X.A viscoplastic model combined damage and

smeared crack for softening of concrete[J].Acta Me2

chanics Solida Sinica,1995,16:22230.(in Chinese)) [8] Krajcinovic D,Silva M.Statistical aspects of the con2

tinuous damage mechanics[J].International Journal of

Solids and Structures,1982,18:5512562.

[9] Dube J F.Rate dependent damage model for concrete

in dynamics[J].Journal of Engineering Mechanics,

1996,122:9392947.

[10] 宁建国,商霖,孙远翔.混凝土材料冲击特性的研究

[J].力学学报,2006,38(2):1992208.(Ning J G,

Shang L,Sun Y X.Investigation on impacting behav2

ior of concrete[J].Chinese Journal of Theoretical and

Applied Mechanics,2006,38(2):1992208.(in Chi2

nese))

[11] Ottosen N S.A failure criterion for concrete[J].Jour2

nal of Engineering Mechanics,1977,103:5272535. [12] Kupfer H,Hilsdorf H K,Rusch H.Behavior of con2

crete under biaxial stresses[J].Journal of American

Concrete Institute,1969,66:6562666.

[13] Richart F E,Brandtzaeg A,Brown R L.A study of the

failure of concrete under combined compressive stres2

ses[Z].Bulletin No.185,Urbana:University of Illi2

nois,Engineering Experiment Station,1928.

[14] Balmer G G.Shearing strength of concrete under high

triaxial stress computation of Mohrs envelope as

curve[R].Report No.SP223,Washington D C:Struc2

tural Research Laboratory,1949.

[15] Lemaitre J,Chaboche J L.Aspect phenomenologique

de la rupture par endommagement[J].Journal de

Mecanique Applique,1978,2(3):3172365.

[16] Abrams D A.Effect of rate of application of load on

the compressive strength of concrete[J].Journal of

American Society for Testing Materials,1917,17:

3642377.

[17] Bischoff P H,Perry S H.Impact behavior of plain

concrete in uniaxial compression[J].Journal of Engi2

neering Mechanics,1995,121(6):6852693.

[18] Tang T X,Malvern L E,J enkins D A.Dynamic com2

pressive testing of concrete and mortar[J].Journal of

Engineering Mechanics,1984,1:6632666.

[19] Lemaitre J.Application of damage concepts to predict

creep fatigue failure[J].Journal of Engineering Mate2

rials and Technology,1979,101(1):2022209.

[20] 勒迈特J.损伤力学教程[M].北京:科学出版社,

1996.(Lemaitre J.A Course on Damage Mechanics

[M].Beijing:Science press,1996.(in Chinese)) [21] 白以龙.冲击载荷下材料的损伤和破坏[C]//王礼立,

余同希,李永池.冲击动力学进展.安徽:中国科学技

术大学出版社,1992:34257.(Bai Y L.Damage and

breakage of material subjected to impact loading

[C]//Wang L L,Yu T X,Li Y C.Devolvement of dy2

namic mechanic.Anhui:press of University of Science

and Technology of China,1992:34257.(in Chinese)) [22] Ortiz M,Popov E P.A physical model of the inelasti2

city of concrete[J].Proceeding of the Royal Society,

London,Series A,Mathematical and Physical Sci2

ences,1982,383:1012125.

[23] Ortiz M,Popov E P.Plain concrete as a composite

material[J].Mechanics of Material,1982,1:1392150.

[24] 王铎.断裂力学[M].哈尔滨:哈尔滨工业大学出版

社,1989.(Wang D.Fracture Mechanics[M].Harbin:

Harbin institute of technology press,1989.(in Chi2

nese))

[25] Mura T.Micromechanics of defects in solids[M].

Dordrecht:Martinus Nijhoff publisher,1987. [26] 王道荣.高速侵彻现象的工程分析方法和数值模拟研

究[D].安徽:中国科学技术大学,2002.(Wang D R.

Research on numerical simulation and engineering a2

nalysis methods of penetration phenomenon at high

speed[D].Anhui:University of Science and Technol2

ogy of China,2002.(in Chinese))

[27] G r jeu M,Michel J C,Suquet P.A micromechanical

approach of damage in viscoplastic materials by evolu2

tion in size,shape and distribution of voids[J].Com2

puter Methods in Applied Mechanics and Engineer2

?

7

3

2

?

第3期 刘海峰等: 强冲击荷载作用下混凝土材料动态本构模型

ing ,2000,183:2232246.

[28] Taylor L M ,Chen E P.Kuszmaul J S.Micro 2crack

induced damage accumulation in brittle rock under

dynamic loading[J ].Journal of Computer Methods in Applied Mechanics and Engineering ,1986,55:3012332.

CONSTITUTIVE MODE L OF CONCRETE

SUBJECTED TO INTENSE IMPACT LOADING

Haifeng Liu 1,2 Jianguo Ning 1

(1S tate Key L aboratory of Ex plosive S cience and Technolog y ,B ei j ing I nstitute of Technolog y ,B ei j ing ,100081)

(2Civil and hy d raulic Engineering De partment of N ing x ia Universit y ,Yinchuan ,750021)

Abstract Based on t he damage and Ottosen failure criterion ,a constit utive model is developed to in 2vestigate t he mechanical behavior of concrete subjected to intense impact loading.Different damage mecha 2nisms such as tensile and comp ressive damage are considered in t his model.Suppose t he tensile damage con 2t rolled by t he tensile st rain is caused by micro 2cracks opening and st retching ,t he compressive damage con 2t rolled by comp ressive st rain is about t he evolutio n of micro 2voids.So t he tensile damage and compressive damage are coupling.Experimental result s indicate t hat wit h t he increase of impact velocity ,t he bearing ca 2pacity and plastic deformation of concrete enhance greatly.A comparison between model p rediction and ex 2perimental result s shows t hat bot h of t hem agree well wit h each ot her.So t he model can be used to simu 2late t he dynamic mechanical behavior of concrete.

K ey w ords concrete ,light gas gun ,impact behavior ,dynamic constit utive model

?

832?固 体 力 学 学 报 2008年

混凝土结构材料的力学性能(精)

第一章混凝土结构材料的力学性能 一、钢筋的品种、等级 我国在钢筋混凝土结构中目前通用的为普通钢筋,按化学成分的不同,分有碳素结构钢和普通低合金钢两类。 按照我国《混凝土结构设计规范》(GB50010—2002)的规定,在钢筋混凝土结构中所用的国产普通钢筋有以下四种级别: (1)HPB235(Q235):即热轧光面钢筋(Hotrolled Plain Steel bars)235级; (2)HRB335(20MnSi):即热轧带肋钢筋(Hotrolled Ribbed Steel bars)335级; (3)HRB400(20MnSiV、20MnSiNb、20MnTi):即热轧带肋钢筋(Hotrolled Ribbed Steel bars)400级; (4)RRB400(K20MnSi):即余热处理钢筋(Remained heat treatment Ribbed Steel bars)400级。 在上述四种级别钢筋中,除HPB235级为光面钢筋外,其他三级为带肋钢筋。 目前我国生产的上述普通钢筋,其性能和使用特点为: 1.HPB235级钢筋 是一种低碳钢(通称I级钢筋)。强度较低,外形光圆钢筋(图1-1),它与混凝土的粘结强度较低,主要用作板的受力钢筋、箍筋以及构造钢筋。 2.HRB335级钢筋 低合金钢(通称Ⅱ级钢筋)。为增加钢筋与混凝土之间的粘结力,表面轧制成外形为等高肋(螺纹),现在生产的外形均为月牙肋(图1-1)。是我国钢筋混凝土结构构件钢筋用材最主要品种之一。 3.HRB400级钢筋 低合金钢(通称新Ⅲ级钢筋),外形为月牙肋,表面有“3”的标志,有足够的塑性和良好的焊接性能,主要用于大中型钢筋混凝土结构和高强混凝土结构构件的受力钢筋,是我国今后钢筋混凝土结构构件受力钢筋用材最主要品种之一。 4.RRB400级钢筋 是用HRB335级钢筋(即20MnSi)经热轧后,余热处理的钢筋。这种钢筋强度较高,有足够塑性和韧性,但当采用闪光对焊时,强度有不同程度的降低,即塑性和可焊性较差,使用时应加以注意。这种钢筋一般经冷拉后作预应力钢筋。

《荷载与结构设计方法》试题+参考答案1

《荷载与结构设计方法》试题+参考答案1 一、填空题(每空1分,共20分) 1.作用按时间的变异分为:永久作用,可变作用,偶然作用_ 2. 影响结构抗力的因素有:材料性能的不定性,几何参数的不定性,计算模式的不定性.. 3.冻土的四种基本成分是_固态的土颗粒,冰,液态水,气体和水汽. 4.正常使用极限状态对应于结构或者构件达到_正常使用或耐久性能_的某项规定限值. 5. 结构的可靠性是_安全性,适用性,耐久性__的总称. 6.结构极限状态分为_承载能力极限状态,正常使用极限状态_. 7. 结构可靠度的确定应考虑的因素,除了公众心理外,还有结构重要性,社会经济承受力,结构破坏性质 二.名词解释(10分) 1. 作用:能使结构产生效应(内力,应力,位移,应变等)的各种因素总称为作用(3分) 2. 地震烈度:某一特定地区遭受一次地震影响的强弱程度.(3分) 3. 承载能力极限状态:结构或构件达到最大承载力或不适于继续承载的变形,这种状态称为承载能力极限 状态.(4分) 三.简答题. (共20分) 1. 结构抗力的不定性的影响有哪些? 答:①结构材料性能的不定性、②结构几何参数的不定性、③结构计算模式的不定性。(每点1分) 2. 基本风压的5个规定. 答:基本风压通常应符合以下五个规定。①标准高度的规定。我国《建筑结构荷载规范》规定以10m 高为标准高度。②地貌的规定。我国及世界上大多数国家规定,基本风速或基本风压按空旷平坦地貌而定。③公称风速的时距。规定的基本风速的时距为10min 。④最大风速的样本时间。我国取1年作为统计最大风速的样本时间。⑤基本风速的重现期。我国规定的基本风速的重现期为30年。(每点1分)(5) 3. 简要回答地震震级和烈度的差别与联系(6) 答:①地震震级是衡量一次地震规模大小的数量等级。②地震烈度是某一特定地区遭受一次地震影响的强弱程 度。③一次地震发生,震级只有一个,然而在不同地点却会有不同的地震烈度,但确定地点上的烈度是一定的,且定性上震级越大,确定地点上的烈度也越大。④震中一般是一次地震烈度最大的地区,其烈度与震级有关。在环境条件基本相同的情况下,震级越大,震中烈度越高⑤震中烈度与震级 近似关系:0 321I M ?+ =;非震中区,烈度 与震级的关系: () 1 lg 323210+???+ ?+ =h C I M 。(前2点1分,后2点2分) 4. 简述直接作用和间接作用的区别.(6) 答:①将能使结构产生效应得各种因素总称为作用;将作用在结构上的因素称为直接作用,②将不是作用,但同样引起结构效应的因素称为间接作用。③直接荷载为狭义的荷载,广义的荷载包括直接荷载和间接荷载。(每点2分) 四、计算题(50分) 1. 计算下图中的土层各层底面处的自重应力。(10分)

《荷载与结构设计方法》试题

(一)填空题 1?作用随时间变化可分为永久作用、可变作用、偶然作用;按空间位置变异分为固定 作用、自由作用;按结构反应分类分为静态作用、动态作用。 2. 造成屋面积雪与地面积雪不同的主要原因是风的飘积作用屋面形式屋面散热等。 3. 在公路桥梁设计中人群荷载一般取值为3KN T nf市郊行人密集区域取值一般为 3.5 KN / m 4. 土压力可以分为静止土压力主动土压力被动土压力。 5. 一般土的侧向压力计算采用朗肯土压力理论或库仑土压力理论。 6. 波浪按波发生的位置不同可分为表面波内波。 7. 根据冻土存在的时间可将其分为多年冻土季节冻土瞬时冻土。 8. 冻土的基本成分有四种:固态土颗粒,冰,液态水,气体和水汽。 9. 冻土是一种复杂的多相天然复合体,结构构造也是一种非均质、各向异性的多孔介质。 10. 土体产生冻胀的三要素是水分土质负温度。 11. 冻土的冻胀力可分为切向冻胀力法向冻胀力水平冻胀力。 12. 水平向冻胀力根据它的形成条件和作用特点可以分为对称和非对称。 13. 根据风对地面(或海面)物体影响程度,常将风区分为13 等级。 14. 我国《建筑结构荷载规定》规定以10m高为标准高度,并定义标准高度处的最大风速为基本风速。 15. 基本风压是根据规定的高度,规定的地貌,规定的时距和规定的样本时间确定最大风 速的概率分布,按规定的重现期(或年保证率)确定的基本风速,然后根据风速与风压的关系所定义的。 16. 由风力产生的结构位移速度加速度响应等称为结构风效应。 17. _____ 是引起结构振动的主要原因。 18. 在地面粗糙度大的上空,平均风速小脉动风的幅度大且频率 _。 19. 脉动风速的均方差也可根据其功率谱密度函数的积分求得。 20. 横向风可能会产生很大的动力效应,即风振。 21. 横向风振是由不稳定的空气动力特征形成的,它与结构截面形状及雷诺数有关。 22. 在空气流动中,对流体质点起主要作用的是两种力惯性力和_____________ 粘性力。 23. 根据气流旋涡脱落的三段现象,工程上将圆桶试结构分三个临界范围,即亚临界范围 超临界范围跨临界范围。 24. 地震按产生的原因,可以分为火山地震陷落地震和构造地震 25. 由于地下空洞突然塌陷而引起的地震叫陷落地震而由于地质构造运动引起的地震则 称为构造地震。 26. 地幔的热对流是引起地震运动的主要原因。 27. 震中至震源的距离为震源深度,地面某处到震中的距离为震中距。 28. 地震按震源的深浅分,可分为浅源地震中源地震深源地震。 29. 板块间的结合部类型有:海岭海沟转换断戻及缝合线。 30. 震级是衡量一次地震规模大小的数量等级。 31. M 小于_2—的地震称为微震M = 2?4 为有感地震M> 5 为破坏性 地震。— 32. 将某一地址遭受一次地震影响的强弱程度定义为地震烈度。 33. 地震波分为地球内部传播的体波和在地面附诉传播的面波。 34. 影响地面运动频谱主要有两个因素:震中距_______ 和—场地条件_______ 。

第3章 材料在冲击载荷下的力学性能

材料性能学 1一14周

第三章金属在冲击载荷下的 力学性能

许多机器零件在服役时往往受到冲击载荷的作用,如火箭的发射、飞机的起飞和降落、汽车通过道路上的凹坑以及金属压力加工(铸造)等,为了评定材料传递冲击载荷的能力,揭示材料在冲击载荷下的力学行为,就需要进行相应的力学性能试验。 冲击载荷和静载荷的区别在于加载速率的不同 加载速率:载荷施加于试样或机件时的速率,用单位时间内应力增加 的数值表示。 形变速率:单位时间的变形量。加载速率提高,形变速率也增加。相对形迹速率也称为应变速率,即单位时间内应变的变化量。 冲击载荷2-104s-1 de10 d

静载荷 10-5-10-2s-1

一、冲击载荷下金属变形和断裂的特点 冲击载荷下,由于载荷的能量性质使整个承载系统承受冲击 能,所以机件、与机件相连物体的刚度都直接影响冲击过程 的时间,从而影响加速度和惯性力的大小。 由于冲击过程持续时间短,测不准确,难于按惯性力计算机件内的应力,所以机件在冲击载荷下所受的应力,通常假定冲击能全部转换为机件内的弹性能,再按能量守恒法计算。 冲击弹性变形(弹性变形以声速传播,在金属介质中为 4982m/s)能紧跟上冲击外力(5m/s)的变化,应变速率对 金属材料的弹性行为及弹性模量没有影响。 应变速率对塑性变形、断裂却有显著的影响。金属材料在冲 击载荷下难以发生塑性变形。

1.1 应变速率对塑性变形的影响 金属材料在冲击载荷作用下塑性变形难以充分进行,主要有以下两方面的原因: 1. 由于冲击载荷下应力水平比较高,使许多位错源同时起作用,结果抑制了单晶体中易滑移阶段的产生与发展。 2. 冲击载荷增加了位错密度和滑移系数目,出现孪晶,减小了位错运动自由行程平均长度,增加了点缺陷的浓度。

普通混凝土的组成及性能

模块5 普通混凝土的组成及性能 一、教学要求 1.知识要求 (1)混凝土的含义、分类; (2)混凝土组成材料的作用; (3)水泥强度等级的选择; (4)粗、细集料的含义和种类; (5)集料粗细程度和颗粒级配的含义和表示方法; (6)针、片状颗粒对混凝土质量的影响; (7)粗集料强度的表示方法; (8)混凝土拌合用水的基本要求; (9)混凝土外加剂的含义和分类,减水剂的含义、作用机理和常用品种,早强剂的含义和种类,泵送剂的含义和特点; (10)普通混凝土的和易性(流动性、黏聚性、保水性)的含义、测定方法和影响因素,恒定用水量法则的含义; (11)混凝土抗压强度试验方法、强度等级和影响因素; (12)混凝土耐久性的含义和内容,碱-集料反应产生的条件与防止措施。 2.技能要求 (1)能根据筛分结果,正确评定细集料的粗细程度和颗粒级配; (2)能合理选择粗集料的最大粒径; (3)能对普通混凝土拌合物的坍落度进行选择和调整; (4)会混凝土非标试件强度值的换算,能正确运用混凝土强度公式,能采用合理措施提高混凝土的强度; (5)能合理采用提高混凝土耐久性的具体措施。 3.素质要求 (1)培养学生严谨科学的工作和学习态度; (2)培养学生的安全和团队意识。 二、重点难点 1.教学重点 (1)砂的筛分与细度模数; (2)普通混凝土的和易性、强度、耐久性等性质; (3)混凝土强度的影响因素 (4)减水剂的含义与应用。

2.教学难点 (1)集料级配; (2)砂的筛分试验与细度模数的计算和级配评定; (3)减水剂的作用机理。 三、教学设计 【参见:学习情境教学设计(模块5)】 四、教学评价 通过理论考试和校内实验操作、企业实践见习、在线学习记录、课堂学习状态等考查,采取学生讨论和教师评价相结合的方式对学生进行考核,重点评价学生对建筑材料基础知识的掌握情况和对建筑材料综合应用的相关技能。 五、教学内容 第1讲普通混凝土用的水泥和集料 混凝土,过去简称“砼”,是指由胶凝材料将集料胶结成整体的工程复合材料。 普通混凝土是指用水泥作胶凝材料,砂、石作集料,与水(可选择添加剂和矿物掺合料)按一定比例配合,经搅拌、成型、养护而成的人造石材。 混凝土原料丰富、价格低廉、生产工艺简单、抗压强度高、耐久性能好、强度等级范围宽,在土木工程中广为使用。但也存在自重大、养护周期长、抗拉强度低、导热系数大、生产周期长、变形能力差、易出现裂缝等缺点。 ◆混凝土的分类: 按胶结材料分:水泥混凝土、沥青混凝土、石膏混凝土、聚合物混凝土等。 按体积密度分:重混凝土(ρ0>2800kg/m3)、普通混凝土(ρ0=2000-2800kg/m3)、轻混凝土(ρ0<1950kg/m3) 。 按强度等级分:普通混凝土(f c<60MPa)、高强混凝土(f c=60-100MPa)、超高强混凝土(f c >100MPa)。 按用途分:结构混凝土、水工混凝土、特种混凝土(耐热、耐酸、耐碱、防水、防辐射等)。 按施工方法分:预拌混凝土、泵送混凝土、碾压混凝土、喷射混凝土等。 ◆普通混凝土的基本组成材料是胶凝材料、粗集料(石子)、细集料(砂)和水。胶凝材料是混凝土中水泥和掺合料的总称。 砂、石在混凝土中起骨架作用,称为集料(骨料)。 胶凝材料和水形成灰浆,包裹在粗细集料表面并填充集料间的空隙。

普通混凝土的组成材料

水泥混凝土 混凝土是以胶凝材料、颗粒状集料以及必要时加入化学外加剂和矿物掺和料等组分的混合料经硬化后形成具有堆聚结构的复合材料。由水泥、砂、石子、水、外加剂组成的叫普通混凝土。 一、混凝土的特点 1、混凝土的优点 混凝土材料在建筑工程中得到广泛应用是因为与其他材料相比且有许多优点: 1)材料来源广泛: 2)性能可调整范围大: 3)易于加工成型: 4)匹配性好,维修费用少。 2、混凝土的缺点 1)自重大,比强度小: 2)抗拉强度低,变形能力差而易产生裂缝: 3)硬化时间长,在施工中影响质量的因素较多,质量波动较大。 二、混凝土的应用与发展 随着科学技术的发展,混凝土的缺点下被逐渐克服。如采用轻质骨料可显著降低混凝土的自重,提高强度;掺入纤维或聚合物,可提高抗强度,大大降低混凝土的脆性;掺入减水剂、早强剂等外加剂,可显著缩短硬化时间,改善力学性能。 混凝土的技术性能也在不断的发展,高性能混凝土(HPC)将是今后混凝土的发展方向之一。高性能混凝土除了要求具有高强度(f cu≥60MPa)等级外,还必须具备良好的工作性、体积稳定性和耐久性。 目前,我国发展高性能混凝土的主要途径主要有以下方面; 1)采用高性能的原料以及与其相适应的工艺。 2)采用多种复合途径提高混凝土的综合性能;可在基本组成材料之外加入其他有效材料,好高效减水剂、早强剂、缓凝剂、硅灰、优质粉煤灰、沸石粉等一种或多种复合的外加组分以调整各改善混凝土的浇筑性能及内部结构,综合提高混凝土的性能和质量。 3)从节约资源、能源,减少工业废料排放和保护自然环境的角度考虑,则要求混凝土及原材料的开发、生产,建筑施工作业等均应既能满足当代人的建设需要,又不危及后代人的延续生存环境,因此绿色高性能混凝土(GHPC)也将成为今后的发展方向。许多国家正在研究开发新技术混凝土,如灭菌、环境调色、变色、智能混凝土等,这些新的发展动态可以说明混凝土的潜力很大,混凝土技术与应用领域有待开拓。 三、对混凝土的基本要求 1)混凝土拌和物有一定的和易性,便于施工,并获得均匀密实的混凝土。 2)要满足结构安全所要求的强度,心承受荷载。 3)要有与工程环境相适应的耐久性。 4)在保证质量的前提下,尽量节省水泥,满足经济性的要求。

水平荷载作用下结构的内力分析

3 水平荷载作用下结构的内力分析 为了求得框架-剪力墙结构(计算简图如图3-1所示)在水平力作用下的内力,在近似法中采用了连续化方法,即将各层总连梁离散为沿楼层高度均匀分布的连续连杆。将连杆切开,则总剪力墙成为静定结构(竖向悬臂墙),如图3-2所示,它受连续连杆的未知约束力F p 和分布外荷载P(x)的作用。其中F p 可有总框架的抗推刚度f C 与结构变形曲线的二阶导数表 示,即2 2 F f d y P C d x =;b C 为总连梁的约束刚度。b C 与f C 的具体计算见刚度参数的计算。根 据梁的弯曲理论,竖向悬臂墙的荷载与挠度的微分关系可有: (3-1) 式中,w EJ 为总剪力墙的抗弯刚度。当外力可表示为简单的函数形式时,则可方便地通过求解微分方程得到总剪力墙和总框架的变形方程,进而由变形和内力的微分关系可以求出总剪力墙、总框架、总连梁的内力。连续化方法是一种十分巧妙的做法,无论实际的框架剪力墙是多少层,结构的变形方程形式都不变,因而便于手算。为了获得简便的变形方程,需要将水平荷载等效地转换成三种典型的形式(倒三角形荷载、均布荷载、顶点集中荷载),风荷载,水平地震作用的具体转换见前面一章。 3.1总剪力墙、总框架、总连梁的内力计算 由式(3-1)可推导出总剪力墙分别在三种典型水平荷载作用下的计算公式如下: 倒三角形分布荷载作用下 23 22111[(1)()()]226 f qH sh sh ch Sh y C ch λλλλξλξλξλλλλλ-=+-+--- (3-2a ) 2 2 1 [(1)()]2 2w qH sh sh ch M sh ch λλ λλξλλξξλλλλ= + - --- (3-2b) 2 2 1[(1)()1]2 2w qH sh sh sh V ch ch λλ λλλξλλλξλλλλ = + - --- (6-2b) 均布荷载作用下 22 21[()(1)(1)]2 f qH sh y ch sh C ch λλξλξλλξλξλλ+=-+- (3-3a ) 4242 ()w F b d y d y EJ P x p C d x d x =-+

荷载与结构考试试题

第1章荷载与作用 一、填空题 1.作用是施加在结构上的,或引起结构__________。 2.作用是使结构或构件产生______的______。 3.结构上的作用可分为作用和作用,荷载是作用。 4.施加在结构上的集中力或分布力称为_____,与结构本身性能______;引起结构外加变形或约束的原因称为________,该作用的大小与结构自身的性质______。 5.土木工程是________的科学技术的统称。它既指工程建设的_____,也指所应用的_____和所进行的__等专业技术。 6.土木工程结构是指由若干个____组成的_____,是土木工程的骨架,也是它们赖以存在的_____。它的主要功能是____工程在_____期间可能出现的_____,并将它们______地基。 7.现代土木工程的建造必须经过_____、_____、____3个主要环节。 8.土木工程设计包括和。是实现工程建造的目的、用途;是决定采用怎样形式的骨架将其支撑起来,怎样抵御和传递作用力,各部分尺寸如何,用什么材料制造等等。 9.工程结构设计是在工程结构的_____与经济、____与美观之间,选择一种最佳的合理的平衡,使所建造的结构满足预定的各项_______。 10.工程结构的“功能要求”是指工程结构____、____和____,统称______。 11._____和_____之间最佳的合理的平衡,就是使工程结构既经济又具有一定的可靠度。 二、多项选择 1、下列作用属于直接作用的为() A.自重 B.土压力 C.混凝土收缩徐变 D.焊接变形 E、桥梁上的车辆重量 2、下列作用属于间接作用的为() A.地基变形B.水压力C.温度变化D.地震作用 E.水中漂浮物对结构的撞击力 3、荷载效应是指() A.内力B.温度C.位移D.裂缝E.应力 三、单项选择 1、工程结构的“功能要求”(或“可靠性”)是指工程结构的() A.可靠、经济、适用、美观B.安全性、适用性和耐用性 C.安全性、经济、适用D.可靠、耐用、美观 2、荷载取值和荷载计算正确与否直接影响()的计算 A.结构抗力B.结构可靠度C.荷载效应D.结构尺寸

第二章荷载与作用

第二章荷载与作用 1.作用于高层房屋的荷载有哪两种?在地震区与非地震区分别是由哪些荷载起控制作用? 答:作用于高层房屋的荷载有两种:竖向荷载与水平荷载,竖向荷载包括结构自重和楼(屋)盖上的均布荷载,水平荷载包括风荷载和地震作用。 在多层房屋中,往往以竖向荷载为主,但也要考虑水平荷载的影响,特别是地震作用的影响。随着房屋高度的增加,水平荷载产生的内力越来越大,会直接影响结构设计的合理性、经济性,成为控制荷载。因此在非地震区,风荷载和竖向荷载的组合将起控制作用,而在地震区,则往往是地震作用与竖向荷载组合起控制作用。 2.什么是风荷载? 答:风受到地面上各种建筑物的阻碍和影响,风速会改变,并在建筑物表面上形成压力或吸力,这种风力的作用称为风荷载。 3.什么是基本风压值0w 、风载体型系数s μ、风压高度变化系数z μ、风振系数z β 答:(1)基本风压值0w 基本风压值0w 系以当地比较空旷平坦地面上离地10m 高统计所得的重现期 为50年一遇10min 平均最大风速0v (m/s )为标准,按0w =20v /1600确定的风压 值。它应根据现行《荷载规范》中“全国基本风压分布图”采用,但不得小于0.3 kN/㎡。 (2)风载体型系数s μ 风载体型系数s μ是指实际风压与基本风压的比值。它描述的是建筑物表面在稳定风压作用下静态压力的分布规律,主要与建筑物的体型与尺度有关,也与

周围环境和地面粗糙度有关。当风流经建筑物时,对建筑物不同部位会产生不同的效果,即产生压力和吸力。 μ (3)风压高度变化系数 z μ,应根据地面粗糙度类别按《荷载规范》确定。 风压高度变化系数 z β (4)风振系数 z 风对建筑结构的作用是不规则的,通常把风作用的平均值看成稳定风压(即平均风压),实际风压是在平均风压上下波动的。平均风压使建筑物产生一定的侧移,而波动风压使建筑物在平均侧移附近振动。对于高度较大、刚度较小的高层建筑,波动风压会产生不可忽略的动力效应,使振幅加大,在设计中必须考虑。 β。目前采用加大风载的办法来考虑这个动力效应,在风压值上乘以风振系数 z 4.什么是地震波?分为哪两类? 答:当震源岩层发生断裂、错动时,岩层所积蓄的变形能突然释放,它以波的形式从震源向四周传播,这种波就称为地震波。地震波按其在地壳传播的位置不同,可将其分为体波和面波。 5.什么是地震的震级?根据震级可将地震划分为哪几级? 答:地震的震级是衡量一次地震释放能量大小的等级,震级M可用公式表达如下: = A M log (2-1) 式中A即是上述标准地震记录仪在距震中100km处记录到的最大振幅。例如,在距震中100km处标准地震记录仪记录到的最大振幅A=100mm=100000μm,则=A M,即这次地震为5级。 5 = log5= 10 log 震级差一级,能量就要差32倍之多。根据震级可将地震划分为:微震(2级以下,人一般感觉不到,只有仪器才能记录到),有感地震(2~4级),破坏性地震(5级以上),强烈地震(7级以上)。

《混凝土-微观结构性能和材料》笔记

笔记之前: 1.这本书是译著。原著名:《CONCRETE Microstructure,Properties,and Materials》由库玛·梅塔( Mehta)和保罗 .蒙特罗(Paulo )合著。 2.本笔记所选摘的都是普通教材中可能忽略的地方,不体现混凝土科学的主要框架,只以本书的体色为主:细致,深入,全面。 3.作为思考混凝土某一方面研究的借鉴,目的是拓宽思路。 笔记: 第一篇硬化混凝土的微结构和性能 第一章绪论 第二章混凝土的微结构(提出了混凝土中过渡区的重要性) 第三章强度(见附图1影响混凝土强度各个因素的相互作用) 第四章尺寸稳定性 “需要注意,混凝土构件通常处于被约束的状态,约束有时来自路基的摩擦和端部的其他构件,但更多还是来自钢筋和混凝土内、外部的应变差。” “混凝土在约束状态下,干缩应变诱发的弹性拉应力和粘弹性行为带来的应力松弛之间的交互作用,是大多数结构变形和开裂的核心。” “不是所有变量都以同一种方式控制混凝土的强度和弹性模量(通常,粗骨料的弹性模量越高、用量越大,混凝土的弹性模量就越大。低强或中强 混凝土的强度不受骨料孔隙率正常变化的影响。)” (附图2 影响混凝土弹性模量的不同参数) 第五章耐久性 (附图3 混凝土劣化的物理原因) “在一种冻融环境中耐冻的混凝土在另一种组合条件下却可能被摧毁。” “经显微镜观测证实:当冰在气孔(而不是毛细孔道)中形成时,水泥浆体会收缩” “对一种骨料,临界尺寸(在一定的孔径分布、渗透性、饱和度与结冰速率条件下,大颗粒骨料可能会受冻害,但小颗粒的同种骨料则不会)并非 单一值,因为他还取决于结冰速率、饱和度和骨料的渗透性。” (附图4 化学反应引起混凝土劣化的模型) (附图5 常见环境条件下混凝土损伤的整体模型) “氯化物对硫酸盐膨胀的影响清楚地表明:我们在模拟材料行为时经常犯错误,即为了简单起见只考虑单一因素的影响,而没有充分考虑其他可能 会显著改变这种影响的因素的存在。” 第二篇混凝土原材料、配合比和早龄期性能 第六章水硬性水泥 区分水泥熟料的化学组成(氧化钙、二氧化硅、三氧化二铝、三氧化二铁、水等)与矿物组成(硅酸三钙、硅酸二钙、氯酸三钙、铁铝酸四钙等); “任何化学反应的主要特征包括物质变化、能量变化和反应速率三个方面” “水化水泥浆体的电子显微研究表明,水泥早期,水化主要以完全溶解机理为主;水化后期,由于溶液中离子的迁移受阻,剩余水泥颗粒的水化则 主要按固相反应机理进行”

水平荷载作用下的结构侧移计算

水平荷载作用下的结构侧移计算 5.1 风荷载作用下的位移验算 (1)侧移刚度(表5.1~表5.2所示) (2)风荷载作用下的框架侧移计算(表5.3~表5.4所示)。 2~5层柱的D 值得计算 采用8.8级摩擦型高强度螺栓M24,摩擦系数μ=0.4,一个螺栓的预拉力P=175kN 。 单个螺栓的抗剪承载力设计值为: N v =0.9n f μp=0.9×1.0×0.4×175kN=63kN n ≥V/N v 表5.1 2-5层柱的D 值 m 21606.5K N/m /K N 7.1026724.5669D =+?= ∑)( 表5.2 横向底层柱D 值 构件名称 = =)()(2i /5.0i ++ D= (kN/m) A 轴柱 0.236 0.329 17700.54 B 轴柱 0.472 0.393 21144.54 /m 56545.62kN m /kN 54.21144254.17700D =+?=∑)( 构件名称 = =/(2+) D= (kN/m) A 轴柱 0.236 0.105 5669.4 B 轴柱 0.472 0.191 10267.7

水平荷载作用下的框架的层间侧移可按下式计算 Δu j =j v /∑ij D 式中 j v ——第j 层的总剪力; ∑ij D —— 第j 层所有柱的抗侧刚度之和 Δj u ——第j 层的层间侧移 表5.3 集中风荷载标准值 第一层的层间侧移值求出以后,就可就可计算各楼板标高处的侧移值是该层以上各层层间的侧移之和,顶点侧移是所有各层层间侧移之和,框架在风荷载作用下侧移的计算见表5.4: 表5.4 风荷载作用下侧移的计算

水平荷载作用下框架内力的计算——D值法资料讲解

水平荷载作用下框架内力的计算——D值 法

第五章框架结构内力与位移计算 1.框架结构计算简图是如何确定的? 答:框架结构计算简图的确定: 一般情况下,框架结构忽略结构纵向和横向之间的空间联系,忽略各构件的抗扭作用,将框架结构简化为沿横方向和纵方向的平面框架,承受竖向荷载和水平荷载,进行内力和位移计算。 结构设计时一般取中间有代表性的一榀横向框架进行分析,若作用于纵向框架上的荷载各不相同,则必要时应分别进行计算。 框架结构的节点在常见的现浇钢筋混凝土结构中,梁和柱内的纵向受力钢筋都将穿过节点或锚入节点区,这时节点应简化为刚接节点;对于现浇钢筋混凝土柱与基础的连接形式,一般也设计成固定支座,即为刚性连接。 作用于框架结构上的荷载有竖向荷载和水平荷载两种。竖向荷载包括结构自重及楼(屋)面活荷载,一般为分布荷载,有时也有集中荷载。水平荷载包括风荷载和水平地震作用,一般均简化成节点水平集中力。 2.框架结构在竖向荷载作用下的内力计算采用什么方法?其基本假定与计算步骤如何? 答:框架结构在竖向荷载作用下的内力计算采用分层法。 分层法的基本假定: (1)在竖向荷载作用下,不考虑框架的侧移; (2)每层梁上的荷载对其他各层梁的影响可忽略不计。 分层法的计算步骤: (1)计算单元的确定 根据计算假定,计算时先将各层梁及其上下柱所组成的框架作为一个独立的计算单元,而按无侧移的框架进行计算(上下柱的远端均假设为固定端)。 (2)各杆件弯矩的计算 一般用结构力学中的弯矩分配法,分别计算每个单层框架中梁与柱的弯矩。 在用弯矩分配法计算各杆件的弯矩之前,应先计算各杆件在节点处的弯矩分配系数及传递系数。对底层基础处,可按原结构确定其支座形式,若为固定支座,传递系数为1/2;若为铰支座,传递系数为0。至于其余柱端,在分层计算时,假定上下柱的远端为固定端,而实际上,上下柱端在荷载作用下会产生一定转角,是弹性约束端。对这一问题,可在计算分

水平荷载计算书

水平荷载计算 7.1风荷载标准值 风压标准值计算公式为;0w w z s z μμβ= 式中,基本风压200.45/w kN m =;z μ——风压高度变化系数,建设地点位于济南市,所以地面粗造度为C 类,s μ——风荷载体型系数,由《荷载规范》查得:迎风面为0.8,背风面为0.5; z β——风振系数,因结构高度为H=19.6m<30m 可取0.1=z β B ——计算单元迎风面的宽度,取为4.2m 。 房屋高度的分布荷载标准值A w p z s w μμ0= 计算各层点的受风面积时取上层一半和下层一半之和。顶层取女儿墙高度和下层一半之和,底层计算高度从基础顶开始取。 顶层A=(1+3.6/2)X4.2=11.76M2 中间层A=3.6x4.2=15.12m2 底层A=206.79.3 215.52 6.3m =???? ??+ 4.2=18.38m2 各层楼面处风荷载标准值的计算见下表 层次 z μ z β s μ Z(m) 20(/) w kN m A(2 m ) ()KN P w 5 0.74 1.0 1.3 19.55 0.45 11.76 5.09 4 0.74 1.0 1.3 15.9 5 0.45 15.12 6.55 3 0.74 1.0 1.3 12.35 0.45 15.12 6.55 2 0.74 1.0 1.3 8.75 0.45 15.12 6.55 1 0.74 1.0 1.3 5.15 0.45 18.38 7.96 风荷载计算简图如下:

风荷载计算简图 风荷载沿房屋高度分布图

7.2 框架梁柱线刚度计算 取 4轴框架作为计算框架,考虑到楼板对梁的作用,边框架梁I=1.5I 0 中框架梁 I=2.0I 0 (I 0为不考虑楼板作用的梁截面惯性矩),梁柱均采用C30混凝土 C E =3.0710?2/m KN AC,DF 跨梁选用L3:b=250mm,h=700mm I 0=1/12bh 3 =1/12?0.25.?0.73=7.14?10-3m 4 i =EI/L=1.5EI 0/L=1.5?7.14?10-3?E/7.8=1.37?10-3E (m 3) CD 跨梁选用L2: b= 250mm, h=400mm I 0=1/12bh 3 =1/12?0.25?0.43=1.34?10-3m 4 i =EI/L=2EI 0/L=2?1.34?10-3?E/7.8=0.89?10-3E (m 3) 上部各层柱: i =0.9xEI/L=0.9xE/3.6?1/12?0.5?0.53 =1.305?10-3 E(m 3 )(0.9 折减) 底层柱: i =EI/L=E/(4.2+0.45+0.5)?1/12?0.5?0.53 =1.01?10-3 E(m 3 ) 注:计算线刚度时根据地质资料,确定基础顶离室外地面为500mm,室内外高差为 450mm,则底层高度为4.2+0.45+0.5=5.15m 各梁 柱 构 件 的 线 刚 度 经 计 算 如 下图 :

第四章水平荷载作用下的框架内力分析

第四章 水平荷载作用下的框架内力分析 4.1梁的线刚度:在计算梁的线刚度时,考虑楼板对梁刚度有利影响,认为翼 缘参加工作,为简化计算,先按矩形截面计算惯性矩,然后乘以一个增大系数。 现浇钢筋砼梁:边框架梁=1.5I 0 中框架梁=2I 0 柱、梁均采用C30混凝土 ,EC 3.0×107 kN/m2 I 0=1/12×bh 3(m 4) K B 单位:KNm 框架梁线刚度计算 4.2 框架柱侧移刚度计算 1.柱线刚度: 柱采用C30混凝土,27/100.3m kN E c ?=,首层高度4.43m,2-5层3.6m ; 柱截面:各层600 mm ×600mm 则 I 0=1/12×bh 3=10.8×10-3m 4; K C =EI/h 2.柱的侧移刚度D : 一般层: K = c b K K 2∑ K K +=2α D=2 12h K c α 首层: K =c b K K ∑ K K ++=25.0α D=212h K c α

层间侧移刚度的验算 ∑D 1/∑D 2 =1139440/1327489=0.86﹥0.7 满足要求 4.3.3水平地震作用分析(底部剪力法) 本框架结构符合底部剪力法的适用范围,故采用底部剪力法计算水平地震作用。 1. 框架自振周期计算: 用能量法计算。用能量法计算1T 的数据过程及其结果见表 表5 用能量法计算1T 的数据

s G G T i i i i 39.00889.065.02221=??=? ?=∑∑ψ 2. 考虑七度设防:а max =0.08 考虑I 组类别 Ⅱ类场地土 Tg=0.35 S 因为T 1=0.39<1.4T g =0.49 S 所以考虑顶部附加水平地震作用 底部剪力为:а1=(Tg/T1)0.9 ×а max =(0.35/0.39)0.9 ×0.08=0.073 F Ek =а1× G eq =0.073×0.85×47968.26=2976.43 kN 由公式 F i =(G i H i /ΣG j H j ) ×F Ek ×(1-δn ) 横向框架顶点位移计算 剪力分布图:

管道受坠物冲击载荷作用的数值模拟基本方法

管道受坠物冲击载荷作用的数值模拟基本方法 【摘要】管道受冲击载荷作用是复杂的非线性接触问题,本文介绍了可以进行非线性分析的有限元软件、离散元软件的概况和基本原理,以及运用它们对冲击载荷作用引起的管道动力响应过程进行数值模拟的基本方法。 【关键词】管道冲击非线性数值模拟 随着我国油气管道建设的进一步深入,石油天然气管道穿越复杂地质条件的工程实践越来越多,这些管道多沿山体坡脚埋设,可能要经过滑坡、泥石流等自然灾害高发地段,由于自然灾害所产生的高速坠落的石块容易冲击管道导致管道失效。同时,在日益发展的海洋石油开采中,海底石油管道也容易在其安装与油气输送过程中,与锚泊作业以及货物运输等人类活动造成坠的落物体发生碰撞,造成管道损伤。因此,对管道受坠物冲击作用引起管线变形的规律和破坏机理进行深入研究具有重要意义。本文将以有限元方法为基础,介绍管道受坠物冲击载荷作用的数值模拟基本方法。 管道受坠物冲击载荷作用是管道-土体组成的体系在冲击荷载下的整体动力响应。无论是从静力学还是动力学的角度来分析结构的受力状态,管道与土体的相互作用都是不可忽略的,只有把管道与地基作为相互作用又相互制约的整体分析,才能得到比较符合实际的计算结果。随着数值非线性分析成为解决岩土工程问题的重要手段,有限元、离散元等方法在管土相互作用分析中也发挥着越来越大的作用,基于这些理论的数值模拟软件也得到了极大的发展。 1 非线性数值模拟软件 1.1 ANSYS/ABAQUS ANSYS是一种大型通用有限元分析软件,融结构、流体、电场、磁场、声场分析于一体,由世界上最大的有限元分析软件公司之一的美国ANSYS开发,它能与多数CAD软件接口,实现数据的共享和交换,是现代产品设计中的高级CAE工具之一。有限元法(FEA,Finite Element Analysis)的基本概念是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定合适的形函数,然后附上求解这个域总的满足条件,如结构的平衡条件、边界条件等,从而得到问题的解。这个解不是准确解,而是近似解,随着形函数精度的提高,有限元方法可以得到相对很高的计算精度高,而且能适应各种复杂形状,这样实际问题被较简单的问题所代替,有限元成为行之有效的工程分析手段。ANSYS主要分析类型包括:结构静力分析,结构动力学分析,结构非线性分析等。 ABAQUS同样也是一款功能强大的,以有限元理论为基础的工程模拟软件。与ANSYS相比,ABAQUS软件在求解非线性问题时具有非常明显的优势,其非线性涵盖材料非线性、几何非线性和状态非线性等多个方面,而且采用了人机

荷载与与结构设计原则复习

荷载与与结构设计原则复习

第一章荷载类型 1.荷载类型: 1.荷载与作用:荷载、直接作用、间接作用、效应 2.作用的分类:按随时间的变异、随空间位置的变异和结构的反应分类 例如: 1、由各种环境因素产生的直接作用在结构上的各种力称为荷载。(√) 2、由各种环境因素产生的间接作用在结构上的各种力称为荷载。(×) 3、什么是荷载? (荷载的定义是什么?)?) 答:由各种环境因素产生的直接作用在结构的各种力称为荷载。 4、土压力、风压力和水压力是荷载,由爆炸、离心作用等产生的作用在物体上的惯性力不是荷载。(×)

5、什么是效应? 答:作用在结构上的荷载使结构产生的内力、变形、裂缝等就叫做效应。 6、什么是作用?直接作用和间接作用? 答:使结构产生效应(结构或构件的内力、应力、位移、应变、裂缝等)的各种因素总称为作用。 可归结为作用在结构上的力的因素称为直接作用; 不是作用力但同样引起结构效应的因素称为间接作用。 7、只有直接作用才能引起结构效应,间接作用并不能引起结构效应。(×) 8、严格意义上讲,只有直接作用才能称为荷载。(√) 9、以下几项中属于间接作用的是C C 10、预应力属于 A 。温度变化属于 B 。 A、永久作用 B、静态作用 C、直接作用 D、动态作用

第二章重力 1.重力(静载) 1)结构自重 2)土的自重应力 3)雪荷载(基本雪压、雪重度、屋面的雪压) 例如: 1、基本雪压是指当地空旷平坦地面上根据气象记录资料经统计得到的在结构使用期间可能出现的最大雪压值。(√) 2、我国基本雪压分布图是按照 C 一遇的重现期确定的。 A、10年 B、30年 C、50年 D、100年 3、虽然最大雪重度和最大雪深两者有很密切的关系,但是两者不一定是同时出现。(√) 4、造成屋面积雪与地面积雪不同的主要原因有:风、屋面形式和屋面散热等。

荷载与结构设计方法课后思考题答案

《荷载与结构设计方法》习题解答 1 荷载与作用 什么是施加于工程结构上的作用荷载与作用有什么区别 结构上的作用是指能使结构产生效应的各种原因的总称,包括直接作用和间接作用。引起结构产生作用效应的原因有两种,一种是施加于结构上的集中力和分布力,例如结构自重,楼面的人群、家具、设备,作用于桥面的车辆、人群,施加于结构物上的风压力、水压力、土压力等,它们都是直接施加于结构,称为直接作用。另一种是施加于结构上的外加变形和约束变形,例如基础沉降导致结构外加变形引起的内力效应,温度变化引起结构约束变形产生的内力效应,由于地震造成地面运动致使结构产生惯性力引起的作用效应等。它们都是间接作用于结构,称为间接作用。 “荷载”仅指施加于结构上的直接作用;而“作用”泛指使结构产生内力、变形的所有原因。 结构上的作用如何按时间变异、空间位置变异、结构反应性质分类

结构上的作用按随时间变化可分永久作用、可变作用和偶然作用;按空间位置变异可分为固定作用和自由作用;按结构反应性质可分为静态作用和动态作用。 什么是荷载的代表值它们是如何确定的 荷载代表值是考虑荷载变异特征所赋予的规定量值,工程建设相关的国家标准给出了荷载四种代表值:标准值,组合值,频遇值和准永久值。荷载可根据不同设计要求规定不同的代表值,其中荷载标准值是荷载的基本代表值,其它代表值都可在标准值的基础上考虑相应的系数得到。 2 重力作用 成层土的自重应力如何确定 地面以下深度z处的土体因自身重量产生的应力可取该水平截面上单位面积的土柱体的重力,对于均匀土自重应力与深度成正比,对于成层土可通过各层土的自重应力求和得到。 土压力有哪几种类别土压力的大小及分布与

普通混凝土的组成材料

1、粗骨料:粒径大于5mm的碎石或卵石。 2、细骨料:骨料粒径在0.16-5mm之间的细天然砂。 质量要求: ①砂的坚固性; ②颗粒形状及表面特性; ③限制有害杂质含量; ④砂的颗粒级配及粗细程度 3、水泥: ①应与混凝土的设计强度等级相适应。一般水泥强度等级28天抗压强度指标值为混凝土强度等级的1.5-2倍。 ②根据工程特点和所处环境条件选择水泥的品种; 4.质量要求: ①最大粒径及颗粒级配: ⑴颗粒级配 ⑵最大粒径:混凝土粗骨料的最大粒径不得超过结构截面尺寸的1/4,同时不得大于钢筋间最小净距的3/4. ②颗粒形状及表面特性; ③有害杂质含量; 二、混凝土组成材料的作用 在混凝土组成材料中,水泥和水组成水泥浆,它包裹 在所有骨料的表面并填充在骨料空隙中。在混凝土硬化前, 水泥浆起涧滑作用,赋于混凝土拌合物流动性,便于施工; 在混凝土硬化后起胶结作用,把砂、石骨料胶结成为整体, 使混凝土产生强度,成为坚硬的人造石材砂、石是骨料, 对混凝土起骨架作用,其中小颗粒的骨料填充大颗粒的空 隙。粗、细骨料的总体积要占混凝土体积的70%~80%, 因此骨料质量的优劣,对混凝土各项性质的影响很大。 各种各样的混凝土 水泥、石灰、石膏等无机胶凝材料与水拌和使混凝土拌合物具有可塑性;进而通过化学和物理化学作 用凝结硬化而产生强度。一般说来,饮用水都可满足混凝土拌和用水的要求。水中过量的酸、碱、盐和有机物都会对混凝土产生有害的影响。骨料不仅有填充作用,而且对混凝土

的容重、强度和变形等性质有重要影响。 为改善混凝土的某些性质,可加入外加剂。由于掺用外加剂有明显的技术经济效果,它日益成为混凝土不可缺少的组分。为改善混凝土拌合物的和易性或硬化后混凝土的性能,节约水泥,在混凝土搅拌时也可掺入磨细的矿物材料──掺合料。它分为活性和非活性两类。掺合料的性质和数量,影响混凝土的强度、变形、水化热、抗渗性和颜色等。 三、由胶凝材料将粗、细骨料胶结而成的固体材料为混凝土。 水泥占10-15%,其余为砂、石骨料,砂石比例为1∶2左右,孔隙体积约为1-5%. 按表观密度可分为重混凝土、普通混凝土、轻混凝土。普通混凝土是以水泥为胶结材料,以天然砂、石为骨料,加水拌合,经浇筑成型,凝结硬化形成的固体材料。 四、混凝土的特点 其主要特点有:性能多样、用途广泛,可根据不同的工程需要,通过调整组成材料的品种及配比,配制出不同的混凝土,来满足不同工程的需要;混凝土具有良好的塑性,可以根据需要随意浇筑出不同形状的构件或者结构物;混凝土的组成的材料80%以上都是砂子和石头,来源丰富,符合就地取材,符合经济要求;混凝土与钢筋具有良好的粘性,二者的线膨胀系数基本相同,复合成的钢筋混凝土,能互补优劣;混凝土具有良好的耐久性;可以充分利用工业废料作骨料或掺合料

相关主题
文本预览
相关文档 最新文档