当前位置:文档之家› 课程设计退火炉温度控制系统

课程设计退火炉温度控制系统

课程设计退火炉温度控制系统
课程设计退火炉温度控制系统

课程设计设计题目: 退火炉温度控制系统

学院:

专业:

班级:

姓名:

学号:

指导老师:

日期:

摘要

退火炉是金属热处理中的重要设备,它把压力容器加热到一定温度并维持一段时间,然后让其自然冷却。其目的在于消除压力容器的整体压力。提高压力容器的使用寿命。温度是退火炉的主要被控变量,是保证其产品质量的一个重要因素。退火炉温度控制的稳定性和控制精度直接影响产品的质量。

本文以AT89C51单片机为控制核心,采用模块化的设计方案,包括硬件设计与软件设计两部分。硬件设计包括温度检测模块,按键模块,执行模块,LED显示模块,单片机最小系统。本设计要求采用电热丝加热,通过A/D转换将采集到的温度数据输入单片机中,与系统给定值比较,从而对退火炉的温度进行控制,通过按键输入控制信号,三位LED显示炉温。最后设计出最少拍无纹波控制器,通过MATLAB 仿真检验是否有纹波。

目录

第1章绪论 (3)

1.1设计背景与算法 (3)

第2章课程设计的方案?5

2.1概述?5

2.2系统组成总体结构 (5)

第3章程序设计与程序清单 (7)

3.1单片机最小系统设计 (7)

3.1.1单片机选择 (7)

3.1.2时钟电路设计 (8)

3.1.3复位电路设计?9

3.2程序清单与电路图 (11)

3.3温度控制电路................................ 错误!未定义书签。第4章控制算法?18

4.1程序框图?

18

4.2算法设计 (19)

第5章课程设计总结?错误!未定义书签。

第1章 绪论

1.1 设计背景与算法

背景:退火炉是冶金和机械行业常用的热处理工业设备。一般说来,退货处理工艺师冶金和机械产品的最后处理工序,它的处理效果将直接影响产品的质量。因此,对退火炉的基本要求就是根据退火处理工艺曲线,提供准确的升温,保温及降温操作,同时保证颅内各处的温度均匀。在目前实际生产中,退火炉的种类很多,按燃料分有燃油炉、燃气炉、电炉等。电炉按台数计算占80%,燃油炉和燃气炉占20%。

退火是金属热处理中的重要工序,它是将金属缓慢加热到一定温度,保持足够时间,然后以适宜速度冷却(通常是缓慢冷却,有时是控制冷却)的一种金属热处理工艺。目的是使经过铸造、锻轧、焊接或切削加工的材料或工件软化,改善其塑性和韧性,使其化学成分均匀化,并去除其参与应力,或得到预期的物理性能。温度控制是热处理质量控制的重要技术措施,是退火控制的核心。智能温控将大大提高热处理质量,消除认为的不稳定因素,提高温度控制的精确程度,满足特殊材料的热处理要求。

同时,退火炉采用自动化技术控制温度,对保护生态环境方面也具有重要意义。退火炉的炉温动态特性直接影响产品的质量,生产过程中对钢材的温升曲线有较高的要求,温度过低,达不到退火的预期目的;温度过高将导致过热,甚至过烧。通过对退火炉中生产过程的优化控制和自动工艺管理控制,不但可以缩短生产周期,提高产量和质量,还可以减少人为因素造成的废品率。热处理后产生的废气对自然环境的污染很大,退火炉的燃料如果是欠氧燃烧,燃料燃烧不充分,则会产生大量黑烟,而过氧燃烧又会产生氮氧化合物等有害气体。若通过对燃烧过程进行有效控制,使燃烧在合理的空燃比下运行,则可以极大的减少退火炉对周边环境的污染,对构建科持续发展型社会就有积极的意义。

目前世界各国对能源消耗和大气环境的污染越来越重视,而我国既是钢铁大国又是能源大国,因此研究高性能退火炉温度控制系统具有极为重要的现实意义。

算法:在数字随动控制系统中,要求系统的输出值尽快地跟踪给定值的变化,最少拍控制是满足这一要求的一种离散化设计方法。

最少拍控制是一种直接数字设计方法。所谓最少拍,就是要求闭环系统对于某种特定的输入在最少个采样周期内达到无静差的稳态,是系统输出值尽快地跟踪期望值的变化。

闭环Z传函具有形式

z z z z N

N ---+++=Φφφφ 221)(1

在这里,N是可能情况下的最小整数。这一传函形式表明闭环系统的脉冲响应在N个采样周期后变为零,从而意味着系统在N拍之内达到稳态。

第2章课程设计的方案

2.1概述

本文提出了一种基于最少拍的退火炉温度控制系统设计方案,实现对退火炉的温度控制。退火炉采用电热丝加热,通过巡回检测退火炉内温度,根据测量到的温度采样值与系统给定值进行比较来决定是否启动电热丝加热,用单片机作为控制器,设计出最少拍无纹波控制器,4个键盘进行温度控制值的选择,三位LED 显示炉温。

2.2系统组成总体结构

退火炉计算机控制系统框图如图2.1所示

图2.1利用单片机设计结构框图

退火炉使用电热丝加热,温度范围为0~1000摄氏度,炉内温度值经热电偶检测后,经变送器变成0~5V范围内的电压信号送A/D转换器转换成对应的数字量。数字量经数字滤波后送入CPU作为本次采样值。把测量到的温度值与设定值进行比较来决定是否启动电热丝加热。

本次设计的退火炉计算机控制系统系统包括5大部分,即核心控件(89C51主控模块),复位电路,温度检测,按键,LED显示电路。主控模块,具有控制功能,主要由AT89C51单片机组成,是退火炉温度控制系统的核心。温度系

统是受控模块,由D/A转换器和电热丝组成。主控模块上设有4个按键和3个LED显示器,可以通过按键控制温度并通过LED数码管显示。复位开关连接控制器的RST端,实现复位控制。

第3章程序设计与程序清单

3.1单片机最小系统设计

3.1.1单片机选择

本次设计选择AT89C51。

(1)AT89C51单片机硬件结构:

AT89C51是一种低功耗、低电压、高性能的八位CMOS单片机,片内有一个4KB的FLASH可变成可擦除只读存储器(FPEROM-FlashProgrammable and ErasableReadOnlyMemory),它采用了CMOS工艺和ATMEL公司的高密度非易失性存储器技术,而且其输出引脚和指令系统都与MSC-51兼容。片内置通用8位中央处理器(CPU)和FLASH存储单元,片内的存储器允许在系统内改变程序或用常规的非易失性存储器编程。因此,AT89C51是一种功能强、灵活性高且价格合理的单片机,可方便的应用于各种控制领域。

(2)管脚说明:

VCC(40):供电电压,其工作电压为5V。

GND(20):接地。

P0端口(P0.0-P0.7):P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL 门电流。当P1口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据、地址的第八位。再LFASH编程时,P0口作为原码输入口,当FLASH进行校验时,P0输出原码,此时P0外部必须被拉高。

P1端口(P1.0-P1.7):P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能够接收4TTL门电流。P1口管脚写入1后,被内部上拉为高电平,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。再FLASH编程和校验时,P1口作为第八位地址接收。

P2端口(P2.0-P2.7):P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。

P3端口(P3.0-P3.7):P3口管脚是一个带有内部上拉电阻的8位的双向I/O端口,可接收输出4个TTL门电流。当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入端时,由于外部下拉为低电平,P3口将输出

电流(ILL)。P3口也可作为AT89C51的一些特殊功能口,P3口同时为闪烁编程和编程校验接收一些控制信号。

复位RS T(9):复位输入。在振荡器运行时,有两个机器周期(24个振荡周期)以上的高电平出现在此引脚时,将使单片机复位,只要这个脚保持高电平,51芯片便循环复位。复位后P 3.0-P3.7口均置1,引脚表现为高电平,程序计数器和特殊功能寄存器SFR 全部清零。当复位脚由高电平变为低电平时,芯片为ROM 的00H 处开始运行程序。复位操作不会对内部RA M有所影响。 ALE/PROG (30):当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。在FLASH 编程期间,此引脚用于输入编程脉冲。在平时,A LE 端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。因此它可用作对外部输出的脉冲或用于定时目的。然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE 脉冲。如想禁止ALE 的输出可在SFR8EH 地址上置0。此时, ALE 只有在执行MOVX ,MO VC 指令是ALE 才起作用。另外,该引脚被略微拉高。如果微处理器在外部执行状态ALE 禁止,置位无效。 PSEN (29):外部程序存储器的选通信号。在由外部程序存储器取指令期间,每个机器周期两次PSEN 有效。但在访问外部数据存储器时,这两次有效的PSEN 信号将不出现。

EA /V PP(31):当__

EA 保持低电平时,则在此期间外部程序存储器(0000H -F FFFH ),不管是否有内部程序存储器。注意加密方式1时,__EA 将内部锁定为RES ET;当__EA 端保持高电平时,此间内部程序存储器。在F LASH 编程期间,此引脚也用于施加12V 编程电源(VPP)。

XTAL1(19):反向振荡放大器的输入及内部时钟工作电路的输入。

XTAL 2(18):来自反向振荡器的输出。其引脚图如图3.1所示。

图3.1 AT89C51引脚图 3.1.2 时钟电路设计

单片机的时钟信号用来提供单片机片内各种微操作的时间基准,复位操作则使单片机的片内电路初始化,使单片机从一种确定的初态开始运行。

时钟电路 89C 51单片机的时钟信号通常用两种电路形式得到:内部振荡方式和外部振荡方式。

在引脚XTAL1和XTAL2外接晶体振荡器(简称晶振)或陶瓷谐振器,就构成了内部振荡方式。由于单片机内部有一个高增益反相放大器,当外接晶振后,就构成了自激振荡器并产生振荡时钟脉冲。内部振荡方式的外部电路如图3-1所示。图3-1中,电容器Cl,C2起稳定振荡频率、快速起振的作用,其电容值一般在5-30pF。晶振频率的典型值为12MHz,采用6MHz的情况也比较多。内部振荡方式所得的时钟情号比较稳定,实用电路中使用较多。

图3.2 时钟电路

3.1.3复位电路设计

当89C51单片机的复位引脚RST(全称RESET)出现2个机器周期以上的高电平时,单片机就执行复位操作。如果RST持续为高电平,单片机就处于循环复位状态。根据应用的要求,复位操作通常有两种基本形式:上电复位和上电或开关复位。上电复位要求接通电源后,自动实现复位操作。

常用的上电复位电路电容C1和电阻R1对电源+5V来说构成微分电路。上电后,保持RST一段高电平时间,由于单片机内的等效电阻的作用,不用图中电阻R1,也能达到上电复位的操作功能,如图3.3所示。

图3.3复位电路电路

开关复位要求电源接通后,单片机自动复位,并且在单片机运行期间,用开关操作也能使单片机复位常用的上电或开关复位电路。上电后,由于电容C3的充电和反相门的作用,使RESET持续一段时间的高电平。当单片机已在运行当中

89c51

X1 X2

C1

时,按下复位键K后松开,也能使RESET为一段时间的高电平,从而实现上电或开关复位的操作。

单片机最小系统由单片机,时钟电路,复位电路组成,最小系统图如下:

图3.4 单片机最小系统图

图3.5 热电偶电路图

3.2程序清单与电路图

程序清单3.2.1主程序

ORG0030H

AJMPMAIN

MAIN: MOV A,#80H

MOV R4,#0BFFFH

MOV R6,#00H

SETB IT1

SETB EA

SETB EX1

MOV DPTR,#0FEF8H

MOVX @DPTR,A

MUL A,#4.8H

LCALLZD

MOVDPTR,#7FFFH

MOVX A,@DPTR

MULA,33H

NOP

NOP

计算机控制课程设计电阻炉温度控制系统

计算机控制课程设计 报告 设计题目:电阻炉温度控制系统设计 年级专业:09级测控技术与仪器 化工、机械、食品等领域。温度控制是工业生产过程中经常遇到的过程控制,有些工艺过程对其温度的控制效果直接影响着产品的质量。因而设计一种较为理想的温度控制系统是非常有价值的。本设计就是利用单片机来控制高温加热炉的温度,传统的以普通双向晶闸管(SCR)控制的高温电加热炉采用移相触发电路改变晶闸管导通角的大小来调节输出功率,达到自动控制电加热炉温度的目的。这种移相方式输出一种非正弦波,实践表明这种控制方式产

生相当大的中频干扰,并通过电网传输,给电力系统造成“公害”。采用固态继电器控温电路,通过单片机控制固态继电器,其波形为完整的正弦波,是一种稳定、可靠、较先进的控制方法。为了降低成本和保证较高的控温精度,采用普通的ADC0809芯片和具有零点迁移、冷端补偿功能的温度变送器桥路,使实际测温范围缩小。 1.1电阻炉组成及其加热方式 电阻炉是工业炉的一种,是利用电流通过电热体元件将电能转化为热能来加热或者熔化元件或物料的热加工设备。电阻炉由炉体、电气控制系统和辅助系统组成,炉体由炉壳、加热器、炉衬(包括隔热屏)等部件组成。由于炉子的种类不同,因而所使用的燃料和加

热方法也不同;由于工艺不同,所要求的温度高低不同,因而所采用的测温元件和测温方法也不同;产品工艺不同,对控温精度要求不同,因而控制系统的组成也不相同。电气控制系统包括主机与外围电路、仪表显示等。辅助系统通常指传动系统、真空系统、冷却系统等,因炉种的不同而各异。电阻炉的类型根据其热量产生的方式不同,可分为间接加热式和直接加热式两大类。间接加热式电阻炉,就是在炉子内部有专用的电阻材料制作的加热元件, (4)电阻炉温度按预定的规律变化,超调量应尽可能小,且具有良好的稳定性; (5)具有温度、曲线自动显示和打印功能,显示精度为±1℃; (6)具有报警、参数设定、温度曲线修改设置等功能。

某加热炉温度控制 过程控制

学号 天津城建大学 过程控制课程设计 设计说明书 某加热炉温度控制 起止日期:2014 年6 月23 日至2014 年6 月27 日 学生姓名 班级 成绩 指导教师(签字) 控制与机械工程学院 2014年6月27 日

天津城建大学 课程设计任务书 2013 -2014学年第2学期 控制与机械工程学院电气工程及其自动化专业班级13电气11班 姓名学号 课程设计名称:过程控制 设计题目:某加热炉温度控制 完成期限:自2014 年6 月23 日至2014 年 6 月27 日共1 周设计依据、要求及主要内容: 一、设计任务 某温度过程在阶跃扰动1/ ?=作用下,其温度变化的数据如下: q t h 试根据实验数据设计一个超调量25% δ≤的无差控制系统。具体要求如下: p (1)根据实验数据选择一定的辨识方法建立对象的数学模型; (2)根据辨识结果设计符合要求的控制系统(控制系统原理图、控制规律选择等);(3)根据设计方案选择相应的控制仪表; (4)对设计的控制系统进行仿真,整定运行参数。 二、设计要求 采用MATLAB仿真;需要做出以下结果: (1)超调量 (2)峰值时间 (3)过渡过程时间 (4)余差 (5)第一个波峰值 (6)第二个波峰值 (7)衰减比 (8)衰减率 (9)振荡频率 (10)全部P、I、D的参数 (11)PID的模型 (12)设计思路

三、设计报告 课程设计报告要做到层次清晰,论述清楚,图表正确,书写工整;详见“课程设计报告写作要求”。 四、参考资料 [1] 何衍庆.工业生产过程控制(1版).北京:化学工业出版社,2004 [2] 邵裕森.过程控制工程.北京:机械工业出版社2000 [3] 过程控制教材 指导教师(签字): 教研室主任(签字): 批准日期:年月日

计算机温度控制系统课程设计

目录摘要2 1.设计目的3 2.设计要求和设计指标3 3. 总体方案设计 3 4.硬件选择以及相关电路设计3 温度传感器的选择3 模数转换器4 内部结构4 信号引脚5 工作时序与使用说明6 控制器89C51 7 数码管显示电路8 LED数码管的组成8 数码管显示方式9 控制算法10 6. 各子程序流程图11 PID控制程序流程图11 A/D转换程序流程图11 显示程序流程图11 温度控制总程序流程图12 心得体会12

参考文献13 附录1:温度控制系统总电路图14 附录2:温度控制系统程序清单16 摘要 温度控制是工业生产过程中经常遇到的过程控制,有些工艺过程对其温度的控制效果直接影响着产品的质量,因而设计一种较为理想的温度控制系统是非常有价值的。本设计介绍了以AD590集成温度传感器为采集器、AT89C51为控制器、ADC0809为A/D转换器对温度进行智能控制的温度控制系统。其主要过程如下:利用传感器对将非电量信号转化成电信号,转换后的电信号再入A/D转换成数字量,传递给单片机进行数据处理,并向外围设备发出控制信号。 论文首先介绍了单片机控制系统的整体方案设计及原理,然后具体介绍了控制系统的温度传感器部分、A/D转换部分、控制器89C51部分以及数码管显示和键盘控制部分,接着相信介绍了温度控制系统各个单元电路的设计,最后阐述了温度控制系统软件设计的主程序和各个子程序。 关键字:单片机89C51 温度传感器A/D转换器温度控制

计算机温度测控系统 1.设计目的 设计制作和调试一个由工业控制机控制的温度测控系统。通过这个过程学习温度的采样方法,A/D变换方法以及数字滤波的方法。通过实践过程掌握温度的几种控制方法,了解利用计算机进行自动控制的系统结构。 2.设计要求和设计指标 1、每组4~5同学,每个小组根据设计室提供的设备及设计要求,设计出实际电路组成一个完整的计算机温度测控系统。 2、根据设备情况以及被控对象,选择1~2种合适的控制算法, 框图和源程序,并进行实际操作和调试通过。 编制程序温度指标:60~80℃之间任选;偏差:1℃。 总体方案设计 本系统主要由数据采集、信号放大、模数转换等模块构成。设计思想是通过温度传感器将温度信号转变为电流(电压)信号,但我们要知道经温度变化引起电流(电压)信号的改变是非常小的,此时如果被模数转换器采集的话效果是非常不明显的,因此我们将其通过一个信号放大模块进行放大。再通过模数转换器后送入单片机AT89C51,而单片机通过PID算法控制烘箱的电炉加热,并且使数码管显示实时温度,从而实现温度的高精度控制。 4.硬件选择以及相关电路设计 温度传感器的选择 传感器的选取目前市场上温度传感器繁多就此我们提出了以下三种选取方案:方案一:选用铂电阻温度传感器,此类温度传感器在各方面特性都比较优秀,但其成本较高。 方案二:采用热敏电阻,选用此类元器件有价格便宜的优点,但由于热敏电阻的非线性特性会影响系统的精度。 方案三:选用美国Analog Devices 公司生产的二端集成电流传感器AD590,此器件具有体积小、质量轻、线形度好、性能稳定等优点。其测量范围在-50℃--+150℃,满刻度范围误差为±℃,当电源电压在5—10V之间,稳定度为1﹪时,误差只有±℃,其各方面特性都满足此系统的设计要求。 比较以上三种方案,方案三具有明显的优点,因此此次设计选用方案三。

课程设计退火炉温度控制系统资料讲解

课程设计退火炉温度 控制系统

课程设计设计题目:退火炉温度控制系统 学院: 专业: 班级: 姓名: 学号: 指导老师: 日期:

摘要 退火炉是金属热处理中的重要设备,它把压力容器加热到一定温度并维持一段时间,然后让其自然冷却。其目的在于消除压力容器的整体压力。提高压力容器的使用寿命。温度是退火炉的主要被控变量,是保证其产品质量的一个重要因素。退火炉温度控制的稳定性和控制精度直接影响产品的质量。 本文以AT89C51单片机为控制核心,采用模块化的设计方案,包括硬件设计与软件设计两部分。硬件设计包括温度检测模块,按键模块,执行模块,LED显示模块,单片机最小系统。本设计要求采用电热丝加热,通过A/D转换将采集到的温度数据输入单片机中,与系统给定值比较,从而对退火炉的温度进行控制,通过按键输入控制信号,三位LED显示炉温。最后设计出最少拍无纹波控制器,通过MATLAB仿真检验是否有纹波。

目录 第1章绪论 (3) 1.1设计背景与算法 (3) 第2章课程设计的方案 (5) 2.1概述 (5) 2.2系统组成总体结构 (5) 第3章程序设计与程序清单 (7) 3.1单片机最小系统设计 (7) 3.1.1单片机选择 (7) 3.1.2时钟电路设计 (8) 3.1.3复位电路设计 (9) 3.2程序清单与电路图 (11) 3.3温度控制电路 (17) 第4章控制算法 (18) 4.1程序框图 (18) 4.2算法设计 (19) 第5章课程设计总结................................................ - 22 -

温度控制系统课程设计

前言 温度是一种最基本的环境参数,日常生活和工农业生产中经常要检测温度。传统的方式是采用热电偶或热电阻,但是由于模拟温度传感器输出为模拟信号,必须经过AD 转换环节获得数字信号后才能与单片机等微处理器接口,使得硬件电路结构复杂,制作成本较高。近年来,美国DALLAS公司生产的DSI18B20为代表的新型单总线数字式温度传感器以其突出优点广泛使用于仓储管理、工农业生产制造、气象观测、科学研究以及日常生活中。 随着科学技术的不断进步与发展,温度传感器的种类日益繁多,数字温度传感器更因适用于各种微处理器接口组成的自动温度控制系统具有可以克服模拟传感器与微处理器接口时需要信号调理电路和A/D转换器的弊端等优点,被广泛应用于工业控制、电子测温计、医疗仪器等各种温度控制系统中.其中,比较有代表性的数字温度传感器有DS1820、MAX6575、DS1722、MAX6635等. 智能温度传感器(亦称数字温度传感器)是在20世纪90年代中期问世的。它是微电子技术、计算机技术和自动测试技术(ATE_)的结晶.目前,国际上已开发出多种智能温度传感器系列产品。智能温度传感器内部包含温度传感器、A/D传感器、信号处理器、存储器(或寄存器)和接口电路.有的产品还带多路选择器、中央控制器(CPU)、随机存取存储器(RAM)和只读存储器(ROM)。智能温度传感器能输出温度数据及相关的温度控制量,适配各种微控制器(MCU),并且可通过软件来实现测试功能,即智能化取决于软件的开发水平。 为了准确获取现场的温度和方便现场控制,本系统采用了软硬件结合的方式进行设计,利用LED数码管显示温度,利用DS18B20检测当前的温度值,通过和设定的参数进行比较,若实测温度高于设定温度,则通过555定时器产生频率可变的报警信号,若实测温度低于设定温度,则加热电路自动启动,到达设定温度后停止。在软件部分,主要是设计系统的控制流程和实现过程,以及各个芯片的底层驱动设计已达到所要求的功能。在近端与远端通信过程中,采用串行MAX232标准,实现PC机与单片机间的数据传输。

热交换器温度控制系统课程设计报告书

热交换器温度控制系统 一.控制系统组成 由换热器出口温度控制系统流程图1可以看出系统包括换热器、热水炉、控制冷流体的多级离心泵,变频器、涡轮流量传感器、温度传感器等设备。 图1换热器出口温度控制系统流程图 控制过程特点:换热器温度控制系统是由温度变送器、调节器、执行器和被控对象(出口温度)组成闭合回路。被调参数(换热器出口温度)经检验元件测量并由温度变送器转换处理获得测量信号c,测量值c与给定值r的差值e送入调节器,调节器对偏差信号e进行运算处理后输出控制作用u。 二、设计控制系统选取方案 根据控制系统的复杂程度,可以将其分为简单控制系统和复杂控制系统。其中在换热器上常用的复杂控制系统又包括串级控制系统和前馈控制系统。对于控制系统的选取,应当根据具体的控制对象、控制要求,经济指标等诸多因素,选用合适的控制系统。以下是通过对换热器过程控制系统的分析,确定合适的控制系统。

换热器的温度控制系统工艺流程图如图2所示,冷流体和热流体分别通过换热器的壳程和管程,通过热传导,从而使热流体的出口温度降低。热流体加热炉加热到某温度,通过循环泵流经换热器的管程,出口温度稳定在设定值附近。冷流体通过多级离心泵流经换热器的壳程,与热流体交换热后流回蓄电池,循环使用。在换热器的冷热流体进口处均设置一个调节阀,可以调节冷热流体的大小。在冷流体出口设置一个电功调节阀,可以根据输入信号自动调节冷流体流量的大小。多级离心泵的转速由便频器来控制。 换热器过程控制系统执行器的选择考虑到电动调节阀控制具有传递滞后大,反应迟缓等缺点,根具离心泵模型得到通过控制离心泵转速调节流量具有反应灵敏,滞后小等特点,而离心泵转速是通过变频器调节的,因此,本系统中采用变频器作为执行器。 图2换热器的温度控制系统工艺流程图 引起换热器出口温度变化的扰动因素有很多,简要概括起来主要有: (1)热流体的流量和温度的扰动,热流体的流量主要受到换热器入口阀门的开度和循环泵压头的影响。热流体的温度主要受到加热炉加热温度和管路散热的影响。 (2 )冷流体的流量和温度的扰动。冷流体的流量主要受到离心泵的压头、转速

退火炉温度控制系统

本科生课程设计 题目:退火炉温度控制系统 课程:电力拖动自动控制系统 专业:电气工程及其自动化 班级: 学号: 姓名: 指导教师: 完成日期: 2015年3月20日

任务书 一、课程设计的目的 通过电力拖动自动控制系统的设计、了解一般交直流调速系统设计过程及设计要求,并巩固交直流调速系统课程的所学内容,初步具备设计电力拖动自动控制系统的能力。为今后从事技术工作打下必要的基础。 二、课程设计的要求 1、熟悉交直流调速系统设计的一般设计原则,设计内容以及设计程序的要求。 2、掌握控制系统设计制图的基本规范,熟练掌握电气控制部分的新图标。 3、学会收集、分析、运用自动控制系统设计的有关资料和数据。 4、培养独立工作能力、创造能力及综合运用专业知识解决实际工程技术问题的能力。 三、课程设计的内容 退火炉温度控制系统由一台上位机操作台、一台SIEMENS S7-200 PLC控制柜、一台变频器控制柜,3台风机,3台水煤浆输送泵组成。加热段的三个炉段,各段于炉顶设一支热电偶,根据热电偶采集的炉温信号,与设定值比较,经PID 计算后输出控制信号变频器调节水煤浆流量,改变烧嘴的输出功率,实现温度自动控制。同时根据助燃风量的改变及空/燃比例阀的配比,手动调节助燃风流量燃气的流量,实现最佳空/燃配比。 四、进度安排:共周 本课程设计时间共周,进度安排如下: 1、设计准备,熟悉有关设计规范,熟悉课题设计要求及内容。(天) 2、分析控制要求、控制原理设计控制方案(天) 3、绘制控制原理图、控制流程图、端子接线图。(2天) 4、编制程序、梯形图设计、程序调试说明。(天) 5、整理图纸、写课程设计报告。(天) 五、课程设计报告内容 完成下列课题的课程设计及报告(课题工艺要求由课程设计任务书提供)退火炉温度控制系统

反应釜温度过程控制课程设计

过程控制系统课程设计 课题:反应釜温度控制系统 系别:电气与控制工程学院 专业:自动化 姓名:彭俊峰 学号:092413238 指导教师:李晓辉 河南城建学院 2016年6月15日

引言 (1) 1系统工艺过程及被控对象特性选取 (2) 1.1 被控对象的工艺过程 (2) 1.2 被控对象特性描述 (4) 2 仪表的选取 (5) 2.1过程检测与变送器的选取 (5) 2.2执行器的选取 (6) 2.2.1执行器的选型 (7) 2.2.2调节阀尺寸的选取 (7) 2.2.3调节阀流量特性选取 (7) 2.3控制器仪表的选择 (8) 3.控制方案的整体设定 (10) 3.1控制方式的选择 (10) 3.2阀门特性及控制器选择 (10) 3.3 控制系统仿真 (12) 3.4 控制参数整定 (13) 4 报警和紧急停车设计 (14) 5 结论 (15) 6 体会 (16) 参考文献 (17)

反应器是任何化学品生产过程中的关键设备,决定了化工产品的品质、品种和生产能力。釜式反应器是一种最为常见的反应器,广泛的应用于化工生产的各个领域。釜式反应器有一些非常重要的过程参数,如:进料流量(进料流量比)、液体反应物液位、反应压力、反应温度等等。对于这些参数的控制至关重要,其不但决定着产品的质量和生产的效率,也很大程度上决定了生产过程的安全性。 由于非线性和温度滞后因素很多,使得常规方法对釜式反应器的控制效果不是很理想。本文以带搅拌釜式反应器的温度作为工业生产被控对象,结合PID 控制方式,选用FX2N-PLC温度调节模块,同时为了提高系统安全性,设计了报警和紧急停车系统,最终设计了一套反应釜氏的温度过程控制系统。

退火炉热工知识

传热与传质、燃料及燃烧、(气体动力学)、热工设备、热工仪表及控制 1.燃料的发热量(热值) 定义:单位质量/体积的燃料完全燃烧,当燃烧产物冷却到燃烧前的温度时所放出的热量(一般室温25℃)。 依据燃烧产物中水蒸气(包括燃料中所含水生成的水蒸气和燃料中的氢燃烧时生成的水蒸气)的不同形态,分为两种发热量:高温发热量、低位发热量 高位发热量(高位热值):燃料完全燃烧,燃烧产物中的水蒸汽全部凝结为液态水时所放出的热量 低位发热量(低位热值):燃料完全燃烧,燃烧产物中的水蒸汽仍以气态存在时所放出的热量。 即它们的区别仅是:水的状态不同,25℃水的汽化热2440‐2500KJ/kg 实际燃烧时,因温度很高,燃烧产物中的水蒸气均以气态形式存在,不可能凝结为水,故一般所测定的为低位发热量(低位热值)。 天然气的发热量(低位热值)一般为8000~8500×4.18KJ/Nm3 提问: 燃料的热值如何定义?通常所说的某种燃料的热值是什么意义? 2.基本传热方式 传热是由温度差引起的。只要有温度差存在,热量就会自发地从高温物体向低温物体转移。 传热有三种方式:对流、导热、辐射 在预热段低温区,以对流传热为主;在高温区,以辐射传热为主。 提问: 基本的传热方式有哪几种? 在加热炉的不同温度区间,产品与热气流的传热方式各有什么特点? 3.气体燃料燃烧的基本条件 (1)有燃料(如天然气) (2)有空气(助燃风) (3)达到着火温度-燃烧所需的最低温度 提问: 气体燃料燃烧的基本条件是什么? 4.气体燃料燃烧的过程 (1) 混合-燃料与空气的混合 (2) 着火 (3) 燃烧 提问: 说一说气体燃料燃烧的过程 5.依据燃气与空气的混合情况,分为三种燃烧方法 (1) 长焰燃烧-燃气和空气在燃烧器内不混合,喷出后靠扩散作用进行边混合边燃烧,火焰长。 (2) 短焰燃烧-燃气在燃烧器内与部分空气(一次空气)混合,喷出后燃烧并进一步与二次空气混合燃烧,火焰较短 (3) 无焰燃烧-燃气与空气在燃烧器内(或进燃烧器前)完全混合,在燃烧器内(或喷出后)燃烧,火焰短而透明,几乎无火焰。

温度控制器课程设计要点

郑州科技学院 《模拟电子技术》课程设计 题目温度控制器 学生姓名 专业班级 学号 院(系)信息工程学院 指导教师 完成时间 2015年12月31日

郑州科技学院 模拟电子技术课程设计任务书 专业 14级通信工程班级 2班学号姓名 一、设计题目温度控制器 二、设计任务与要求 1、当温度低于设定温度时,两个加热丝同时通电加热,指示灯发光; 2、当水温高于设定温度时,两根加热丝都不通电,指示灯熄灭; 3、根据上述要求选定设计方案,画出系统框图,并写出详细的设计过程; 4、利用Multisim软件画出一套完整的设计电路图,并列出所有的元件清单; 5、安装调试并按规定格式写出课程设计报告书. 三、参考文献 [1]吴友宇.模拟电子技术基础[M]. 清华大学出版社,2009.52~55. [2]孙梅生.电子技术基础课程设计[M]. 高等教育出版社,2005.25~28. [3]徐国华.电子技能实训教程[M]. 北京航空航天大学出版社,2006.13 ~15. [4]陈杰,黄鸿.传感器与检测技术[M].北京:高等教育出版社,2008.22~25. [5]翟玉文等.电子设计与实践[M].北京:北京中国电力出版社,2005.11~13. [6]万嘉若,林康运.电子线路基础[M]. 高等教育出版社,2006.27 ~29. 四、设计时间 2015 年12月21 日至2015 年12 月31 日 指导教师签名: 年月日

本设计是一种结构简单、性能稳定、使用方便、价格低廉、使用寿命长、具有一定的实用性等优点的温度控制电路。本文设计了一种温度控制器电路,该系统采用模拟技术进行温度的采集与控制。主要由电源模块,温度采集模块,继电器模块组成。 现代社会科学技术的发展可以说是突飞猛进,很多传统的东西都被成本更低、功能更多、使用更方便的电子产品所替代,本课程设计是一个以温度传感器采用LM35的环境温度简易测控系统,用于替代传统的低精度、不易读数的温度计。但系统预留了足够的扩展空间,并提供了简单的扩展方式供参考,实际使用中可根据需要改成多路转换,既可以增加湿度等测控对象,也能减少外界因素对系统的干扰。 首先温度传感器把温度信号转换为电流信号,通过放大器变成电压信号,然后送入两个反向输入的运算放大器组成的比较器电路,让电位器来改变温度范围的取值,最后信号送入比较器电路,通过比较来判断控制电路是否需要工作。此方案是采用传统的模拟控制方法,选用模拟电路,用电位器设定给定值,反馈的温度值与给定的温度值比较后,决定是否加热。 关键词:温度传感器比较器继电器

组态王课程设计锅炉温度控制系统

锅炉温度控制系统上位机设计 1.设计背景 锅炉是化工、炼油、发电等工业生产过程中必不可少的重要的动力设备。它所产生的高压蒸汽,既可以作为风机、压缩机、大型泵类的驱动透平的动力源,又可作为蒸馏、化学反应、干燥和蒸发等过程的热源。随着工业生产规模的不断扩大,生产设备的不断创新,作为全厂动力和热源的锅炉,办向着大容量、高参数、高效率发展。为了确保安全,稳定生产,锅炉设备的控制系统就显得愈加重要。随着经济的迅猛发展,自动化控制水平越来越高,用户对锅炉控制系统的工作效率要求也越来越高,为了提高锅炉的工作效率,较少对环境的污染问题,所以利用计算机与组态软件技术对锅炉生产过程进行自动控制有着重要的意义。 2.任务要求 (1) 按照题目设计监控画面及动态模拟; (2) 在数据字典中定义需要的内存变量和I/O变量; (3) 实现监控系统的实时、历史曲线及报警界面显示; (4) 实现保存数据和参数报表打印功能; (5) 实现登陆界面和帮助界面。 3. 界面功能 3.1 系统说明 本系统的目的是实现锅炉的温度控制,所以在监控界面设置了加热部分和降温部分,同时通过观察相应仪表,操作者手动的实现对锅炉温度的控制,而且在加热过程和降温过程中有信号灯可以清楚地显示系统工作在什么阶段。此外,在监控界面加入了液位控制部分,通过对进水量和出水量的控制实现液位平衡。实时曲线和历史曲线可以让操作者清楚地观察到锅炉内液体的液位高度和温度,从而更加准确的操作系统,达到控制要求。实时报警界面可以随时进行提醒,防止发生意外情况。帮助界面可以让初次登陆该系统的用户快速学会如何操作系统。登陆界面中加入用户登陆部分,只有有相应权限的操作者也可以控制系统。该系统还加入历史曲线打印功能和对系统相关变量的保存功能,用户可以随时查看历史记录。 3.2主监控界面 主控界面实现的是操作者观察仪表,得到锅炉内液体温度和液位的实时信息,通过调节电磁阀1、2,使得锅炉内液体液位保持在要求范围内,通过加热按钮和降温按钮对

单片机课程设计(温度控制系统)

温度控制系统设计 题目: 基于51单片机的温度控制系统设计姓名: 学院: 电气工程与自动化学院 专业: 电气工程及其自动化 班级: 学号: 指导教师:

2015年5月31日 摘要: (3) 一、系统设计 (3) 1.1 项目概要 (3) 1.2设计任务和要求: (4) 二、硬件设计 (4) 2.1 硬件设计概要 (4) 2.2 信息处理模块 (4) 2.3 温度采集模块 (5) 2.3.1传感器DS18b20简介 (5) 2.3.2实验模拟电路图 (7) 2.3.3程序流程图 (6) 2.4控制调节模块 (9) 2.4.1升温调节系统 (9) 2.4.2温度上下限调节系统 (8) 2.43报警电路系统 (9) 2.5显示模块 (12) 三、两周实习总结 (13) 四、参考文献 (13) 五、附录 (15)

5.1原理图 (15) 摘要: 在现代工业生产中,温度是常用的测量被控因素。本设计是基于51单片机控制,将DS18B20温度传感器实时温度转化,并通过1602液晶对温度实行实时显示,并通过加热片(PWM波,改变其占空比)加热与步进电机降温逐次逼近的方式,将温度保持在设定温度,通过按键调节温度报警区域,实现对温度在0℃-99℃控制的自动化。实验结果表明此结构完全可行,温度偏差可达0.1℃以内。 关键字:AT89C51单片机;温控;DS18b20 一、系统设计 1.1 项目概要 温度控制系统无论是工业生产过程,还是日常生活都起着非常重要的作用,过低或过高的温度环境不仅是一种资源的浪费,同时也会对机器和工作人员的寿命产生严重影响,极有可能造成严重的经济财产损失,给生活生产带来许多利的因素,基于AT89C51的单片机温度控制系统与传统的温度控制相比具有操作方便、价价格便宜、精确度高和开展容易等优点,因此市场前景好。

课程设计退火炉温度控制系统

课程设计设计题目: 退火炉温度控制系统 学院: 专业: 班级: 姓名: 学号: 指导老师: 日期:

摘要 退火炉是金属热处理中的重要设备,它把压力容器加热到一定温度并维持一段时间,然后让其自然冷却。其目的在于消除压力容器的整体压力。提高压力容器的使用寿命。温度是退火炉的主要被控变量,是保证其产品质量的一个重要因素。退火炉温度控制的稳定性和控制精度直接影响产品的质量。 本文以AT89C51单片机为控制核心,采用模块化的设计方案,包括硬件设计与软件设计两部分。硬件设计包括温度检测模块,按键模块,执行模块,LED显示模块,单片机最小系统。本设计要求采用电热丝加热,通过A/D转换将采集到的温度数据输入单片机中,与系统给定值比较,从而对退火炉的温度进行控制,通过按键输入控制信号,三位LED显示炉温。最后设计出最少拍无纹波控制器,通过MATLAB 仿真检验是否有纹波。

目录 第1章绪论 (3) 1.1设计背景与算法 (3) 第2章课程设计的方案?5 2.1概述?5 2.2系统组成总体结构 (5) 第3章程序设计与程序清单 (7) 3.1单片机最小系统设计 (7) 3.1.1单片机选择 (7) 3.1.2时钟电路设计 (8) 3.1.3复位电路设计?9 3.2程序清单与电路图 (11) 3.3温度控制电路................................ 错误!未定义书签。第4章控制算法?18 4.1程序框图? 18 4.2算法设计 (19) 第5章课程设计总结?错误!未定义书签。

第1章 绪论 1.1 设计背景与算法 背景:退火炉是冶金和机械行业常用的热处理工业设备。一般说来,退货处理工艺师冶金和机械产品的最后处理工序,它的处理效果将直接影响产品的质量。因此,对退火炉的基本要求就是根据退火处理工艺曲线,提供准确的升温,保温及降温操作,同时保证颅内各处的温度均匀。在目前实际生产中,退火炉的种类很多,按燃料分有燃油炉、燃气炉、电炉等。电炉按台数计算占80%,燃油炉和燃气炉占20%。 退火是金属热处理中的重要工序,它是将金属缓慢加热到一定温度,保持足够时间,然后以适宜速度冷却(通常是缓慢冷却,有时是控制冷却)的一种金属热处理工艺。目的是使经过铸造、锻轧、焊接或切削加工的材料或工件软化,改善其塑性和韧性,使其化学成分均匀化,并去除其参与应力,或得到预期的物理性能。温度控制是热处理质量控制的重要技术措施,是退火控制的核心。智能温控将大大提高热处理质量,消除认为的不稳定因素,提高温度控制的精确程度,满足特殊材料的热处理要求。 同时,退火炉采用自动化技术控制温度,对保护生态环境方面也具有重要意义。退火炉的炉温动态特性直接影响产品的质量,生产过程中对钢材的温升曲线有较高的要求,温度过低,达不到退火的预期目的;温度过高将导致过热,甚至过烧。通过对退火炉中生产过程的优化控制和自动工艺管理控制,不但可以缩短生产周期,提高产量和质量,还可以减少人为因素造成的废品率。热处理后产生的废气对自然环境的污染很大,退火炉的燃料如果是欠氧燃烧,燃料燃烧不充分,则会产生大量黑烟,而过氧燃烧又会产生氮氧化合物等有害气体。若通过对燃烧过程进行有效控制,使燃烧在合理的空燃比下运行,则可以极大的减少退火炉对周边环境的污染,对构建科持续发展型社会就有积极的意义。 目前世界各国对能源消耗和大气环境的污染越来越重视,而我国既是钢铁大国又是能源大国,因此研究高性能退火炉温度控制系统具有极为重要的现实意义。 算法:在数字随动控制系统中,要求系统的输出值尽快地跟踪给定值的变化,最少拍控制是满足这一要求的一种离散化设计方法。 最少拍控制是一种直接数字设计方法。所谓最少拍,就是要求闭环系统对于某种特定的输入在最少个采样周期内达到无静差的稳态,是系统输出值尽快地跟踪期望值的变化。 闭环Z传函具有形式 z z z z N N ---+++=Φφφφ 221)(1

过程控制课程设计--加热器温度控制

课程设计任务书 设计依据、要求及主要内容: 一、设计任务 加热器出口温度在阶跃扰动DC作用下,其输出响应数据如下: t/s012345678 y 4.0 4.0 4.2 4.5 4.8 5.1 5.4 5.7 5.8 t/s91011 y 5.85 5.9 6.0 6.0 试根据实验数据设计一个超调量的无差控制系统。具体要求如下:(1)根据实验数据选择一定的辨识方法建立对象的数学模型; (2)根据辨识结果设计符合要求的控制系统(控制系统原理图、控制规律选择等); (3)根据设计方案选择相应的控制仪表; (4)对设计的控制系统进行仿真,整定运行参数。 二、设计要求 采用MATLAB仿真;需要做出以下结果: (1)超调量 (2)峰值时间 (3)过渡过程时间 (4)余差 (5)第一个波峰值 (6)第二个波峰值 (7)衰减比 (8)衰减率 (9)振荡频率 (10)全部P、I、D的参数 (11)PID的模型 (12)设计思路 三、设计报告 课程设计报告要做到层次清晰,论述清楚,图表正确,书写工整;详见“课程设计报告写作要求”。 四、参考资料

[1] 何衍庆.工业生产过程控制(1版).北京:化学工业出版社,2004 [2] 邵裕森.过程控制工程.北京:机械工业出版社2000 [3] 过程控制教材 目录 一 设计内容 1.1总体思路 1.2.设计要求 二 数学模型的建立 2.1 PID参数K、T、Τ的确定 2.2传递函数的确定 三 控制系统的设计 3.1原系统方框图 3.2 PID温度控制器原理 3.3 控制规律与控制变量的确定 3.4 过程控制系统设备的选择 四 系统仿真及其分析 4.1仿真波形图 4.2系统的性能指标 五 课程设计心得体会 六 参考文献

课程设计说明书 温度控制系统的设计与实现

课程设计说明书 课程设计说明书题目:温度控制系统的设计与实现

摘要 温度控制系统是一种典型的过程控制系统,在工业生产中具有极其广泛的应用。温度控制系统的对象存在滞后,它对阶跃信号的响应会推迟一些时间,对自动控制产生不利的影响,因此对温度准确的测量和有效的控制是此类工业控制系统中的重要指标。温度是一个重要的物理量,也是工业生产过程中的主要工艺参数之一,物体的许多性质和特性都与温度有关,很多重要的过程只有在一定温度范围内才能有效的进行,因此,对温度的精确测量和可靠控制,在工业生产和科学研究中就具有很重要的意义。 本文阐述了过程控制系统的概念,介绍了一种温度控制系统建模与控制,以电热水壶为被控对象,通过实验的方法建立温度控制系统的数学模型,采用了PID算法进行系统的设计,达到了比较好的控制目的。 关键词:温度控制;建模;自动控制;过程控制;PID

Abstract In industrial production with extremely extensive application, temperature control system is a typical process control system.Temperature control system has the larger inertia. It is the response signal to step off some of time.And it produces the adverse effect to the temperature measurement. The control system is the important industrial control index. Temperature is an important parameters in the process of industrial production. Also it is one of the main parameters of objects, many properties and characteristics of temperature, many important process only under certain temperature range can efficiently work. Therefore, the precise measurement of temperature control, reliable industrial production and scientific research has very important significance. This paper discusses the concept of process control system and introduces a kind of temperature control system .The electric kettle is the controlled object, PID algorithm is used for system design,through experience method to get the model of temperature control system and we can get the controlied response well. Keywords:Temperature control; Mathematical modeling; Automatic control; Process control; PID

退火炉作业指导书

退火炉作业指导书 一、主要技术参数 工作区尺寸:1900*6000*2100(宽*长*高) 最高工作温度:620℃ 金属温差:≤±3℃ 炉子热效率:>65% 空炉时工作区炉温均匀性:≤±3℃ 炉体总重:~45T 二、设备的组成及结构简述 设备主要由炉体、水冷却系统、吹洗和排气系统、负压除油系统、电控系统等 1、炉体分为炉室、炉气强制循环系统、加热元件、炉门等。 炉室由外壳、内衬及隔热材料组成;炉顶上有风机安装孔、吹洗管道孔、加热元件安装孔及热电偶。 2、炉气循环系统由循环风机及导流装置组成。 3、吹洗系统 1)正压吹洗:该系统主要用来及时排除制品在加热时产生的挥发物。由高压离心风机、阀门、管道及排气管组成。 2)低温负压除油系统: 低温退火时,根据真空原理去除轧制油。

4、电控系统: 1)PLC和仪表控制系统 对炉门、循环风机、吹洗风机等设备的逻辑控制;实现各个 分区温度独立控制。温度控制方式主要有:定时定温控制、 比例温差控制和斜率升、降温控制。 2)触摸屏部分 主要用于当前各种参数的输入、设备状态的显示和一些特定 功能的使用。 三、操作指导书 1、启动前的准备 1)装炉前应将炉膛内、小车、小车轨道及料架上的铝屑脏物和障碍物清除干净后,方可装炉。 2)检查水、气、电等设备是否正常、完好。 3)核对退火料与流程卡上的卷号、规格、合金状态、重量是否相符。 2、进料 1)将炉门开启到限位位置,伸出安全销。 2)用行车将物料吊放到运输小车料架上。 3)运输小车合闸,行走到指定炉号。 4)将物料升起到极限位。 5)将物料输送到炉内,观察输送过程中物料情况,避免与炉门相撞。

温度单回路过程控制系统课程设计

工业过程控制课程设计任务书

引言 温度控制,在工业自动化控制中占有非常重要的地位。单片机系统的开发应用给现代工业测控领域带来了一次新的技术革命,自动化、智能化均离不开单片机的应用。将单片机控制方法运用到温度控制系统中,可以克服温度控制系统中存在的严重滞后现象,同时在提高采样频率的基础上可以很大程度的提高控制效果和控制精度。 温度的控制问题是一个工业生产中经常会遇到的问题。本文以它为例进行介绍,希望能收到举一反三和触类旁通的效果。 现代自动控制越来越朝着智能化发展,在很多自动控制系统中都用到了工控机,小型机、甚至是巨型机处理机等,当然这些处理机有一个很大的特点,那就是很高的运行速度,很大的内存,大量的数据存储器。但随之而来的是巨额的成本。在很多的小型系统中,处理机的成本占系统成本的比例高达20%,而对于这些小型的系统来说,配置一个如此高速的处理机没有任何必要,因为这些小系统追求经济效益,而不是最在乎系统的快速性,所以用成本低廉的单片机控制小型的,而又不是很复杂,不需要大量复杂运算的系统中是非常适合的。 随着电子技术以及应用需求的发展,单片机技术得到了迅速的发展,在高集成度,高速度,低功耗以及高性能方面取得了很大的进展。伴随着科学技术的发展,电子技术有了更高的飞跃,我们现在完全可以运用单片机和电子温度传感器对某处进行温度检测,而且我们可以很容易地做到多点的温度检测,如果对此原理图稍加改进,我们还可以进行不同地点的实时温度检测和控制。 1设计目的 运用组态软件“组态王King View6.05”,结合工业过程实验室已有设备,按照定值系统的控制要求,应用PID算法,自行设计,构成单回路温度控制系统,并整定现相关的PID参数以使系统稳定运行,最终得到一个具有较美观组态画面和较完善组态控制程序的温度单回路控制系统。

模电课设—温度控制系统的设计

目录 1.原理电路的设计 (1) 1.1总体方案设计 (1) 1.1.1简单原理叙述 (1) 1.1.2设计方案选择 (1) 1.2单元电路的设计 (3) 1.2.1温度信号的采集与转化单元——温度传感器 (3) 1.2.2电压信号的处理单元——运算放大器 (4) 1.2.3电压表征温度单元 (5) 1.2.4电压控制单元——迟滞比较器 (6) 1.2.5驱动单元——继电器 (7) 1.2.6 制冷部分——Tec半导体制冷片 (8) 1.3完整电路图 (10) 2.仿真结果分析 (11) 3 实物展示 (13) 3.1 实物焊接效果图 (13) 3.2 实物性能测试数据 (14) 3.2.1制冷测试 (14) 3.2.2制热测试 (18) 3.3.3性能测试数据分析 (20) 4总结、收获与体会 (21) 附录一元件清单 (22) 附录二参考文献. (23)

摘要 本课程设计以温度传感器LM35、运算放大器UA741、NE5532P及电压比较器LM339N 为电路系统的主要组成元件,扩展适当的接口电路,制作一个温度控制系统,通过室温的变化和改变设定的温度,来改变电压传感器上两个输入端电压的大小,通过三极管开关电路控制继电器的通断,来控制Tec制冷片的工作。这样循环往复执行这样一个周期性的动作,从而把温度控制在一定范围内。学会查询文献资料,撰写论文的方法,并提交课程设计报告和实验成品。 关键词:温度;测量;控制。

Abstract This course is designed to a temperature sensor LM35, an operational amplifier UA741, NE5532P and a voltage comparator LM339N circuit system of the main components. Extending the appropriate interface circuit, make a temperature control system. By changing the temperature changes and set the temperature to change the size of the two input ends of the voltage on the voltage sensor, an audion tube switch circuit to control the on-off relay to control Tec cooling piece work. This cycle of performing such a periodic motion, thus controlling the temperature in a certain range. Learn to query the literature, writing papers, and submitted to the curriculum design report and experimental products. Key words: temperature ; measure ;control

反应釜温度过程控制课程设计

过程控制系统课程课题:反应釜温度控制系统 系另I」:电气与控制工程学院 专业:自动化_____________ 姓名: ________ 彭俊峰_____________ 学号:__________________ 指导教师: _______ 李晓辉_____________ 河南城建学院 2016年6月15日

反应器是任何化学品生产过程中的关键设备,决定了化工产品的品质、品种和生产能力。釜式反应器是一种最为常见的反应器,广泛的应用于化工生产的各个领域。釜式反应器有一些非常重要的过程参数,如:进料流量(进料流量比)、液体反应物液位、反应压力、反应温度等等。对于这些参数的控制至关重要,其不但决定着产品的质量和生产的效率,也很大程度上决定了生产过程的安全性。 由于非线性和温度滞后因素很多,使得常规方法对釜式反应器的控制效果不是很理想。本文以带搅拌釜式反应器的温度作为工业生产被控对象,结合PID 控制方式,选用FX2N-PLC 调节模块,同时为了提高系统安全性,设计了报警和紧急停车系统,最终设计了一套反应釜氏的温度过程控制系统。

1系统工艺过程及被控对象特性选取 被控对象的工艺过程 本设计以工业常见的带搅拌釜式反应器(CSTR)为过程系统被控对象。 反应器为标准3盆头釜,反应釜直径1000mm,釜底到上端盖法兰高度1376mm, 反应器总容积,耐压。为安全起见,要求反应器在系统开、停车全过程中压力不超过。反应器压力报警上限组态值为。反应器的工艺流程如图1-1所示。 S8Q A a珑厲娜口 图1-1釜式反应器工艺流程图 该装置主要参数如表1-1所示。各个阀门的设备参数如表1-2所示,其中,D g为阀门公称直径、K v为国际标准流通能力。 表1-1主要测控参数表

相关主题
文本预览
相关文档 最新文档