当前位置:文档之家› 220kv变电站蓄电池室规范

220kv变电站蓄电池室规范

220kv变电站蓄电池室规范
220kv变电站蓄电池室规范

竭诚为您提供优质文档/双击可除220kv变电站蓄电池室规范

篇一:220kv变电站直流系统

220kv变电站直流系统讲义一:220kv变电站直流母线基本要求:

1、20xx年全公司无人值班改造即将启动,了解直流母线改造方案可帮助大家更好的对大修工作进行监督和验收,防止在各个环节出现不符合要求的问题出现,必须按照省公司技术方案进行。

2.

蓄电池组、充电机和直流母线

2.1设立两组蓄电池,每组蓄电池容量均按单组电池可为整个变电站直流系统供电考虑。

2.2设两个工作整流装置和一个备用整流装置,供充电及浮充之用,备用整流装置可在任一台工作整流装置故障退出工作时,切换替代其工作。

2.3直流屏上设两段直流母线,两段直流母线之间有分段开关。正常情况下,两段直流母线分列运行,两组蓄电池和两个整流装置分别接于一段直流母线上。

2.4具有电磁合闸机构断路器的变电站,直流屏上还应设置两段合闸母线。

(220kv变电站蓄电池室规范)2.5220kV系统设两面直流分电屏。分电屏Ⅰ内设1组控制小母线(kmⅠ)、1组保护小母线(bmⅠ);分电屏Ⅱ内设1组控制小母线(kmⅡ)、1组保护小母线(bmⅡ)。

2.6110kV系统设1面直流分电屏,屏内设1组控制小母线(km)、1组保护小母线(bm)。

2.710kV/35kV系统的继电保护屏集中安装在控制室或

保护小间的情况下,在控制室或保护小间设1面直流分电屏。

2.8信号系统用电源从直流馈线屏独立引出。

2.9中央信号系统的事故信号系统、预告信号系统直流电源分开设置

2.10每组信号系统直流电源经独立的两组馈线、可由两组直流系统的两段直流母线任意一段供电。

2.11断路器控制回路断线信号、事故信号系统失电信号接入预告信号系统;预告信号系统失电信号接入控制系统的有关监视回路。

2.12事故音响小母线的各分路启动电源应取自事故信

号系统电源;预告信号小母线的各分路启动电源应取自预告信号系统电源。

2.13公用测控、网络柜、远动柜、保护故障信息管理柜、

调度数据网和ups的直流电源从直流馈线屏直接馈出。

二、直流系统现状:

20xx年,国电公司在总计6217套直流充电装置中,高

频开关电源型充电装置3476套,占55.91%。相控性2631套,占2.32%,磁放大型110套,占1.77%。在总计6897套蓄电池中阀控型5536组占80.27%,防酸型710组占10.37%,隔镍621组占9%。

据统计,20xx年至20xx年110-500kv站用直流系统故

障共14次,全部是直流电源系统自身故障,110站12次,

占85.7%,220站2次站14.3%。14次故障中,蓄电池故障5次,占35.7%,其中由于充电装的监控模块损坏,长时间过

充电造成整组蓄电池全部鼓肚损坏一次;

蓄电池爆炸起火,造成全站直流失压在220和110变电站各一次;蓄电池极柱烧毁一次;蓄电池内部短路,造成全站直流失压一次。充电装置故障9次,占64.3%,其中硅整

流装置烧坏,造成全站直流失压一次;直流回路短路越级到总保险熔断,造成全站直流失压一次;直流回路熔断器与空气短路器混用且级差不配合,在直流回路发生短路时,支路空气断路器未动作,越级到蓄电池总保险熔断一次;充电装置控制插件等6次。

直流系统缺陷主要原因有:一是高频开关模块缺陷率高,影响设备运行。二是蓄电池缺陷严重,包括电池开路、容量

崩溃、端电压低、漏液等。三是监控装置缺陷频繁,包括控制失灵、控制精度差等,严重影响蓄电池质量和寿命。四是充电装置自身缺陷多,包括硅整流损坏造成直流失压、阀控蓄电池配相控充电机其稳压稳流精度满足不了要求、充电装置死机、防雷抗干扰能力差、降压单元或其它元件损坏等。五是绝缘检查装置运行可靠性差,包括死机、选线不正确、报警失灵、装置损坏等。

三:直流母线接线方式:

1、直流系统运行一般规定:

(1)、220kv变电站一般采用单母线分段接线方式,110kv 变电站一般采用单母线接线方式。直流成环回路两个供电开关只允许合一个,因为母联开关在断开时,若两个开关全在合位就充当母联开关,其开关容量小,线型面积小,又不符合分段运行的规定。直流成环回路分段开关的物理位置要清楚,需要成环时应先合上母联开关再断开直流屏上的另一个馈线开关。

(2)、每段直流馈线母线不能没有蓄电池供电。

(3)、充电机不能并列运行。

(4)、正常情况下,母联开关应在断开位置。

(5)、绝缘检查装置、电压检查装置始终在运行状态。

(6)、投入充电机时先从交流再到直流。停电时顺序相反。

(7)、母线并列时首先断开一台充电机,投入母联开关,在断开检修蓄电池。

(8)、母线由并列转入分段时首先合上检修蓄电池,断开母联开关,再投入充电机。

2、直流母线接线方式举例1(王段):

(1)、本接线方式绝缘检查装置、电压检查装置、闪光装置各两套。

(2)、正常运行方式:1#充电机经qk1供直流母线代蓄电池1运行,直流母线经qk2和降压硅堆供1段直流馈线母线运行(同理2#充电机),qk5、qk6在断开位置。此接线方式属于负调压。

(3)、1#充电机短时间检修:断开qk1,蓄电池1处于

放电状态。送电时合上qk1。

(4)、1#充电机长时间检修:断开qk1,合上qk5或qk6;送电时断开qk5和qk6,合上qk1。

(5)、蓄电池1检修:断开qk1,合上qk5或qk6,断

开蓄电池1保险。合上开蓄电池1保险,断开qk5和qk6,

合上qk1。

(6)、单独对蓄电池1进行充放电试验:断开qk1,合

上qk6,断开qk2,蓄电池按照规定电流放电,放电完毕由

充电机自动充电至浮充状态。实验完毕后恢复正常运行方式:断开qk1(此时正在充电方式),合上qk2,断开qk6,合上

qk1。

3、直流母线接线方式举例2(南宫):

提示:图中从左到右四个硅堆分别为:dn5、dn7、dn8、dn9。

(1)、正常时q7、q8、q11、q12、q13在断开位置。

(2)、1#充电机短时间检修:断开q3、q1,q7应在断开位置,1#蓄电池组处于放电状态。恢复时合上q1、q3。

(3)、1#充电机长时间检修:断开q3、q1,q7应在断开位置,合上q12、q13(或q11)。恢复时断开q12、q13(或q11),合上q1、q3。

(4)、蓄电池1检修:断开q3、q1,q7应在断开位置,合上q12、q13(或q11),断开q5。恢复时合上q5,断开q12、q13(或q11),合上q1、q3。

(5)、单独对蓄电池1进行充放电试验:断开q3、q1,q7应在断开位置,合上q12、q13(或q11),断开q5,合上q1、q7。恢复时合上q5,断开q12、q13(或q11),合上q1、q3。断开q7。

(6)、正常情况下dn5、dn6、q9加dn8、q10加dn7保证直流馈线正母线不失电。

(7)、正常情况下q12、q13作为母联开关,q11作为备用母联开关,q12也可以作为q9、q10的备用。

4、直流母线接线方式举例3(金店):

(1)、正常运行中,zk7、zk8在断开位置,zk6在合位(因为二极管的隔离作用,理论上认为母线是分段的)(2)、zk1、zk2在母线位置,zk5在断开位置,zk3、zk3在合位。

(3)、1#充电机检修:断开zk1。

(4)、1#蓄电池检修:断开zk1、zk3。

(5)、单独对蓄电池1进行充放电试验:zk1在电池位置,断开zk3。

5、直流母线接线方式举例3(隆尧):

(1)、zk3、zk4是两个会为备用的母联开关。

(2)、3#机可对1#电池单独充放电,2#电池则不能。

四、蓄电池运行状态及注意事项

(1)、蓄电池组正常运行再浮充状态,电池亏电或在厂家规定的周期进行均充。

(2)、蓄电池浮充电压25℃时2.23伏,均充2.35伏。

(3)、充电机运行在自动程序中,但必须监视蓄电池的单体电压、外观(爬碱、鼓肚),控制蓄电池室温度(25℃)。

(4)、蓄电池保险熔断发出信号后,应将母联开管立即合上(此时充电机短时并列),然后断开为本蓄电池组充电的充电机,然后对电池检查。

(5)、虽然有蓄电池巡检装置,但每天要测量单体电压。

(6)、蓄电池短路会出现电压下降,甚至出现零值瓶。

(7)、蓄电池断路时其端电压高于正常值,电压值视断路程度而不同。

(8)、蓄电池过充危害较大,鼓肚爆炸。

(9)、极柱接触不良易烧断。

五、充电机运行状态及注意事项

(1)、直流系统主回路开关应当在正常位置,各站有所不同。

(2)、所有监控器应在开启状态。

(3)、主辅硅链正常在自动状态,当其不能满足直流母线要求时可将其置于合适的手动挡位,双硅链只调整一个即可。

(4)、微机监控器内有一套绝缘检查装置,但不能选线,每段母线各有一套绝缘检查装置可选线,大部分站每段母线各有一套绝缘检查继电器但不可选线。

(5)、隆尧站绝缘检查开关0位时微机监控器内绝缘检查装置起作用,每段母线绝缘检查装置起作用。1位1#绝缘检查装置起作用。2位微机监控器内绝缘检查装置不起作用。3位2#绝缘检查装置起作用。绝缘检查继电器永远起作用。

(6)、充电机受温度影响,518产品尤其突出。

(7)、监控器有时误报信息,可短时关掉其电源,但不能频繁关停机,否则易烧显示屏。

(8)、每段直流馈线母线保证一个备用模块。

六、直流系统接地查找

1、直流系统接地查找一般原则

(1)、“直流接地”信号发出后,可通过直流屏监控器和绝缘检查装置找出接地支路号及接地状态,支路号的排列大都是按直流馈线屏馈线开关从上至下或从左到右的顺序,绝缘检查装置还可以显示接地电阻(接地电阻小于15-20千欧时报警),判断接地程度,可通过绝缘检查开关判断正对地、负对地电压,判断接地程度。有时绝缘检查装置判断不出支路只报“直流母线接地”,此时有可能直流母线接地,也可能是支路接地。

(2)、直流接地信号发出后,必须停止二次回路上的工作,值班员应详细询问情况,及时纠正修试人员的不规范行为。

(3)、利用万用表测量正对地、负对地电压,核对绝缘检查装置的准确性。万用表必须是高内阻的,2000欧/伏,否则会造成另一点接地。

(4)、试拉变电站事故照明回路。

(5)、试拉检修间直流电源回路。

(6)、试拉380伏配电直流电源回路。

(7)、试拉通讯远动电源回路。

(8)、解列蓄电池。

(9)、解列充电机。

(10)、1段母线负荷倒至2段母线,判断1段母线是否接地。

(11)、使用接地查找仪对控制、保护、信号回路逐一查找。

2、查找接地举例1(金店)

(1)、本站事故照明正常有交流供电,g1、g2、g3合位(2)、交流失电后启动2c、3c继电器事故照明回路有直流供电。

(3)、断开110保护小间。

(4)、断开220保护小间。

(5)、断开g3。

(6)断开g2。

(7)断开直流馈线屏事故照明开关。

(8)、直流接地查找必须清楚回路,从末级断电逐级排除判断。

3、查找接地举例2(金店110直流储能回路)

(1)、zk1、zk2在合位。

(2)、整个回路的解环开关在断开位置。

(3)、逐个断开开关的直流储能开关,判断端子箱到机构箱的回路是否正常。

(4)、上述无问题后,从分段开关向前逐个断开主回路开关判断主回路是否正常。

卷绕式锂离子电池设计规范

卷绕式锂离子电池设计规范 一、观察给定型号和客户需求 1、型号制定了电池的尺寸(以063048为例,尺寸为6.0×30×48mm) 2、客户要求的容量和电池的放电类别(动力型、高温型、普通型),通常而言电 池所能达到的容量一般为普通型>高温型>动力型(以便确定所需要的材料) 3、材料的选用: 3.1容量≥1000mAh的型号,如果客户无容量或高温要求的用正极CN55系列 3.2有高温要求的型号,正极材料必须使用Co系列,电解液必须用高温电解液 二、卷芯设计 1、容量设计 根据客户要求的最小容量来确定设计容量。 设计容量(mAh)= 要求的最小容量×设计系数=(长×2-刮粉)×宽÷10000×面密度×理论克容量 注:设计系数: 标称容量≤200mAh设计系数一般取1.10~1.20; 标称容量200<C≤350mAh设计系数一般取1.08±0.02; 标称容量C>350mAh设计系数一般取1.07±0.02。 2、卷针的设计 2.1 卷针的宽度 Wj=电芯的宽度-卷针厚度-电芯的厚度-1.7(根据实际情况而定) 2.2 卷针厚度 Tj由卷针的宽度决定,具体见卷针统计表。 3、包装膜尺寸设计 3.1包装膜膜腔长度的确定: 膜腔长度=成品高-顶封宽度(5mm) 3.2包装膜膜腔长度的确定: 膜腔宽度=成品宽-1.2mm 3.3 槽深的设计: 槽深H与电芯厚度的关系如下:H = T-α 其中: T —电芯的厚度; α—当型号为双坑电池时,α取0.2 当型号为单坑电池时,α取-0.2 3.4 包装袋长、宽尺寸的确定: 3.4.1 包装袋宽度: a. 厚度≤5mm的电池铝塑膜宽度为电池本体宽度+(45~50mm),取代5mm 的整数倍为规格; b. 厚度﹥5mm的电池铝塑膜宽度为电池本体宽度+(55~60mm),取代5mm 的整数倍为规格; 3.4.2包装袋长度: 铝塑膜长度=成品电池长度×2+10mm

变电站蓄电池容量计算书

附件:蓄电池容量计算 一、站内负荷统计 1

2、

注:断路器跳、合闸电流取2A 。 二、蓄电池容量计算: 本期工程采用阀控式密封铅酸蓄电池,单体电压2V ,单体浮充电电压取2.23V 。 蓄电池个数:10459.10323.2220 05.105.1≈=?==f n U U n 单体蓄电池事故放电末期终止电压:U m ≥0.875 U n /n=0.875×220/104=1.85V 第一阶段(1min )计算容量: C c1=K k *I 1/K c1 K k =1.4;I 1=43.19A;Kc1=1.33; C c1=45.46Ah 第二阶段(1min~120min )计算容量: C c2=K k [(I 1/K c1)+(I 4-I 1)/K c2] K k =1.4;I 1=43.19A; I 4=33.19;Kc1=0.344; K c2=0.347; C c2=135.43Ah 随机负荷容量: C r =I r /K cr I r =5A;K cr =1.34; C cr =3.73Ah

蓄电池计算容量C c2+C cr =139.16Ah ,选择容量200Ah 。 三、充电装置选择 按满足蓄电池均衡充电要求,蓄电池充电时仍对经常负荷供电。 I r =1.25I 10+I jc =1.25×20+25.01=50.01A N=52.33/20+1≈3取: 充电模块额定电流20A ; 铅酸蓄电池10小时放电率电流I 10=0.1C 10=20A ; 按1块备用充电模块考虑,本期工程配置4块20A 高频充电模块。 四、蓄电池回路电缆截面选择 (1)按载流量计算:I pc ≥I 1=110A I pc :电缆允许载流量(A ); I 1:回路长期工作计算电流(A ),取事故停电2h 蓄电池放电率电流5.5I 10=110A (1)按回路电压降计算:2 12.92.2110 520184.0I 2mm U L S c =???=?=ρ S c 电缆截面(mm 2) ρ电阻系数,铜导体ρ=0.0184Ω·mm 2/m L 电缆长度 △U 回路允许电压降,取10%×220=2.2V

千伏变电站直流蓄电池技术规范

110kV变电工程 220V直流蓄电池专用技术规范工程名称: 建设单位: 设计单位: 设计联系人: 联系电话: 1 招标设备需求一览表 2 供货范围 2.2 本工程所需其他配件。 2.2.1蓄电池间的接线板及相应连接配件。 2.2.2蓄电池辅助设备。 2.2.3备品备件及专用工具。

3 其他技术条款 直流系统电缆应采用阻燃电缆。 蓄电池与蓄电池之间间距≥15mm,层间≥150mm。 4 使用说明 本专用技术规范与湖南省电力公司110kV变电所220V阀控式密封铅酸蓄电池通用技术规范(2007版)构成完整的设备技术规范书。

湖南省电力公司 110kV变电所阀控式密封铅酸蓄电池通用技术规范书(2007版)

目录 1.总则 2.技术要求 应遵循的主要现行标准 环境条件 安装地点 基本技术条件 技术性能要求 3.设备规范 4.供货范围(详见专用条款) 5. 技术服务 项目管理 技术文件 现场服务及售后服务 6. 买方工作 7. 工作安排 8. 备品备件及专用工具 9. 质量保证和试验 质量保证 试验 10. 包装、运输和储存 附录A:制造厂提供的各种曲线或蓄电池容量选择表附录B: 卖方应填写的蓄电池技术数据表

1. 总则 本设备技术规范书适用于湖南省电力公司110kV变电所蓄电池的招标订货,它提出了蓄电池的功能设计、结构、性能、安装和试验等方面的技术要求。 本设备技术规范书提出的是最低限度的技术要求,并未对一切技术细节作出规定,也未充分引述有关标准和规范的条文,卖方应提供符合本规范书和工业标准的优质产品。 如果卖方没有以书面形式对本规范书的条文提出异议,则意味着卖方提供的设备(或系统)完全符合本规范书的要求。如有异议,不管是多么微小,都应在报价书中以“对规范书的意见和同规范书的差异”为标题的专门章节中加以详细描述。 本设备技术规范书所使用的标准如遇与卖方所执行的标准不一致时,按较高标准执行。本设备技术规范书经买、卖双方确认后作为订货合同的技术附件,与合同正文具有同等的法律效力。 本设备技术规范书未尽事宜,由买卖双方协商确定。 投标商资格 投标商应至少设计、制造、集成、调试20套及以上类似本标书提出的110kV及以上电压等级连续成功的商业运行业绩(投标商应出具工程业绩表)。 投标商提供的产品应具有在国内外110kV及以上电压等级成功投运一年以上的经验。投标商提供的产品应通过省(部)级以上主管部门组织的技术鉴定,并随投标书提供电力部门运行情况报告。 投标商提供的产品应通过部级以上检测中心的检验报告、型式试验报告。 投标商提供ISO9000资格认证书。 投标时,以上资料和报告必须在技术文件中提供。 2.技术要求 应遵循的主要现行标准: 下列标准所包含的条文,通过在本规范书中引用而构成本规范书的条文。所示标准均应采用最新有效版本。 IEC896-2 《固定型铅酸蓄电池一般要求和试验方法》

汽车发电机&蓄电池设计规范谈

1:点火开关开启/发动机工作:车辆处于典型电力负载设备的正常工作和怠速状态下,在蓄电池测得的系统电压应在12V到15V左右。发动机熄火(只有蓄电池供电)在蓄电池充电的正常范围且带典型电力负载的情况下:,在蓄电池测得的系统电压应该在12V到13V 左右。 2:.在任何工作条件下电压调节器“I”端子的电压值必须不小于1.0V,在正常工作条件下在调节器“IGN”端的电压值应不小于8V。 3:所有整车都拥有一个蓄电池低压时的增压功能以在电池电压小于12.1伏特时提供一个从最少每分50转的转速增加到发动机怠速的转速的这么个功能。该增压装置保持工作直到蓄电池电压达到13.1伏特 4:电能输出的电路结构必须提供以下功能特性:A)在点火钥匙处于off或者ACC位置时充电指示灯熄灭。B)在点火钥匙处于ON档并且发动机处于关闭状态充电指示灯打开。C)在点火钥匙处于ON档且发动机都处于工作状态时充电指示灯熄灭。 5:交流发电机输出接口(B+)被认为是装配工艺的一个关键点,在装配工艺中需要用到下列的硬件/装配工具:*用直流数显式扭矩扳手或者带扭矩显示的标准气动工具把十字螺母安装好并互锁到总装配线上,单个的操作方法-把螺母放入电动工具的槽里并安装相关配件,最后再安装保护帽盖。*用带扭矩显示的标准气动工具通过十字螺母来安装。两个操作工的安装方法:第一个操作工:把螺母放入电动工具的槽里并安装相关配件。第二个操作工:通过检测工具来核对力矩,并做好标记。最后再安装保护帽盖。 6:不允许出现皮带滑动,这可能造成交流发动机的速度降到每分1100转以下。 7 :电压必须不超过调整器设计所定义的指定曲线,而且在低负荷和高负荷之间的电压差值必须0.25 V. 8:为了防止交流发电机因为腐蚀,电刷损坏和轴承润滑剂飞溅接触交流发电机等原因过早失效。 (1).交流发电机滑轮中心线与曲轴滑轮中心线间的垂直距离大于或等于200mm,在交流发电机通过了腐蚀性和耐久性实验的条件下,安装在底部或者零件部上的防护罩就不做要求。如果交流发电机在没有防护罩条件下未通过腐蚀性和耐久性实验,那么底部或者零部件上的保护罩就必须安装。 (2)交流发电机滑轮中心线与曲轴滑轮中心线间的垂直距离小于200mm,做一个防水实验以决定底部和零部件上的保护罩安装是否是在腐蚀和耐久性的测试之前。如果交流发电机通过腐蚀性和耐久性实验,那么底部或者零件上的保护罩不需要安装。 9:交流发电机不能直接放置在任何管的开口或者充满液体的装置(比如柴油机泵)下,必须与任何管口间留有至少100mm的水平间隙,如果在实验或者分析中出现污染物可能接

动力镍氢电池设计规范

动力镍氢电池设计规范 1、适用范围 本规范适用于常规应用的金属氢化物镍单体蓄电池的设计,包括结构设计、性能设计、成本设计和工艺设计等方面。 参考标准: QC/T744-2006 电动道路车辆用金属氢化物镍蓄电池 企业标准动力(功率)型密封金属氢化物镍蓄电池(草案) 2、单体电池设计准则 (1)必须满足用户要求或相关标准; (2)必须满足批量化生产要求; (3)必须满足生产设备及工艺要求; (4)在允许的尺寸、重量范围内进行结构和工艺设计,使其满足整机系统的用电要求; (5)在满足性能的前提下,尽量降低成本。 3、电池零部件的设计与选择 电池零部件包括单体电池应用的金属部件和非金属部件等。零部件的设计与选择除特殊要求外,应选择标准件或通用件。 3.1极柱的设计与选择 3.1.1极柱材料 冷拉圆钢11-35/45 极柱表面应镀镍,镀镍层厚度为30~50μm 3.1.2极柱结构 采用双叉式极柱,极耳与极柱的连接采用点焊式连接方式。极耳和叉的重合面积应占极柱叉一个表面的70%以上。极柱两叉之间的距离应根据极组厚度进行设计,使极耳焊接后最外侧极片和中间极片的极耳受力、弯曲等一致。 3.1.3极柱直径 针对不同的应用和电池,选用不同直径的极柱,使用过程中各极柱承受的电流按如下选择:(材料为铁)

容许电流的计算方法: IFe2=(C·ρ密度·S2·ΔT)/(ρ电阻率·t) C为材料比热,Fe为0.4501J/gK,Cu为0.378 J/gK; ρ密度为材料密度,Fe为7.874g/cm3,Cu为8.96 g/cm3; S为极柱截面积,单位mm; ΔT为要控制的温升(绝热条件),初步设定控制为50℃; ρ电阻为材料电阻率,Fe为0.0978Ωmm2/m,Cu为0.01637Ωmm2/m; t为电流持续时间,连续按3600s计算,间歇按30s计算,启动按10s计算。 3.1.4极柱高度 根据电池选用的另部件(如绝缘垫、螺母、电池盖、红蓝垫圈、大垫圈、螺母等)以及电池组合应用的连接部件(垫圈、跨接片、螺母等)来确定极柱高度,电池模块组合后极柱不得高出组合用螺母上端2mm。 3.2螺母的设计与选择 螺母选择GB6173与极柱相配套的标准件。 螺母表面应镀镍,镀镍层厚度为3~5μm(不锈钢螺母不镀镍) 3.3密封圈的设计与选择 材料:三元乙丙橡胶EP35 或E740-75 选用标准: a.125℃22h压缩永久变形小于20%; b.绝缘电阻500V大于2MΩ; c.120℃70h耐碱测试总重量变化小于±1%;

变电站蓄电池容量计算书

变电站蓄电池容量计算书

————————————————————————————————作者: ————————————————————————————————日期:

附件:蓄电池容量计算 一、站内负荷统计 1、保护、控制、监控系统负荷统计: 序号设备单位数量直流负荷(W) 1 110kV线路保护测控屏面 4 4×2×50=400 2 110kV母联保护测控屏面12×50=100 3110kV母线保护屏面 1 1×50=50 4 主变保护屏面 2 2×5×50=500 5 主变测控屏面 2 2×4×50=400 6 公用测控屏面 1 3×50=150 7 110kV母线测控屏面 1 1×50=100 8 35kV及10kV母线测控屏面 1 2×50=100 9 故障录波屏面12×50=100 10 时钟同步屏面 1 2×50=100 11 远动通信装置屏面16×50=300 12 35kV保护测控设备台88×50=400 13 10kV保护测控设备台17 17×50=850

14其他500 总计4050 2、直流负荷统计: 序号 负荷 名称装置 容量 kW 负荷 系数 计算电流 经常负荷 电流 A 事故放电时间及放电电流A 初期持续h 随机 0~1min 1~30min 30~60min 60~120min 5s Ijc I1 I2 I3 I4 Ichm 1 保护/控制/ 监控系统 4.05 0.6 11.05 √√√√√ 2 断路器跳闸8√ 3 断路器自投 2 √ 4 恢复供电断路 器合闸 5√5 DC/DC变 换装置 3.840.8 13.96 √√√√√ 6 UPS电源负荷 3 0.6 8.18 √√√√ 7合计25.01 43.1933.1933.19 33.19 5

铅酸蓄电池.电池架.电池柜的安规设计规范标准

铅酸蓄电池、电池架、电池柜的 安规设计规范

艾默生网络能源有限公司

修订信息表

目录 (4) 前言 (5) 1 目的 (6) 2 范围 (6) 3 规范内容 (6) 3.1蓄电池产品安规设计要求 (6) 3.1.1电池外壳要求 (6) 3.1.2电池连接电缆要求 (7) 3.2电池架和电池柜的要求 (8) 3.2.1使用在一次电路的产品 (8) 3.2.2使用在二次电路的产品 (8) 3.2.3通风要求 (9) 3.2.4保护接地要求 (9) 3.2.5安装位置和操作空间要求 (9) 3.3蓄电池产品标签的要求 (10) 3.3.1标签材料和实验要求 (10) 3.3.2产品技术信息标签信息要求 (10) 3.3.3警告标签要求 (11) 3.3.4环境保护和回收符号要求 (12) 3.3.5对产品制造商标示的要求 (12) 3.4电池架、电池柜的使用说明和警告标示 (13) 3.5安规认证标志的使用 (13) 4 附件 (14)

本规范由艾默生网络能源有限公司研发部发布实施,适用于本公司的产品的标签设计和安规认证标志使用。本规范由安规研究室、蓄电池产品线、结构部和生产部门遵照执行。 本规范拟制部门:测试部; 本规范拟制人:张光辉; 本规范批准人:研发管理办;

铅酸蓄电池、电池架、电池柜的安规设计规范 1 目的 1) 指导蓄电池产品线开发过程设计产品使用; 2) 规范开发过程中必要的安规自测项目和要求; 3) 根据产品认证信息库,正确使用安规认证种类和认证标志 2 范围 本规范适用于艾默生网络能源公司设计和生产的铅酸蓄电池单体、电池架、电池柜。 3 规范内容 3.1蓄电池产品安规设计要求 3.1.1电池外壳要求 蓄电池的外壳材料要有UL 认证,并且满足阻燃要求的最小厚度,而且根据不同使用环境,应该满足终端产品使用对电池的阻燃要求。阻燃等级以UL 公布的认证证书为准,阻燃等级的优先等级为: 根据最终的使用条件,蓄电池外壳材料的阻燃的要求如下: 1) 通讯行业标准YD/T996中要求, 电池壳、盖阻燃性能应符合GB/T 2408-1996中 的第8.3.2节FH-1(水平级)和第9.3.2中FV-0(垂直级)的要求。 (根据标准测试要求和判断条件,FH-1的阻燃等级可能会高于HB 的阻燃要求;FV-0等效于V-0) 2) U L1989要求: 使用在UPS 内部的蓄电池,其外壳的阻燃等级至少要求满足V-2 或HF-2。(HF 为发泡类材料,蓄电池基本不使用) 3) I EC60898-22要求: 符合预定使用的产品要求。 5VA 5VB V -0 V -2 HB 优于 优于 优于 优于

变电站工程蓄电池安装作业指导书

变电站工程蓄电池安装作业指导书 批准: 审核: 编制: 辽宁天昊电力有限公司 年月日 1 辽

目录 1 目的 (1) 2 范围 (1) 3引用文件 (1) 4工程概况 (2) 5标准化作业流程图 (3) 6施工前准备 (5) 准备工作安排 (5) 作业人员要求 (5) 人员分工及应具备的条件 (6) 6.3.1组织分工及职责 (6) 6.3.2作业分工 (7) 施工机械设备及工器具准备 (8) 材料及备品备件准备 (9) 危险点分析及安全控制措 (10) 变电站蓄电池安装危险源辩识、风险评价和风险控制措施表 (10) 环境因素分析及环境控制措施 (12) 变电站蓄电池安装工程作业环境因素分析及环境控制措施表 (12) 质量通病及预防措施 (12) 文明施工要求 (13) 作业进度计划 (14) 7 标准化作业 (14) 作业项目工序流程图 (14) 开工条件 (15) 施工电源的使用 (16) 施工内容及工艺标准 (17) 8 作业竣工 (19) 蓄电池安装示意图 (20) 蓄电池连接示意图 (21) 2 辽

1 目的 确定本作业项目各项质量技术、安全、文明施工要求,确定施工方法、技术措施,指导施工作业,确保本项目符合达标投产、优质工 程要求,特编制本作业指导书。 2 范围 变电站蓄电池安装工程。 3引用文件 1)《电力建设施工质量验收及评定规程》 DL/T 2)《电力建设安全工作规程(变电所部分)》 DL 3)《变电所管理规范(试行)》辽电生(2004)101号 4)《防止电力生产十八项电网重大反事故措施》国家电网生技[2005] 5)工程设计文件及施工图纸()设计院 6)《国家电网公司输变电优质工程评选办法》国家电网基建[2008]288号 7)《国家电网公司输变电工程达标投产考核办法》国家电网基建[2005]225号 8)《国家电网公司电力建设安全健康与环境管理工作规定》国家电网工[2003]168号 9)《电气装置安装工程盘柜及二次回路接线施工及验收规范》 GB50171 10)《电气装置安装工程蓄电池施工及验收规范》 GB50172

动力电池设计规范

议的各方研究是否可使用这些文件的最新版本。 次设计开发。 凡是不注日期的文件, 其最新版本适用于本 GB/T 18384.1-2001 GB/T 18384.2-2001 GB/T 18384.3-2001 GB/T 18385 -2005 电动汽车安全要求 电动汽车安全要求 电动汽车安全要求 电动汽车动力性能 第 1 部分:车载储能装置 第 2 部分:功能安全和故障保护 第 3 部分:人员触电 试验方法 GB/T 18386 -2005 电动汽车能量消耗率和续驶里程 试验方法 GB/T 18388 -2005 GB/T 18487.1-2001 GB/T 18487.2-2001 GB/T 18487.3-2001 电动汽车定型试验规程 电动车辆传导充电系统 电动车辆传导充电系统 电动车辆传导充电系统 一般要求 电动车辆与交流 / 直流电源的连接要求 电动车辆与交流 /直流充电机 (站) GB/T 17619-1998 机动车电子电器组件的电磁辐射抗扰性限值和测量方法 GB/T 18387-2008 电动车辆的电磁场辐射强度的限值和测量方法 带宽9KHz ?30MHz 1 综述 电动车的的电池就好比汽车油箱里的汽油。 它是由小块单元电池通过串并联方式级联后, 通过BMS 勺管理,将电能传递到高压配电盒,然后分配给驱动电机和各个高压模块 (DC/DC 、 空调压缩机、PTC 等)。电池管理系统(BMS )采用的是一个主控制器 (BMU )和多个下一级电池 采集模块 (LECU )组成模块化动力电池管理系统, 是一种具有有效节省电池电能、 提高车辆安 全性、实现充放电均衡和降低运行成本功能的电池管理系统模式。 高压控制系统的预充电及正负极高压继电器均由 BMS 控制,设置了充电控制继电器, 增 加高压充电时的安全性 。 2 设计标准 F 列文件为本次 MAOO-ME1O0设计整改参考标准。凡是注日期的文件,其随后所有的修 改单(不包括勘误的内容 )或修订版均不适用于本次设计开发, 然而,鼓励根据本文件达成协 QC/T 743-2006 电动汽车用锂离子蓄电池 QC/T 413-2002 汽车电气设备基本技术条件 ISO 11898-1-2003 道路车辆 控制面网络 (CAN ) 第 1 部分:数据链接层和物理信号 ISO 11898-2-2003 道路车辆 控制器局域网 (CAN ) 第 2部分:高速媒体访问单元 ISO7637-2 道路车辆由传导和耦合引起的电骚扰(电源线瞬态传到干扰抗绕性试验) ISO11452-2 道路车辆窄带辐射的电磁能量产生的电干扰的部件试验方法 (吸波屏蔽外 壳) 3 动力电池的标准 动力电池设计方案

一起变电站蓄电池故障造成全站失压的事故原因分析及解决方案 姚文达

一起变电站蓄电池故障造成全站失压的事故原因分析及解决方案姚文达 发表时间:2019-07-08T10:04:15.150Z 来源:《电力设备》2019年第4期作者:姚文达 [导读] 摘要:在变电站中,直流系统是核心,为断路器分、合闸及二次回路中的继电保护、仪表和事故照明等提供能源。 (广东电网有限责任公司东莞供电局广东东莞 523000) 摘要:在变电站中,直流系统是核心,为断路器分、合闸及二次回路中的继电保护、仪表和事故照明等提供能源。而在直流系统中提供能源的主要是蓄电池,它相当于变电站整个二次系统的心脏,为二次系统的正常运行提供动力。因此,蓄电池的稳定性和在放电过程中,能提供给负载的实际容量对确保电力设备的安全运行,具有十分重要的意义。 关键词:变电站;直流系统;蓄电池组 变电站直流系统是变电站内独立的电源,它为继电保护、控制信号、自动装置、计算机控制系统、断路器的操作、通信以及事故照明提供可靠的操作电源。而在变电站直流系统中提供能源的主要是蓄电池,蓄电池相当于变电站整个二次系统的心脏,为二次系统的正常运行提供动力。正常时直流系统中的蓄电池组处于浮充电备用状态,当交流失电时,蓄电池迅速向事故性负荷提供能量。如,各类事故照明、交流不停电电源等,同时也必须可靠提供事故停电时的控制、信号、保护、通信等重要电源,蓄电池组的运行状态,决定了变电站直流系统的稳定性。本文通过一起典型的因单体蓄电池故障造成的全站失压事故的分析,指明了蓄电池组的日常检查、维护的重要性。 1.某110Kv变电站失压案例分析 2012年10月6日10时53分08秒796毫秒,某变电站110Kv卫马线39号杆由于事故车辆碰撞,造成线路两侧零序保护Ⅱ段保护动作,接地距离保护Ⅱ段动作,两侧断路器跳闸,全站失压。直流系统由蓄电池供电,10时53分11秒725毫秒,蓄电池组107号蓄电池故障,导致蓄电池系统开路,造成全站直流系统失压,110Kv进线备自投保护装置失电未动作,某110Kv变电站全站失压。 1.1保护动作情况分析 2012年10月6日10时53分08秒796毫秒,某110kV变电站卫马线112线路保护动作,零序Ⅱ段出口(定值=6.8A0.3S),自产零序电流大小为9.550A,(反映到一次2292A)二次零序电流满足零序Ⅱ段动作条件;10时53分08秒801毫秒,112线路保护动作,接地距离Ⅱ段出口(定值=1.46欧0.3S),测控阻抗为1.038欧,阻抗大小满足接地距离Ⅱ段动作条件,断路器跳闸。 正常运行时,主变高压侧中性点均未直流接地,而经放电间隙接地,在卫马线111线路发生A相接地故障时,1号、2好主变中性点产生过电压,击穿主变中性点放电间隙,构成零序网络通道,造成该110kV变电站卫马线112线路保护零序Ⅱ段出口、接地距离Ⅱ段出口。 1.2110kV进线备自投未动作原因 现场检查110kV进线备自投保护未动作,保护定值中110kV备自投动作跳主供线路卫马线112动作延时4.5秒,合备用电源进线桥马线111动作延时0.3秒。10时53分08秒796毫秒,卫马线112保护跳开112断路器,造成全站失压,直流系统因所用电源消失,全站直流蓄电池组供电。10时53分11秒725毫秒,蓄电池组107号蓄电池故障,导致蓄电池系统开路,造成全站直流系统失压(监控后台报文有直流电池巡检整组电压异常动作信号)。而110kV进线备自投还未满足4.5S的动作延时,全站直流系统已失压,110kV进线备自投保护装置已失电,造成110kV进线备自投保护未动作。 1.3直流系统失压原因 该组蓄电池为2001年出厂阀控式铅酸蓄电池组,至事故发生时年限已超过10年。监控后台及直流系统监控单元报“直流电池巡检整组电压异常动作”,现场检查蓄电池两端电压为16.7V,测量107号蓄电池组两端电压为1.4V,故判断为107号蓄电池内部存在开路,导致蓄电池组回路开路,全站直流系统失压。经判断分析,在直流系统交流进线电源消失后,蓄电池组带全站负荷及112跳闸冲击电流,突然以大电流(约5.1A)放电3S过程中,107号蓄电池老化、内阻大,在大电流作用下突然发生开路,导致直流系统失压。 2.事故案例主要原因分析 本起事故,由一起简单的双回互为备投线路跳闸事故演变为一起全站失压的重大事故,其主要原因在于当主供线路卫马线112线路于10时53分08秒796毫秒故障跳闸后,按照定制单投入要求,备用电源进线桥马线111线路应在延时4.5S后投入运行,但当故障跳闸到备用电源等待4.5S延时动作期间,10时53分11秒725毫秒,蓄电池组107号蓄电池故障,导致蓄电池系统开路,造成全站直流系统失压,此时等待4.5S延时的备用电源进线桥马线111线路备自投装置失电,备自投延时时限4.5S到时,备自投未动作,造成全站失压。事故发生后,对110kV变电站107号蓄电池进行解体检查,打开蓄电池的安全阀,发现蓄电池在正极汇流排存在裂缝,负极汇流排正常。 打开蓄电池的密封盖体,发现蓄电池的正极汇流排已经变形,负极汇流排形体正常。在正极汇流排靠近正极柱体的部位呈现下凹形体,该处汇流排存在断裂迹象。在进一步的检查中,发现蓄电池正极柱体与汇流排已经处在虚接状态。正常时蓄电池正极柱体与汇流排为同体一次成型后在电池壳体外与正极接线柱连接后胶注密封,不应存在连接或焊接部件,从现状分析可能是在蓄电池正极汇流排在组装过程中,受力下凹变形,在10年的运行过程中,经历了多次核对性充放电、均充等大电流运行,电池正极汇流排逐渐老化,原来变形的部位在多次电流的作用下逐步发生变形,由于柱体部位与壳体胶注在一起,当汇流排下凹变形加重时,造成汇流排与正极柱体不能一同向下位移,于是,在蓄电池正极柱体与汇流排处出现裂缝并逐步劣化加重。在10月6日,电池突然由浮充状态转变到大电流放电时,正极汇流排发生断裂,造成电池开路整组蓄电池失压。 3蓄电池运行常见故障 a.蓄电池组工作时容量达不到标称容量,严重的出现个别电池放电起始就达到下限。蓄电池组容量不足和问题完全可以通过容量测试或内阻在线测试等方法及时发现。 b.蓄电池组无容量输出,个别电池出现开路状态。变电站系统故障造成交流电源故障后,这时如果蓄电池组失效,变电站内保护直流消失,高频保护或电流差动保护可能误动,后果十分严重。 c.长期浮充状态下的蓄电池出现短路现象,出现短路现象的电池,往往可能会产生热失控现象。 4其加强维护的几点措施 (1)环境温度对蓄电池的放电容量、寿命、自放电、内阻等方面都有较大影响。虽然开关电源有温度补偿功能,但其灵敏度和调整幅度毕竟有限,因此环境温度极其重要。运行维护人员每天须检查蓄电池室环境温度并做记录,同时,蓄电池室温应控制在22~25℃之间,这不仅可延长蓄电池的寿命,还能使蓄电池具有最佳的容量。此外,为成套充电电源的温度补偿功能而装设的温度感应探头,也应定

锂电池的国家标准

锂电池的国家标准 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

1、锂离子电池标称电压(),充电截止电压(,根据电芯的厂牌有不同的设计)。(锂离子电芯规范的说法是:锂离子二次电池) 2、对锂离子电池充电要求(GB/T18287 2000规范):首先恒流充电,即电流一定,而电池电压随着充电过程逐步升高,当电池端电压达到(),改恒流充电为恒压充电,即电压一定,电流根据电芯的饱和程度,随着充电过程的继续逐步减小,当减小到时,认为充电终止。(C是以电池标称容量对照电流的一种表示方法,如电池是1000mAh的容量,1C就是充电电流1000mA ,注意是mA而不是mAh,就是10mA。)当然,规范的表示方式是,我这里简化了。 3、为什么认为为充电结束:这是国家标准GB/T18287-2000所规定的,也是讨论得出的。以前大家普遍以20mA为结束,邮电部行业标准YD/T998-1999也是这样规定的,即不管电池容量多大,停止电流都是20mA。国标规定的有助于充电更饱满,对厂家一方通过鉴定有利。另外,国标规定了充电时间不超过8小时,就是说即使还没有达到,8小时到了,也认为充电结束。(质量没问题的电池,都应在8小时内达到,质量不好的电池,等下去也无意义) 4、怎样区别电池是还是:消费者是无法区分的,这要看电芯生产厂家的产品规格书。有些牌子的电芯是和通用的,比如A&TB(东芝),国内厂家基本是,但也有例外,比如天津力神是(但目前也是按了)。 5、把的电芯充电到会怎么样:会使电池容量提高,感觉很好用,待机时间增加,但会减短电池的使用寿命。比如原来500次,减少到300次。同样道理,把的电芯过充,也会减短寿命。锂离子电芯是很娇嫩的。 6、既然电池内有保护板,我们是否就可以放心了呢:不是,因为保护板的截止参数是(这还是好的,差的要到,保护板是应付万一的,假如每次都过充,电池也会很快衰减的。 7、多大的充电电流算是合适的:理论上越小对电池越有好处。但你总不能为了一块电池充电等3天吧。国标规定的低倍率充电是(仲裁充电制式),还以上面的1000mAh容量的电池为例,就是200mA ,那么我们可以估计出这只电池5个多小时可以充饱。(容量mAh=电流mA×时间h)国家技术监督部门鉴定锂电容量,是以1C的高倍率充电,以的低倍率放电,以时间计算出容量值,试验次数5次,有1次容量达到试验结束。(就是有5次机会,如果第一次试验就合格了,后面的4次不做)检测之前允许有一次预循环,就是以1C恒流充电至即停止,而没有后面的恒压到的过程,更没有14小时。 8、锂离子电池能承受多大的充电电流:厂家试验时可以很高,但国标高倍率规定为1C,还以上面的电池为例,1个多小时即可充满。这么大的充电电流,电池能承受吗对于目前的锂离子电芯,是小意思而已。目前没有对充电器的国家标准,所执行的是邮电部行业标准YD/T998 1999/2,里面规定了充电器的电流不得大于1C。 9、寿命是怎样规定的:简单说是指电池经过N次1C充、1C放电后,容量下降到70%,此时的N 就是寿命。并不是说300次还可以用,301次就不能用了。国标规定寿命不得小于300次。我们平时使用的条件没有检测时这么严酷,寿命会更长。 鼓起来就是过充的表现,不过像这种电子产品,是应该具备过充保护功能;过放保护功能;短路保护功能;过流保护功能的。 简短点的: 技术参数:过充门限±50mV、过充延时75mS、过充释放、过放门限±50mV 、过放延时10mS、静态功耗<5uA、工作电流2A、过流保护值3A;短路延时时间4~12ms;

变电站蓄电池组的运行与维护方案

变电站蓄电池的运行与维护 蓄电池是直流系统中不可缺少的设备,这种电源广泛应用于变电站中。正常时直流系统中的蓄电池组处于浮充电备用状态,当交流电失电时,蓄电池迅速向事故性负荷提供能量。 如各类直流泵、事故照明、交流不停电电源、事故停电、断路器跳合闸等,同时也必须为事故停电时的控制、信号、自动装置、保护装置及通信等负荷提供电力。显然在交流失电的事 故状态下,蓄电池应作为变电站的备用能源。 蓄电池运行要求 1.1蓄电池运行要求 按照电力系统的有关标准,阀控式铅酸蓄电池的运行要求如下:阀控式密封铅酸蓄电池组在正常运行时以浮充方式运行,浮充电压值一般控制为2.23 V×n,在运行中主要监视蓄电池组的端电压,浮充电流,及每只蓄电池的电压。 1.2 阀控式密封铅酸蓄电池的充放电(ZHCH518智能蓄电池组充放电测试仪) 1.2.1 核对性充放电 新安装或大修后的阀控蓄电池组,应进行全核对性额定容量放电试验,放电电流不应变动过大,待放电结束后,应立即对蓄电池组进行充电,避免发生电池内部的硫化现象,而导致蓄电池内部短路。此时均采用0.1C10恒流充电,当蓄电池组端电压上升到2.23 V×n时,将会自动或手动转为恒压充电。 1.2.2 恒压充电 在2.35 V×n的恒压充电下,0.1C10的充电电流逐渐减小,当充电电流减小至0.1C10时,充电装置的倒计时开始起动,并维持3 h不变。当整定的倒计时结束时,充电装置自动或手动转为正常的浮充电运行,浮充电压为2.23 V×n。同时在浮充电过程中要进行温度补偿,即对每只单体蓄电池充电电压随环境温度给予一定量的补偿,避免蓄电池因失水干涸而失效。中心温度、补偿下限、补偿上限、补偿斜率均可根据电池性能灵活设置。 1.2.3 补充充电 为了弥补运行中因浮充电流调整不当,补偿不了电池自放电和爬电漏电所造成蓄电池容量的亏损,设定1~3 个月,自动地进行一次恒流充电-恒压充电-浮充电的补充充电,确保蓄电池组随时都具有额定容量,以保证运行安全可靠。 1.2.4 事故放电和自动充电 当电网解列或故障、交流电源中断时,蓄电池组立即承担起主要负荷和事故照明负荷,若蓄电池组端电压下降到2 V×n时,电网还未恢复送电,应自动或手动断开蓄电池组的供电,以

220kv变电站蓄电池室规范

竭诚为您提供优质文档/双击可除220kv变电站蓄电池室规范 篇一:220kv变电站直流系统 220kv变电站直流系统讲义一:220kv变电站直流母线基本要求: 1、20xx年全公司无人值班改造即将启动,了解直流母线改造方案可帮助大家更好的对大修工作进行监督和验收,防止在各个环节出现不符合要求的问题出现,必须按照省公司技术方案进行。 2. 蓄电池组、充电机和直流母线 2.1设立两组蓄电池,每组蓄电池容量均按单组电池可为整个变电站直流系统供电考虑。 2.2设两个工作整流装置和一个备用整流装置,供充电及浮充之用,备用整流装置可在任一台工作整流装置故障退出工作时,切换替代其工作。 2.3直流屏上设两段直流母线,两段直流母线之间有分段开关。正常情况下,两段直流母线分列运行,两组蓄电池和两个整流装置分别接于一段直流母线上。

2.4具有电磁合闸机构断路器的变电站,直流屏上还应设置两段合闸母线。 (220kv变电站蓄电池室规范)2.5220kV系统设两面直流分电屏。分电屏Ⅰ内设1组控制小母线(kmⅠ)、1组保护小母线(bmⅠ);分电屏Ⅱ内设1组控制小母线(kmⅡ)、1组保护小母线(bmⅡ)。 2.6110kV系统设1面直流分电屏,屏内设1组控制小母线(km)、1组保护小母线(bm)。 2.710kV/35kV系统的继电保护屏集中安装在控制室或 保护小间的情况下,在控制室或保护小间设1面直流分电屏。 2.8信号系统用电源从直流馈线屏独立引出。 2.9中央信号系统的事故信号系统、预告信号系统直流电源分开设置 2.10每组信号系统直流电源经独立的两组馈线、可由两组直流系统的两段直流母线任意一段供电。 2.11断路器控制回路断线信号、事故信号系统失电信号接入预告信号系统;预告信号系统失电信号接入控制系统的有关监视回路。 2.12事故音响小母线的各分路启动电源应取自事故信 号系统电源;预告信号小母线的各分路启动电源应取自预告信号系统电源。 2.13公用测控、网络柜、远动柜、保护故障信息管理柜、

手机电池结构设计规范标准

手机电池设计规范

目录 一.概述 (1) 二.常用手机电池封装方式介绍 (3) 三.各类封装方案设计规范 (6) 1.框架工艺电池设计规范 (6) 2.点胶工艺电池设计规范 (12) 3.注塑工艺设计规范 (18) 4.MPACK电池设计规范 (25) 5.软包工艺电池设计规范 (28) 6.激光点焊工艺设计规范 (34) 7.软包电池自动化设计规范 (37) 8.部件尺寸公差设计规范 (40) 一.概述

全球通信行业飞速发展,一个崭新的移动互联时代正向我们走来,手机的需求量将更大。对手机电池而言,这将是一个充满机遇与挑战的大市场。近年来手机的功能和款式更新换代虽然频繁,但手机电池封装工艺却并没有明显的进步。作为手机电池企业,如何才能在技术上取得突破?如何才能在国际竞争中争取到更大的优势呢?封装专业化将是手机电池封装厂商的出路。 要成为专业的封装厂商,必先在自身设计和工艺上形成具有专业性、规范性、前瞻性的指导文件。我司在手机电池封装行业已经拼搏十数年,累计下了丰富的设计和生产经验,拥有目前封装行业所有的封装工艺,并推出了两项自主专利的封装方式。本规范旨在为飞毛腿电子有限公司累计多年封装检验,总结和规范封装设计及工艺要求,满足客户要求,市场要求,成本要求,进一步提升封装水平。

二.常用手机电池封装方式介绍 手机电池发展到今天,已经形成多种封装方式,其封装难度、工艺成本、外观尺寸各有优势,目前常用有七种封装方式,详见下文介绍: 一.框架类 方案优势: 该方案适用面广,过程工艺相对简单; 适用范围: 适用与电池长度方向尺寸极限,但宽度方向空间富余,可以将保护板放置在侧面的方案; 二.打胶类 方案优势: 电池空间利用率高,成品尺寸较小; 方案不足: 因该方案公差易产生一定累积;而国产电芯尺寸的公差远大于进口电芯,该方案不适用使用国产电芯方案. 三.注塑类

组件设计规范-电池篇

太阳能电池根据所用材料的不同,分为:硅太阳能电池、多元化合物薄膜太阳能电池、聚合物多层修饰电极型太阳能电池、纳米晶太阳能电池、有机太阳能电池,其中硅太阳能电池是目前发展最成熟的,在组件应用中居主导地位。 1.硅电池片的类别 硅太阳能电池分为单晶硅太阳能电池、多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池三种。 表1为三种硅电池片的各项比较: 2.常见硅电池片 ? Sun power

特点:采用只在背面配置电极的背接触式(Back Con tact )结构。由于表面没有遮光的电极, 因此,不仅转换效率高,而且整个电池单元呈黑色,富于创意性。 ? EverGreen 特点:背面采用方形电极。 ? Motech(茂迪)/JA(晶澳)/JW(珈伟)/GE/SM(西门子)/SF(林洋) 3.太阳能电池的电性能参数 3.1转换效率n 太阳能电池转换效率是太阳能电池的输出功率P与投射到太阳能电池面积上的入射光功率S 之比,其值取决于工作点。如果阵列不工作于最大功率点,则阵列的效率实际上都低于按此定义的效率致,世纪效率可以任意的低,甚至低到零。此外,只有当所有的其他重要参数(如日照强度、光谱、温度等)都已确定时,效率才能被唯一的定义。 3.2填充因子FF 可以定义为最大输出功率与Isc、Voc之比,也就是最大功率矩形面积对Isc、Voc矩形面积的比例。对于太阳能电池来说,填充因子是一个重要的参数,它可以反映太阳能电池的质量。太阳能电池的串联电阻越小,并联电阻越大,填充系数就越大,反映到太阳能电池的电流-电压特性曲线上,曲线就越接近正方形,此时太阳能电池的转换效率就越高。 3.3短路电流Isc 当V=0时,电流达到最大,称短路电流Isc (Short-Circuit Current )。 3.4开路电压Voc

变电站蓄电池运行与维护

蓄电池运行与维护 蓄电池是一种化学电源,它能把电能转变为化学能并储存起来。使用时,再把化学能转换为电能供给用电设备,交换的过程是可逆的。 根据电极和电解液所用的物质不同,蓄电池可分为酸性蓄电池和碱性蓄电池两种。 一、铅酸蓄电池的运行与维护 1、浮充电运行方式。发电厂和变电所中的蓄电池,一般是按浮充电运行方式运行的,即将充满电的蓄电池组与浮充电装置并联运行。浮充电装置正常时,除供给直流负荷电流外,还用不大的电流向蓄电池浮充电,以补偿蓄电池自放电的损耗,使蓄电池经常处于满充状态。若在很大的冲击电流下(如断路器合闸时),绝大部分电流由蓄电池组供给,同时在浮充电源中断时,全部直流负荷由蓄电池组供电。这种运行方式的优点是:能防止极板硫化和弯曲,延长蓄电池的使用寿命,并能保证供电的可靠性。 按浮充电方式运行的蓄电池组,为了使在充电设备发生故障时仍能保证直流母线的工作电压满足负荷的要求,一般没有端电池。端电池在正常运行时没有充电电流流过,经常处于自放电状态,促使极板硫化。 2、均衡充电。铅酸蓄电池在运行中,由于每个电池的内电阻和特性不能完全一致,有的电池其比重、端电压可能不均衡。逐渐扩展成为落后电池极板硫化。因此在一定时期内要进行均衡充电。按浮充运行的蓄电池组,要求三个月进行一次均衡充电;一般在核对性放电后也要进行均衡充电。遇到下列情况之一时,均需及时进行均衡充电: (1)过量放电,蓄电池的端电压放到低于规定的终止电压值时; (2)放电后未及时进行充电;

(3)长期充电不足,部分电池的电压和电解液比重下降; (4)极板呈现不正常状态或有轻微硫化现象; (5)放电容量超过额定容量10%的电池; (6)浮充电电池放出近50%的额定容量时; (7)长期静置不用的电池。 均衡充电方法:先按正常充电方式充好电后,断开充电装置,并尽可能断开负荷,使蓄电池静止1h,然后用10h放电率的0.5-0.75倍的电流充电1h,再断开电流,静止1h。这样一小时充电、静止,反复进行,直到最后刚接上充电电流时,电解液就发生强烈的沸腾现象,均衡充电即完成。 3、运行中检查工作 (1)直流母线电压应正常,绝缘良好,浮充电流符合要求; (2)电池玻璃缸和玻璃盖应完整; (3)测量电池电压、比重; (4)检查电池极板颜色是否正常,有无断裂、弯曲、硫化及有效物脱落等现象; (5)电解液液面的高度应高于极板10-20mm,有无漏出; (6)母线、极板等各连接头应牢固,有无腐蚀,有无凡士林油。 二、镉镍蓄电池的运行与维护 1、正常的充电和放电。镉镍蓄电池在整个充电过程中电压变化不大,并在全部充电过程中都有气泡发生,这是由于充电时在负极板上析出氢气。另外在充电和放电过程中,电解液的比重几乎不发生变化。但是,蓄电池的温度升高,必须注意温度不宜太高。如在过高温度下充电时,将缩短蓄电池的寿命。 (1)正常充电法。镉镍蓄电池通常以其本身额定容量的25%的充电电流

相关主题
文本预览
相关文档 最新文档