当前位置:文档之家› 高考数学复习专题讲座化归思想

高考数学复习专题讲座化归思想

高考数学复习专题讲座化归思想
高考数学复习专题讲座化归思想

高考数学复习专题讲座 化归思想

高考要求

化归与转换的思想,就是在研究和解决数学问题时采用某种方式,借助某种函数性质、图象、公式或已知条件将问题通过变换加以转化,进而达到解决问题的思想 等价转化总是将抽象转化为具体,复杂转

化为简单、未知转化为已知,通过变换迅速而合理的寻找和选择问题解决的途径和方法

重难点归纳

转化有等价转化与不等价转化 等价转化后的新问题与原问题实质是一样的 不等价转化则部分地

改变了原对象的实质,需对所得结论进行必要的修正

应用转化化归思想解题的原则应是化难为易、化生为熟、化繁为简,尽量是等价转化 常见的转化有

正与反的转化、数与形的转化、相等与不等的转化、整体与局部的转化、空间与平面相互转化、复数与

实数相互转化、常量与变量的转化、数学语言的转化

典型题例示范讲解

例1对任意函数f (x ), x ∈D ,可按图示构造一个数列发生器,其工作原理如下

①输入数据x 0∈D ,经数列发生器输出x 1=f (x 0); ②若x 1?D ,则数列发生器结束工作;若x 1∈D ,则将x 1反馈回输入端,再输出

x 2=f (x 1),并依此规律继续下去

现定义12

4)(+-=

x x x f (1)若输入x 0=65

49

,则由数列发生器产生数列{x n },

请写出{x n }的所有项; (2)若要数列发生器产生一个无穷的常数列,试求输入的初始数据x 0的值; (3)若输入x 0时,产生的无穷数列{x n },满足对任意正整数n 均有x n <x n +1;求

x 0的取值范围

命题意图 本题主要考查学生的阅读审题,综合理解及逻辑推理的能力

知识依托 函数求值的简单运算、方程思想的应用 解不等式及化归转化思想的应用 解题的关键就

是应用转化思想将题意条件转化为数学语言

错解分析 考生易出现以下几种错因(1)审题后不能理解题意(2)题意转化不出数学关系式,如第

2问(3)第3问不能进行从一般到特殊的转化

技巧与方法 此题属于富有新意,综合性、抽象性较强的题目 由于陌生不易理解并将文意转化为数

学语言 这就要求我们慎读题意,把握主脉,体会数学转换

解 (1)∵f (x )的定义域D =(–∞,–1)∪(–1,+∞)

∴数列{x n }只有三项,1,5

1

,1911321-===x x x (2)∵x x x x f =+-=

1

2

4)(,即x 2–3x +2=0 ∴x =1或x =2,即x 0=1或2时

n n n n x x x x =+-=

+1

2

41

故当x 0=1时,x n =1,当x 0=2时,x n =2(n ∈N *) (3)解不等式1

2

4+-<

x x x ,得x <–1或1<x <2 要使x 1<x 2,则x 2<–1或1<x 1<2

对于函数1

6

4124)(+-

=+-=

x x x x f 若x 1<–1,则x 2=f (x 1)>4,x 3=f (x 2)<x 2 若1<x 1<2时,x 2=f (x 1)>x 1且1<x 2<2 依次类推可得数列{x n }的所有项均满足 x n +1>x n (n ∈N *) 综上所述,x 1∈(1,2) 由x 1=f (x 0),得x 0∈(1,2)

例2设椭圆C 1的方程为12222=+b y a x (a >b >0),曲线C 2的方程为y =x

1

,且曲线C 1与C 2在第一象限

内只有一个公共点P

(1)试用a 表示点P 的坐标;

(2)设A 、B 是椭圆C 1的两个焦点,当a 变化时,求△ABP 的面积函数S (a )的值域;

(3)记min{y 1,y 2,……,y n }为y 1,y 2,……,y n 中最小的一个 设g (a )是以椭圆C 1的半焦距为边长的正方形

的面积,试求函数f (a )=min{g (a ), S (a )}的表达式

命题意图 本题考查曲线的位置关系,函数的最值等基础知识,考查推理运算能力及综合运用知识解

题的能力

知识依托两曲线交点个数的转化及充要条件,求函数值域、解不等式

错解分析 第(1)问中将交点个数转化为方程组解的个数,考查易出现计算错误,不能借助Δ找到

a 、

b 的关系 第(2)问中考生易忽略a >b >0这一隐性条件 第(3)问中考生往往想不起将min{g (a ),S (a )}

转化为解不等式g (a )≥S (a )

技巧与方法 将难以下手的题目转化为自己熟练掌握的基本问题,是应用化归思想的灵魂 要求必须

将各知识的内涵及关联做到转化有目标、转化有桥梁、转化有效果

解 (1)将y =

x

1

代入椭圆方程,得 112222=+x

b a x 化简,得b 2x 4–a 2b 2x 2+a 2=0

由条件,有Δ=a 4b 4–4a 2b 2=0,得ab =2 解得x =

2a 或x =–2

a

(舍去) 故P 的坐标为(

a

a 2

,2) (2)∵在△ABP 中,|AB |=222b a -,高为

a

2, ∴)41(22221)(422a

a b a a S -=?-?=

∵a >b >0,b =a

2 ∴a >

a 2,即a >2,得0<44

a

<1 于是0<S (a )<2,故△ABP 的面积函数S (a )的值域为(0,2) (3)g (a )=c 2=a 2–b 2=a 2–

2

4

a 解不等式g (a )≥S (a ),即a 2–

2

4

a

≥)41(24a - 整理,得a 8–10a 4+24≥0,即(a 4–4)(a 4–6)≥0 解得a ≤2(舍去)或a ≥46

故f (a )=min{g (a ), S (a )}???

?

???<-≤<-=)6()41(262(4

44422a a a a a

例3一条路上共有9个路灯,为了节约用电,拟关闭其中3个,要求两端的路灯不能关闭,任意两个相邻的路灯不能同时关闭,那么关闭路灯的方法总数为

解析

9个灯中关闭3个等价于在6个开启的路灯中,选3个间隔(不包括两端外边的装置)插入关

闭的过程故有C 3

5=10种

答案 10

例4 已知平面向量a =(3–1), a =(2

3

,

21) (1)证明a ⊥b ;

(2)若存在不同时为零的实数k 和t ,使x =a +(t 2–3) b ,y =–k a +t b ,且x ⊥y ,试求函数关系式k =f (t);

(3)据(2)的结论,讨论关于t 的方程f (t )–k =0的解的情况

(1)证明 ∵a ·b =2

3)1(213?-+?

=0,∴a ⊥b (2)解 ∵x ⊥y ,∴x ·y =0

即[a +(t 2–3) b ]·(–k a +t b )=0,整理后得 –k a 2+[t –k (t 2–3)]a ·b +t (t 2–3)·b 2=0

∵a ·b =0, a 2=4, b 2=1 ∴上式化为–4k +t (t 2–3)=0,∴k =4

1t (t 2

–3) (3)解 讨论方程

41t (t 2

–3)–k =0的解的情况, 可以看作曲线f (t )=41

t (t 2–3)与直线y =k 的交点个数

于是f ′(t )=43(t 2–1)=4

3

(t +1)(t –1)

令f ′(t )=0,解得t =1 的变化情况如下表 t (–∞,–1)

–1 (–1,1) 1 (1,+∞) f ′(t ) + 0 – 0 + f (t )

极大值

极小值

当t =–1时,f (t )有极大值,f (t )极大值=

2; 当t =1时,f (t )有极小值,f (t )极小值=2

1

而f (t )=4

1

(t 2–3)t =0时,得t =–33

所以f (t )的图象大致如右

于是当k >

21或k <–2

1

时,直线y =k 与曲线y =f (t )仅有一个交

点,则方程有一解;

当k =

21或k =–2

1

时,直线与曲线有两个交点,则方程有两解;当k =0,直线与曲线有三个交点,但k 、t 不同时为零,故此时也有两解;当–21

1

时,直线与曲线有三个交点,则方程有三个解

学生巩固练习

1 已知两条直线l 1:y =x ,l 2:ax –y =0,其中a ∈R ,当这两条直线的夹角在(0,

2

π

)内变动时,a 的取值范围是( )

A (0,1)

B (

3

3

,3) C (

3

3

,1)∪(1,3) D (1,3) 2 等差数列{a n }和{b n }的前n 项和分别用S n 和T n 表示,若

534+=n n T S n n ,则n

n n b a ∞→lim 的值为( )

A

34 B 1 C 36 D 9

4

f(t)=1

4

t(t 2-3)

1

-1

-12

12

y=k

o

y

t

3 某房间有4个人,那么至少有2人生日是同一个月的概率是 (列式表示)

4 函数f (x )=x 3–3bx +3b 在(0,1)内有极小值,则b 的取值范围是

5 已知f (x )=lg(x +1),g (x )=2lg(2x +t ),(t ∈R 是参数)

(1)当t =–1时,解不等式f (x )≤g (x );

(2)如果x ∈[0,1]时,f (x )≤g (x )恒成立,求参数t 的取值范围

6 已知函数f (x )=a 1x +a 2x 2+a 3x 3+…+a n x n ,n ∈N *且a 1、a 2、a 3、……、a n 构成一个数列{a n },满足f (1)=n 2

(1)求数列{a n }的通项公式,并求1

lim

+∞→n n

n a a ;

(2)证明0<f (

3

1

)<1 7 设A 、B 是双曲线x 2–2

2y

=1上的两点,点N (1,2)是线段AB 的中点

(1)求直线AB 的方程;

(2)如果线段AB 的垂直平分线与双曲线相交于C 、D 两点,那么A 、B 、C 、D 四点是否共圆?为什么?

8 直线y =a 与函数y =x 3–3x 的图象有相异三个交点,求a 的取值范围

参考答案

1 解析 分析直线l 2的变化特征,化数为形,已知两直线不重合,因此问题应该有两个范围即得解

答案 C

2 解析 化和的比为项的比

∵n n n n n b n T a n a a n S )12(;)12(2

)12(121

2112-=-=+-=--- ∴

2

6485)12(3)12(41212+-=+--==--n n n n T S b a n n n n ,取极限易得 答案 A

3 解析 转化为先求对立事件的概率即四人生日各不相同的概率

答案 4412

12

A 1-

4 解析 转化为f ′(x )=3x 2–3b 在(0,1)内与x 轴有两交点

只须f ′(0)<0且f ′(1)>0

答案 0

5 解 (1)原不等式等价于?????

>->??

???-≤+>->+0

542

1)12(10120122x x x x x x x 即

即???

????≥≤>45

021x x x 或 ∴x ≥45

∴原不等式的解集为{x |x ≥

4

5

} (2)x ∈[0,1]时,f (x )≤g (x )恒成立

∴x ∈[0,1]时???

??+≤+>+>+2)2()1(020

1t x x t x x 恒成立 即?????++-≥->>+1

2201x x t x t x 恒成立即x ∈[0,1]时,t ≥–2x +1

+x 恒成立,

于是转化为求–2x +x +1,x ∈[0,1]的最大值问题 令μ=1+x ,则x =μ2–1,则μ∈[1,2]

∴2x +1+x =–2(μ–

41)28

17 当μ=1即x =0时,–2x +1+x 有最大值1 ∴t 的取值范围是t ≥1

6 (1)解 {a n }的前n 项和S n =a 1+a 2+…+a n =f (1)=n 2,

由a n =S n –S n –1=n 2–(n –1)2=2n –1(n ≥2),又a 1=S 1=1满足a n =2n –1

故{a n }通项公式为a n =2n –1(n ∈N *) ∴1121

2lim lim

1

=+-=∞→+∞→n n a a n n n n

(2)证明 ∵f (

31)=1·31+3·91+…+(2n –1)n 3

1

∴31f (31)=1·91+3·271+…+(2n –3)n 31+(2n –1)131+n ②

①–②得 32f (31)=1·31+2·91+2·271+…+2·n 31

–(2n –1)·13

1+n

∴f (31)=21+31+91+271+…+131-n –(2n –1)131+n =1n n 3

1+

∵n n n n n n +>+>+?+?+=+=1212C 2C 1)21(32

21 (n ∈N *)

∴0<

n n 31+<1,∴0<1–n

n 3

1+<1,即0

)<1 7 解 (1)设AB ∶y =k (x –1)+2代入x 2–2

2

y

=1

整理得(2–k 2)x 2–2k (2–k )x –(2–k )2–2=0 ①

设A (x 1,y 1)、B (x 2,y 2),x 1,x 2为方程①的两根 所以2–k 2≠0且x 1+x 2=2

2)

2(2k

k k -- 又N 为AB 中点, 有

2

1

(x 1+x 2)=1 ∴k (2–k )=2–k 2,解得k =1 故AB ∶y =x +1 (2)解出A (–1,0)、B (3,4)得CD 的方程为y =3–x 与双曲线方程联立 消y 有x 2+6x –11=0

记C (x 3,y 3)、D (x 4,y 4)及CD 中点M (x 0,y 0)由韦达定理可得x 0=–3,y 0=6

∵|CD |=104)()(2

43243=-+-y y x x ∴|MC |=|MD |=

2

1

|CD |=210 又|MA |=|MB |=102)()(2

10210=-+-y y x x 即A 、B 、C 、D 四点到点M 的距离相等,所以A 、

B 、

C 、

D 四点共圆

8 提示 f ′(x )=3x 2–3=3(x –1)(x +1)易确定f (–1)=2是极大值,f (1)=–2是极小值 当–2

三个相异交点

课前后备注

高三数学复习专题讲座

2010届高三数学复习专题讲座 数列复习建议 江苏省睢宁高级中学北校袁保金 数列是高中数学的重点内容之一,是初等数学与高等数学的重要衔接点,由于它既具有函数特征,又能构成独特的递推关系,使得它既与高中数学其他部分的知识有着密切的联系,又有自己鲜明的特点.而且具有内容的丰富性、应用的广泛性和思想方法的多样性,所以数列一直是高考考查的重点和热点.纵观江苏省近几年高考数学试卷,数列都占有相当重要的地位,一般情况下都是以一道填空题和一道解答题形式出现,填空题主要考查等差、等比数列的概念、性质、通项公式、前n项和公式等内容,对基本的计算技能要求比较高,具有“小、巧、活、新”的特点,解答题属于中高档难度的题目,甚至是压轴题.具有综合性强、变化多、难度较大特点,重点以等差数列和等比数列内容为主,考查数列内在的本质的知识和推理能力,运算能力以及分析问题和解决问题的能力. 一、考纲解读 2、考纲解读(1)考纲中对数列的有关概念要求为A级,也就是说只要了解数列概念的基本含义,并能解决相关的简单问题.(2)等差数列和等比数列要求都为C级,2010年数学科考试说明中共列出八个C级要求的知识点,等差数列、等比数列占了其中两个,说明这两个基本数列在高考中的地位相当重要.具体要求我们对这两个数列的定义、性质、通项公式以及前n项和公式需要有深刻的认识,能够

系统地掌握知识的内在联系,并能解决综合性较强的或较为困难的问题.这也说明涉及等差数列和等比数列的综合题在高考中一定出现.(3)由于数列这一章含有两个C级要求的知识点,可以命制等差数列、等比数列以及它们之间相互联系的综合题,也可以命制数列与函数、方程、不等式等知识点相融合的综合题,以及数列应用问题,着重考查思维能力、推理论证能力以及分析问题,解决实际问题的能力. 二、考题启示1、考题分布 自2004年江苏省单独命题以来,对数列知识的考查一直是命题的重 2、考题启示(1)数列在高考试卷中占的比重较大,分值约为13%左右,呈一大一小趋势,对等差数列和等比数列都有考查,纵观近几年江苏省高考试题,我们会发现江苏考题与全国卷、其他省市卷数列题有很大区别,具有十分明显的特色,对数列的考查不与其他知识综合,同时也回避了递推数列和不等式,主要揭示等差数列和等比数列内在的本质性的知识,形成江苏卷的一大特色.因此复习中在递推数列方面,特别是利用递推数列求通项,要大胆取舍,不要深挖.(2)客观题主要考查了等差、等比数列的基本概念和性质,突出了“小、巧、活、新”的特点,属容易题或中档题.主观题年年都考,且以中等和难度较大的综合题出现,常放在压轴题的位置.回顾江苏省单独命题以来,对数列的考查可以称得上到了极致.如2007年、2008年在倒数第二题,2005年、2006年在最后一题,2009年数列题前移到第17题,以中等题形式出现,这一显著地变化似乎一种信号,具有一定的导向作用.

(推荐)高中数学七大数学基本思想方法

高中数学七大数学基本思想方法 第一:函数与方程思想 (1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用。 (2)方程思想是解决各类计算问题的基本思想,是运算能力的基础。考把函数与方程思想作为七种重要思想方法重点来考查。 第二:数形结合思想 (1)数学研究的对象是数量关系和空间形式,即数与形两个方面 (2)在一维空间,实数与数轴上的点建立一一对应关系在二维空间,实数对与坐标平面上的点建立一一对应关系,形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化。 第三:分类与整合思想 (1)分类是自然科学乃至社会科学研究中的基本逻辑方法。 (2)从具体出发,选取适当的分类标准。 (3)划分只是手段,分类研究才是目的。 (4)有分有合,先分后合,是分类整合思想的本质属性。 (5)含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性。 第四:化归与转化思想 (1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决题化归为已解决问题。 (2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法。 (3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化。 第五:特殊与一般思想 (1)通过对个例认识与研究,形成对事物的认识。 (2)由浅入深,由现象到本质、由局部到整体、由实践到理论。 (3)由特殊到一般,再由一般到特殊的反复认识过程。 (4)构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程。 (5)高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向。 第六:有限与无限的思想 (1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路。 (2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向。 (3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用。 (4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查。 第七:或然与必然的思想

高中数学解题思想之分类讨论思想

分类讨论思想方法 在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性,所以在高考试题中占有重要的位置。 引起分类讨论的原因主要是以下几个方面: ①问题所涉及到的数学概念是分类进行定义的。如|a|的定义分a>0、a=0、a<0三种情况。这种分类讨论题型可以称为概念型。 ②问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。如等比数列的前n项和的公式,分q=1和q≠1两种情况。这种分类讨论题型可以称为性质型。 ③解含有参数的题目时,必须根据参数的不同取值范围进行讨论。如解不等式ax>2时分a>0、a=0和a<0三种情况讨论。这称为含参型。 另外,某些不确定的数量、不确定的图形的形状或位置、不确定的结论等,都主要通过分类讨论,保证其完整性,使之具有确定性。 进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。其中最重要的一条是“不漏不重”。 解答分类讨论问题时,我们的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论。 Ⅰ、再现性题组: 1.集合A={x||x|≤4,x∈R},B={x||x-3|≤a,x∈R},若A?B,那么a的范围是_____。 A. 0≤a≤1 B. a≤1 C. a<1 D. 00且a≠1,p=log a (a3+a+1),q=log a (a2+a+1),则p、q的大小关系是 _____。 A. p=q B. pq D.当a>1时,p>q;当0

2020高考数学专题复习《平面向量基本概念》练习题

O 第二章 平面向量 §2.1 平面向量的实际背景及基本概念 班级 姓名 学号 得分 一、选择题 1 . 下 列 物 理 量 中 , 不 能 称 为 向 量 的 是 ( ) A .质量 B .速度 C .位移 D .力 2 . 设 O 是 正 方 形 ABCD 的 中 心 , 向 量 ( ) AO 、OB 、CO 、OD 是 A .平行向量 B .有相同终点的向量 C .相等向量 D .模相等的向量3.下列命题中,正确的是 ( ) A .|a | = |b | ? a = b B .|a |> |b | ? a > b C .a = b ? a 与 b 共线 D .|a | = 0 ? a = 0 4.在下列说法中,正确的是 ( ) A .两个有公共起点且共线的向量,其终点必相同; B .模为 0 的向量与任一非零向量平行; C .向量就是有向线段; D .若|a |=|b |,则 a =b 5.下列各说法中,其中错误的个数为 ( ) (1)向量 AB 的长度与向量 BA 的长度相等;(2)两个非零向量 a 与 b 平行,则 a 与 b 的方向相同或相反;(3)两个有公共终点的向量一定是共线向量;(4)共线向量是可以移动到同一条直线上的向量;(5)平行向量就是向量所在直线平行 A .2 个 B .3 个 C .4 个 D .5 个 *6.△ABC 中,D 、E 、F 分别为 BC 、CA 、AB 的中点,在以 A 、B 、C 、D 、E 、F 为端点的有向线段所表示的向量中,与 EF 共线的向量有 ( ) A .2 个 B .3 个 C .6 个 D .7 个 二、填空题 7. 在(1)平行向量一定相等;(2)不相等的向量一定不平行;(3)共线向量一定相等;(4)相等向量一定共线;(5)长度相等的向量是相等向量;(6)平行于同一个向量的两个向量是共线向量中,说法错误的是 . 8. 如图,O 是正方形 ABCD 的对角线的交点,四边形 OAED 、OCFB 是正方形,在图中所示的向量中, (1) 与 AO 相等的向量有 ; (2) 与 AO 共线的向量有 ; (3) 与 AO 模相等的向量有 ; (4) 向量 AO 与CO 是否相等?答: . 9.O 是正六边形 ABCDEF 的中心,且 AO = a , OB = b , AB = c ,在以 A 、B 、C 、D 、E 、 F 、O 为端点的向量中: E D (1) 与 a 相等的向量有 ; (2) 与 b 相等的向量有 ; F (3) 与 c 相等的向量有 . *10.下列说法中正确是 (写序号) (1) 若 a 与 b 是平行向量,则 a 与 b 方向相同或相反; A B (2) 若 AB 与CD 共线,则点 A 、B 、C 、D 共线; (3) 四边形 ABCD 为平行四边形,则 AB = CD ; (4) 若 a = b ,b = c ,则 a = c ; (5) 四边形 ABCD 中, AB = DC 且| AB |=| AD | ,则四边形 ABCD 为正方形; (6)a 与 b 方向相同且|a | = |b |与 a = b 是一致的; 三、解答题

高中数学复习专题讲座第讲直线方程及其应用

高中数学复习专题讲座第讲直线方程及其应用 Last revised by LE LE in 2021

题目 高中数学复习专题讲座直线方程及其应用 高考要求 直线是最简单的几何图形,是解析几何最基础的部分,本章的基本概念;基本公式;直线方程的各种形式以及两直线平行、垂直、重合的判定都是解析几何重要的基础内容 应达到熟练掌握、灵活运用的程度,线性规划是直线方程一个方面的应用,属教材新增内容,高考中单纯的直线方程问题不难,但将直线方程与其他知识综合的问题是学生比较棘手的 重难点归纳 1 对直线方程中的基本概念,要重点掌握好直线方程的特征值(主要指斜率、截距)等问题;直线平行和垂直的条件;与距离有关的问题等 2 对称问题是直线方程的一个重要应用,中学里面所涉及到的对称一般都可转化为点关于点或点关于直线的对称 中点坐标公式和两条直线垂直的条件是解决对称问题的重要工具 3 线性规划是直线方程的又一应用 线性规划中的可行域,实际上是二元一次不等式(组)表示的平面区域 求线性目标函数z =ax +by 的最大值或最小值时,设t =ax +by ,则此直线往右(或左)平移时,t 值随之增大(或减小),要会在可行域中确定最优解 4 由于一次函数的图象是一条直线,因此有关函数、数列、不等式、复数等代数问题往往借助直线方程进行,考查学生的综合能力及创新能力 典型题例示范讲解 例1某校一年级为配合素质教育,利用一间教室作为学生绘画成果展览室,为节约经费,他们利用课桌作为展台,将装画的镜框放置桌上,斜靠展出,已知镜框对桌面的倾斜角为α(90°≤α<180°)镜框中,画的上、下边缘与镜框下边缘分别相距a m,b m,(a >b ) 问学生距离镜框下缘多远看画的效果最佳 命题意图 本题是一个非常实际的数学问题,它不仅考查了直线的有关概念以及对三角知识的综合运用,而且更重要的是考查了把实际问题转化为数学问题的能力 知识依托三角函数的定义,两点连线的斜率公式,不等式法求最值 错解分析 解决本题有几处至关重要,一是建立恰当的坐标系,使问题转化成解析几何问题求解;二是把问题进一步转化成求tan ACB 的最大值 如果坐标系选择不当,或选择求sin ACB 的最大值 都将使问题变得复杂起来 技巧与方法 欲使看画的效果最佳,应使∠ACB 取最大值,欲求角的最值,又需求角的一个三角函数值 解 建立如图所示的直角坐标系,AO 为镜框边,AB 为画的宽 度,O 为下边缘上的一点,在x 轴的正半轴上找一点C (x ,0)(x >0),欲使看画的效果最佳,应使∠ACB 取得最大值 由三角函数的定义知 A 、B 两点坐标分别为(a cos α,a sin α)、 (b cos α,b sin α),于是直线AC 、BC 的斜率分别为 k AC =tan xCA = x a a -ααcos sin ,.cos sin tan x b b xCB k BC -==αα 于是 tan ACB = AC BC AC BC k k k k ?+-1αα ααcos )(sin )( cos )(sin )(2?+-+?-= ++-?-=b a x x ab b a x x b a ab x b a

(新)高中数学复习专题一---函数图象问题

专题一 函数图象 数形结合是中学数学的重要的数学思想方法,尤其是函数的图象更是历年高考的热点.函数图象是函数的一种表达形式,形象的显示了函数的性质,为研究数量关系提供了“形”的直观性,它是探求解题途径,获得问题的结果的重要工具. 一、知识方法 1.函数图象作图方法 (1)描点法:列表、描点(注意关键点:如图象与x 、y 轴的交点,端点,极值点等))、连线(注 意关键线:如;对称轴,渐近线等) (2)利用基本函数图象变换。 2.图象变换(由一个图象得到另一个图象):平移变换、对称变换和伸缩变换等。 (1)平移变换 ① 水平平移:函数()y f x a =+的图象可以把函数()y f x =的图象沿x 轴方向向左 (0)a >或向右(0)a <平移||a 个单位即可得到; ② 竖直平移:函数()y f x a =+的图象可以把函数()y f x =的图象沿y 轴方向向上(0)a >或向下(0)a <平移||a 个单位即可得到. (2)对称变换 ① 函数()y f x =-的图象可以将函数()y f x =的图象关于y 轴对称即可得到; ② 函数()y f x =-的图象可以将函数()y f x =的图象关于x 轴对称即可得到; ③ 函数()y f x =--的图象可以将函数()y f x =的图象关于原点对称即可得到; (3)翻折变换 ① 函数|()|y f x =的图象可以将函数()y f x =的图象的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到; ② 函数(||)y f x =的图象可以将函数()y f x =的图象右边沿y 轴翻折到y 轴左边替代原y 轴左边部分并保留()y f x =在y 轴右边部分即可得到. (4)伸缩变换 ① 函数()y af x =(0)a >的图象可以将函数()y f x =的图象中的每一点横坐标不变纵坐标伸长(1)a >或压缩(01a <<)为原来的a 倍得到; ② 函数()y f ax =(0)a >的图象可以将函数()y f x =的图象中的每一点纵坐标不变横坐标伸长(01a <<)或压缩(1)a >为原来的 1 a 倍得到. 3.函数图象的对称性:对于函数)(x f y =,若对定义域内的任意x 都有 ①)()(x a f x a f +=-(或))2()(x a f x f -=,则)(x f 的图象关于直线a x =对称; ②b x a f x a f 2)()(=++-(或)2)2()(b x a f x f =-+,,则)(x f 的图象关于点),(b a P 对称. 4、熟练掌握基本初等函数(如正、反比例函数,一次、二次函数,指数、对数函数,幂函数,三角函数)的图象 5、作函数图象的一般步骤: (1)求出函数的定义域;(2)化简函数式;(3)讨论函数的性质(如奇偶性、周期性、单调性)以及图像上的特殊点、线(如极值点、渐近线、对称轴等);(4)利用基本函数的图像(5)利

2018上海高考数学大题解题技巧

上海高考数学大题解题技巧 一、立体几何题 1.证明线面位置关系,一般不需要去建系,更简单; 2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系; 3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。 二、三角函数题 注意归一公式、二倍角公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!),正弦定理,余弦定理的应用。 三、函数(极值、最值、不等式恒成立(或逆用求参)问题) 1.先求函数的定义域,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号); 2.注意最后一问有应用前面结论的意识; 3.注意分论讨论的思想; 4.不等式问题有构造函数的意识; 5.恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法); 四、圆锥曲线问题 1.注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法; 2.注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等; 3.战术上整体思路要保10分,争12分,想16分。 五、数列题 1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列; 2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用数列的单调性(或者放缩法);如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证; 3.如果是新定义型,一定要严格的套定义做题(仔细理解新定义)。 4.战术上整体思路要保10分,争12分,想16分。

高中数学高考总复习函数概念习题及详解

高中数学高考总复习函数概念习题及详解 一、选择题 1.(文)(2010·浙江文)已知函数f (x )=log 2(x +1),若f (a )=1,则a =( ) A .0 B .1 C .2 D .3 [答案] B [解析] 由题意知,f (a )=log 2(a +1)=1,∴a +1=2, ∴a =1. (理)(2010·广东六校)设函数f (x )=? ???? 2x x ∈(-∞,2] log 2x x ∈(2,+∞),则满足f (x )=4的x 的值是 ( ) A .2 B .16 C .2或16 D .-2或16 [答案] C [解析] 当f (x )=2x 时.2x =4,解得x =2. 当f (x )=log 2x 时,log 2x =4,解得x =16. ∴x =2或16.故选C. 2.(文)(2010·湖北文,3)已知函数f (x )=??? log 3x x >02x x ≤0 ,则f (f (1 9))=( ) A .4 B.1 4 C .-4 D .-14 [答案] B [解析] ∵f (19)=log 31 9=-2<0 ∴f (f (19=f (-2)=2-2=1 4 . (理)设函数f (x )=? ???? 21-x -1 (x <1)lg x (x ≥1),若f (x 0)>1,则x 0的取值范围是( ) A .(-∞,0)∪(10,+∞) B .(-1,+∞) C .(-∞,-2)∪(-1,10) D .(0,10) [答案] A

[解析] 由??? x 0<121-x 0-1>1或??? x 0≥1 lg x 0>1 ?x 0<0或x 0>10. 3.(2010·天津模拟)若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为f (x )=x 2,值域为{1,4}的“同族函数”共有( ) A .7个 B .8个 C .9个 D .10个 [答案] C [解析] 由x 2=1得x =±1,由x 2=4得x =±2,故函数的定义域可以是{1,2},{-1,2},{1,-2},{-1,-2},{1,2,-1},{1,2,-2},{1,-2,-1},{-1,2,-2}和{-1,-2,1,2},故选C. 4.(2010·柳州、贵港、钦州模拟)设函数f (x )=1-2x 1+x ,函数y =g (x )的图象与y =f (x )的图 象关于直线y =x 对称,则g (1)等于( ) A .-32 B .-1 C .-12 D .0 [答案] D [解析] 设g (1)=a ,由已知条件知,f (x )与g (x )互为反函数,∴f (a )=1,即1-2a 1+a =1, ∴a =0. 5.(2010·广东六校)若函数y =f (x )的图象如图所示,则函数y =f (1-x )的图象大致为( ) [答案] A [解析] 解法1:y =f (-x )的图象与y =f (x )的图象关于y 轴对称.将y =f (-x )的图象向右平移一个单位得y =f (1-x )的图象,故选A. 解法2:由f (0)=0知,y =f (1-x )的图象应过(1,0)点,排除B 、C ;由x =1不在y =f (x )的定义域内知,y =f (1-x )的定义域应不包括x =0,排除D ,故选A. 6.(文)(2010·广东四校)已知两个函数f (x )和g (x )的定义域和值域都是集合{1,2,3},其定

高中数学复习专题讲座极限的概念及其运算

高中数学复习专题讲座极限的概念及其运算 高考要求 极限的概念及其渗透的思想,在数学中占有重要的地位,它是人们研究许多问题的工具 旧教材中原有的数列极限一直是历年高考中重点考查的内容之一 本节内容主要是指导考生深入地理解极限的概念,并在此基础上能正确熟练地进行有关极限的运算问题 重难点归纳 1 学好数列的极限的关键是真正从数列的项的变化趋势理解数列极限 学好函数的极限的关键是真正从函数值或图象上点的变化趋势理解函数极限 2 运算法则中各个极限都应存在 都可推广到任意有限个极限的情况,不能推广到无限个 在商的运算法则中,要注意对式子的恒等变形,有些题目分母不能直接求极限 3 注意在平时学习中积累一些方法和技巧,如 )1|(|0lim ,0)1(lim <==-∞→∞→a a n n n n n ???? ? ????><==++++++--∞→时当不存在时当时当l k l k l k b a b x b x b a x a x a l l k k k n ,,0,lim 0 1 1 10110 典型题例示范讲解 例1已知lim ∞ →x (12+-x x -ax -b )=0,确定a 与b 的值 命题意图 在数列与函数极限的运算法则中,都有应遵循的规则,也有可利用的规律, 既有章可循,有法可依 因而本题重点考查考生的这种能力 也就是本知识的系统掌握能力 知识依托 解决本题的闪光点是对式子进行有理化处理,这是求极限中带无理号的式子常用的一种方法 错解分析 本题难点是式子的整理过程繁琐,稍不注意就有可能出错 技巧与方法 有理化处理 解 b ax x x b ax x x b ax x x x x +++-+-+-=--+-∞ →∞ →1)()1(lim )1(lim 2 2 22 b ax x x b x ab x a x +++--++--=∞ →1) 1()21()1(lim 2 222 要使上式极限存在,则1-a 2=0, 当1-a 2=0时, 1) 21(1)21(1111)21(lim 1)1()21(lim 22 2 22=++-++-=+++--++-=+++--+--=∞→∞→a ab a ab a x b x x x b ab b ax x x b x ab x x 由已知得上式 ∴

高中数学常用思想方法

高中数学常用的数学思想 一、函数与方程思想 函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。 笛卡尔的方程思想是:实际问题→数学问题→代数问题→方程问题。宇宙世界,充斥着等式和不等式。我们知道,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;求值问题是通过解方程来实现的……等等;不等式问题也与方程是近亲,密切相关。而函数和多元方程没有什么本质的区别,如函数y=f(x),就可以看作关于x、y的二元方程f(x)-y =0。可以说,函数的研究离不开方程。列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。 函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。它体现了“联系和变化”的辩证唯物主义观点。一般地, 函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:f(x)、f-1(x)的单调性、 奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。在解题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。另外,方程问题、不等式问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。 函数知识涉及的知识点多、面广,在概念性、应用性、理解性都有一定的要求,所以是高考中考查的重点。我们应用函数思想的几种常见题型是:遇到变量,构造函数关系解题;有关的不等式、方程、最小值和最大值之类的问题,利用函数观点加以分析;含有多个变量的数学问题中,选定合适的主变量,从而揭示其中的函数关系;实际应用问题,翻译成数学语言,建立数学模型和函数关系式,应用函数性质或不等式等知识解答;等差、等比数列中,通项公式、前n项和的公式,都可以看成n的函数,数列问题也可以用函数方法解决。 例设f(x)=lg 124 3 ++ x x a ,如果当x∈(-∞,1]时f(x)有意义,求实数a的取值范围。 【分析】当x∈(-∞,1]时f(x)=lg 124 3 ++ x x a 有意义的函数问题,转化为1+2x+4x a>0 在x∈(-∞,1]上恒成立的不等式问题。 【解】由题设可知,不等式1+2x+4x a>0在x∈(-∞,1]上恒成立, 即:(1 2 )2x+( 1 2 )x+a>0在x∈(-∞,1]上恒成立。 设t=(1 2 )x, 则t≥ 1 2 ,又设g(t)=t2+t+a,其对称轴为t=- 1 2

高考数学大题题型解答技巧

高考数学大题题型解答技巧 六月,有一份期待,年轻绘就畅想的星海,思想的热血随考卷涌动,灵魂的脉搏应分 数澎湃,扶犁黑土地上耕耘,总希冀有一眼金黄黄的未来。下面就是小编给大家带来 的高考数学大题题型解答技巧,希望大家喜欢! 高考数学大题必考题型(一) 排列组合篇 1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。 2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。 3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单 的应用问题。 4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。 5.了解随机事件的发生存在着规律性和随机事件概率的意义。 6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件 的概率。 7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事 件的概率乘法公式计算一些事件的概率。 8.会计算事件在n次独立重复试验中恰好发生k次的概率. 立体几何篇 高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的 课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。从 历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是 常考常新的热门话题。 知识整合 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺 少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握

高中数学复习专题讲座(第40讲)化归思想

高中数学复习专题讲座(第40讲)化归思想 高考要求 化归与转换的思想,确实是在研究和解决数学咨询题时采纳某种方式,借助某种函数性质、图象、公式或条件将咨询题通过变换加以转化,进而达到解决咨询题的思想 等价转化总是将抽象转化为具体,复杂转化为简单、未知转化为,通过变换迅速而合理的查找和选择咨询题解决的途径和方法 重难点归纳 转化有等价转化与不等价转化 等价转化后的新咨询题与原咨询题实质是一样的 不等价转化那么部分地改变了原对象的实质,需对所得结论进行必要的修正 应用转化化归思想解题的原那么应是化难为易、化生为熟、化繁为简,尽量是等价转化 常见的转化有 正与反的转化、数与形的转化、相等与不等的转化、整体与局部的转化、空间与平面相互转化、复数与实数相互转化、常量与变量的转化、数学语言的转化 典型题例示范讲解 例1对任意函数f (x ), x ∈D ,可按图示构造一个数列发生器,其工作原理如下 ①输入数据x 0∈D ,经数列发生器输出x 1=f (x 0); ②假设x 1?D ,那么数列发生器终止工作;假设x 1∈D ,那么将x 1反 馈回输入端,再输出x 2=f (x 1),并依此规律连续下去 现定义1 2 4)(+-= x x x f 〔1〕假设输入x 0=65 49 ,那么由数列发生器产生数列 {x n },请写出 {x n }的所有项; 〔2〕假设要数列发生器产生一个无穷的常数列,试求输入的初始数据x 0的值; 〔3〕假设输入x 0时,产生的无穷数列{x n },满足对任意正整数n 均有x n <x n +1;求x 0 的取值范畴 命题意图 此题要紧考查学生的阅读审题,综合明白得及逻辑推理的能力 知识依靠 函数求值的简单运算、方程思想的应用 解不等式及化归转化思想的应用 解题的关键确实是应用转化思想将题意条件转化为数学语言 错解分析考生易显现以下几种错因〔1〕审题后不能明白得题意〔2〕题意转化不出数学关系式,如第2咨询〔3〕第3咨询不能进行从一样到专门的转化 技巧与方法 此题属于富有新意,综合性、抽象性较强的题目 由于生疏不易明白得并将文意转化为数学语言 这就要求我们慎读题意,把握主脉,体会数学转换 解 〔1〕∵f (x )的定义域D =〔–∞,–1)∪(–1,+∞) ∴数列{x n }只有三项,1,5 1 ,1911321-===x x x 〔2〕∵x x x x f =+-= 1 2 4)(,即x 2–3x +2=0 ∴x =1或x =2,即x 0=1或2时 n n n n x x x x =+-= +1 2 41

最新高中数学思想方法(附经典例题及详解)

最新高中数学思想 方法 经典例题

经典解析

目录 前言 (2) 第一章高中数学解题基本方法 (3) 一、配方法 (3) 二、换元法 (7) 三、待定系数法 (14) 四、定义法 (19) 五、数学归纳法 (23) 六、参数法 (28) 七、反证法 (32) 八、消去法……………………………………… 九、分析与综合法……………………………… 十、特殊与一般法……………………………… 十一、类比与归纳法………………………… 十二、观察与实验法………………………… 第二章高中数学常用的数学思想 (35) 一、数形结合思想 (35) 二、分类讨论思想 (41) 三、函数与方程思想 (47) 四、转化(化归)思想 (54) 第三章高考热点问题和解题策略 (59) 一、应用问题 (59) 二、探索性问题 (65) 三、选择题解答策略 (71) 四、填空题解答策略 (77) 附录……………………………………………………… 一、高考数学试卷分析………………………… 二、两套高考模拟试卷………………………… 三、参考答案……………………………………

前言 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等; ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳 和演绎等; ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思 想等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想。最后谈谈解题中的有关策略和高考中的几个热点问题,并在附录部分提供了近几年的高考试卷。 在每节的内容中,先是对方法或者问题进行综合性的叙述,再以三种题组的形式出现。再现性题组是一组简单的选择填空题进行方法的再现,示范性题组进行详细的解答和分析,对方法和问题进行示范。巩固性题组旨在检查学习的效果,起到巩固的作用。每个题组中习题的选取,又尽量综合到代数、三角、几何几个部分重要章节的数学知识。

高中数学知识点以及解题方法大全

前言 (2) 第一章高中数学解题基本方法 (3) 一、配方法 (3) 二、换元法 (7) 三、待定系数法 (14) 四、定义法 (19) 五、数学归纳法 (23) 六、参数法 (28) 七、反证法 (32) 八、消去法……………………………………… 九、分析与综合法……………………………… 十、特殊与一般法……………………………… 十一、类比与归纳法………………………… 十二、观察与实验法………………………… 第二章高中数学常用的数学思想 (35) 一、数形结合思想 (35) 二、分类讨论思想 (41) 三、函数与方程思想 (47) 四、转化(化归)思想 (54) 第三章高考热点问题和解题策略 (59) 一、应用问题 (59) 二、探索性问题 (65) 三、选择题解答策略 (71) 四、填空题解答策略 (77) 附录……………………………………………………… 一、高考数学试卷分析………………………… 二、两套高考模拟试卷………………………… 三、参考答案…………………………………… 前言 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去 法等; ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、 归纳和演绎等; ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化 归)思想等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化( 第一章高中数学解题基本方法 一、配方法 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。 最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。 配方法使用的最基本的配方依据是二项完全平方公式(a+b) 2 =a 2 +2ab+b 2 ,将这个公式灵活运用,可得到各种基本配方形式,如: a 2 +b 2 =(a+b) 2 -2ab=(a-b) 2 +2ab; a 2 +ab+b 2 =(a+b) 2 -ab=(a-b) 2 +3ab=(a+ b 2) 2 +( 3 2b) 2 ; a 2 +b 2 +c 2 +ab+bc+ca= 1 2[(a+b) 2 +(b+c) 2 +(c+a) 2 ] a 2 +b 2 +c 2 =(a+b+c) 2 -2(ab+bc+ca)=(a+b-c) 2 -2(ab-bc-ca)=… 结合其它数学知识和性质,相应有另外的一些配方形式,如: 1+sin2α=1+2sinαcosα=(sinα+cosα) 2 ; x 2 + 1 2 x=(x+ 1 x) 2 -2=(x- 1 x) 2 +2 ;……等等。 Ⅰ、再现性题组: 1. 在正项等比数列{a n}中,a1?a5+2a3?a5+a3?a7=25,则 a3+a5=_______。 2. 方程x 2 +y 2 -4kx-2y+5k=0表示圆的充要条件是_____。 A. 1 41 C. k∈R D. k= 1 4或k=1 3. 已知sin 4 α+cos 4 α=1,则sinα+cosα的值为______。 A. 1 B. -1 C. 1或-1 D. 0 4. 函数y=log1 2 (-2x 2 +5x+3)的单调递增区间是_____。 A. (-∞, 5 4] B. [ 5 4,+∞) C. (- 1 2, 5 4] D. [ 5 4,3) 5. 已知方程x 2 +(a-2)x+a-1=0的两根x1、x2,则点P(x1,x2)在圆x 2 +y 2 =4上,则实数a=_____。 【简解】 1小题:利用等比数列性质a m p -a m p +=a m 2 ,将已知等式左边后配方(a3+a5) 2 易求。答案是:5。 2小题:配方成圆的标准方程形式(x-a) 2 +(y-b) 2 =r 2 ,解r 2 >0即可,选B。 3小题:已知等式经配方成(sin 2 α+cos 2 α) 2 -2sin 2 αcos 2 α=1,求出sinαcosα,然后求出所求式的平方值,再开方求解。选C。 4小题:配方后得到对称轴,结合定义域和对数函数及复合函数的单调性求解。选D。 5小题:答案3-11。 Ⅱ、示范性题组: 例1.已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为_____。 A. 23 B. 14 C. 5 D. 6 【分析】先转换为数学表达式:设长方体长宽高分别为x,y,z,则211 424 () () xy yz xz x y z ++= ++= ? ? ? ,而欲求对角线长x y z 222 ++,将其配凑成两已知式的组合形式可得。

相关主题
文本预览
相关文档 最新文档