当前位置:文档之家› 6.2 PWM逆变电路及其控制方法

6.2 PWM逆变电路及其控制方法

PWM控制技术在逆变电路中的应用

PWM控制技术在逆变电路中的应用 研究了PWM控制技术在单相桥式逆变电路中的应用,首先详细地阐述了PWM控制技术的基本原理,简要地介绍了单相桥式逆变电路的工作原理,然后将PWM 控制技术应用到单相桥式逆变电路中,最后通过仿真结果验证了理论分析的正确性。 1 引言 在电力电子技术发展史上,逆变电路占据非常重要的一环,而PWM控制技术在逆变电路又处于核心地位,如何将PWM控制技术应用到逆变电路当中是摆在广大科技工作者面前一大难题。针对这个问题,本文首先阐述了PWM控制技术的基本原理,然后详细地研究了单极性SPWM和双极性SPWM实现方法,最后将PWM控制技术和单相桥式逆变电路结合起来分析并应用,并通过仿真实验验证了PWM控制技术在逆变电路的成功应用。 2 PWM控制技术的基本原理及实现方法 2.1 PWM控制技术的基本原理介绍 根据信号与系统知识可知,冲量相同而形状不一样的窄脉冲加在惯性环节上时,其输出作用相同。如图1(a)、(b)和(c)所示的三个波形分别为矩形波脉冲、三角波形脉冲以及正弦波形脉冲,显然它们的形状完全不同,但是面积完全相同,如果把它们分别加在具有同一个惯性的环节上时,其输出作用完全相同。 (a)矩形波脉冲(b)三角波脉冲(c)正弦半波脉冲 分别将如图1所示(a)、(b)和(c)所示波形施加在同一个一阶惯性环节上,其电路图和输出电流i(t)输出分别如图2(a)和(b)所示。从2(b)可以看出,在i(t)的上升段,i(t)的形状也稍微有点不同,但其下降段则完全相同。值得说明的是脉冲越窄,各i(t)输出波形的差异可以忽略不计。这种原理被称为面积等效原理,它是实现PWM 控制技术的理论基础。 如果用一系列等幅不等宽的脉冲来代替一个正弦半波,也就是说把正弦半波分成N等份,

基于SPWM控制的电压_电流双环逆变器建模及其仿真_图文(精)

第4卷 中国舰船研究第4卷第5期2009年10月中国舰船研究Chinese Journal of Ship Research Vol .4No.5 Oct.2009收稿日期:2008-09-03 作者简介:朱承邦(1963-,男,高级工程师。研究方向:雷达应用 1引言 现代科技发展日新月异,各类电气设备对电源的品质要求也越来越高。逆变供电作为一种有效的电力供应形式,已广泛应用于生产生活的各个领域。 为了不断改善逆变器输出性能,人们发展出了多种逆变器控制方法,常见的有:电压瞬时值控 制、电流滞环控制、电流预测控制、鲁棒控制[1]、重复控制[2,3]、滑模控制[4]及SPWM 电流控制等。就各种逆变器控制策略的特点来看,基于SPWM 的电压电 流双环逆变器控制是一种较好的控制方法[5,6]。 本文针对电压电流双环逆变器控制模型,设计了电流内环和电压外环的控制参数,对设计的双环控制逆变器模型进行了仿真分析,分析结果 基于SPWM 控制的电压、电流双环 逆变器建模及其仿真 朱承邦1 李 乐2 王晓鹏2

1大连船舶重工集团有限公司军事代表室,辽宁大连1160052中国舰船研究设计中心,湖北武汉430064 摘 要:基于SPWM 的电压电流双环逆变器控制相对其他逆变器控制策略具有一定优越性,但其控制器参数设 计却是一个重点和难点。针对逆变器的SPWM 电压电流双环控制策略,建立了系统的控制模型,设计了电流内环和电压外环的控制器参数,并根据经典控制理论的判据,分别对控制器电流内环和电压外环参数进行了理论验证。最后根据设计的控制器参数,对SPWM 电压电流双环控制系统模型进行了仿真分析,结果表明,系统设计合理,效果满意。 关键词:SPWM ;逆变器;电压电流双环;仿真中图分类号:TM743 文献标志码:A 文章编号:1673-3185(200905-54-05 Modeling and Si mulation of Voltage and Current Double Loop Control Based on SPWM Inverters Zhu Cheng-bang 1Li Le 2Wang Xiao -p eng 2 1The Naval Representative Office ,Dalian Shipbuilding Heavy Industry Co.,Dalian 116005,China 2China Ship Development and Design Cent er ,Wuhan 430064,China Abstract :Comparing with other inverters control strategy ,voltage and current double loop control based on SPWM inverters are superior in capabilities though the controller parameters design is significant and difficult.In this paper ,the system control

逆变电源的几种控制算法

逆变电源广泛运用于各类:电力、通讯、工业设备、卫星通信设备、军用车载、医疗救护车、警车、船舶、太阳能及风能发电领域。 在电路中将直流电转换为交流电的过程称之为逆变,这种转换通常通过逆变电源来实现。这就涉及到在逆变过程中的控制算法问题。 只有掌握了逆变电源的控制算法,才能真正意义上的掌握逆变电源的原理和运行方式,从而方便设计。在本篇文章当中,将对逆变电源的控制算法进行总结,帮助大家进一步掌握逆变电源的相关知识。 逆变电源的算法主要有以下几种。 数字PID控制 PID控制是一种具有几十年应用经验的控制算法,控制算法简单,参数易于整定,设计过程中不过分依赖系统参数,鲁棒性好,可靠性高,是目前应用最广泛、最成熟的一种控制技术。它在模拟控制正弦波逆变电源系统中已经得到了广泛的应用。将其数字化以后,它克服了模拟PID控制器的许多不足和缺点,可以方便调整PID参数,具有很大的灵活性和适应性。与其它控制方法相比,数字PID具有以下优点: PID算法蕴涵了动态控制过程中过去、现在和将来的主要信息,控制过程快速、准确、平稳,具有良好的控制效果。 PID控制在设计过程中不过分依赖系统参数,系统参数的变化对控制效果影响很小,控制的适应性好,具有较强的鲁棒性。 PID算法简单明了,便于单片机或DSP实现。 采用数字PID控制算法的局限性有两个方面。一方面是系统的采样量化误差降低了算法的控制精度;另一方面,采样和计算延时使得被控系统成为一个具有纯时间滞后的系统,造成PID控制器稳定域减少,增加了设计难度。 状态反馈控制 状态反馈控制可以任意配置闭环控制系统的极点,实现了逆变电源控制系统极点的优化配置,有利于改善系统输出的动态品质,具有良好的瞬态响应和较低的谐波畸变率。但在建立逆变器的状态模型时将负载的动态特性考虑在内,因此状态反馈控制只能针对空载和已知的负载进行建模。由于状态反馈控制对系统模型参数的依赖性很强,使得系统的参数在发生变化时易导致稳态误差的出现和以及动态特性的改变。例如对于非线性的整流负载,其控制效果就不是很理想。 重复控制

太阳能光伏并网控制逆变器工作原理及控制方法

2015年6月15日 22:28 太阳能光伏并网控制逆变器工作原理及控制方 摘要:太阳能光伏发电是21世纪最为热门的能源技术领域之一,是解决人类能源危机的重要手段之一,引起人们的广泛关注。本文介绍了太阳能光伏并网控制逆变器的工作过程,分析了太阳能控制器最大功率跟踪原理,太阳能光伏逆变器的并网原理及主要控制方式。 1引言: 随着工业文明的不断发展,我们对于能源的需求越来越多。传统的化石能源已经不可能满足要求,为了避免面对能源枯竭的困境,寻找优质的替代能源成为人们关注的热点问题。可再生能源如水能、风能、太阳能、潮汐能以及生物质能等能源形式不断映入人们的眼帘。水利发电作为最早应用的可再生能源发电形式得到了广泛使用,但也有人就其的环境问题、安全问题提出过质疑,况且目前的水能开发程度较高,继续开发存在一定的困难。风能的利用近些年来也是热点问题,但风力发电存在稳定性不高、噪音大等缺点,大规模并网对电网会形成一定冲击,如何有效控制风能的开发和利用仍是学术界关注的热点。在剩下的可再生能源形式当中,太阳能发电技术是最有利用价值的能源形式之一。太阳能储量丰富,每秒钟太阳要向地球输送相当于210亿桶石油的能量,相当于全球一天消耗的能量。我国的太阳能资源也十分丰富,除了贵州高原部分地区外,中国大部分地域都是太阳能资源丰富地区,目前的太阳能利用率还不到1/1000。因此在我国大力开发太阳能潜力巨大。 太阳能的利用分为"光热"和"光伏"两种,其中光热式热水器在我国应用广泛。光伏是将光能转化为电能的发电形式,起源于100多年前的"光生伏打现象"。太阳能的利用目前更多的是指光伏发电技术。光伏发电技术根据负载的不同分为离网型和并网型两种,早期的光伏发电技术受制于太阳能电池组件成本因素,主要以小功率离网型为主,满足边远地区无电网居民用电问题。随着光伏组件成本的下降,光伏发电的成本不断下降,预计到2013年安装成本可降至1.5美元/Wp,电价成本为6美分/(kWh),光伏并网已经成为可能。并网型光伏系统逐步成为主流。 本文主要介绍并网型光伏发电系统的系统组成和主要部件的工作原理。 2并网型光伏系统结构 图1所示为并网型光伏系统的结构。并网型光伏系统包括两大主要部分: 其一,太阳能电池组件。将太阳传送到地球上的光能转化成直流电能;其二,太阳能控制逆变器及并网成套设备,负责将电池板输出直流电能转为电网可接受的交流能量。根据功率的不同太阳能逆变器的输出形式可为单相或者三相;可带隔离变压器,也可不配隔离变压器。

PWM-逆变器设计与仿真

PWM-逆变器设计与仿真

摘要 随着电力电子技术的不断发展,电力电子技术的各种装置在国民经济各行各业中得到了广泛应用。从电能转换的观点,电力电子的装置涵盖交流——直流变换、直流——交流变换、直流——直流变换、交流——交流变换。比如在可控电路直流电动机控制,可变直流电源等方面都得到了广泛的应用,而这些都是以逆变电路为核心。由于电力电子技术中有关电能的变换与控制过程,内容大多涉及电力电子各种装置的分析与大量的计算、电能变幻的波形分析、测量与绘制等,这些工作特别适合Matlab的使用。本次设计的题目是基于PWM逆变器的设计与仿真,所以在此次仿真就用的是Matlab软件,建立了基于Matlab的单相桥式SPWM逆变电路,采用IGBT作为开关器件,并对单相桥式电压型逆变电路和PWM控制电路的工作原理进行了分析,运用MATLAB中的simulink/simupowersystems对电路进行了仿真,给出了仿真波形,并运用MATLAB提供的powergui模块,分别用单极性SPWM和双极性SPWM的动态模型给出了仿真的实例与仿真结果,验证了模型的正确性,并展现了Matlab仿真具有的快捷,灵活,方便,直观的以及Matlab绘制的图形准确、清晰、优美的优点,从而进一步展示了Matlab的优越性。 关键字:PWM逆变器单极性SPWM 双极性SPWM MATLAB仿真

目录 摘要 绪论 (1) 第1章 MATLAB软件 (3) 1.1软件的介绍 (3) 1.2 电力电子电路的Matlab仿真 (4) 1.2.1实验系统总体设计 (5) 1.2.2电力电子电路Simulink仿真d特点 (5) 第2章逆变主电路的方案论证与选择 (6) 第3章 PWM逆变器的工作原理 (9) 3.1 PWM控制理论基础 (9) 3.1.1面积等效原理 (9) 3.2 PWM逆变电路及其控制方法 (11) 3.2.1计算法…………………………………………………… 11 3.2.2调制法…………………………………………………… 11 3.2.3 SPWM控制方式………………………………………… 15 第4章单相桥式PWM逆变器的仿真 (18) 4.1单相桥式PWM逆变器调制电路的Simulink模型 (18) 4.1.1单极性SPWM仿真模型图 (18)

逆变电源控制算法哪几种

https://www.doczj.com/doc/4c18304871.html,/ 逆变电源广泛运用于各类:电力、通讯、工业设备、卫星通信设备、军用车载、医疗救护车、警车、船舶、太阳能及风能发电领域。 在电路中将直流电转换为交流电的过程称之为逆变,这种转换通常通过逆变电源来实现。这就涉及到在逆变过程中的控制算法问题。 只有掌握了逆变电源的控制算法,才能真正意义上的掌握逆变电源的原理和运行方式,从而方便设计。在本篇文章当中,将对逆变电源的控制算法进行总结,帮助大家进一步掌握逆变电源的相关知识。 逆变电源的算法主要有以下几种。 数字PID控制 PID控制是一种具有几十年应用经验的控制算法,控制算法简单,参数易于整定,设计过程中不过分依赖系统参数,可靠性高,是目前应用最广泛、最成熟的一种控制技术。它在模拟控制正弦波逆变电源系统中已经得到了广泛的应用。将其数字化以后,它克服了模拟PID控制器的许多不足和缺点,可以方便调整PID参数,具有很大的灵活性和适应性。与其它控制方法相比,数字PID具有以下优点:

https://www.doczj.com/doc/4c18304871.html,/ PID算法蕴涵了动态控制过程中过去、现在和将来的主要信息,控制过程快速、准确、平稳,具有良好的控制效果。 PID控制在设计过程中不过分依赖系统参数,系统参数的变化对控制效果影响很小,控制的适应性好,具有较强的鲁棒性。 PID算法简单明了,便于单片机或DSP实现。 采用数字PID控制算法的局限性有两个方面。一方面是系统的采样量化误差降低了算法的控制精度;另一方面,采样和计算延时使得被控系统成为一个具有纯时间滞后的系统,造成PID控制器稳定域减少,增加了设计难度。 状态反馈控制 状态反馈控制可以任意配置闭环控制系统的极点,实现了逆变电源控制系统极点的优化配置,有利于改善系统输出的动态品质,具有良好的瞬态响应和较低的谐波畸变率。但在建立逆变器的状态模型时将负载的动态特性考虑在内,因此状态反馈控制只能针对空载和已知的负载进行建模。由于状态反馈控制对系统模型参数的依赖性很强,使得系统的参数在发生变化时易导致稳态误差的出现和以及动态特性的改变。例如对于非线性的整流负载,其控制效果就不是很理想。

pwm逆变电路仿真

题目如下: 使用IGBT完成逆变电路仿真,直流电压300V。阻感负载,电阻值1Ω,电感值3mH。调制深度m=0.5。输出基波频率50Hz,载波频率为基频15倍,即750Hz。分别按下列要求仿真输入输出波形,进行谐波傅里叶分析。绘制主要器件的工作波形。 1,单极性SPWM方式下的单相全桥逆变电路仿真,及双极性SPWM方式下的单相全桥逆变电路仿真。对比两种调制方式的不同。 题目中需要做单极性与双极型SPWM的单相全桥逆变电路仿真,那么首先了解一下SPWM的原理。 SPWM控制的基本原理 PWM(Pulse Width Modulation)控制就是对脉冲的宽度进行调制的技术。即通过对一系列脉冲的宽度进行调制,来等效地获得所需要的波形。PWM控制技术在逆变电路中的应用最为广泛,对逆变电路的影响也最为深刻,PWM控制技术在逆变电路中的应用也最具代表性。面积等效原理是PWM控制技术的重要理论基础,即在采样控制中,冲量相等而形状不同的窄脉冲加在具有惯性的同一环节上时,其效果基本相同。其中,冲量指的是窄脉冲的面积;效果基本相同是指环节的输出响应波形基本相同。如图1.1所示,三个窄脉冲形状不同,但是它们的面积都等于1, 图1.1 SPWM控制如下:

如图1-2是单相PWM逆变电路VT1~VT4是四个IGBT管,VD1~ VD4是四个二极管,调制电路作为控制电路控制IGBT导通与关断来得到所需要的波形。 图1-2 计算法和调制法: SPWM逆变电路主要有两种控制方法:计算法和调制法。计算法是将PWM脉冲宽度的波形计算出来,显然这种方法是很繁琐的,不采用。调制法是用一个三角波作为载波,将一正弦波作为调制信号进行调制。我们采用调制法。因为等腰三角波上下宽度与高度呈线性关系且左右对称,当它与一个平缓变化的正弦调制信号波相交时,在交点时刻就可以得到宽度正比于正弦信号波幅度的脉冲 单极性与双极型的控制方法如下: 1单极性PWM控制方式: 如图1-3所示,在u r和u c的交点时刻控制IGBT的通断 u r正半周,VT1保持通,VT2保持断 . 当u r>u c时使VT4通,VT3断,u o=u d当u r

pwm逆变电路的应用.

《电力电子技术》课程大作业 设计题目: PWM电路的应用 学生所在系部:电子工程系 学生所在专业:自动化 学生所在班级: 学生姓名: #### 学生学号: ##### 任课教师姓名: 大作业成绩:

PWM逆变电路的应用 一、摘要 随着控制技术的发展和对设备性能要求的不断提高,许多行业的用电设备不再直接接入交流电网,而是通过电力电子功率变换得到电能,它们的幅值、频率、稳定度及变化形式因用电设备的不同而不尽相同。如通信电源、电弧焊电源、电动机变频调速器、加热电源、绿色照明电源、不间断电源、充电器等等,它们所使用的电能都是通过对电网能进行整流和逆变变换后所得到的。因此,高质量的逆变电路已成为电源技术的重要研究对象。 采样控制理论中有一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。PWM控制技术就是以该结论为理论基础,对半导体开关器件的导通和关断进行控制,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需要的波形。按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率。 PWM控制的基本原理很早就已经提出,但是受电力电子器件发展水平的制约,在上世纪80年代以前一直未能实现。直到进入上世纪80年代,随着全控型电力电子器件的出现和迅速发展,PWM控制技术才真正得到应用。随着电力电子技术、微电子技术和自动控制技术的发展以及各种新的理论方法,如现代控制理论、非线性系统控制思想的应用,PWM控制技术获得了空前的发展。 PWM控制技术在逆变电路中的应用最为广泛,对逆变电路的影响也最为深刻。现在大量应用的逆变电路中,绝大部分都是PWM逆变电路。可以说PWM控制技术正是有赖于在逆变电路中的应用,才发展得比较成熟,才确定了它在电力电子技术中的重要地位。 二、基本设计指标: 冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。冲量指窄脉冲的面积。效果基本相同,是指环节的输出响应波形基本相同。低频段非常接近,仅在高频段略有差异。 图1-1形状不同而冲量相同的各种窄脉冲 1. 面积等效原理 分别将如图1-1所示的电压窄脉冲加在一阶惯性环节(R-L电路)上,如图1-2a所示。其输出电流i(t)对不同窄脉冲时的响应波形如图1-2b所示。从波形可以看出,在i(t)的上升段,i(t)的形状也略有不同,但其下降段则几乎完全相同。脉冲越窄,各i(t)响应波形的差异也越小。如果周期性地施加上述脉冲,则响应i(t)也是周期性的。用傅里叶级数分解后将可看出,各i(t)在低频段的特性将非常接近,仅在高频段有所不同。

SPWM波控制单相逆变器双闭环PID调节器的Simulink建模与仿真

SPWM波控制单相逆变器双闭环PID调节器的Simulink 建模与仿真 随着电力行业的快速发展,逆变器的应用越来越广泛,逆变器的好坏 会直接影响整个系统的逆变性能和带载能力。逆变器的控制目标是提高逆变器 输出电压的稳态和动态性能,稳态性能主要是指输出电压的稳态精度和提高带 不平衡负载的能力;动态性能主要是指输出电压的THD(Total Hannonic Distortion)和负载突变时的动态响应水平。在这些指标中对输出电压的THD 要 求比较高,对于三相逆变器,一般要求阻性负载满载时THD 小于2%,非线性满载(整流性负载)的THD 小于5%.这些指标与逆变器的控制策略息息相关。文中主要介绍如何建立电压双环SPWM 逆变器的数学模型,并采用电压有效值外 环和电压瞬时值内环进行控制。针对UPS 单模块10 kVA 单相电压型SPWM 逆变器进行建模仿真。通过仿真,验证了控制思路的正确性以及存该控制策略 下的逆变器所具有的鲁棒性强,动态响应快,THD 低等优点。并以仿真为先导,将其思想移植到具体开发中,达到预期效果。 1 三电平逆变器单相控制模型的建立 带LC 滤波器的单相逆变器的主电路结构如图1 所示。图1 中L 为输出 滤波电感,C 为滤波电容,T1,T2,T3,T4 分别是用来驱动IGBT 的三电平的SPWM 波,U0 为输出负载两端的电压。在建立控制系统的仿真模型时,需要 采集负载两端的电压与实际要求的电乐值做比较,然后通过调节器可以得到所 需要调节的值。在此仿真模型中,驱动波形采用的是三电平的SPWM 波形, 具体的产生原理在这不做详细描述。在Matlah 的Simlink 库中SPWM 波的产 生如图2 所示,这里调制比设为0.8.

PWM逆变器Matlab仿真设计

PWM逆变器MATLAB仿真 1设计方案的选择与论证 从题目的要求可知,输入电压为110V直流电,而输出是有效值为220V的交流电,所以这里涉及到一个升压的问题,基于此有两种设计思路第一种是进行DC-DC升压变换再进行逆变,另一种是先进行逆变再进行升压。除此之外,要得到正弦交流电压还要考虑滤波等问题,所以这两种方案的设计框图分别如下图所示: 图1-1方案一:先升压再逆变 图1-2方案二:先逆变,再升压 方案选择: 方案一:采用DC-DC升压斩波电路其可靠性高、响应速度、噪声性能好,效率高,但不适用于升压倍率较高的场合,另外升压斩波电路在初期会产生超调趋势(这一点将在后文予以讨论),在与后面的逆变电路相连时必须予以考虑,我们可以采用附加控制策略的办法来减小超调量同时达到较短的调节时间,但这将增加逆变器的复杂度和设计成本。 方案二:采用变压器对逆变电路输出的交流电进行升压,这种方法效率一般可达90%以上、可靠性较高、抗输出短路的能力较强,但响应速度较慢,体积大,波形畸变较重。 从以上的分析可以看出两种方案有各自的优缺点,但由于方案二设计较为简便,因此本论文选择方案二作为最终的设计方案,但对于方案一的相关容也会在后文予以讨论。 2逆变主电路设计 2.1逆变电路原理及相关概念

逆变与整流是相对应的,把直流电变为交流电的过程称为逆变。根据交流侧是否与交流电网相连可将逆变电路分为有源逆变和无源逆变,在不加说明时,逆变一般指无源逆变,本论文针对的就是无源逆变的情况;根据直流侧是恒流源还是恒压源又将逆变电路分为电压型逆变电路和电流型逆变电路,电压型逆变电路输出电压的波形为方波而电流型逆变电路输出电流波形为方波,由于题目要求对输出电压进行调节,所以本论文只讨论电压型逆变电路;根据输出电压电流的相数又将逆变电路分为单相逆变电路和三相逆变电路,由于题目要求输出单相交流电,所以本论文将只讨论单相逆变电路。 2.2逆变电路的方案论证及选择 从上面的讨论可以看出本论文主要讨论单相电压型无源逆变电路,电压型逆变电路的特点除了前文所提及的之外,还有一个特点即开关器件普遍选择全控型器件如IGBT,电力MOSFET等,有三种方案可供选择,下面分别予以讨论: 方案一:半桥逆变电路,如下图所示,其特点是有两个桥臂,每个桥臂有一个可控器件和一个反并联二极管组成。在直流侧接有两个相互串联的足够大的电容,两个电容的连接点为直流电源的中点。反并联二极管为反馈电感中储存的无功能量提供通路,直流侧电容正起着缓冲无功能量的作用。其优点为简单,使用器件少,缺点为输出交流电压的幅值仅为直流电源电压的一半,且直流侧需要两个电容器串联,工作时还要控制两个电容器电压的均衡,因此它只适用于几千瓦以下的小功率逆变电路。 VD2 图2-1 半桥逆变电路 方案二:全桥逆变电路,如下图所示:其特点是有四个桥臂,相当于两个半桥电路的组合,其中桥臂1和4作为一对,桥臂2和3作为一对,成对的两个桥臂同时导通,两对

逆变器原理

太阳能光伏并网控制逆变器工作原理及控制方法摘要:太阳能光伏发电是21世纪最为热门的能源技术领域之一,是解决人类能源危机的重要手段之一,引起人们的广泛关注。本文介绍了太阳能光伏并网控制逆变器的工作过程,分析了太阳能控制器最大功率跟踪原理,太阳能光伏逆变器的并网原理及主要控制方式。 1 引言: 随着工业文明的不断发展,我们对于能源的需求越来越多。传统的化石能源已经不可能满足要求,为了避免面对能源枯竭的困境,寻找优质的替代能源成为人们关注的热点问题。可再生能源如水能、风能、太阳能、潮汐能以及生物质能等能源形式不断映入人们的眼帘。水利发电作为最早应用的可再生能源发电形式得到了广泛使用,但也有人就其的环境问题、安全问题提出过质疑,况且目前的水能开发程度较高,继续开发存在一定的困难。风能的利用近些年来也是热点问题,但风力发电存在稳定性不高、噪音大等缺点,大规模并网对电网会形成一定冲击,如何有效控制风能的开发和利用仍是学术界关注的热点。在剩下的可再生能源形式当中,太阳能发电技术是最有利用价值的能源形式之一。太阳能储量丰富,每秒钟太阳要向地球输送相当于210亿桶石油的能量,相当于全球一天消耗的能量。我国的太阳能资源也十分丰富,除了贵州高原部分地区外,中国大部分地域都是太阳能资源丰富地区,目前的太阳能利用率还不到1/1000。因此在我国大力开发太阳能潜力巨大。 太阳能的利用分为“光热”和“光伏”两种,其中光热式热水器在我

国应用广泛。光伏是将光能转化为电能的发电形式,起源于100多年前的“光生伏打现象”。太阳能的利用目前更多的是指光伏发电技术。光伏发电技术根据负载的不同分为离网型和并网型两种,早期的光伏发电技术受制于太阳能电池组件成本因素,主要以小功率离网型为主,满足边远地区无电网居民用电问题。随着光伏组件成本的下降,光伏发电的成本不断下降,预计到2013年安装成本可降至1.5美元/Wp,电价成本为6美分/(kWh),光伏并网已经成为可能。并网型光伏系统逐步成为主流。本文主要介绍并网型光伏发电系统的系统组成和主要部件的工作原理。 2 并网型光伏系统结构 图1所示为并网型光伏系统的结构。并网型光伏系统包括两大主要部分:其一,太阳能电池组件。将太阳传送到地球上的光能转化成直流电能;其二,太阳能控制逆变器及并网成套设备,负责将电池板输出直流电能转为电网可接受的交流能量。根据功率的不同太阳能逆变器的输出形式可为单相或者三相;可带隔离变压器,也可不配隔离变压器。

光伏并网逆变器设计方案讲解

100kW光伏并网逆变器 设计方案 目录 1. 百千瓦级光伏并网特点 (2) 2 光伏并网逆变器原理 (3) 3 光伏并网逆变器硬件设计 (3) 3.1主电路 (6) 3.2 主电路参数 (7) 3.2.1 变压器设计............................................................................. 错误!未定义书签。 3.2.3 电抗器设计 (7) 3.3 硬件框图 (10) 3.3.1 DSP控制单元 (11) 3.3.2 光纤驱动单元 (11) 3.3.2键盘及液晶显示单元 (13) 3 光伏并网逆变器软件 (13)

1. 百千瓦级光伏并网特点 2010年全球太阳能光伏发电系统装机容量将达到10000MWp(我国将达到400MWp),2010年以后还将呈进一步加速发展趋势。百千瓦级大型光伏发电并网用逆变控制功率调节设备,成本低,效率高,容量大,被国内外光伏界公认为是适合大功率光伏发电并网用的最具技术含量、最有发展前景的新一代主流产品,直接影响到未来光伏发电的走向。 百千瓦级大功率光伏并网逆变电源其应用对象主要为大型光伏并网电站,从原理上讲,其并网控制技术与中小功率光伏并网系统的控制技术基本相同,但由于装置容量较大,在技术指标的实现达标和功能设计方面却有较大区别。 在技术指标上,主要会影响: 1.并网电流畸变率 在系统的额定容量达到一定数量级时,一些存在的技术问题将会逐步暴露并影响到系统的性能指标,其最重要的一点就是并网电流波形畸变率的控制和电流滤波方式。该系统中的主变压器一般选择为三相Δ/Y型式,且容量较大,此时变压器的非线性和励磁电流对并网电流波形的影响不容忽视,否则会引起并网电流波形的明显畸变和三相电流不平衡。 2.电磁噪声 由于是三相桥式逆变结构,受IGBT功率模块的开关频率限制及考虑系统的效率指标,系统的电流脉动要远高于中小功率系统,对电流的滤波和噪声控制需要特别注意,此时对系统的滤波电路设计和并网电流PWM控制方式的研究至关重要。由于系统的dv/dt、di/dt和电流幅值较大,其EMI和EMC的指标实现可能存在技术难度,由于系统的噪声可能影响其电流、功率的检测和计算精度,在最大功率跟踪和孤岛效应识别等方面的影响还难以预计。 在技术指标上,主要考虑: 1)主电路工艺结构设计 2)散热工艺结构设计 3)驱动方式设计

PWM逆变电路设计

引言 随着控制技术的发展和对设备性能要求的不断提高,许多行业的用电设备不再直接接入交流电网,而是通过电力电子功率变换得到电能,它们的幅值、频率、稳定度及变化形式因用电设备的不同而不尽相同。如通信电源、电弧焊电源、电动机变频调速器、加热电源、绿色照明电源、不间断电源、充电器等等,它们所使用的电能都是通过对电网能进行整流和逆变变换后所得到的。因此,高质量的逆变电路已成为电源技术的重要研究对象。 采样控制理论中有一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。PWM控制技术就是以该结论为理论基础,对半导体开关器件的导通和关断进行控制,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需要的波形。按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率。 PWM控制的基本原理很早就已经提出,但是受电力电子器件发展水平的制约,在上世纪80年代以前一直未能实现。直到进入上世纪80年代,随着全控型电力电子器件的出现和迅速发展,PWM控制技术才真正得到应用。随着电力电子技术、微电子技术和自动控制技术的发展以及各种新的理论方法,如现代控制理论、非线性系统控制思想的应用,PWM控制技术获得了空前的发展。 PWM控制技术在逆变电路中的应用最为广泛,对逆变电路的影响也最为深刻。现在大量应用的逆变电路中,绝大部分都是PWM逆变电路。可以说PWM控制技术正是有赖于在逆变电路中的应用,才发展得比较成熟,才确定了它在电力电子技术中的重要地位。

1PWM控制的基本原理 PWM控制技术在逆变电路中应用最广,应用的逆变电路绝大部分是PWM型,PWM 控制技术正是有赖于在逆变电路中的应用,才确定了它在电力电子技术中的重要地位。 本文主要以逆变电路为控制对象来介绍PWM控制技术。 1.1 理论基础 冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。冲量指窄脉冲的面积。效果基本相同,是指环节的输出响应波形基本相同。低频段非常接近,仅在高频段略有差异。 图1-1形状不同而冲量相同的各种窄脉冲 1.2 面积等效原理 分别将如图1-1所示的电压窄脉冲加在一阶惯性环节(R-L电路)上,如图1-2a所示。其输出电流i(t)对不同窄脉冲时的响应波形如图1-2b所示。从波形可以看出,在i(t)的上升段,i(t)的形状也略有不同,但其下降段则几乎完全相同。脉冲越窄,各i(t)响应波形的差异也越小。如果周期性地施加上述脉冲,则响应i(t)也是周期性的。用傅里叶级数分解后将可看出,各i(t)在低频段的特性将非常接近,仅在高频段有所不同。 用一系列等幅不等宽的脉冲来代替一个正弦半波,正弦半波N等分,看成N个相连的脉冲序列,宽度相等,但幅值不等;用矩形脉冲代替,等幅,不等宽,中点重合,面积(冲量)相等,宽度按正弦规律变化。 上述原理可以称为面积等效原理,它是PWM控制技术的重要理论基础。 下面分析用一系列等幅不等宽的脉冲来代替一个正弦半波。图1-3可以看到把半波分成N等份,就可以把正弦半波看成N个彼此相连的脉冲序列组成的波形,然后把脉冲序列利用相同数量的等幅而不等宽的矩形脉冲代替,使它们面积相等,就可以得到脉冲序列。根据面积等效原理,PWM波形和正弦半波是等效的。

三相桥式PWM逆变电路

《电力电子技术》课程设计说明书三相桥式PWM逆变电路的设计院、部:电气与信息工程 学生姓名:刘远治 指导教师:桂友超职称副教授 专业:电气工程及其自动化 班级:电气本1104班 完成时间:2014年06月

摘要 本文设计了一个三相桥式PWM控制的逆变电路。PWM控制就是对脉冲的宽度进行调制的技术,如果脉冲的宽度按正弦规律变化而和正弦波等效的PWM波形,也称为SPWM波形。该设计包括主电路、驱动电路、SPWM信号产生电路、过流保护等方面的设计。该逆变器主电路采用的开关器件是IGBT;如需实物制作,驱动电路可采用现在大功率MOSFET、IGBT专用驱动芯片IR2110;PWM信号产生电路可采用CD4538芯片控制产生。 关键词:三相桥式;主电路;IR2110;CD4538

Abstract This paper designed a three-phase PWM controlled inverter bridge circuit. PWM control is on the pulse width modulation technology, if the pulse width changes according to sine law and the sine wave PWM waveform equivalent, also known as SPWM waveform. The design includes the main circuit, driver circuit, SPWM signal generation circuit, over-current protection and other aspects of design. The inverter main circuit uses IGBT; If you need make it real, driver circuit can use high-power MOSFET, IGBT dedicated driver chip IR2110; PWM signal generation circuit controlled by the CD4538 chip produced。 Key words three-phase bridge; main circuit; IR2110; CD4538

双环反馈控制的SPWM逆变电源中电流环的设计(精)

双环反馈控制的 SPWM 逆变电源中电流环的设计 陈元娣,朱忠尼,林 洁 (空军雷达学院电子对抗系, 武汉 430019 摘要:针对目前电流环的设计方法不明确的问题, 通过建立 DC/AC系统的动态模型并对该模型进行理 论上的推导和分析得出了电流环的设计方法. 该方法在系统参数不完全明确的情况下, 电流内环尽量采取 PI 调节器, 将使系统的稳定性更好, 参数调整比较方便, 能满足一定的带宽和动态特性. 通过仿真实验验证了理论推导的正确性. 关键词:逆变器 ; 双环反馈 ; 电流环中图分类号:TM464 文献标识码:A 近年来, SPWM 正弦波逆变器的反馈控制技术发生 2个较大变化, ①单环控制变为多环控制, ②有效值恒定反馈变为“瞬时” 值反馈, 目的是为了提高系统的动态响应速度和改善并控制在任意负载, 特别是非线性负载下的输出波形 . 对于双环 系统, 一般采取电压外环, 电流内环的设计. 电压环的作用是跟踪和稳定输出电压,它的设计大多采取 PI 调节器模式. 电流环的作用是使逆变器的动态响应加快, 负载适应能力加强, 并具有输出电流限制能力, 可提高系统的可靠性, 因此, 电流环的设计是双环反馈控制的关键技术之一.对于电流环的设计, 常见有 P 和 PI 2种设计方法 , 在实际应用中到底选哪种方法合适,目前还没有成熟的结论. 本文通过建立 DC/AC系统的动态模型, 对该模型进行理论上的简化和特性分析.理论分析表

明:在系统参数不完全明确的情况下, 电流内环尽量采取 PI 调节器; 当系统参数基本明确或系统的惯性较小 (如大功率逆变器情况下, 可以考虑采取 P 调节器, 可以降低系统的调节难度, 提高系统的响应速度.通过对实际系统的仿真验证了本文结论的正确性. 1系统动态模型的简化设计原则 图 1是 SPWM 正弦波逆变器的功率电路原理 框图. 图 2是其等效模型, 图中 T 1=L /r 为滤波器电感的时间常数, r 为滤波电感直流电阻, T 为电压检测电路 的延迟时间常数, LT 为电流环, SPWM 控制器加逆 变器的等效模型为 G 1= K PWM U ab s Ls +r s s

单相桥式PWM逆变电路设计

指导教师评定成绩: 审定成绩: 重庆邮电大学 自动化学院 综合设计报告 设计题目:单相桥式PWM逆变电路设计 单位(二级学院):自动化学院 学生姓名:梁勇 专业:电气工程与自动化 班级:0830702 学号:07350225 指导教师:罗萍 设计时间:2010年10月 重庆邮电大学自动化学院制

目录 一、课程设计任务 (2) 二、SPWM逆变器的工作原理 (2) 1.工作原理 (3) 2.控制方式 (4) 3.单片机电源与程序下载模块 (7) 4.正弦脉宽调制的调制算法 (8) 5.基于STC系列单片机的SPWM波形实现 (11) 三、总结 (14) 四、心得体会 (15) 五、附录: (17) 1.程序 (17) 2.模拟电路图 (19) 3.电路图 (22)

摘要: 单片机控制逆变电路,以逆变器为主要元件,稳压、稳频输出的电源保护设备。采用面积等效的SPWM波,又单片机为主导,输出三角波和正弦波再由这两个波相叠加输出spwm波来控制逆变电路的触发,使其把直流编程频率可变的交流电 关键字:单片机逆变电源正弦波脉冲触发 单相桥式PWM逆变电路设计 一、课程设计任务 对单相桥式pwm逆变电路的主电路及控制电路进行设计,参数要求如下:直流电压为12 V,L=1mH,要求频率可调,输出为5V的正弦交流电。 设计要求:1.理论设计:了解掌握单相桥式PWM逆变电路的工作原理,设计单相桥式PWM逆变电路的主电路和控制电路。包括: IGBT电流,电压额定的选择 驱动电路的设计 画出完整的主电路原理图和控制原理图 列出主电路所用元器件的明细表 二、SPWM逆变器的工作原理 由于期望的逆变器输出是一个正弦电压波形,可以把一个正弦半波分作N 等分。然后把每一等分的正弦曲线与横轴所包围的面积都用个与此面积相等的等高矩形脉冲来代替,矩形脉冲的中点与正弦波每一等分的中点重合。这样,由N 个等幅不等宽的矩形脉冲所组成的波形为正弦的半周等效。同样,正弦波的负半周也可用相同的方法来等效。 这一系列脉冲波形就是所期望的逆变器输出SPWM波形。由于各脉冲的幅值相等,所以逆变器可由恒定的直流电源供电,逆变器输出脉冲的幅值就是整流器的输出电压。当逆变器各开关器件都是在理想状态下工作时,驱动相应开关器件的信号也应为与形状相似的一系列脉冲波形,这是很容易推断出来的。 从理论上讲,这一系列脉冲波形的宽度可以严格地用计算方法求得,作为控制逆变器中各开关器件通断的依据。但较为实用的办法是引用通信技术中的“调制”这一概念,以所期望的波形(在这里是正弦波)作为调制波(ModulationWave ),而受它调制的信号称为载波(Carrier Wave )。在SPWM中

太阳能逆变器开发思路和方案

太阳能逆变器开发思路和方案 内容摘要:摘要:针对光伏并网发电系统中关键部件逆变器的结构设计与控制方法研究进行了详细分析和阐述。从电网.光伏阵列以及用户对逆变器的要求出发,分析了各种不同的逆变器拓扑结构与控制方法,比较其运行效率和控制效果。对于目前国内外光伏发电系统中并网逆变器的研究现状.亟待解决的问题进行了阐述,指出光伏发电系统中并网逆变器高效可靠运行的发展方向。 摘要:针对光伏并网发电系统中关键部件逆变器的结构设计与控制方法研究进行了详细分析和阐述。从电网.光伏阵列以及用户对逆变器的要求出发,分析了各种不同的逆变器拓扑结构与控制方法,比较其运行效率和控制效果。对于目前国内外光伏发电系统中并网逆变器的研究现状.亟待解决的问题进行了阐述,指出光伏发电系统中并网逆变器高效可靠运行的发展方向。 关键词:光伏并网发电系统;逆变器;拓扑结构;最大功率点跟踪;孤岛效应 O 引言由于传统能源的枯竭和人们对环境的重视,电力系统正面临着巨大变革,分布式发电将成为未来电力系统的发展方向。其中,光伏发电以其独特的优点,被公认为技术含量高.最有发展前途的技术之一。但是光伏发电系统存在着初期投资大.成本较高等缺点,因而探索高性能.低造价的新型光电转换材料与器件是其主要研究方向之一。另一方面,进一步减

少光伏发电系统自身损耗.提高运行效率,也是降低其发电成本的一个重要途径。逆变器效率的高低不仅影响其自身损耗,还影响到光电转换器件以及系统其他设备的容量选择与合理配置。 因此,逆变器已成为影响光伏并网发电系统经济可靠运行的关键因素,研究其结构与控制方法对于提高系统发电效率.降低成本具有极其重要的意义 [5] 。 本文从电网.光伏阵列以及用户对于并网逆变器的要求出发,分析了不同的逆变器拓扑结构与控制方法,比较了其运行效率和控制效果。对于目前国内外光伏发电系统中并网逆变器的研究现状.亟待解决的技术问题进行了综合,进一步指出了光伏发电系统中并网逆变器高效可靠运行的发展方向。 1 光伏发电系统对逆变器的要求光伏并网发电系统一般由光伏阵列.逆变器和控制器3 部分组成。逆变器是连接光伏阵列和电网的关键部件,它完成控制光伏阵列最大功率点运行和向电网注入正弦电流两大主要任务。 1 .1 电网对逆变器的要求逆变器要与电网相连,必须满足电网电能质量. 防止孤岛效应和安全隔离接地3 个要求。 为了避免光伏并网发电系统对公共电网的污染,逆变器应输出失真度小的正弦波。影响波形失真度的主要因素之一是逆变器的开关频率。在数控逆变系统中采用高速 DSP 等新型处理器,可明显提高并网逆变器的开关频率性能,它已成为实际系统广泛采用的技术之一;同时,逆变器主功率元件的选择也至关重要。小

PWM逆变器Matlab仿真

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: PWM逆变器Matlab仿真 初始条件: 输入110V直流电压; 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、得到输出为220V、50Hz单相交流电; 2、采用PWM斩波控制技术; 3、建立Matlab仿真模型; 4、得到实验结果。 时间安排: 课程设计时间为两周,将其分为三个阶段。 第一阶段:复习有关知识,阅读课程设计指导书,搞懂原理,并准备收集设计资料,此阶段约占总时间的20%。 第二阶段:根据设计的技术指标要求选择方案,设计计算。 第三阶段:完成设计和文档整理,约占总时间的40%。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要 (1) 1设计方案的选择与论证 (2) 2逆变主电路设计 (2) 2.1逆变电路原理及相关概念 (2) 2.2逆变电路的方案论证及选择 (3) 2.3建立单相桥式逆变电路的S IMULINK的仿真模型 (4) 2.3.1模型假设 (5) 2.3.2利用MATLAB/Simulink进行电路仿真 (5) 3正弦脉宽调制(SPWM)原理及控制方法的SIMULINK仿真 (6) 3.1正弦脉冲宽度调制(SPWM)原理 (6) 3.2SPWM波的控制方法 (7) 3.2.1双极性SPWM控制原理及Simulink仿真 (7) 3.2.2单极性SPWM控制原理及Simulink仿真 (9) 4升压电路的分析论证及仿真 (11) 4.1B OOST电路工作原理 (11) 4.2B OOST电路的S IMULINK仿真 (12) 5滤波器设计 (13) 6 PWM逆变器总体模型 (15) 7心得体会 (18) 参考文献 (19)

相关主题
文本预览