当前位置:文档之家› 有限元模型校核的计算方法

有限元模型校核的计算方法

有限元模型校核的计算方法
有限元模型校核的计算方法

matlab有限元分析实例

MATLAB: MATLAB是美国MathWorks公司出品的商业数学软件,用于数据分析、无线通信、深度学习、图像处理与计算机视觉、信号处理、量化金融与风险管理、机器人,控制系统等领域。 MATLAB是matrix&laboratory两个词的组合,意为矩阵工厂(矩阵实验室),软件主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式。 MATLAB和Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等。MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版本中也加入了对C,FORTRAN,C++,JAVA的支持。 MATLAB有限元分析与应用:

《MATLAB有限元分析与应用》是2004年4月清华大学出版社出版的图书,作者是卡坦,译者是韩来彬。 内容简介: 《MATLAB有限元分析与应用》特别强调对MATLAB的交互应用,书中的每个示例都以交互的方式求解,使读者很容易就能把MATLAB用于有限分析和应用。另外,《MATLAB有限元分析与应用》还提供了大量免费资源。 《MATLAB有限元分析与应用》采用当今在工程和工程教育方面非常流行的数学软件MATLAB来进行有限元的分析和应用。《MATLAB有限元分析与应用》由简单到复杂,循序渐进地介绍了各种有限元及其分析与应用方法。书中提供了大量取自机械工程、土木工程、航空航天工程和材料科学的示例和习题,具有很高的工程应用价值。

有限元理论方法

关于有限元分析法及其应用举例 摘要:本文主要介绍有限元分析法,作为现代设计理论与方法的一种,已经在 众多领域普遍使用。介绍了它的起源和国内外发展现状。阐述了有限元法的基 本思想和设计方法。并从实际出发,例举了有限元法的一个简单应用———啤 酒瓶的应力分析和优化,表明了利用有限元分析法的众多优点。随着计算机的 发展,基于有限元分析方法的软件开发越来越多。本文也在其软件开发方面进 行阐述,并简单介绍了一下主流软件的发展情况和使用范围。并就这一领域的 未来发展趋势进行阐述。 关键词:有限元分析法软件啤酒瓶 Abstract:This thesis mainly introduces the finite element analysis, as a modern design theory and methods used widely in in most respects. And this paper introduces its origins and development in world. It also expounds the basic thinking and approach of FEM..Proceed from the actual situation,this text holds the a simple application of finite-element method———the analysis and optimized of an beer bottle and indicate the the numerous benefits of finite element analysis .As computers mature and based on the finite element analysis of the software development is growing. This article introduces its application in the software development aspects as well, and briefly states the development and scope of the mainstream software. And it’s also prospect future development tendency in this area . Key: Finite Element Analysis Software Beer bottle 0 绪论 有限元法(Finite Element Method,FEM),是计算力学中的一种重要的方法,它是20世纪50年代末60年代初兴起的应用数学、现代力学及计算机科学相互渗透、综合利用的边缘科学。有限元法最初应用在工程科学技术中,用于模拟并且解决工程力学、热学、电磁学等物理问题。对于过去用解析方法无法求解的问题和边界条件及结构形状都不规则的复杂问题,有限元法则是一种有效的分析方法。有限元法的基本思想是先将研究对象的连续求解区域离散为一组有限个且按一定方式相互联结在一起的单元组合体。由于单元能按不同的联结方式进行组合,且单元本身又可以有不同形状,因此可以模拟成不同几何形状的求解小区域;

有限元法的基本思想及计算 步骤

有限元法的基本思想及计算步骤 有限元法是把要分析的连续体假想地分割成有限个单元所组成的组合体,简称离散化。这些单元仅在顶角处相互联接,称这些联接点为结点。离散化的组合体与真实弹性体的区别在于:组合体中单元与单元之间的联接除了结点之外再无任何关联。但是这种联接要满足变形协调条件,即不能出现裂缝,也不允许发生重叠。显然,单元之间只能通过结点来传递内力。通过结点来传递的内力称为结点力,作用在结点上的荷载称为结点荷载。当连续体受到外力作用发生变形时,组成它的各个单元也将发生变形,因而各个结点要产生不同程度的位移,这种位移称为结点位移。在有限元中,常以结点位移作为基本未知量。并对每个单元根据分块近似的思想,假设一个简单的函数近似地表示单元内位移的分布规律,再利用力学理论中的变分原理或其他方法,建立结点力与位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程,从而求解结点的位移分量。然后利用插值函数确定单元集合体上的场函数。显然,如果单元满足问题的收敛性要求,那么随着缩小单元的尺寸,增加求解区域内单元的数目,解的近似程度将不断改进,近似解最终将收敛于精确解。 用有限元法求解问题的计算步骤比较繁多,其中最主要的计算步骤为: 1)连续体离散化。首先,应根据连续体的形状选择最能完满地描述连续体形状的单元。常见的单元有:杆单元,梁单元,三角形单元,矩形单元,四边形单元,曲边四边形单元,四面体单元,六面体单元以及曲面六面体单元等等。其次,进行单元划分,单元划分完毕后,要将全部单元和结点按一定顺序编号,每个单元所受的荷载均按静力等效原理移植到结点上,并在位移受约束的结点上根据实际情况设置约束条件。 2)单元分析。所谓单元分析,就是建立各个单元的结点位移和结点力之间的关系式。现以三角形单元为例说明单元分析的过程。如图1所示,三角形有三个结点i,j,m。在平面问题中每个结点有两个位移分量u,v和两个结点力分量F x,F y。三个结点共六个结点位移分量可用列

五种计算公式

人力资源管理师三级(三版)计算题汇总 历年考点:定员,劳动成本,人工成本核算,招聘与配置,新知识:劳动定额的计算 一、劳动定额完成程度指标的计算方法 1.按产量定额计算产量定额完成程度指标=(单位时间内实际完成的合格产品产量/产量定额)×100% 2.按工时定额计算工时定额完成程度指标=(单位产品的工时定额/单位产品的 【能力要求】: 一、核定用人数量的基本方法(原) (一)按劳动效率定员根据生产任务和工人的劳动效率,以及出勤率来计算。 实际上是根据工作量和劳动定额来计算。适用于:有劳动定额的人员,特别是以手工操作为主的工种。公式中:工人劳动效率=劳动定额×定额完成率。劳动定额可以分为工时定额和产量定额两种基本形式,两者转化关系为: 所以无论采用产量定额还是工时定额,两者计算的结果都是相同的。一般来说,某工种生产产品的品种单一,变化较小而产量较大时,宜采用产量定额来计算。可采用下面的公式: 如果把废品率考虑进来,则计算公式为: 二、劳动定员 【计算题】: 某企业主要生产 A、B、C 三种产品,三种产品的单位产品工时定额和 2011年的订单如表所示。预计该企业在 2011 年的定额完成率为 110%,废品率为 2.5%,员工出勤率为95%。 请计算该企业 2011 年生产人员的定员人数 【解答】: A 产品生产任务总量=150×100=15000(工时) B 产品生产任务总量=200×200=40000(工时) C 产品生产任务总量=350×300=105000(工时) D 产品生产任务总量=400×400=160000(工时) 总生产任务量=15000+40000+105000+160000=320000(工时) 2011 年员工年度工日数=365-11-104=250(天/人年) 【解答】:

阿尔法资产模型及计算方法

阿尔法资产模型及计算方法 阿尔法资产(Alpha investment)是一种风险调整过的积极投资回报。它是根据所承担的超额风险而得到的回报,因此经常用来衡量基金经理的管理和表现水平。通常会在计算时,将基准的回报减去,以便看出它的相对水平。 阿尔法资产是资本资产定价模型中的一个量效率市场假说阿尔法系数为零 计算公式: 其中的阿尔法系数(αi)是资本资产定价模型中的一个量,是证券特征线与纵坐标的截距。在效率市场假说中,阿尔法系数为零。 阿尔法系数(α系数,Alpha(α)Coefficient) α系数的定义:α系数是一投资或基金的绝对回报(Absolute Return) 和按照β系数计算的预期回报之间的差额。绝对回报(Absolute Return)或额外回报(Excess Return)是基金/投资的实际回报减去无风险投资收益(在中国为1年期银行定期存款回报)。绝对回报是用来测量一投资者或基金经理的投资技术。预期回报(Expected Return)贝塔系数β和市场回报的乘积,反映投资或基金由于市场整体变动而获得的回报。 一句话,平均实际回报和平均预期回报的差额即α系数。 α系数计算方法 α系数简单理解 α>0,表示一基金或股票的价格可能被低估,建议买入。亦即表示该基金或股票以投资技术获得平均比预期回报大的实际回报。 α<0,表示一基金或股票的价格可能被高估,建议卖空。亦即表示该基金或股票以投资技术获得平均比预期回报小的实际回报。 α=0,表示一基金或股票的价格准确反映其内在价值,未被高估也未被低估。亦即表示该基金或股票以投资技术获得平均与预期回报相等的实际回报。 例子分析

复利及年金计算方法公式

复利终值与现值 由于利息的因素,货币是有时间价值的,从经济学的观点来看,即使不考虑通胀的因素,货币在不同时间的价值也是不一样的;今天的1万元,与一年后的1万元,其价值是不相等的。例如,今天的1万元存入银行,定期一年,年利10%,一年后银行付给本利共1.1万元,其中有0.1万元为利息,它就是货币的时间价值。货币的时间价值有两种表现形式。一是绝对数,即利息;一是相对数,即利率。 存放款开始的本金,又叫“现值”,如上例中的1万元就是现值;若干时间后的本金加利息,叫“本利和”,又叫“终值”,如上例的1.1万元就是终值。 利息又有单利、复利之分。单利的利息不转为本金;复利则是利息转为本金又参加计息,俗称“利滚利”。 设PV为本金(复利现值)i为利率n为时间(期数)S为本利和(复利终值) 则计算公式如下: 1.求复利终值 S=PV(1+i)^n (1) 2.求复利现值 PV=S/(1+i)^n (2) 显然,终值与现值互为倒数。 公式中的(1+i)^n 和1/(1+i)^n 又分别叫“复利终值系数”、“复利现值系数”。可分别用符号“S(n,i)”、“PV(n,i)”表示,这些系数既可以通过公式求得,也可以查表求得。

例1、本金3万元,年复利6%,期限3年,求到期的本利和(求复利终值)。 解:S=PV(1+i)^n 这(1+i)^n 可通过计算,亦可查表求得, 查表,(1+6%)^3=1.191 所以S=3万×1.191=3.573万元(终值) 例2、5年后需款3000万元,若年复利10%,问现在应一次存入银行多少?(求复利现值) 解:PV=S×1/(1+i)^n=3000万×1/(1+10%)^5查表,1/(1+10%)^5=0.621 所以,S=3000万×0.621=1863万元(现值)

有限元实例分析

作业一:有限元分析实例 实例:请对一个盘轴配合机构进行接触分析。轴为一等直径空心轴,盘为等厚度圆盘,其结构及尺寸如图所示。盘和轴为一种材料,材料参数为:弹性模量Ex=2.5E5,泊松比NUXY=0.3,摩擦系数MU=0.25,试采用有限元计算方法分析轴和盘在过盈配合时的应力应变分布以及将轴从盘心拔出时轴和盘的接触情况。 问题分析说明 (1)本题主要分析装配过程中结构的静态响应,所以分析步选择通用静态分析步。由于为过盈配合,属于大变形,故应考虑几何 非线性的影响。 (2)模型具有轴对称性,所以可以采取轴对称模型来进行分析,先建立二维模型计算,再转换为三维模型计算,这样可以节省计

算时间。分析过程由两个载荷步组成, 第一个载荷步为过盈分 析, 求解过盈安装时的情况。第二个载荷步为将轴从盘心拔出 时的接触分析, 分析在这个过程中盘心面和轴的外表面之间的 接触应力。它们都属于大变形问题, 属于非线性问题。在分析 时需要定义一些非线性选项来帮助问题的收敛。 (3)接触面之间有很大的相对滑动,所以模型要使用有限滑移。 模型建立的分析说明 (1)进定义单元类型此项实例分析的问题中涉及到大变形, 故选用So li d185 单元类型来建立本实例入部件模块,的模型。盘 轴接触问题属于面面接触, 目标面和接触面都是柔性的, 将使用接触单元T ARGET 170 和CO NTAT17 4来模拟接 触面。分别创建名为为part1、part2的部件。 (2)定义材料属性,在线性各向同性材料属性对话框中的EX (弹性模量) 文本框中输入 2 . 5E5,PRX Y (泊松比) 文本框中输入 0 . 3,并将定义的材料属性赋予给part1和part2。如下图所示。 (3)进入装配模块,创建两者间的装配关系。

电磁仿真算中的有限元法

1电磁仿真算法中的有限元法 1.1常规的电磁计算方法简介 从上世纪50年代以来,伴随着计算机技术的进步,电磁仿真算法也蓬勃发展起来,这其中主要包括:单矩法、矩量法和有限元法等属于频域技术的算法; 传输线矩阵法、时域积分方程法以及时域有限差分法等属于时域技术的算法。除了这些以外, 还有属于高频技术的集合衍射理论等。本文根据国内外计算电磁学的发展状况,对日常生活中比较常用的电磁计算方法做了介绍,并对有限元法做了重点说明。 ⑴矩量法 矩量法属于电磁场的数值计算方法中频域技术的一种, 它的基本原理是利用把待解的微积分方程转化成的算子方程, 然后将由一组线性组合表示的待求函数代入第一步中的算子方程, 然后将算子方程转化成矩阵方程, 最后再通过计算机进行大量的数值计算从而得到数值结果。该方法在求解非均勻和不规则形状对象时,面很广,但会生成病态矩阵,所以会在一定程度上受到限制。矩量法的特点就是适用于求解微积分方程, 并且求解方法统一简单。但缺点就是会占用大量计算机内存,影响计算速度。 (2)单矩法 单矩法是一种解析方法和数值方法相结合的混合数值算法法,该方法的关键在于,如何合理的选择一个球面最小的半径,使得能够将分析对象的结构全部包含在内,以便将内外场进行隔离。外边的散射场单独使用其他函数表示,而包围的内部区域使用有限元法亥姆赫兹(Helmholtz)方程。此方法对于计算复杂形体乃至复杂埋入体内的电磁散射是种极为有效的手段。 (3)时域有限差分法 时域有限差分法(FDTD)近几年来越来越受到各方的重视, 因为一方面它处理庞大的电磁福射系统方面和复杂结构的散射体时很突出,另外一方面则在于它不是传统的频域算法, 它是种时域算法, 直接依靠时间变量求解麦克斯韦方程组,可以在有限的时间和体积内对场进行数据抽样, 这样同时也能够保证介质边界

有限元分析理论基础

有限元分析概念 有限元法:把求解区域看作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状和大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性和复杂的边界条件 有限元模型:它是真实系统理想化的数学抽象。由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。 有限元分析:是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 线弹性有限元是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。 线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。 非线性问题与线弹性问题的区别: 1)非线性问题的方程是非线性的,一般需要迭代求解; 2)非线性问题不能采用叠加原理; 3)非线性问题不总有一致解,有时甚至没有解。 有限元求解非线性问题可分为以下三类:

1)材料非线性问题 材料的应力和应变是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有他们的局限性。在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。 2)几何非线性问题 几何非线性问题是由于位移之间存在非线性关系引起的。 当物体的位移较大时,应变与位移的关系是非线性关系。研究这类问题一般都是假定材料的应力和应变呈线性关系。它包括大位移大应变及大位移小应变问题。如结构的弹性屈曲问题属于大位移小应变问题,橡胶部件形成过程为大应变问题。 3)非线性边界问题 在加工、密封、撞击等问题中,接触和摩擦的作用不可忽视,接触边界属于高度非线性边界。 平时遇到的一些接触问题,如齿轮传动、冲压成型、轧制成型、橡胶减振器、紧配合装配等,当一个结构与另一个结构或外部边界相接触时通常要考虑非线性边界条件。 实际的非线性可能同时出现上述两种或三种非线性问题。

计算方法公式总结

计算方法公式总结 绪论 绝对误差 e x x * =-,x *为准确值,x 为近似值。 绝对误差限 ||||e x x ε*=-≤,ε为正数,称为绝对误差限 相对误差* r x x e e x x **-==通常用r x x e e x x *-==表示相对误差 相对误差限||r r e ε≤或||r r e ε≤ 有效数字 一元函数y=f (x ) 绝对误差 '()()()e y f x e x = 相对误差''()()()()()()() r r e y f x e x xf x e y e x y y f x =≈= 二元函数y=f (x 1,x 2)

绝对误差 12121212 (,)(,)()f x x f x x e y dx dx x x ??=+?? 相对误差121122 1212(,)(,)()()()r r r f x x x f x x x e y e x e x x y x y ??=+?? 机器数系 注:1. β≥2,且通常取2、4、6、8 2. n 为计算机字长 3. 指数p 称为阶码(指数),有固定上下限L 、 U

4. 尾数部 120.n s a a a =± ,定位部p β 5. 机器数个数 1 12(1)(1)n U L ββ-+--+ 机器数误差限 舍入绝对 1|()|2 n p x fl x ββ--≤截断绝对|()|n p x fl x ββ--≤ 舍入相对1|()|1||2 n x fl x x β--≤截断相对1|()|||n x fl x x β--≤ 秦九韶算法 方程求根 ()()()m f x x x g x *=-,()0g x ≠,*x 为f (x )=0的m 重根。 二分法

对有限元方法的认识

我对有限元方法的认识 1有限元法概念 有限元方法(The Finite Element Method, FEM)是计算机问世以后迅速发展起来的一种分析方法。每一种自然现象的背后都有相应的物理规律,对物理规律的描述可以借助相关的定理或定律表现为各种形式的方程(代数、微分、或积分)。这些方程通常称为控制方程(Governing equation)。 针对实际的工程问题推导这些方程并不十分困难,然而,要获得问题的解析的数学解却很困难。人们多采用数值方法给出近似的满足工程精度要求的解答。 有限元方法就是一种应用十分广泛的数值分析方法。 有限元方法是处理连续介质问题的一种普遍方法,离散化是有限元方法的基础。 这种思想自古有之:古代人们在计算圆的周长或面积时就采用了离散化的逼近方法:即采用内接多边形和外切多边形从两个不同的方向近似描述圆的周长或面积,当多边形的边数逐步增加时近似值将从这两个方向逼近真解。 近年来随着计算机技术的普及和计算速度的不断提高,有限元分析在工程设计和分析中得到了越来越广泛的重视,已经成为解决复杂的工程分析计算问题的有效途径,现在从汽车到航天飞机几乎所有的设计制造都已离不开有限元分析计算,其在机械制造、材料加工、航空航天、汽车、土木建筑、电子电器、国防军工、船舶、铁道、石化、能源、科学研究等各个领域的广泛使用已使设计水平发生了质的飞跃。 国际上早在 60 年代初就开始投入大量的人力和物力开发有限元分析程序。“有限单元”是由Clough R W于1960年首次提出的。但真正的有限元分析软件是诞生于 70 年代初期,随着计算机运算速度的提高,内、外存容量的扩大和图形设备的发展,以及软件技术的进步,发展成为有限元分析与设计软件,但初期其前后处理的能力还是比较弱的,特别是后处理能力更弱。

有限元原理与步骤

2.1.1 有限元法基本原理(Basic Theory of FEM) 有限元法的基本思想是离散的概念,它是指假设把弹性连续体分割成数目有限的单元,并认为相邻单元之间仅在节点处相连。根据物体的几何形状特征、载荷特征、边界约束特征等,选择合适的单元类型。这样组成有限的单元集合体并引进等效节点力及节点约束条件,由于节点数目有限,就成为具有有限自由度的有限元计算模型,它替代了原来具有无限多自由度的连续体[24][25]。 有限元法从选择基本未知量的角度来看,可分为三类:位移法、力法和混合法。以节点位移为基本未知量的求解方法称为位移法;以节点力为基本未知量的求解方法称为力法;一部分以节点位移,另一部分以节点力作为基本未知量的求解方法称为混合法。由于位移法通用性强,计算机程序处理简单、方便,成为应用最广泛的一种方法[26]。 有限元法的求解过程简单、方法成熟、计算工作量大,特别适合于计算机计算。再加上它有成熟的大型软件系统支持,避免了人工在连续体上求分析解的数学困难,使其成为一种非常受欢迎的、应用极广泛的数值计算方法[27]。 2.1.2 有限元法基本步骤(Basic Process of FEM) 有限元法求解各种问题一般遵循以下的分析过程和步骤[28][29]: 1. 结构的离散化 结构的离散化是进行有限元法分析的第一步,它是有限元法计算的基础。将结构近似为具有不同有限大小和形状且彼此相连的有限个单元组成的计算模型,习惯上称为有限元网格划分。离散后单元与单元之间利用单元的节点相互连接起来,而单元节点的设置、性质、数目等应视问题的性质、描述变形形态的需要和计算精度而定。所以有限元法分析的结构已不是原有的物体或结构物,而是同种材料的由众多单元以一定方式连接成的离散物体。这样,用有限元分析计算所获得的结果是近似的。显然,单元越小(网格越密)则离散域的近似程度越好,计算结果也越精确,但计算量将增大,因此结构的离散化是有限元法的核心技术之一。有限元离散过程中又一重要环节是单元类型的选择,这应根据被分析结构的几何形状特点、载荷、约束等因素全面考虑。 2. 位移模式的选择 位移模式是表示单元内任意点的位移随位置变化的函数,位移模式的选择是有限元特性分析的第一步。由于多项式的数学运算比较简单、易于处理,所以通常是选用多项式作为位移函数。选择合适的位移函数是有限元分析的关键,它将决定有限元解的性质与近似程度。位移函数的选择一般遵循以下原则(有限元解的收敛条件):

有限元例题

【1】图示弹性力学平面问题,采用三角形常应变元,网格划分及单元、节点编号如图1所示。试求: (1) 计算系统刚度矩阵的最大带宽; (2) 根据图中结构的边界约束状态,给出约束节点位移值。 【解】 (1) 相邻节点号的最大差为d = 4; 所以,半带宽为B = 2 ? (4 + 1) = 10。 (2) u1 = 0,v1 = 0,u4 = 0,v4 = 0。 【2】弹性力学平面问题4节点等参元,其单元自由度是多少?单元刚度矩阵是多少阶的?单元刚度矩阵有多少个元素? 【解】平面问题4节点等参元,其单元自由度是4 ?2 = 8个;单元刚度矩阵是8 ? 8 阶的,单元刚度矩阵有64个元素。

【3】平面刚架结构梁单元(考虑轴向和横向变形)的自由度是多少?单元刚度矩阵是多少阶的?单元刚度矩阵有多少个元素? 【解】平面刚架结构梁单元(考虑轴向和横向变形)的自由度是2 ? 3 = 6个;单元刚度矩阵是6 ? 6阶的;单元刚度矩阵有36个元素。 【4】已知一等截面直杆中某一微段的起始点坐标为0.5m,终点坐标为0.6m,起始点的位移为0.2mm,终点的位移为0.3mm。假定直杆内的位移是线性分布的。求该微段等截面直杆的位移表达式f(x)。 【解】已知:x i = 0.5m, x j= 0.6m, u i = 0.2mm = 0.2?10-3m, u j= 0.3mm = 0.3?10-3m。 即

【5】已知4节点一维问题中单元①(1, 2)的应力矩阵为 结构总体位移列阵为 求单元①的应力(用矩阵计算)。 【解】由总体结构位移列阵知,单元①的位移列阵为 由{σ} = [C] {?}e可求得单元①的应力

有限元分析方法

百度文库- 让每个人平等地提升自我 第1章有限元分析方法及NX Nastran的由来 有限元分析方法介绍 计算机软硬件技术的迅猛发展,给工程分析、科学研究以至人类社会带来急剧的革命性变化,数值模拟即为这一技术革命在工程分析、设计和科学研究中的具体表现。数值模拟技术通过汲取当今计算数学、力学、计算机图形学和计算机硬件发展的最新成果,根据不同行业的需求,不断扩充、更新和完善。 有限单元法的形成 近三十年来,计算机计算能力的飞速提高和数值计算技术的长足进步,诞生了商业化的有限元数值分析软件,并发展成为一门专门的学科——计算机辅助工程CAE(Computer Aided Engineering)。这些商品化的CAE软件具有越来越人性化的操作界面和易用性,使得这一工具的使用者由学校或研究所的专业人员逐步扩展到企业的产品设计人员或分析人员,CAE在各个工业领域的应用也得到不断普及并逐步向纵深发展,CAE工程仿真在工业设计中的作用变得日益重要。许多行业中已经将CAE分析方法和计算要求设置在产品研发流程中,作为产品上市前必不可少的环节。CAE仿真在产品开发、研制与设计及科学研究中已显示出明显的优越性: ?CAE仿真可有效缩短新产品的开发研究周期。 ?虚拟样机的引入减少了实物样机的试验次数。 ?大幅度地降低产品研发成本。 ?在精确的分析结果指导下制造出高质量的产品。 ?能够快速对设计变更作出反应。 ?能充分和CAD模型相结合并对不同类型的问题进行分析。 ?能够精确预测出产品的性能。 ?增加产品和工程的可靠性。 ?采用优化设计,降低材料的消耗或成本。 ?在产品制造或工程施工前预先发现潜在的问题。 ?模拟各种试验方案,减少试验时间和经费。 ?进行机械事故分析,查找事故原因。 当前流行的商业化CAE软件有很多种,国际上早在20世纪50年代末、60年代初就投入大量的人力和物力开发具有强大功能的有限元分析程序。其中最为著名的是由美国国1

有限元法基本原理与应用

有限元法基本原理与应用 班级机械2081 姓名方志平 指导老师钟相强 摘要:有限元法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 关键词:有限元法;变分原理;加权余量法;函数。 Abstract:Finite element method is based on the variational principle and the weighted residual method, the basic idea is to solve the computational domain is divided into a finite number of non-overlapping units, each unit, select some appropriate function for solving the interpolation node points as , the differential variables rewritten or its derivative by the variable value of the selected node interpolation functions consisting of linear expressions, by means of variational principle or weighted residual method, the discrete differential equations to solve. Different forms of weight functions and interpolation functions, it constitutes a different finite element method. Keywords:Finite element method; variational principle; weighted residual method; function。 引言 有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计

钢架结构重量计算方法及公式

5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。我们只说喜欢,就算喜欢也是偷偷摸摸的。” 6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。” 7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。 8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。 9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。 钢架结构重量计算方法 材料重量计算 圆钢重量(公斤)=0.00617×直径×直径×长度 方钢重量(公斤)=0.00785×边宽×边宽×长度 六角钢重量(公斤)=0.0068×对边宽×对边宽×长度 八角钢重量(公斤)=0.0065×对边宽×对边宽×长度 螺纹钢重量(公斤)=0.00617×计算直径×计算直径×长度 角钢重量(公斤)=0.00785×(边宽+边宽-边厚)×边厚×长度 扁钢重量(公斤)=0.00785×厚度×边宽×长度 钢管重量(公斤)=0.02466×壁厚×(外径-壁厚)×长度 六方体体积的计算 公式① s20.866×H/m/k 即对边×对边×0.866×高或厚度 各种钢管(材)重量换算公式 钢管的重量=0.25×π×(外径平方-内径平方)×L×钢铁比重其中:π= 3.14 L=钢管长度钢铁比重取7.8 所以,钢管的重量=0.25×3.14×(外径平方-内径平方)×L×7.8 * 如果尺寸单位取米(M),则计算的重量结果为公斤(Kg) 钢的密度为:7.85g/cm3 (注意:单位换算) 钢材理论重量计算 钢材理论重量计算的计量单位为公斤(kg )。其基本公式为: W(重量,kg )=F(断面积mm2)×L(长度,m)×ρ(密度, 1.“噢,居然有土龙肉,给我一块!” 2.老人们都笑了,自巨石上起身。而那些身材健壮如虎的成年人则是一阵笑骂,数落着自己的孩子,拎着骨棒与阔剑也快步向自家中走去。

ansys有限元建模与分析实例-详细步骤

《有限元法及其应用》课程作业ANSYS应用分析 学号: 姓名: 专业:建筑与土木工程

角托架的有限元建模与分析 一 、模型介绍 本模型是关于一个角托架的简单加载,线性静态结构分析问题,托架的具体形状和尺寸如图所示。托架左上方的销孔被焊接完全固定,其右下角的销孔受到锥形压力载荷,角托架材料为Q235A 优质钢。角托架材料参数为:弹性模量366E e psi =;泊松比0.27ν= 托架图(厚度:0.5) 二、问题分析 因为角托架在Z 方向尺寸相对于其在X,Y 方向的尺寸来说很小,并且压力荷载仅作用在X,Y 平面上,因此可以认为这个分析为平面应力状态。 三、模型建立 3.1 指定工作文件名和分析标题 (1)选择菜单栏Utility Menu → 命令.系统将弹出Jobname(修改文件名)对话框,输入bracket (2)定义分析标题 GUI :Utility Menu>Preprocess>Element Type>Add/Edit/Delete 执行命令后,弹出对话框,输入stress in a bracket 作为ANSYS 图形显示时的标题。 3.2设置计算类型 Main Menu: Preferences … →select Structural → OK 3.3定义单元类型 PLANE82 GUI :Main Menu →Preprocessor →Element Type →Add/Edit/Delete 命令,系统将弹出Element Types 对话框。单击Add 按钮,在对话框左边的下拉列表中单击Structural Solid →Quad 8node 82,选择8节点平面单元PLANE82。单击ok ,Element Types 对话框,单击Option ,在Element behavior 后面窗口中选取Plane strs w/thk 后单击ok 完成定义单元类型。 3.4定义单元实常数 GUI :Main Menu: Preprocessor →Real Constants →Add/Edit/Delete ,弹出定义实常数对话框,单击Add ,弹出要定义实常数单元对话框,选中PLANE82单元后,单击OK →定义单元厚度对话框,在THK 中输入0.5.

有限元法与有限差分法的主要区别

有限元法与有限差分法的主要区别 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有La grange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等。对于有限元方法,其基本思路和解题步骤可归纳为(1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。(2)区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。(3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定插

PET计算方法和公式

PU 资料 聚氨酯计算公式中有关术语及计算方法 1. 官能度 官能度是指有机化合物结构中反映出特殊性质(即反应活性)的原子团数目。对聚醚或聚酯多元醇来说,官能度为起始剂含活泼氢的原子数。 2. 羟值 在聚酯或聚醚多元醇的产品规格中,通常会提供产品的羟值数据。 从分析角度来说,羟值的定义为:一克样品中的羟值所相当的氢氧化钾的毫克数。 在我们进行化学计算时,一定要注意,计算公式中的羟值系指校正羟值,即 羟值校正 = 羟值分析测得数据 + 酸值 羟值校正 = 羟值分析测得数据 - 碱值 对聚醚来说,因酸值通常很小,故羟值是否校正对化学计算没有什么影响。 但对聚酯多元醇则影响较大,因聚酯多元醇一般酸值较高,在计算时,务必采用校正羟值。 严格来说,计算聚酯羟值时,连聚酯中的水份也应考虑在内。 例,聚酯多元醇测得羟值为224.0,水份含量0.01%,酸值12,求聚酯羟值 羟值校正 = 224.0 + 1.0 + 12.0 = 257.0 3. 羟基含量的重量百分率 在配方计算时,有时不提供羟值,只给定羟基含量的重量百分率,以OH%表示。 羟值 = 羟基含量的重量百分率×33 例,聚酯多元醇的OH%为5,求羟值 羟值 = OH% × 33 = 5 × 33 = 165 4. 分子量 分子量是指单质或化合物分子的相对重量,它等于分子中各原子的原子量总和。 (56.1为氢氧化钾的分子量) 例,聚氧化丙烯甘油醚羟值为50,求其分子量。 对简单化合物来说,分子量为分子中各原子量总和。 羟值 官能度分子量1000 1.56??= 3366 50 1000 31.56=??= 分子量

数学计算公式大全

一、数学计算公式大全: 1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数 2、 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数 3、速度×时间=路程路程÷速度=时间路程÷时间=速度 4、单价×数量=总价总价÷单价=数量总价÷数量=单价 5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率 6、加数+加数=和和-一个加数=另一个加数 7、被减数-减数=差被减数-差=减数差+减数=被减数 8、因数×因数=积积÷一个因数=另一个因数 9、被除数÷除数=商被除数÷商=除数商×除数=被除数 小学数学图形计算公式 1 、正方形 C周长 S面积 a边长周长=边长×4 C=4a 面积=边长×边长 S=a×a 2 、正方体 V:体积 a:棱长表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长V=a×a×a 3 、长方形: C周长 S面积 a边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab 4 、长方体 V:体积 s:面积 a:长 b: 宽 h:高 (1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh 5 三角形 s面积 a底 h高 面积=底×高÷2 s=ah÷2 三角形高=面积×2÷底 三角形底=面积×2÷高 6 平行四边形 s面积 a底 h高 面积=底×高 s=ah 7 梯形 s面积 a上底 b下底 h高 面积=(上底+下底)×高÷2 s=(a+b)× h÷2

S面积 C周长∏ d=直径 r=半径 (1)周长=直径×∏=2×∏×半径 C=∏d=2∏r (2)面积=半径×半径×∏ 9 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长 (1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 (4)体积=侧面积÷2×半径 10 圆锥体 v:体积 h:高 s;底面积 r:底面半径 体积=底面积×高÷3 总数÷总份数=平均数 和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题 和÷(倍数-1)=小数 小数×倍数=大数 (或者和-小数=大数) 差倍问题 差÷(倍数-1)=小数 小数×倍数=大数 (或小数+差=大数) 植树问题 1 非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1) 2 封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数

相关主题
文本预览
相关文档 最新文档