当前位置:文档之家› 大数定律

大数定律

大数定律
大数定律

第五章 大数定律与中心极限定理

在数学中大家都注意到过这样的现象:有时候一个有限项的和很难求,而一经取极限让有限过渡到无限,则问题反而好办。例如计算和

!

1!31!212n s n ++++= 对于固定的但很大的n ,这个和很难求,但考虑∞→n 取极限时,则

有十分简单的结果:e s n n =∞

→lim 。利用此结果,当n 很大时就可以把e 作为n s 的近似值。

在概率论中,也经常会出现求与很多个随机变量和有关的事件的概率。比如)(21b X X X a P n <+++< ,除少数情况外,这样的概率计算都会十分复杂。因而自然会提出问题:可否利用极限来近似计算呢?即考虑∞→n 时,n 个随机变量之和是否有某种极限分布。概率论中不仅证明了这是可能的,而且还证明了在很一般的情况下,和的标准化随机变量的极限分布就是标准正态分布。这一事实既可以解决近似计算概率的问题,同时也强化了正态分布的重要性,以及也解释了现实世界中许多随机现象中的变量的分布密度曲线会呈现钟形曲线的原因。在概率论中把这类结果的有关定理叫做“中心极限定理”. 中心极限定理就是研究在什么条件下,大量随机变量之和的分布会接近于正态分布。

概率论中,另一类极限定理是所谓的“大数定理”.它是由“频率的稳定性”引申和发展而来的。考虑n 次独立重复试验,每次试验观察事件A 是否发生,令

???=否则

0,发生A 次试试 i 若第,1i X ,n i ,,2,1 = 那么事件A 发生的频数为n n X X X S +++= 21,频率为n S X n n /=。若p A P =)(,则“频率的稳定性”就是说,在n 很大时,频率n X 会接近于概率p 。而p X E i =)(,p X E n =)(。故也可说成是:在n 很大时,n 个随机变量的算术平均n X 会接近于其期望)(n X E 。按后一种说法,就可不必局限于i X 只取0,1两个值的情况。概率论中讨论的大数定理就是研究在何种条件下,n 个随机变量的算术平均n X ,当∞→n 时会在某种意义下收敛于其期望)(n X E 。

上面提到的问题都属随机变量序列的收敛性问题,随机变量序列的收敛性有多种,其中常用的是两种:依概率收敛和按分布收敛。 §5.1 大数定律

一. 依概率收敛的定义

定义 设}{n X 为一随机变量序列,X 为一随机变量,若对任意的0>ε,有

0)|(|lim =ε≥-∞

→X X P n n 或

1)|(|lim =ε<-∞

→X X P n n 则称随机变量序列}{n X 依概率收敛于X ,记作X X P

n →。

依概率收敛的含义是:n X 与X 的绝对偏差不小于任意给定的正数的可能性会随n 的无限增大而无限变小。或者说,绝对偏差||X X n - 小于任意给定的正数的可能性的会随n 的无限增大而无限地接近于1。

特别当X 为退化的随机变量时,即X 为常数c ,则称}{n X 依概率收敛于常数c 。

依概率收敛的序列有以下性质。

设,a X P n →,b Y P

n →),(y x g 在点),(b a 过连续,则

),(),(b a g Y X g P n n →

二、 大数定律 大数定律有多种形式,下面从最简单的伯努利大数定律说起,然后逐个介绍各种大数定律。

1.伯努利大数定律

定理 设A n 为n 重伯努利试验中事件A 发生的次数,每次试验中事件A 发生的概率都为p ,则频率

n n A 依概率收敛于p ,即对0>ε?,有 0)|(|lim =ε≥-∞→p n

n P A n , 或1)|(|lim =ε<-∞→p n

n P A n 证明:由于A n ~),(p n B ,故,)(p n n

E A =n p p n n Var A )1()(

-=, 由切比雪夫不等式,有

0)1()()|(|02

2→ε-=ε≤ε≥-≤n p p n n Var p n

n P A A , 所以 0)|(|lim =ε≥-∞→p n n P A n 。 伯努利大数定律说明:随着试验次数n 的增大,事件A 发生的频率n

n A 与其概率p 的绝对偏差||p n n A -大于任意给定的正数ε的可能性可以无限地接近于零,这就是频率的稳定性的概率意义。

2.几个常用的大数定律

定理(切比雪夫大数定律) 设}{n X 为一列两两不相关的随机变量

序列,若,,2,1,)( =≤i c X Var i 则}{n X 服从大数定律,即对0>ε?,有 0)|)((|lim =ε≥-∞

→n n n X E X P 其中∑==n i i n X n X 1

1。 证明:由于}{n X 两两不相关,故

n

c X Var n X Var n i i n ≤

=∑=)(1)(12, 由切比雪夫不等式,有

0)()|((|02

2→ε≤ε≤ε≥-≤n c X Var X E X P n n n 。 证明完毕。

以上大数定律都要求随机变量i X 的方差存在,以下的辛钦大数定律

则去掉这个条件,但保留期望存在的条件,并要求}{n X 为独立同分布的随机变量序列。

定理(辛钦大数定律) 设}{n X 为独立同分布的随机变量序列,且i X 的期望存在,则}{n X 服从大数定律,即对0>ε?,有 0)|)(|lim =ε≥μ-∞

→n n X P 其中)(i X E =μ。

辛钦大数定律刻画了算术平均值的稳定性。同时,辛钦大数定律提供了求随机变量的数学期望)(X E 的近似值的方法。设想对X 作多次独立重复观察(或从X 的分布中产生多个随机数),观察结果为

n X X X ,,,21 ,当n 足够大时,可以把观察值的平均值∑=n

i i X n 1

1作为)(X E

的近似值。

事实上,用观察值的平均值去近似随机变量的均值在实际工作中是常用的方法。比如用多次的测量值的平均值作为最终的测量结果。 例 (用蒙特卡罗方法计算定积分) 近似计算定积分?=10)(dx x f J 。 假设X ~)1,0(U ,则=))((X f E ?10)(dx x f ,

所以求定积分?=10)(dx x f J 的近似值就是求随机变量)(X f 的期望

))((X f E 的近似值。由辛钦大数定律,我们可用)(X f 的模拟值去近似计算定积分?=1

0)(dx x f J 。具体做法如下:先用计算机产生n 个)1,0(U 的

随机数n x x x ,,,21 ,然后计算每个n i x f i ,,2,1),( =,最后得J 的近似值 )(11∑=≈n i i x f n J 对于积分?b a dx x f )(,我们总可通过换元将该积分变为区间]1,0[上的定

积分。

以上几个大数定律都可在概率论的理论框架下给出严格的证明,从数学的角度称为“大数定理”更为恰当.可是,当我们泛泛地谈论“频率的稳定性”,“平均值的稳定性”时,这表述了一种全人类多年的集体经验,有些哲理的味道,而且这种经验远在早于现代概率论之前就有,因此称之为“定律”也不算不妥.

浅谈几个著名的大数定律及应用

2010.No34 4 摘 要 大数定律以严格的数学形式表达了随机现象最根本的性质——平均结果的稳定性,是随机现象统计规律性的具体表现,本文介绍了几种常用的大数定律,并给出一些简单应用。 关键词 大数定律 随机变量 数学期望 概率 1 引言 “大数定律”本来是一个数学概念,又叫做“平均法则”。在随机事件的大量重复出现中,往往呈现几乎必然的规律,这个规律就是大数定律,通俗地说,这个定理就是在试验不变的条件下,重复试验多次,随机事件的频率以概率为稳定值。比如,我们向上抛一枚硬币,硬币落下后哪一面朝上本来是偶然的,但当我们向上抛硬币的次数足够多时,达到上万次甚至几十万几百万次之后,我们就会发现,硬币向上的次数约占总次数的二分之一。偶然中包含着必然。 从概率的统计定义中可以看出:一个事件发生的频率具有稳定性,即随着试验次数的增多,事件的频率逐渐稳定在某个常数附近.人们在实践中观察其他一些随机现象时,也常常会发现大量随机个体的平均效果的稳定性。这就是说,无论个别随机个体以及它们在试验进行过程中的个别特征如何,大量随机个体的平均效果与每一个体的特征无关,且不再是随机的深入考虑后,人们会提出这样的问题:稳定性的确切含义是什么?在什么条件下具有稳定性?这就是大数要研究的问题。 2 几个大数定律 在介绍大数定律之前,先介绍几个相关定义。 定义1[1]设ξn (n=1,2,……)为概率空间(Ω,F,P)上定义的随机变量序列(简称随机序列),若存在随机变数ξ,使对任意ε>0,恒有: 则称随机序列 依概率收敛于随机变量ξ(ξ也可以是一个常数),并用下面的符号表示: 定义2[2]设 为一随机序列,数学期望E(ξn )存在,令 ,若 ,则称随机序列 服从大数定律,或者说大数法则成立。 切比雪夫不等式 设随机变量X的数学期望E(X)与方差D(X)存在,则对于任意正数ε,不等式 都成立。不等式(1)和(2)称为切比雪夫不等式。切比雪夫不等式给出了在随机变量X的分布未知的情况下,只利用J的数学期望和方差即可对J的概率分布进行估值的方法,这就是切比雪夫不等式的重要性所在。 大数定律形式很多,我们仅介绍几种最常用的大数定律。定理1[1] (切比雪夫大数定律) 设随机变量ξ1,ξ2,…ξn 相互独立,它们的数学期望依次为a 1,a 2,…a n 方差依次为σ12,σ22,…σn 2而且存在正常数k,使得对一切i=1,2,…,有σi 2

(完整版)大数定律及中心极限定理

第五章大数定律及中心极限定理 【基本要求】1、了解切比雪夫不等式; 2、了解切比雪夫大数定律,Bernoulli大数定律和辛钦大数定律成立的条件及结论; 3、了解独立同分布的中心极限定理(列维—林德伯格定理)和德莫佛—拉普拉斯 中心极限定理(二项分布以正态分布为极限分布)的应用条件和结论,并会用 相关定理近似计算有关随机事件的概率。 【本章重点】切比雪夫不等式,切比雪夫大数定理及Bernoulli大数定理。 【本章难点】对切比雪夫大数定理及独立同分布的中心极限定理的理解。 【学时分配】2学时 【授课内容】 §5.1 大数定律 0.前言 在第一章我们提到过事件发生的频率具有稳定性,即随着试验次数的增加,事件发生的频率逐渐稳定于某个常数,这一事实显示了可以用一个数来表征事件发生的可能性大小,这使人们认识到概率是客观存在的,进而由频率的三条性质的启发和抽象给出了概率的定义,而频率的稳定性是概率定义的客观基础。在实践中人们还认识到大量测量值的算术平均值也具有稳定性,而这种稳定性就是本节所要讨论的大数定律的客观背景,而这些理论正是概率论的理论基础。 下面介绍三个定理,它们分别反映了算术平均值及频率的稳定性。 一、切比雪夫大数定律 1

2 事件的频率稳定于概率,能否有p n lim n n =μ∞→,答案是否定的。而是用)(0}{ ∞→→ε≥-μn p n P n [依概率收敛]来刻划 (弱)。或者用{}1n n P p n →∞ μ???→=[a.e.收敛] 来刻划(强)。 1.定义:设ΛΛ,,,,21n X X X 是一个随机变量序列,a 是一个常数,若对于任意正数ε,有 ()1lim =<-∞ →εa X P n n , 则称序列ΛΛ,,,,21n X X X 依概率收敛于a .记为a X P n ?→? . 2.切比雪夫不等式 设随机变量ξ具有有限的期望与方差,则对0>?ε,有 2 ) ())((ε ξεξξD E P ≤ ≥-或2 ) (1))((ε ξεξξD E P - ≥<- 证明:我们就连续性随机变量的情况来证明。设~()p x ξ,则有 2 2 ()()(())(())()()x E x E x E P E p x dx p x dx ξ ε ξ ε ξξξεε -≥-≥--≥= ≤ ?? 22 2 1 () (())()D x E p x dx ξξεε+∞ -∞ ≤ -= ? 该不等式表明:当)(ξD 很小时,))((εξξ≥-E P 也很小,即ξ的取值偏离)(ξE 的可能性很小。这再次说明方差是描述ξ取值分散程度的一个量。 切比雪夫不等式常用来求在随机变量分布未知,只知其期望和方差的情况下,事件 {}E ξξε-≥概率的下限估计;同时,在理论上切比雪夫不等式常作为其它定理证明的工具。 3.定理1(切比雪夫大数定律) 设}{n ξ是相互独立的随机变量序列,每一随机变量都有有限的方差,且一致有界,即存在 常数C ,使Λ,2,1)(=≤i C D i ξ,则对任意的0>ε,有01111 =ε≥ξ-ξ∑∑==∞→})(E n n {P lim n i n i i i n [即

概率论大数定律及其应用

概率论基础结课论文题目:独立随机序列的大数事件的定理与应用 作者 摘要:历史上第一个定理属于,后人称之为“”。概率论中讨论的向的定律。概率论与数理的基本定律之一,又称弱大数理论。 大数定律以严格的数学形式表达了随机现象最根本的性质—平均结果的稳定性,它是概率论中一个非常重要的定律,是随机现象统计规律性的具体表现,应用很广泛。本文介绍了几种常用的大数定律,并分析了它们在理论与实际中的应用。 关键词:弱大数定理伯努利大数定理随机变量数学期望概率 引言:“大数定律”本来是一个数学概念,又叫做“平均法则”。在随机事件的大量重复出现中,往往呈现几乎必然的规律,这个规律就是大数定律,通俗的说,这个定律就是在试验不变的条件下,重复试验多次,随机事件的频率以概率为稳定值。比如,我们向上抛一枚硬币,硬币落下时哪一面朝上本身是偶然的,但当我们向上抛的硬币的次数足够多时,达到上万次甚至几十万几百万时之后,我们就会发现,硬币朝上的次数大约占总数的二分之一。偶然之中包含着必然。 从概率的统计定义中可以看出:一个事件发生的频率具有稳定性,即随着试验次数的增多,事件的频率逐渐稳定在某个常数附近,人们在实践中观察其他的一些随机现象时,也常常会发现大量随机个体的平均效果的稳定性。这就是说,无论个别随机个体以及它们在试验进行过程中的个别特征如何,大量随机个体的平均效果与每一个体的个别特征无关,而且结果也不再是随机的。深入考虑后,人们会提出这样的问题:稳定性的确切含义是什么?在什么条件下具有稳定性?这就是我们大数要研究的问题。 概率与统计是研究随机现象的统计规律的学科,而随机现象的统计规律性只有在相同条件下进行大量重复试验或观察才呈现出来。然而,在大量重复试验或观察中,我们会发现,一个事件发生的频率具有稳定性,它的稳定性会随着试验次数的增多表现得越来越明显。这种稳定性与它在在实验进行中的个别特征无关,且不再是随机的。大数定律给出了稳定性的确切含义,并且给出了什么条件下才具有稳定性。那么,这对于我们解决理论与实际问题有哪些实际意义呢?这就是我们在下面将要了解到的,大数定律的某些应用。即,大数定律及其在理论与实际生活中的一些应用。 一方面,在理论上,大数定律可以看作是求解极限、重积分以及级数的一种新思路,另一方面,在实际生活中,保险动机的产生、保险公司财政稳定和保费的确定,我们都将看到大数定律的重要作用。

毕业论文大数定律在经济学中的应用

学校代码:10206 学生学号:051074204 白城师范学院 毕业论文(设计) 大数定律在经济学中的应用Law of large numbers in economics 学生姓名:安琦 指导教师:邬伟三讲师 学科专业:数学与应用数学 所在单位:数学系 2011年6月

摘要 概率论历史上第一个极限定理属于伯努利,后人称之为“大数定律”。概率论中讨论随机变量序列的算术平均值向常数收敛的定律。概率论与数理统计学的基本定律之一。 有些随机事件无规律可循,但不少却是有规律的,这些“有规律的随机事件”中在大量重复出现的条件下,往往呈现几乎必然的统计特性,这个规律就是大数定律。 通俗地说,这个定理就是,在试验不变的条件下,重复试验多次,随机事件的频率近似于它的概率。这种情况下,偶然中包含着必然。必然的规律与特性在大量的样本中得以体现。 大数定律是概率论中的重要内容,它以严格的数学形式表达了随机现象最根本的性质——平均结果的稳定性,它是随机现象统计规律性的具体表现,在数学应用及经济生活中有着较为重要的作用,较多文献给出了不同条件下存在的大数定律,并利用大数定律和中心极限定理得到较多模型的收敛性,但对于它们的适用范围及在实际生活中的应用涉及较少。本文就大数定律做了具体的分析,介绍了几种较为常见的大数定律,并结合它们存在的条件的不同,分析了它们各种适用的数学模型的特征,列举了它们在经济生活领域的应用,将理论具体化, ,以使得枯燥的数学理论与实际想结合,使大家对大数定律在实际生活中的应用价值有了更深的认识。 关键词:大数定律特征函数保险银行贷款

Abstract A history of probability limit theorem is Bernoulli, later known as the "law of large numbers." Probability random variables discussed in the arithmetic mean law of convergence to the constant. Probability theory and mathematical statistics one of the basic laws. Some random events without a pattern, but many are regular, these "regular random incident," a large number of recurring conditions, often showing statistics of almost inevitable, this rule is the law of large numbers. In layman's terms, this theorem is that under the same conditions in the test, repeat testing several times, the frequency of random events similar to it probability. In this case, includes the inevitable accident. The regularity and characteristics of the inevitable large number of samples to be reflected. Law of large numbers is an important part of probability theory, its rigorous mathematical form, the most fundamental expression of the random nature of the phenomenon - an average of the stability of results, it is the statistical regularity of random phenomena of specific performance, application and economic life in mathematics has a more important role, more literature exists under different conditions are given law of large numbers, and using law of large numbers and central limit theorem, the convergence of many models, but their scope of application and in real life The applications involve small. This paper made a law of large numbers of specific analysis, introduces some of the more common law of large numbers, combined with their existing conditions, the analysis of their mathematical model for a variety of features, listed them in the field of economic life the application of the theory specific, in order to make the boring mathematical theory and practice was integrated so that peop le in the law of large numbers of applications in real life have a deeper understanding of the value. Keywords:Law of Large Numbers Characteristic function Insurance Bank loans

依概率收敛和弱大数定律

§2 依概率收敛与弱大数定律 一、依概率收敛 二、弱大数定律 一、依概率收敛 尽管分布函数完全反映了随机变量取值的分布规律, 但是两个不同的随机变量可以有相同的分布函数. 例如, 向区间[0,1]上随机等可能投点,ω表示落点的位置,定义 ξω(),,=???10 ωω∈∈[,.](.,]005051 ηω(),,=???01 ωω∈∈[,.](.,]005051. (1) 则ξ和η具有相同的分布函数 F(x)=?????,1,2/1, .1,10, 0≥<≤0, lim (||) n n P →∞ -≥ξξε=0, (3) 或 lim (||) n n P →∞ -<ξξε=1, ' )3( 则称ξn 依概率收敛(convergence in probability)于ξ,记作 ξn P ?→?ξ. 注 定义1要求所有ξ和ξn 的定义域相同. ξn P ?→?ξ可直观地理解为:除去极小的可能性,只要n 充分大,ξn 与ξ的取值就可以任意接近. 从上面例子可以看出, 由ξn d ?→?ξ并不能导出 ξn P ?→?ξ. 关于这两种收敛性之间的关系,我们有下面的定理. 定理1 设ξ 和ξn 是定义在概率空间 (Ω,F, P)上的随机变量序列. 1. 如果ξn P ?→?ξ, 则 ξn d ?→?ξ. 2. 如果ξn d c ? →?, c 为常数,则ξn P c ?→?. 证 1. 设F 和 F n 分别是ξ和ξn 的分布函数,x 表示F 的连续点. 任意给定ε>0,

大数定律及其应用( 刘胜举200702014001)

本科生毕业论文(设计) 题 目:大数定律及其应用 姓 名:刘胜举 学 号:200702014001 系 别:数学与计算机科学系 年 级:2007级 专 业:数学与应用数学 指导教师 熊国敏 职称: 教授 指导教师 王海英 职称: 讲师 2011年 4 月 28 日

目录 摘要............................................................ I 第一章绪论. (1) 第二章大数定律 (2) 2.1大数定律的发展历史 (2) 2.2几个常用的大数定律 (3) 第三章大数定律的一些应用 (6) 3.1大数定律在数学分析中的一些应用 (6) 3.2大数定律在保险业的应用 (10) 结论 (18) 参考文献 (19) 致谢 (20)

摘要 大数定律以严格的数学形式表达了随机现象最根本的性质—平均结果的稳定性,它是概率论中一个非常重要的定律,应用很广泛。本文介绍了几种常用的大数定律,并分析了它们在理论与实际中的应用。 关键词:大数定律,概率分布,保险业 Abstract:The law of large numbers describles the most fundamental of the random nature in rigorous mathematical formation—the stability of the average results .It is a very important law, and its applications are very wide. This article describes several common law of large numbers, and analyzes their theoretical and practical applications. Key words: law of large numbers, probability distribution, insurance

大数定律的四种证法

对于一般人来说,大数定律的非严格表述是这样的:X_1,...,X_n是独立同分布随机变量序列,均值为u,S_n=X_1+...+X_n,则S_n/n收敛到u. 如果说“弱大数定律”,上述收敛是指依概率收敛(in probability),如果说“强大数定律”,上述收敛是指几乎必然收敛(almost surely/with probability one)。 大数定律通俗一点来讲,就是样本数量很大的时候,样本均值和真实均值充分接近。这一结论与中心极限定理一起,成为现代概率论、统计学、理论科学和社会科学的基石之一,重要性在本人看来甚至不弱于微积分。(有趣的是,虽然大数定律的表述和证明都依赖现代数学知识,但其结论最早出现在微积分出现之前。而且在生活中,即使没有微积分的知识也可以应用。例如,没有学过微积分的学生也可以轻松利用excel或计算器计算样本均值等统计量,从而应用于社会科学。) 最早的大数定律的表述可以追朔到公元1500年左右的意大利数学家Cardano。1713年,著名数学家James (Jacob) Bernouli正式提出并证明了最初的大数定律。不过当时现代概率论还没有建立起来,测度论、实分析的工具还没有出现,因此当时的大数定律是以“独立事件的概率”作为对象的。后来,历代数学家如Poisson(“大数定律”的名字来自于他)、Chebyshev、Markov、Khinchin(“强大数定律”的名字来自于他)、Borel、Cantelli等都对大数定律的发展做出了贡献。直到1930年,现代概率论奠基人、数学大师Kolgomorov才真正证明了最后的强大数定律。 下面均假设X, X_1,...,X_n是独立同分布随机变量序列,均值为u。独立同分布随机变量和的大数定律常有的表现形式有以下几种。 初等概率论 (1). 带方差的弱大数定律:若E(X^2)小于无穷,则S_n/n-u依概率收敛到0。 证明方法:Chebyshev不等式即可得到。这个证明是Chebyshev给出的。 (2). 带均值的弱大数定律:若u存在,则S_n/n-u依概率收敛到0。 证明方法:用Taylor展开特征函数,证明其收敛到常数,得到依分布收敛,然后再用依分布收敛到常数等价于依概率收敛。 现代概率论 (3). 精确弱大数定律:若xP(|X|>x) 当x趋于无穷时收敛到0,则S_n/n-u_n依概率收敛到0,其中u_n=E[X 1_{|X|nt)对任意常数t的收敛速度足够快,满足Borel-Cantelli的要求,用Borel-Cantelli引理得到大数定律。 (5). 带方差的强大数定律:若E(X^2)小于无穷,则S_n/n-u几乎必然收敛到0.

大数定律与中心极限定理及其应用

重庆三峡学院毕业设计(论文)大数定律与中心极限定理及其应用 分院数学与统计学院 专业数学与应用数学(师范) 班级 10数本1班 学号201006034109 姓名张永东 指导教师陈飞翔 (讲师) 2014年5月10日

目录 摘要.................................................................................................................................................. I ABSTRACT. ..................................................................................................................................II 1大数定律的应用 .. (3) 1.1引言 (3) 1.2预备知识 (3) 1.2.1相关定义 (3) 1.2.2切比雪夫不等式及其应用 (4) 1.3几类重要的大数定律的应用 (4) 1.3.1切比雪夫大数定律及其在测绘方面的应用 (4) 1.3.2伯努利大数定律及其在重复事件方面的应用 (6) 1.3.3辛钦大数定律及其在数学分析方面的应用 (6) 1.4大数定律的意义 (8) 2 中心极限定理的应用 (8) 2.1前言 (8) 2.2几类重要的中心极限定理的应用 (9) 2.2.1林德伯格定理及其在保险方面的应用 (9) 2.2.2列维定理及其在极限求解方面的应用 (10) 2.2.3棣莫弗-拉普拉斯定理及其在实际生活方面的应用 (11) 2.2.4 李雅普诺夫中心极限定理及其在具体分布方面的应用 (14) 3 大数定律和中心极限定理的比较应用 (15) 3.1大数定律和中心极限定理的比较应用 (15) 结论 (16) 致谢 (17) 参考文献 (18)

概率论中的大数定律及中心极限定理

概率论中的大数定律及中心极限定理 唐南南 摘要 概率论是从数量上研究随机现象的规律的学科,概率论的特点是先提出数学模型,然后去研究它的性质,特点和规律。它在自然科学,技术科学和社会科学等科学中有广泛的应用。而大数定律和中心极限定理的内容是概率论中极限理论极为重要的一部分内容。在这篇文章中,我们从贝努力试验中的频率出发,讨论了独立随机变量和分布的极限问题。在一定条件下,这些分布弱收敛于退化分布,这就是大数定律。在另一些条件下,这些分布弱收敛于N(0,1)分布,这一类收敛于N(0,1)分布的定理统称为中心极限定理.大数定律说明了随机现象都具有稳定性而中心极限定理是研究相互独立随机变量序列{}i x 的部分和∑== n i i n x S 1 的分布,在适当条件下向正态分布收放的问题。在这篇文章 里,我们只介绍了一些定理的提出,内容以证明以及在其他学科上的应用,而大数定律和中心极限定理还有许多更深入,更广泛的内容,限于篇幅这里就不再介绍了。掌握定理的结论是重要的,这些结论一方面使频率稳定于概率,n 次观察的算术平均值稳定于数学期望都有了明确的含义和理论依据;另一方面,又将给数理统计中大样本的统计推断等提供理论依据。 关键词 大数定律 中心极限定理 随机现象 随机变量 引言 大数定律和中心极限定理是概率论中重要的一部分内容,但对读者来说,多数人对于这部分内容感到很难掌握,这篇文章就是对这部分内容进行浅入的分析,但对其内容进行详细的说明,而且进行了归纳性的总结,指出了各定律之间的联系及其差别,希望通过本篇文章内容的介绍,能使读者对于这部分知识有一个清晰的印象,能整体地把握这部分内容。 一 、大数定律 (一)、问题的提法(大数定律的提法) 重复实验中事件的频率的稳定性,是大量随机现象的统计规律性的典型表现。人们在实践中认识到频率具有稳定性,进而由频率的稳定性预见概率的存在;由频率的性质推断概率的性质,并在实际应用中(当n

(完整版)大数定律和中心极限定理

第五章 大数定律和中心极限定理 一、内容提要 (一)切贝谢夫不等式 1. 切贝谢夫不等式的内容 设随机变量X 具有有限的数学期望E (X )和方差D (X ),则对任何正数ε,下列不等式成立。 (){}() (){}() . 1, 2 2 εεεεX D X E X P X D X E X P - ≤-≤ ≥-π 2. 切贝谢夫不等式的意义 (1)只要知道随机变量X 的数学期望和方差(不须知道分布律),利用切贝谢夫不等式,就能够对事件(){} ε≥-X E X 的概率做出估计,这是它的最大优点,今后在理论推导及实际应用中都常用到切贝谢夫不等式。 (2)不足之处为要计算(){} ε≥-X E X P 的值时,切贝谢夫不等式就无能为力,只有知道分布密度或分布函数才能解决。另外,利用本不等式估值时精确性也不够。 (3)当X 的方差D (X )越小时,(){} ε≥-X E X P 的值也越小,表明X 与E (X )有较大“偏差”的可能性也较小,显示出D (X )确是刻画X 与E (X )偏差程度的一个量。 (二)依概率收敛 如果对于任何ε>0,事件{} επa X n -的概率当n →∞时,趋于1,即 {}1lim =-∞ →επa X P n n , 则称随机变量序列X 1,X 2,…,X n ,…当n →∞时依概率收敛于α。 (三)大数定律 1. 大数定律的内容 (1)大数定律的一般提法 若X 1,X 2,…,X n ,…是随机变量序列,如果存在一个常数序列α1,…,αn ,…,对任意ε>0,恒有 11lim 1=? ?? ???-∑=∞ →επn i n i n a X n P , 则称序列{X n }服从大数定律(或大数法则)。 (2)切贝谢夫大数定律 设随机变量X 1,X 2,…,X n ,…相互独立,分别有数学期望E(X i )和方差D(X i ),且它们的方差有公共上界C ,即 ()().,,,2,1,ΛΛn i C X D i =≤

概率论大数定律及其应用

概率论大数定律及其应 用 Revised as of 23 November 2020

概率论基础结课论文 题目:独立随机序列的大数事件的定理与应用 作者 摘要:历史上第一个定理属于,后人称之为“”。概率论中讨论的向的定律。概率论与数理的基本定律之一,又称弱大数理论。 大数定律以严格的数学形式表达了随机现象最根本的性质—平均结果的稳定性,它是概率论中一个非常重要的定律,是随机现象统计规律性的具体表现,应用很广泛。本文介绍了几种常用的大数定律,并分析了它们在理论与实际中的应用。 关键词:弱大数定理伯努利大数定理随机变量数学期望概率 引言:“大数定律”本来是一个数学概念,又叫做“平均法则”。在随机事件的大量重复出现中,往往呈现几乎必然的规律,这个规律就是大数定律,通俗的说,这个定律就是在试验不变的条件下,重复试验多次,随机事件的频率以概率为稳定值。比如,我们向上抛一枚硬币,硬币落下时哪一面朝上本身是偶然的,但当我们向上抛的硬币的次数足够多时,达到上万次甚至几十万几百万时之后,我们就会发现,硬币朝上的次数大约占总数的二分之一。偶然之中包含着必然。 从概率的统计定义中可以看出:一个事件发生的频率具有稳定性,即随着试验次数的增多,事件的频率逐渐稳定在某个常数附近,人们在实践中观察其他的一些随机现象时,也常常会发现大量随机个体的平均效果的稳定性。这就是说,无论个别随机个体以及它们在试验进行过程中的个别特征如何,大量随机个体的平均效果与每一个体的个别特征无关,而且结果也不再是随机的。深入考虑后,人们会提出这样的问题:稳定性的确切含义是什么在什么条件下具有稳定性这就是我们大数要研究的问题。

概率论大数定律及其应用

概率论基础结课论文 题目:独立随机序列的大数事件的定理与应用 作者:信计1301班王彩云130350119 摘要:概率论历史上第一个极限定理属于伯努利,后人称之为“大数定律”。概率论中讨论随机变量序列的算术平均值向常数收敛的定律。概率论与数理统计学的基本定律之一,又称弱大数理论。 大数定律以严格的数学形式表达了随机现象最根本的性质—平均结果的稳定性,它是概率论中一个非常重要的定律,是随机现象统计规律性的具体表现,应用很广泛。本文介绍了几种常用的大数定律,并分析了它们在理论与实际中的应用。 关键词:弱大数定理伯努利大数定理随机变量数学期望概率 引言:“大数定律”本来是一个数学概念,又叫做“平均法则”。在随机事件的大量重复出现中,往往呈现几乎必然的规律,这个规律就是大数定律,通俗的说,这个定律就是在试验不变的条件下,重复试验多次,随机事件的频率以概率为稳定值。比如,我们向上抛一枚硬币,硬币落下时哪一面朝上本身是偶然的,但当我们向上抛的硬币的次数足够多时,达到上万次甚至几十万几百万时之后,我们就会发现,硬币朝上的次数大约占总数的二分之一。偶然之中包含着必然。 从概率的统计定义中可以看出:一个事件发生的频率具有稳定性,即随着试验次数的增多,事件的频率逐渐稳定在某个常数附近,人们在实践中观察其他的一些随机现象时,也常常会发现大量随机个体的平均效果的稳定性。这就是说,无论个别随机个体以及它们在试验进行过程中的个别特征如何,大量随机个体的平均效果与每一个体的个别特征无关,而且结果也不再是随机的。深入考虑后,人们会提出这样的问题:稳定性的确切含义是什么?在什么条件下具有稳定性?这就是我们大数要研究的问题。 概率与统计是研究随机现象的统计规律的学科,而随机现象的统计规律性只有在相同条件下进行大量重复试验或观察才呈现出来。然而,在大量重复试验或观察中,我们会发现,一个事件发生的频率具有稳定性,它的稳定性会随着试验次数的增多表现得越来越明显。这种稳定性与它在在实验进行中的个别特征无关,且不再是随机的。大数定律给出了稳定性的确切含义,并且给出了什么条件下才具有稳定性。那么,这对于我们解决理论与实际问题有哪些实际意义呢?这就是我们在下面将要了解到的,大数定律的某些应用。即,大数定律及其在理论与实际生活中的一些应用。

大数定律及其应用

学号:20100401179 信阳师范学院华锐学院 本科毕业论文 系数学与计算机科学 专业数学与应用数学 年级2010级 姓名潘方方 论文题目全概率公式在实际问题中的应用 指导教师任园园职称讲师 2014年5月6日

目录 摘要 (1) 关键词 (1) Abstract (1) Key Words (1) 前言 (1) 1.全概率公式 (2) 1.1全概率公式 (2) 1.2 Bayes公式 (2) 1.3全概率公式的内涵剖析 (3) 2.全概率公式在实际中的应用 (3) 2.1在摸彩模型下的应用 (3) 2.2在医疗领域中的应用 (4) 2.3在敏感问题调查中的应用 (5) 2.4在抽检次品类型问题中的应用 (5) 2.5在商品销售问题中的应用 (6) 2.6 在系统可靠性问题中的应用 (7) 2.7在生物研究中的应用 (8) 3.小结 (9) 参考文献 (11) 致谢词 (12)

全概率公式在实际问题中的应用 学生姓名:潘方方学号:20100401179 数学与计算机科学系数学与应用数学专业 指导教师:任园园职称:讲师 摘要:在概率论中,概率计算是一个重要的问题.而全概率公式是概率计算中应用较多的公式之一.本文介绍了全概率公式的定义及内涵,并给出了它在摸彩模型、医疗领域、敏感问题调查、抽检次品、商品销售、系统可靠性、生物研究等问题中的应用. 关键词:概率计算;全概率公式;应用 Abstract:In probability theory, probability calculation is an important question. The total probability formula is one of the more formula used in the calculation of probability. In this article, we describe the definition and connotation of the total probability formula and give its application in the lucky model, the medical field, sensitive issues survey, sampling defective, merchandise sales, system reliability, biological research and so on. Key Words:Probability calculation; The total probability formula; Applications 前言 概率论的基本概念是学习概率论的基础,其中心任务是阐明概率的意义和概率统计的重要法则.乘法公式、全概率公式和Bayes公式等反映了解决问题的正确思路,同时也体现了互不相容、独立和条件概率等重要概念的应用.而全概率公式作为概率论中的一个重要公式,它的基本思想就是把一个复杂的事件分解为若干个互不相容的简单事件,再通过分别计算这些简单事件的概率,最后利用概率的可加性得到最终结果.它为我们计算复杂事件的概率提供了一条简单有效的途径.全概率公式的提出,不仅推动了概率学的发展,也在学科和实际应用中起着重要的作用.随着概率论的不断发展,全概率公式也越来越广泛地应用于各个领域,成为实际生活中不可缺少的基本理论. 本文首先介绍了全概率公式的定义及内涵,其次给出了全概率公式在摸彩模

数学中的概率分析之伯努利大数定律

三、伯努利大数定律 现在我们来介绍伯努利《推测术》的最重要部分――包含了如今我们称之为伯努利大数 定律的第4部分。回到本章开始那个缶中抽球的模型:缶中有a 白球,b 黑球,p =a a b +。有放回地从缶中抽球N 次,记录得抽到白球得次数为X ,以X N 去估计p 。这个估计法现今仍 是数理统计学中最基本的方法之一。此处的条件是,每次抽取时都要保证缶中a +b 个球的每一个有同等机会被抽出。这一点在实践中并不见得容易。例如,产生中奖号码时用了复杂的装置。在实际工作中,统计学家有时用一种叫做“随机数表”的工具。这时一本大书,各页按行、列排列着数字0,1,…,9,它们是用据信是“充分随机”的方法产生的。在使用时,“随机地”翻到其中一页并“随机”点到一个位置,以其处地数字决定抽出地对象。 伯努利企图证明的是:用X N 估计p 可以达到事实上的确定性――他称为道德确定性。其 确切含义是:任意给定两个数0ε>和0η>,总可以取足够大的抽取次数N ,使事件 X p N ε???>????的概率不超过η。这意思是很显然:X p N ε?>表明估计误差未达到指定的 接近程度ε,但这种情况发生的可能性可以随心所欲地小(代价是加大N ) 。为忠实于伯努利地表达形式,应指出两点:一是伯努利把ε限定为1 ()a b ?+,虽然其证明对一般ε也有效。他作这一限定与所有缶子模型的特殊性有关:必要时把缶中的白、黑球分别改为ra 和个, 则p 不改变,rb 1 ()a b ?+改为1 ra rb +,只须r 取足够大,可使此数任意小。其次,伯努利要证 的是:对任给c>0,只须抽取次数N 足够大,可使 X X P p cP p N N εε????≤>?>???????? ?. (8) 这与前面所说是一回事。因为由上式得 1 (1)X P p c N ε??? ?><+????, (9)

大数定律

第五章 大数定律与中心极限定理 在数学中大家都注意到过这样的现象:有时候一个有限项的和很难求,而一经取极限让有限过渡到无限,则问题反而好办。例如计算和 ! 1!31!212n s n ++++= 对于固定的但很大的n ,这个和很难求,但考虑∞→n 取极限时,则 有十分简单的结果:e s n n =∞ →lim 。利用此结果,当n 很大时就可以把e 作为n s 的近似值。 在概率论中,也经常会出现求与很多个随机变量和有关的事件的概率。比如)(21b X X X a P n <+++< ,除少数情况外,这样的概率计算都会十分复杂。因而自然会提出问题:可否利用极限来近似计算呢?即考虑∞→n 时,n 个随机变量之和是否有某种极限分布。概率论中不仅证明了这是可能的,而且还证明了在很一般的情况下,和的标准化随机变量的极限分布就是标准正态分布。这一事实既可以解决近似计算概率的问题,同时也强化了正态分布的重要性,以及也解释了现实世界中许多随机现象中的变量的分布密度曲线会呈现钟形曲线的原因。在概率论中把这类结果的有关定理叫做“中心极限定理”. 中心极限定理就是研究在什么条件下,大量随机变量之和的分布会接近于正态分布。 概率论中,另一类极限定理是所谓的“大数定理”.它是由“频率的稳定性”引申和发展而来的。考虑n 次独立重复试验,每次试验观察事件A 是否发生,令

???=否则 0,发生A 次试试 i 若第,1i X ,n i ,,2,1 = 那么事件A 发生的频数为n n X X X S +++= 21,频率为n S X n n /=。若p A P =)(,则“频率的稳定性”就是说,在n 很大时,频率n X 会接近于概率p 。而p X E i =)(,p X E n =)(。故也可说成是:在n 很大时,n 个随机变量的算术平均n X 会接近于其期望)(n X E 。按后一种说法,就可不必局限于i X 只取0,1两个值的情况。概率论中讨论的大数定理就是研究在何种条件下,n 个随机变量的算术平均n X ,当∞→n 时会在某种意义下收敛于其期望)(n X E 。 上面提到的问题都属随机变量序列的收敛性问题,随机变量序列的收敛性有多种,其中常用的是两种:依概率收敛和按分布收敛。 §5.1 大数定律 一. 依概率收敛的定义 定义 设}{n X 为一随机变量序列,X 为一随机变量,若对任意的0>ε,有 0)|(|lim =ε≥-∞ →X X P n n 或 1)|(|lim =ε<-∞ →X X P n n 则称随机变量序列}{n X 依概率收敛于X ,记作X X P n →。 依概率收敛的含义是:n X 与X 的绝对偏差不小于任意给定的正数的可能性会随n 的无限增大而无限变小。或者说,绝对偏差||X X n - 小于任意给定的正数的可能性的会随n 的无限增大而无限地接近于1。

大数定律及中心极限定理 应用题

大数定律与中心极限定理 应用题 1. 设各零件质量都是随机变量,且独立同分布,其数学期望为0.5kg ,标准差 为0.1kg, 问(1)5000只零件的总质量超过2510kg 的概率是多少?(2)如果用一辆载重汽车运输这5000只零件,至少载重量是多少才能使不超重的概率大于0.975? 解 设第i 只零件重为i X ,500,...,2,1=i ,则5.0=i EX ,21.0=i DX 设 ∑==500 1i i X X ,则X 是这些零件的总重量 250050005.0=?=EX ,5050001.02=?=DX 由中心极限定理 )1,0(~50 2500N X a - (1))2510(≥X P =)50 25002510502500(-≥-X P )2(10Φ-≈=9213.01-=0.0787 (2) 设 汽车载重量为a 吨 )(a X P ≤=)502500502500(-≤-a X P 95.0)50 2500(0≥-Φ≈a 查表得 64.150 2500≥-a 计算得 59.2511≥a 因此汽车载重量不能低于2512公斤 2. 有一批建筑房屋用的木柱,其中80%的长度不小于3m ,先从这批木柱中随 机的取100根,求其中至少有30根短于3m 的概率? 解 设X 是长度小于3m 的木柱根数,则)2.0,100(~b X 由中心极限定理 )16,20(~N X a )30(≥X P =)16 20301620(-≥-X P )5.2(10Φ-≈=9938.01-=0.0062 3. 一个食品店有三种蛋糕出售,由于售出哪一种蛋糕是随机的,因而售出一种 蛋糕的价格是随机变量,它取1元,1.2元,1.5元的概率分别为0.3,0.2,0.5.若售出300只蛋糕,(1)求收入至少400元的概率 (2)售价为1.2元蛋糕售出多于60只的概率。

相关主题
文本预览
相关文档 最新文档