当前位置:文档之家› 循环伏安法测亚铁氰化钾

循环伏安法测亚铁氰化钾

循环伏安法测亚铁氰化钾
循环伏安法测亚铁氰化钾

五、循环伏安法测定亚铁氰化钾

实验目的

学习固体电极表面的处理方法。 掌握循环伏安仪的使用技术。

了解扫描速率和浓度对循环伏安图的影响 一、实验原理

铁氰化钾离子-亚铁氰化钾离子氧化还原电对的标准电极电位

电极电位与电极表活度的N e r n s t 方程

峰电流与电极表面活度的C o t r o l l 方程 循环伏安法

在一定扫描速率下,从起始电位(-0.2 V )正向扫描到转折电位(+0.8 V )期间,溶液中[F e (C N )6]4-被氧化生成[F e (C N )6]3-,产生氧化电流;当负向扫描从转折电位(+0.8 V )变到原起始电位(-0.2 V )期间,在指示电极表面生成的[F e (C N )6]3- 被还原生成[F e (C N )6]4- ,产生还原电流 二、注意事项

为了使液相传质过程只受扩散控制,应在加入电解质和溶液处于静止下进行电解。

[]

[]

3466Fe(CN)Fe(CN)e -

-

-

+=0

0.36V (.N H E )

vs ?

=Red

c nF

c

v

AD

n i 2

/12

/12

/35

p 1069.2?=

4.不同扫描速率K4[F e(C N)6]溶液的循环伏安图:在0.040m o l·L-1 K4[F e(C N)6]溶液中,以100m V·s-1、150m V·s-1、200m V·s-1、250 m V·s-1、300m V·s-1、350m V·s-1,在-0.2至+0.8V电位范围内扫描,分别记录循环伏安图、

五、数据处理

1.从K4[F e(C N)6]溶液的循环伏安图上,读取i p a、i p c、v1/2、的值。

2.分别以i p a、i p c对K4[F e(C N)6]溶液的浓度作图,说明峰电流与浓度的关系。

3.分别以i p a、i p c对v1/2作图,说明峰电流与扫描速率间的关系。

4.计算i p a/i p c的值、值和值;说明K3[F e(C N)6]在K C l溶液中电极过程的可逆性

六、注意事项

1.实验前电极表面要处理干净。

2.扫描过程保持溶液静止。

3.K4[F e(C N)6]和K3[F e(C N)6]的循环伏安图是否相同,为什么?

4.设计一测定扩散系数的电化学方法。

5.若实验中测得的条件电极电位和与文献值有差异,说明其原因

图形解析

从循环伏安图上读取以下数据

i —E

曲线

pc pa 0.059n

????=-=

1/2

p ~i v

pa pc

1

i i ≈pc

?pa

?pc pa '

()

2

???

+=

p a

i pc

i 计算

作图并验证以下公式

c

i ~p c

v

AD

n

i 2

/12

/12

/35p 1069.2?=

用火焰光度检测器的气相色谱法测定硫化物

用火焰光度检测器的气相色谱法测定硫化物,在国内色谱生产厂家中已有部分涉及,但因在定性、稳定性及计算方法等多方面的技术限制,一直未能推广,GC微量硫分析仪是在我公司原有火焰光度检测器的基础上,经过不断改进,定型为微量硫专用分析仪,具有较高的灵敏度,稳定性好,定性、定量准确,操作简便等优点。 1.原理: 硫化物在富氢火焰中能够裂解生成一定数量的硫分子,并且能在该火焰条件下发出394纳米的特征光谱,经干涉滤光片除去其它波长的光线后,用光电倍增管把光信号转换成电信号并加以放大,然后经微机处理并打印出结果。因为光电倍增管本身的放大能力以及我们研制的FPD的特殊性,所以保证了GC微量硫分析仪的高选择性和高灵敏度。 被分析气体样品经色谱柱分离后,不同的硫化物在不同的时刻进入FPD,从而在工作站上出现不同保留时间的色谱峰。因为硫化物响应与硫浓度的平方成正比,所以工作站必须根据开方峰面积和校正系数计算出分析结果并根据保留时间,直接标定和显示各种硫化物的实际含量。 2.定性定量: 用色谱法分析硫化物,定性问题一直未能很好地解决。众所周知,硫化物的存在形式多种多样,而在实际工作中又不可能拥有众多硫化物的标样,这就给广大的硫分析工作者造成了极大的难题。但是,在实际工作中,多数情况下只需要对硫化物进行大致的定性。如只需要看无机硫,低沸点有机硫,高沸点有机硫的的分布情况,以便指导脱硫工作的进行。这种情况在许多化工厂是很普遍的。鉴于这种情况,一般分析人员采用的定性手段为:对无机硫,如硫化氢、二氧化硫,可以用GDX301柱子进行分离以便定性;对低沸点有机硫,如甲硫醇、甲硫醚、硫氧化碳可以用TCP柱子分离以进行定性;而对高沸点有机硫,一般不作定性,大多数采用反吹方式测定其总含量。也可直接用反吹法分析总硫,这也是本仪器的一大特点。 一般而言,在样品气中,如原料天然气、炼厂尾气、煤造气生成的原料气,无机硫、低沸点的有机硫含量占很大比例(几乎达90%以上),因此采用以上方法进行定性定量分析是切实可行的。它不仅简化了分析程序,而且分析结果也比较准确。这样做,不仅可监视样气中的硫含量,而且也为选择脱硫剂和脱硫路线提供了理论依据。 3.色谱柱的选用: 本仪器随机配备了两根色谱柱: A. TCP柱 4×0.5,2米,20%TCP,白色101担体,60~80目。 B. GDX柱,4×0.5,2米,GDX301,60~80目。 一般选用TCP柱做有机硫分析,用GDX柱做无机硫分析。在既有无机硫,又有有机硫的样品分析时,可用双柱TCP柱和GDX柱,两次进样,此时应选02方式。而在进行总硫分析时,可选GDX柱用反吹法来做,选06,07方式或选用01,03(只显示不能画峰图,主要用于在线分析)。选用00,02方式做硫化氢,硫氧化碳和有机总硫。 4.进样: 由于硫化氢具有较强的化学活性,很容易被其他物质吸附而使其含量降低,从而影响测定的准确度。因此在测定过程中,采用吸附性较低的玻璃注射器采集样品,且要求样品的贮存时间不能太长,仪器中凡是样品经过的管线均经过钝化处理。也可采用特殊处理的六通阀自动进样。 5.仪器特点: ①独特的火焰光度检测器结构,操作简便,稳定时间快,采用特殊的火焰结构消除烃类化合物的干扰,使选择性大幅提高; ②在光信号的收集上,采用聚焦的方式,使捕捉到的信号大幅增加,灵敏度成倍数提高; ③采用优质材质及精湛的加工工艺,密封性很好,在实际操作中,抗外界干扰能力大幅提高,稳定性较好; ④在检测器底部,采用加热功能,有效去除冷凝水,使分析精度有很大提高; ⑤整机稳定性较好,操作简便,易于掌握。 6.参考谱图: 常见有机硫在TCP柱上保留时间

实验4循环伏安法测定电极反应参数实验报告

华南师范大学实验报告 学生姓名学号2014 专业新能源材料与器件年级、班级2014 课程名称电化学实验实验项目循环伏安法测定电极反应参数实验类型□√验证□设计□综合实验时间2016年4月25日 实验指导老师吕东生实验评分

一、实验目的 1.了解循环伏安法的基本原理及应用 2. 掌握循环伏安法的实验技术和有关参数的测定方法。 二、实验原理 循环伏安法(Cyclic Voltammetry)是一种常用的电化学研究方法。该法控制电极电势以不同的速率,随时间以三角波形一次或多次反复扫描,电势范围是使电极上能交替发生不同的还原和氧化反应,并记录电流-电势曲线。根据曲线形状可以判断电极反应的可逆程度,中间体、相界吸附或新相形成的可能性,以及偶联化学反应的性质等。常用来测量电极反应参数,判断其控制步骤和反应机理,并观察整个电势扫描范围内可发生哪些反应,及其性质如何。对于一个新的电化学体系,首选的研究方法往往就是循环伏安法。该方法使用的仪器简单,操作方便,图谱解析直观,在电化学、无机化学、有机化学、生物化学等许多研究领域被广泛使用。循环伏安法通常采用三电极系统,一支工作电极(被研究物质起反应的电极),,一支参比电极,一支对电极。外加电压在工作电极和辅助电极之间,反应电流通过工作电极与辅助电极。 图1 循环伏安法测得的氧化还原曲线 正向扫描的峰电流i p 与v^0.5和C都成线性关系,对研究电极过程具有重要意义。标准 电极电势为:EΘ=(E pa +E pc )/2。所以对可逆过程,循环伏安法是一个方便的测量标准电极 电位的方法。 三、实验器材 CHI电化学工作站;玻碳电极;铂电极;Hg/Hg2SO4电极;0.1 mol/L VO2+ + 0.1 mol/L VO2+ +3 mol/L H2SO4溶液 四、实验步骤 1. 预处理电极

循环伏安法测定铁氰化钾电极反应过程

循环伏安法测定铁氰化钾的电极反应过程 一、实验原理 1.循环伏安法 循环伏安法是将循环变化的电压施加于工作电极和对电极之间,记录工作电极上得到的电流与施加电压的关系曲线。此方法也称为三角波线性电位扫描方法。图1-1表明了施加电压的变化方式。选定电位扫描范围E1~E2 和扫描速率, 从起始电位E1开始扫描到达E2 , 然后连续反向在扫描从E2回到E1。由图1-2 可见,循环伏安图有两个峰电流和两个峰电位。i pc 和 i pa 分别表示阴极峰值电流和阳极峰值电流,对应的阴极峰值电位与阳极峰值电位分别为E pc 和E pa 。 图1-1 循环伏安法的典型激发信号 图1-2 K3Fe(CN)6在KCL 溶液中的循环伏安图 2.判断电极可逆性 根据Nernst 方程,在实验测定温度为298K 时,计算得出 △Ep = Epa- Epc≈59/n mV (1-1) 阳极峰电流ipa 和阴极峰电流ipc 满足以下关系: ipc/ipa ≈1 (1-2) 同时满足以上两式,即可认为电极反应是可逆过程。如果从循环伏安图得出的 △Ep/mv = 55/n ~65/n 范围,也可认为电极反应是可逆的。 3.计算原理 铁氰化钾离子-亚铁氰化钾离子氧化还原电对的标准电极电位 [Fe(CN)6]3- + e - = [ Fe(CN)6]4- Φ=0.36v 电极电位与电极表面活度的Nernst 方程: 峰电流与电极表面活度的Randles-Savcik 方程: i p = 2.69×105n 3/2ACD 1/2v 1/2 二、实验仪器与试剂 0'Ox pa Red C RT In F C ???=+ E / V t / s 阳极 i / μA 阴极 ? / v

火焰光度法测钾

土壤全钾含量一般在1~2%左右,其中矿物态钾(土壤矿物晶格或深受结构束缚的钾)约占90一98%,缓效钾占2—8%,速效钾占(水溶性钾和交换态钾)0.1—2%。 根据钾的存在状态和植物吸收性能,可将土壤钾素分为四部分:土壤矿物钾(难溶性钾,无效态钾),非交换性钾(缓效性钾),交换性钾;水溶性钾。后两种钾为速效钾,可直接被作物吸收利用。 钾的测定,有重量法、容量法,比色法、比浊法,火焰光度法和原子吸收分光光度法。现在多采用火焰光度法和原子吸收分光光度法 (一)1N中性醋酸铵提取—火焰光度法或原于吸收分光光度法的测定原理 以lN中性醋酸铵溶液为浸提剂时,NH4+与土壤胶体表面的K+进行交换,连同水溶液K+(二者合称速效钾)一起进入溶液。浸出液中的钾直接用火焰光度计或原子吸收分光光度计(简称AAS)测定。 原子吸收分光光度计的工作原理: 元素在热解石墨炉中被加热原子化,成为基态原子蒸汽,对空心阴极灯发射的特征辐射进行选择性吸收。在一定浓度范围内,其吸收强度与试液中被的含量成正比。 有火焰原子吸收分光光度计和带石墨炉的原子吸收分光光度计。前者原子化的温度在2100℃~2400℃之间,后者在2900℃~3000℃之间。 具体是这样的:光源也叫元素灯(一般是空心阴极灯或无极放电灯)里有被测金属,它被激发放出锐线光谱(就是一定波长的不连续光谱)。而气化池可以气化(即原子化)被测金属,原子金属可以吸收空心阴极灯发出的锐线光谱,通过检测被吸收后光谱的强度,得到被吸收的光谱强度,从而可以计算出金属原子的浓度(比尔-朗伯定律)。 火焰光度计是以发射光谱为基本原理的一种分析仪器。用火焰作激发光源进行火焰光度分析时,把待测液用雾化器使之变成溶胶导入火焰中,待测元素因热离解生成基态原子,原子外层电子吸收火焰的热能,而跃迁到受激能级(激发态,不稳定),再由受激能级恢复到正常状态(基态)时,电子就要释放能量,这种能量的表征是发射出待测元素原子所特有波长的光谱线光谱,经单色器分解成单色光后通过光电系统测量。利用火焰的热能使某元素的原子激发发光,并用仪器检测其光谱能量的强弱,进而判断物质中某元素含量的高低,这类仪器称之为火焰光度计。由于火焰的温度比较低,因此只能激发少数的元素,火焰光度法特别适用于较易激发的碱金属及碱土金属的测定.碱金属有锂、钠、钾、铷、铯等,碱土金属有铍、镁、钙、锶、钡、镭等. 一个是原子吸收原理,一个是原子发射原理,测试的内容不同

火焰光度检测器fpd ()

火焰光度检测器-FPD(SFPD 、DFPD 、PFPD) 一.概述 1.FPD是1966年问世的,它是一种高灵敏度、高选择性的检测器,对含磷、硫的有机化合物和气体硫化物特别敏感。 2.主要用来检测 ⑴ 油精馏中硫醇、COS、H2S、CS2、、SO2; 0 水质污染中的硫醇; ⑵ 空气中H2S、SO2、CS2; 0 农药残毒; 0 天然气中含硫化物气体。 3.FPD检测硫化物是目前最好的方法,为了提高FPD灵敏度和操作特性,在单火焰气体的流路形式上作了多种尝试,随后设计出了双火焰光度检测器(DFPD),但没有从根本上解决测硫灵敏度 和操作特性欠佳的缺点,最近几年在市场上又推出了脉冲火焰光度检测器(DFPD),无论在测硫、 测磷的灵敏度和选择性都有了成百倍的提高。也可以说,在测磷方面已没有必要再推荐氮磷检 测器了,测硫也基本上满足了当前各领域分析的要求。 二.FPD简明工作原理 FPD实质上是一个简单的发射光谱仪,主要由四部分组成: 1.光发射源是一个富氢火焰(H2 :O2> 3 :1),温度可达2000 ~ 3250 ℃ ; 2.波长选择器,常用波长选择器有干涉式或介质型滤光片; 3.接收装置包括光电倍增管(PMT)和放大器,作用是把光的信号转变成电的信号,并适当放大; 4.记录仪和其它的数据处理。 FPD简明工作原理为:当含磷、硫的化合物,在富氢火焰中燃烧时,在适当的条件下,将发射一系列的特征光谱。其中,硫化物发射光谱波长范围约在300 ~ 450nm之间,最大波长约在 394nm 左右;磷化合物发射光谱波长范围约在480 ~ 575nm之间,最大波长约在526 nm左右。 含磷化合物,一般认为首先氧化燃烧生成磷的氧化物,然后被富氢焰中的氢还原成HPO,这个被火焰高温激发的磷裂片将发射一定频率范围波长的光,其光强度正比于HPO的浓度,所以 FPD 测磷化合物响应为线性。 含硫的化合物在富氢火焰中燃烧,在适当温度下生成激发态的S2*分子,当回到基态时,也发射某一波段的特征光。它和含磷的化合物工作机理的不同是:必须由两个硫原子,并且在适当的温度 条件下,方能生成具有发射特征光的激发态S2*分子,所以发射光强度正比于S2*分子,而S2*分子与SO2的浓度的平方成正比,故FPD测硫时,响应为非线性,但在实际上,硫发射光谱强度(IS2 * )与 n 含硫化物的质量、流速之间的关系为IS2=I0[SO2],式中:n不一定恰好等于2,它和操作条件以及化合物的种类有很大的关系,特别是在单火焰定量操作时,若以n = 2计算将会造成很大的定量误差。三. 双火焰光度检测器(DFPD) 双火焰光度检测器(DFPD),克服了单火焰的响应依赖于火焰条件与样品种类的缺点,使响应仅和样品中的硫(磷)的质量有关,并在检测硫时基本遵循平方关系。DFPD工作原理是使用了两个空 气-氢气火焰,将样品分解区域与特征光发射测量区域分开,即从柱流出的样品组分首先与空气混合,然后与过量的氢气混合,在第一个火焰喷嘴上燃烧。第一个火焰将烃类溶剂和复杂的组分分解成比 较简单的产物,这些产物和尚未反应的氢气再与补充的空气相混合,这时的氢气含量仍稍过量,既

循环伏安法判断铁氰化钾K3Fe(CN)6的电极反应过程

循环伏安法判断铁氰化钾K3Fe(CN)6的电极反应过程 一、实验目的 1. 掌握用循环伏安法判断电极反应过程的可逆性 2. 学会使用伏安极谱仪 3. 学会测量峰电流和峰电位 二、实验原理 循环伏安法是用途最广泛的研究电活性物质的电化学分析方法,在电化学、无机化学、有机化学、生物化学等领域得到了广泛的应用。由于它能在很宽的电位范围内迅速观察研究对象的氧化还原行为,因此电化学研究中常常首先进行的是循环伏安行为研究。 循环伏安是在工作电极上施加一个线性变化的循环电压,记录工作电极上得到的电流与施加电压的关系曲线,对溶液中的电活性物质进行分析。由于施加的电压为三角波,这种方法也称为三角波线性扫描极谱法。 典型的循环伏安图如图所示: 选择施加在a点的起始电位E i,然后沿负的电位即正向扫描,当电位负到能够将Ox还原时,在工作电极上发生还原反应:Ox + Ze = Red,阴极电流迅速

增加(b-d),电流在d点达到最高峰,此后由于电极附近溶液中的Ox转变为Red而耗尽,电流迅速衰减(d-e);在f点电压沿正的方向扫描,当电位正到能够将Red氧化时,在工作电极表面聚集的Red将发生氧化反应:Red = Ox + Ze,阳极电流迅速增加(i-j),电流在j点达到最高峰,此后由于电极附近溶液中的Red转变为Ox而耗尽,电流迅速衰减(j-k);当电压达到a点的起始电位E i时便完成了一个循环。 循环伏安图的几个重要参数为:阳极峰电流(i pa)、阴极峰电流(i pc)、阳极峰电位(E pa)、阴极峰电位(E pc)。对于可逆反应,阴阳极峰电位的差值,即△E=E pa-E pc ≈56 mV/Z,峰电位与扫描速度无关。 而峰电流i p=2.69×105n3/2AD1/2V1/2C,i p为峰电流(A),n为电子转移数,A 为电极面积(cm2),D为扩散系数(cm2/s),V为扫描速度(V/s),C为浓度(mol/L)。由此可见,i p与V1/2和C都是直线关系。对于可逆的电极反应,i pa ≈ i pc。 三、仪器和试剂 1. CHI832B 电化学分析仪,三电极系统(金盘电极为工作电极、饱和甘汞电极为参比电极、铂丝电极为辅助电极) 2. 铁氰化钾标准溶液(5.0×10-3 mol/L,含H2SO4溶液0.5 mol/L),10 mL电解杯,10 mL容量瓶 四、实验步骤 1. 打开仪器预热20分钟,打开电脑,打开CHI832B电化学分析仪操作界面。 2. 电极抛光:用AI2O3粉将金盘电极表面抛光,然后用蒸馏水清洗,待用。 3. 将铁氰化钾标准溶液转移至10 mL电解池中,插入三支电极,在“实验”菜单中选择“实验方法”,选择“Cyclic V oltammetry”,点“确定”,设置实验参数:起始电位(+0.6 V);终止电位(-0.2 V);静止时间(2 s);扫描时间(任意扫速);扫描速度(0.1 V/s);灵敏度(1.0×e-5);循环次数(2);点“确定”。从“实验”菜单中选择“开始实验”,观察循环伏安图,记录峰电流和峰电位。 4. 考察峰电流与扫描速度的关系,使用上述溶液,分别以不同的扫描速度:0.1、0.2、0.5 V/s(其他实验条件同上)分别记录从+0.6V~ -0.2V扫描的循环伏安图,记录峰电流。 5. 考察峰电流与浓度的关系,分别准确移取上述溶液1.00、2.00、5.00 mL,置

循环水中钾和钠的测定——火焰光度法

循环水中钾和钠的测定——火焰光度法 1.范围 本标准适用于循环冷却水中钾和钠的测定,测定范围K+为0.5 mg/L~10.0mg/L、Na+为1.0mg/L~20.0mg/L。 2.方法概要 当一种元素的原子受火焰激发后,能发射出该元素特有波长的光谱线,其光谱强度与其元素浓度成正比,因此可采用比较法(与标准溶液比较)用火焰光度计来测定钾和钠的含量。 3.仪器 3.1火焰光度计 3.2无油气体压缩机 4.试剂 4.1钾标准溶液:准确称取1.9066克经110℃干燥过的分析纯氯化钾溶于100毫升蒸馏水中,然后转移到一升容量瓶中,用蒸馏水稀释至刻度、摇匀。每毫升此溶液含K+ 1.00 mg。 4.2钠标准溶液:准确称取2.5420克经110℃干燥过的分析纯氯化钠溶于100毫升蒸馏水中,然后转移到一升容量瓶中,用蒸馏水稀释至刻度、摇匀。每毫升此溶液含Na+ 1.00 mg。 4.3钾、钠混合标准溶液:用移液管移取5毫升 1.00mg/L钾标准溶液和20毫升1.00mg/L钠标准溶液于1升容量瓶中,用蒸馏水稀释至刻度、摇匀。此溶液钾、钠的浓度分别为 5.00mg/L和20.0mg/L。 5.分析步骤 5.1开机 5.1.1打开仪器开关,取下火焰上方的罩子,将燃气开关逆时针旋2.5~3圈(进样开关和助燃开关都处于关闭位置),按下点火按钮,开启压缩机至火焰点燃。 5.1.2打开进样开关,放入蒸馏水,调节助燃和燃气开关,使火焰高度在3cm~6cm 之间(火焰底部有十个光滑的圆锥状小突起,其周围有一圈清晰的波浪形圆环),放上罩子,将仪器预热约20分钟。

5.2测量 5.2.1校正:首先将量程开关置于0档,用小起子调节“内调”电位器,使K、Na 两表头均指示在0位。 5.2.2调零:将置程开关置于2档(测K+,测Na+时用1档)调节“调零”旋钮使指针指示0位。 5.2.3定位:换上K+ ——Na+混合标准溶液(K+=5.00ppm, Na+=20.0ppm)调节“满度”旋钮使指针指示50格(或满度),重复5.2.1~5.2.3步骤。 5.2.4换上蒸馏水检查0点后,再换上样品溶液,待指针趋于稳定后读取平均值T (格)。 5.3关机 5.3.1将量程开关置于0档,先后用蒸馏水、乙醇和蒸馏水清洗管路各几分钟。 5.3.2取下罩子,关闭压缩机(拔下电源插头),让火焰自然燃尽,然后关闭进样开关和助燃、燃气旋钮以及仪器开关(电源)。 5.3.3待仪器冷却后放上罩子。 6.结果计算 水样中K+ 、Na+含量以mg/L计,分别按式(1)、(2)计算: K+ =T / 10 mg/L (1) Na+=(20 × T) / 50=(2 × T) / 5 mg/L (2) 取平行测定两结果的算数平均值作为水样中K+ 、Na+含量。 7.重复性 平行测定两结果的绝对差值不大于这两个测定值的算术平均值的10%。 8.注意事项 8.1由于火焰光度法的影响因素较多,测量条件较难控制一致,因此不采用标准曲线法,而采用与标准溶液相比较的方法。最好配几种不同浓度的标准溶液,选择浓度与被测试样相近的标准溶液进行比较测量。 8.2所用火焰光度计的型号不同,其分析步骤略有不同,具体分析步骤可根据仪器说明书上所写的分析步骤或根据经过自己试验所定的分析步骤进行操作。

【开题报告】固体废物中有机磷农药的测定气相色谱-火焰光度检测器法

开题报告 化学 固体废物中有机磷农药的测定气相色谱-火焰光度检测器法一、选题的背景与意义 有机磷农药是为取代有机氯农药发展起来的,它比有机氯农药较易降解,残留期较短,是现有农药中品种最多、使用最广的一类,约有100多种。环境中有机磷农药的污染和毒害已日益引起人们的广泛关注。有机磷农药毒性较高,是急性中毒类农药,如对硫磷和内吸磷等都是剧毒品。 有机磷农药常被用作杀虫剂喷洒在果树、蔬菜上,残留在水果、蔬菜上的农药或进入环境的农药进入有机体,对人、畜毒性较大,大部分对生物体内胆碱酯酶有抑制作用,抑制胆碱酯酶使其失去分解乙酰胆碱的能力,造成乙酰胆碱积累,引起神经功能紊乱,从而导致肌体的损害。 有机磷农药的各类环境质量标准和污染物排放(控制)标准,均没有针对固废。现收集到与土壤或固废相关的标准,见表1。 表1 有机磷农药相关环境质量或排放标准 环境质量或排 放标准标准号排放限值 浓度单 位 土壤环境质量 标准 GB15618-1995 无相关排放标准 乐果对硫 磷 甲基对硫磷 马拉硫 磷 浸出液 危险废物毒性 标准浸出毒性 鉴别GB5085.3-2007 8 0.3 0.2 5 mg/L 生活垃圾填埋 污染控制标准 GB16889-2008 无相关排放标准展览馆用地土 壤环境质量标 准 HJ350-2007 无相关排放标准城镇垃圾农用GB8172-1987 无相关排放标准

控制标准 在现行的有机磷农药的监测分析方法中,主要采用有机溶剂提取,净化步骤除去干扰物,用气相色谱氮磷检测器(NPD)或火焰光度检测器(FPD)检测,再根据色谱峰的保留时间定性,外标法定量。此方法仅适应于水和土壤中有机磷农药的分析,尚未制定固体废物中有机磷农药的标准分析方法。 现根据对目前农田里常用有机磷农药的使用情况调研以及相关有机磷农药的标准,筛选出12种左右的有机磷农药,分别为甲拌磷、乐果、二嗪农、乙拌磷、异稻瘟净、甲基对硫磷、马拉硫磷、对硫磷、毒死蜱、稻丰散、丙溴磷、乙硫磷,对这12种有机磷农药制定标准方法。 三、研究的方法与技术路线: 考虑到快速溶剂萃取法(ASE)具有萃取速度快、溶剂用量少、效率高、密封性能好造成环境污染小的特点,决定样品的前处理采用ASE提取,经浓缩定量后采用GC-FPD的方法检测固体废物中的有机磷农药。 技术路线: 四、研究的总体安排与进度:

循环伏安法实验报告(有测定电极有效面积)

循环伏安法实验 【实验目的】 学习和掌握循环伏安法的原理和实验技术。 了解可逆波的循环伏安图的特性以及测算玻碳电极的有效面积的方法。 【实验原理】 循环伏安法是在固定面积的工作电极和参比电极之间加上对称的三角波扫 描电压(如图1),记录工作电极上得到的电流与施加电位的关系曲线(如图2),即循环伏安图。从伏安图的波形、氧化还原峰电流的数值及其比值、峰电位等可以判断电极反应机理。 与汞电极相比,物质在固体电极上伏安行为的重现性差,其原因与固体电极的表面状态直接有关,因而了解固体电极表面处理的方法和衡量电极表面被净化的程度,以及测算电极有效表面积的方法,是十分重要的。一般对这类问题要根据固体电极材料不同而采取适当的方法。 对于碳电极,一般以Fe(CN) 63-/4- 的氧化还原行为作电化学探针。首先,固体 电极表面的第一步处理是进行机械研磨、抛光至镜面程度。通常用于抛光电极的 材料有金钢砂、CeO 2、ZrO 2 、MgO和α-Al 2 O 3 粉及其抛光液。抛光时总是按抛 光剂粒度降低的顺序依次进行研磨,如对新的电极表面先经金钢砂纸粗研和细磨 后,再用一定粒度的α-Al 2O 3 粉在抛光布上进行抛光。抛光后先洗去表面污物, 再移入超声水浴中清洗,每次2~3分钟,重复三次,直至清洗干净。最后用乙 醇、稀酸和水彻底洗涤,得到一个平滑光洁的、新鲜的电极表面。将处理好的碳 图2:循环伏安曲线(i—E曲线)

电极放入含一定浓度的K 3Fe(CN)6和支持电解质的水溶液中,观察其伏安曲线。如得到如图2所示的曲线,其阴、阳极峰对称,两峰的电流值相等(i pc / i pa =1),峰峰电位差ΔE p 约为70 mV (理论值约59/n mV ),即说明电极表面已处理好,否则需重新抛光,直到达到要求。 有关电极有效表面积的计算,可根据Randles-Sevcik 公式: 在25°C 时,i p =(2.69×105 )n 3/2 AD o 1/2ν1/2 C o 其中A 为电极的有效面积(cm 2 ),D o 为反应物的扩散系数(cm 2 /s),n 为电极反应的电子转移数,ν为扫速(V/s ),C o 为反应物的浓度(mol/cm 3 ),i p 为峰电流(A )。 【仪器和试剂】 1. CHI 660D 电化学系统,玻碳电极(d = 4mm ) 为工作电极,银/氯化银电极为参比电极,铂片电极为辅助电极; 2. 固体铁氰化钾、H 2SO 4 溶液、高纯水; 3. 100 mL 容量瓶、50 mL 烧杯、玻棒。 【实验内容】 1. 配制5 mM K 3Fe(CN)6 溶液(含0.5 M H 2SO 4),倒适量溶液至电解杯中; 2. 将玻碳电极在麂皮上用抛光粉抛光后,再用蒸馏水清洗干净; 3. 依次接上工作电极(绿)、参比电极(白)和辅助电极(红); 4. 开启电化学系统及计算机电源开关,启动电化学程序,在菜单中依次选择Setup 、Technique 、CV 、Parameter ,输入以下参数: 5. 点击Run 开始扫描,将实验图存盘后,记录氧化还原峰电位E pc 、E pa 及峰电流I pc 、I pa ; 6. 改变扫速为0.05、0.1 和0.2 V/s ,分别作循环伏安图; 7. 将4个循环伏安图叠加比较; Init E (V) 0.8 V Segment 2 High E (V) 0.8 V Smpl Interval (V) 0.001 Low E (V) ?0.2 V Quiet Time (s) 2 Scan Rate (V/s) 0.02 V Sensitivity (A/V) 5e?5

循环伏安法测定亚铁氰化钾

实验报告 实验课程:仪器分析 学生姓名:崔清玥 学号:41307209 专业班级:化学(创新)1301 实验名称:循环伏安法测定亚铁氰化钾

i —E 曲线 一、实验目的 1、学习固体电极表面的处理方法。 2、掌握循环伏安仪的使用技术。 3、了解扫描速率和浓度对循环伏安图的影响。 二、实验原理 铁氰化钾离子-亚铁氰化钾离子氧化还原电对的标准电极电位 电极电位与电极表面活度的Nernst 方程 峰电流与电极表面活度的Cotroll 方程 其中:i p 为峰电流;n 为电子转移数;D 为扩散系数;v 为电压扫描速度;A 为电极面积;c 为被测物质浓度。 从循环伏安图可获得氧化峰电流i pa 与还原峰电流i pc ,氧化峰电位ψpa 与还原峰电位ψpc 。 对于可逆体系,氧化峰电流i pa 与还原峰电流i pc 绝对值的比值。 i pa /i pc =1 氧化峰电位ψpa 与还原峰电位差ψpc : △ψ=ψpa -ψpc =2.2RT/nf≈0.058/n(V) 条件电位ψθ′ : ψθ′=(ψpa +ψpc )/2 在一定扫描速率下,从起始电位(-0.2 V )正向扫描到转折电位(+0.8 V )期间,溶液中 [Fe(CN)6]4-被氧化生成[Fe(CN)6]3-,产生氧化电流;当负向扫描从转折电位(+0.8 V )变到 原起始电位(-0.2 V )期间,在指示电极表面生成的[Fe(CN)6]3- 被还原生成[Fe(CN)6]4- ,产生还原电流。 为了使液相传质过程只受扩散控制,应在加入电解质和溶液处于静止下进行电解。实验前电极表面要处理干净。 [] [] 3466Fe(CN)Fe(CN)e - - -+=Red ox ' 0pa ln c c nF RT + =???c v AD n i 2/12/12/35p 1069.2?=

fpd检测器

书名:气相色谱检测方法(第二版)作者:吴烈钧编著 火焰光度检测器 第一节引言 火焰光度检测器(flame photometric detector,FPD)是利用富氢火焰使含硫,磷杂原子的有机物分解,形成激发态分子,当它们回到基态时,发射出一定波长的光。此光强度与被侧组分量成正比。所以它是以物质与光的相互关系为机理的检侧方法,属光度法。因它是分子激发后发射光,故它是光度法中的分子发射检测器。 1966年Brody和Chancy首次提出气相色谱FPD,称通用型FPD。它有易灭火等缺点。以后在气体的流路形式方面又作了改进。这些均属单火焰FPD(single flame photometric detector,简称SFPD)。为了克服SFPD的缺点,出现了双火焰光度检侧器(dual-flame photometric detector;简称DFPD)。近年又出现了脉冲火焰光度检侧器(pulsed-flame photometric detector;PFPD),使灵敏度和选择性均较SFPD, DFPD有很大提高,还扩大了检侧元素的范圈。 FPD是一种高灵敏度和高选择性的检测器,其主要特征是对硫为非线性响应,它是六个最常用的气相色谱检测器之一、主要用于含硫、磷化合物,特别是硫化物的痕量检测。近年也用于有机金属化合物或其他杂原子化合物的痕量检测。 第二节工作原理和响应机理 一、工作原理 图6-1为FPD系统示意图。它主要由二部分组成:火焰发光和光、电信号系统。 火焰发光部分由燃烧器(4)和发光室(2)组成,各气体流路和喷嘴等构成燃烧器,又称燃烧头。通用型喷嘴由内孔和环形的外孔组成。气相色谱柱流出物和空气混合后进入中心孔,过量氢从四周环形孔流出。这就形成了一个较大的扩散富氢火焰、烃类和硫、磷确化合物在火焰中分解,并产生复杂的化学反应,发出特征光。硫、磷在火焰上部扩散富氢焰中发光,烃类主要在火焰底部的富氧焰中发光,故在火焰底部加一不透明的遮光罩(3)挡住烃类光,可提高FPD的选择性。为了减小发光室的体积,可在喷嘴上方安一玻璃或石英管(1),以降低检测器的响应时间常数。 右为光、电信号部分,为了避免发光中产生的大量水蒸气,燃烧产物和高温对光、电系统的影响,用石英窗(5)和散热片(6)将发光室和光电系统隔开。因FPD不是将所有的光变成电信号,而是用滤光片(7)选择硫、磷特征光。图6-2为硫、磷和碳的相对光谱响应曲线,当硫化物进人火焰,.形成激发态的S2*分子,此分子回到基态发射出波长为320~480nm的光,

火焰光度计工作原理及操作方法

火焰光度计工作原理及操作方法 1、工作原理 火焰光度计是以发射光谱为基本原理的一种仪器,它利用火焰本身提供的热能,激发碱土金属中的部分原子,使这些原子吸收能量后跃迁至上一个能量级,这个被释放的能量具有特定的光谱特征,即一定的波长范围。例如,将食盐置于火焰中,火焰成黄色,就是因为钠原子在火焰中回落到正常能量级时所释放的能量的光谱是黄色的。人们常称之为火焰反应。不同碱金属在火焰中的颜色是不同的,配上不同的滤光片,就可以进行定性测试。而火焰的强度又正比与溶液中所含原子的浓度,这就构成了定量测定的基础。这个方法称为火焰光度法,这类仪器称为火焰光度计。 由于火焰温度不是很高,使被测原子释放的能量有限。同时,在燃烧过程中,有自吸、自浊现象存在,所以只有在低浓度范围中的测试才是线性的。 火焰光度计是一种相对测量的仪器,被测样品的浓度值是在同一测试条件下标准样品的浓度的相对值。所以,测试前必需首先制备一组相应的标准样品,然后进行标定操作,人工或通过仪器绘制曲线,最后才能对被测样品进行测试,得到其浓度值或其它需要的数据。 (3)打开液化气钢瓶上的开关按下燃气调节旋钮点火,点火应采用点动方法,即压下 2、标液配制: a.氧化钠标准储备液:称取9.4293±0.0001g预先经500~600℃灼烧半小时的氯化钠高纯试剂溶于水,移入1L的容量瓶中,用水稀释至标线,摇匀。储于塑料瓶中。此溶液5mg/ml; b.氧化钾标准储备液:称取1.5829±0.0001g预先经500~600℃灼烧半小时的氯化钾高纯试剂溶于水,移入1L的容量瓶中,用水稀释至标线,摇匀。储于塑料瓶中。此溶液1mg/ml; c.氧化钠和氧化钾混合标准溶液:分别取50.00ml氧化钠标准储备液和25.00ml氧化钾标准储备液于500ml容量瓶中,用水稀释至标线,摇匀。储于塑料瓶中。此液0.5mg/ml氧化钠和0.05mg/ml氧化钾;

实验报告-循环伏安法测定亚铁氰化钾

循环伏安法测定亚铁氰化钾 实验目的 (1) 学习固体电极表面的处理方法; (2) 掌握循环伏安仪的使用技术; (3) 了解扫描速率和浓度对循环伏安图的影响 实验原理 铁氰化钾离子[Fe(CN)6]3--亚铁氰化钾离子[Fe(CN)6]4-氧化还原电对的标准电极电位为 [Fe(CN)6]3- + e -= [Fe(CN)6]4- φθ= 0.36V(vs.NHE) 电极电位与电极表面活度的Nernst 方程式为 φ=φθ+ RT/Fln(C Ox /C Red ) -0.2 0.00.20.4 0.60.8 -0.0005 -0.0004-0.0003-0.0002-0.00010.0000 0.00010.00020.0003i pa i pc I /m A E /V vs.Hg 2Cl 2/Hg,Cl - 起始电位:(-0.20V) 终止电位:(0.80 V) 溶液中的溶解氧具有电活性,用通入惰性气体除去。 仪器与试剂 MEC-16多功能电化学分析仪(配有电脑机打印机);金电极;铂丝电极;饱和甘汞电极; 容量瓶:250 mL 、100mL 各2个,25 mL 7个。 移液管:2、5、10mL 、20mL 各一支。 NaCl 溶液、K 4[Fe(CN)6]、、Al 2O 3粉末(粒径0.05 μm ) 实验步骤

1、指示电极的预处理 金电极用金相砂纸细心打磨,超声波超声清洗,蒸馏水冲洗备用。 2、溶液的配制 配制0.20 mol/L NaCl溶液250mL,再用此溶液配制0.10 mol/L的K4[Fe(CN)6]溶液100mL备用。 3、支持电解质的循环伏安图 在电解池中,放入25mL 0.2 mol·L-1 NaCl溶液,插入电极,以新处理的铂电极为工作电极,铂丝电极为辅助电极,饱和甘汞电极为参比电极,进行循环伏安仪设定,扫描速率为0.1V/s;起始电位为-0.20V,终止电位为0.80V。开始循环伏安扫描. 4、K4 [Fe(CN)6]溶液的循环伏安图 在-0.20至0.80V电位范围内,以0.1V/s的扫描速度分别作0.01 mol·L-1、0.02 mol·L-1、0.04 mol·L-1、0.06 mol·L-1、0.08 mol·L-1的K4 [Fe(CN)6]溶液(均含支持电解质NaCl浓度为0.20mol·L-1)循环伏安图 5、不同扫描速率K4 [Fe(CN)6]溶液的循环伏安图 在0.08 mol·L-1 K4 [Fe(CN)6]溶液中,以0.1V/s、0.15 V/s、0.2V/s、0.25 V/s、0.3V/s、0.35V/s,在-0.20至0.80V电位范围内扫描,做循环伏安图 数据处理 1、从K4[Fe(CN)6]溶液的循环伏安图,测量i pa、i pc值。 -1;起始电位为-0.20V,终止电位为0.80V) 2、分别以i pa和i pc对K4[Fe(CN)6]溶液浓度c作图,说明峰电流与浓度的关系。

铁氰化钾循环伏安法有关性质的测定

实验五铁氰化钾循环伏安法有关性质的测定 一. 实验目的 掌握循环伏安法(CV)基本操作;了解可逆电化学过程及条件电极电位的测定;获得峰电流随电位扫描速度的变化曲线,获得峰电流随溶液浓度的变化函数关系;并学会电化学工作站仪器的使用。 二. 循环伏安法原理 电化学中随着氧化还原反应的进行,会导致电流和电位的变化。其中根据公式峰电流与电位扫描速度的1/2次方、溶液浓度成正比。对于循环伏安法,扫描图像中前半部扫描(电压上升部分)为去极化剂在电极上被还原的阴极过程,则后半部扫描(电压下降部分)为还原产物重新被氧化的阳极过程。因此.一次三角波扫描完成一个还原过程和氧化过程的循环,故称为循环伏安法。 三. 实验仪器和药品 铁氰化钾溶液、氯化钾溶液、铝粉、四个25ml容量瓶、电化学工作站,银电极,铂碳电极,银丝电极 四. 实验步骤 打开电脑并将仪器预热20分钟,打开电化学工作站操作界面。将铁氰化钾标准 的循环伏安曲线,看电位差的大小;超过100mv则用粗细的铝粉抛光铂碳电极,使得电位差在70--80以下;确定各参量:起始电位在0.5V左右,扫速为10、20、40、80、160mv/s,灵敏度为10-5--10-6,以标准铁氰化钾溶液测定不同扫速下的伏安曲线,测定并保存;配制4组不同浓度的铁氰化钾溶液:0.1、0.2、0.5、1.0ml 的铁氰化钾标准溶液于容量瓶中,在加入5ml氯化钾溶液,定容;控制参量:扫速为80,每个浓度6段三次扫描,依次对四组溶液测定伏安曲线,导出实验数据和曲线。 五.数据处理 实验参数设定:打磨后电位差为81mv左右,比较合理。 亚铁氰化钾溶液的条件电极电位:

实验名称:火焰光度法测定污水中的钾、钠教案

实验名称:火焰光度法测定污水中的钾、钠 一、教学目的: 1、加深对火焰光度法原理的理解; 2、掌握火焰光度法测定钾、钠的方法; 3、了解火焰光度计的主要组成部分的作用、学习火焰光度计 的使用。 二、教学内容: (一)实验原理: 用火焰进行激发并以光电检测系统来测量被激发元素辐射强度,进而求出该元素含量的分析方法,称为火焰光度法。火焰光度计属于原子发射光谱的范畴。元素发射的谱线强度随该元素含量的变化而变化,谱线强度可由下列经验公式来表示:I=aC b 式中:I-谱线强度;C-元素的含量;a-常数,与元素的激发电位、激发温度、试样组成、仪器类型有关;b-自吸系数,其值为与谱的自吸情况有关。浓度很低时计为1,即I=aC。 钾、钠、钙等碱土金属及碱土金属的激发电位较低,可在火焰中被激发,可采用测谱线绝对强度的方法进行定量分析。 用火焰光度法进行分析时,可采用标准加入法和标准曲线法,本实验采用标准曲线法,即先测定不同浓度的钠、钾标准溶液的谱线强度,将浓度对强度作图作出标准曲线,再测定未知水样中的钠或钾谱线强度,从标准曲线上可求出其含量。 (二)实验仪器及试剂: 6400-A型火焰光度计;含铝为10mg/mL的三氯化铝溶液;1∶1的盐酸;氯化钠;氯化钾。 (三)实验步骤: 1、标准系列的配制: (1)钾、钠混合标准溶液(钾:200μg/mL;钠:1mg/mL):迅速称取A.R并己烘干的氯化钾0.1097克,溶于水后,移入500mL的容量瓶中,迅速称取A.R并己烘干的氯化钠1.2711克,溶于水后,移入同一容量瓶中摇匀。

(2)标准系列的配制:吸收上述标准溶液1、2、3、4、5mL 于5个100mL容量瓶中,加入10mL三氯化铝,用蒸馏水定容到刻度。 2、样品处理: 取100mL的污水,加入5mL1∶1的盐酸酸化,煮沸除去二氯化碳,将体积浓缩至80mL左右,冷却,移入100mL容量瓶中,加入10mL三氯化铝溶液,用水稀释至刻度。 3、待测液的测定 (1)将仪器电源打开,开空压机,空气压力为0.1kg/cm2,打开液化气开关,点燃火焰,调整火焰高度为3-5cm,预热燃烧20分钟。 (2)用蒸馏水调节使指示器指于“0”,然后用中间浓度的标准溶液调节指示器达于“50”左右处,反复校正二次以上,就可将标准溶液由低浓度向高浓度逐个测试,标准系列测定完后,即可进行样品待测液的测定。记录下标准系列和待测样品的读数。 (四)结果处理: 以标准系列的浓度为横坐标,相应的检流计光点偏转格数为纵坐标,分别作出钾、钠的标准曲线,根据测定水样时,检流计光点偏转的格数,在标准曲线上查出水样中的钾、钠的浓度。 (五)思考与讨论: 1、火焰光度分析的原理是什么?火焰光度分析与摄谱法分析有何异、同处? 2、火焰光度分析中,为什么要采用滤光片滤光?

GC126-FPD火焰光度检测器使用说明书

1 GC126-FPD火焰光度检测器 1.1引言 1.1.1 GC126-FPD火焰光度检测器概述 GC126-FPD火焰光度检测器是GC126气相色谱仪中选配的特种检测器之一,是专门用于检测含磷化物及含硫化物;是一种高选择性及高灵敏度的检测器。它只对含磷化物、硫化物有响应,而其它元素对它无干扰或干扰很小,因此这种检测器可以应用在石油化工中的含硫化物的微量检测。特别是自然界生物体内含磷、含硫化合物很多,新合成有机磷化物、硫化物、农药中的大量杀虫剂、杀菌剂都是含磷、含硫的有机化合物,而这些农药的残留量测定必须依赖于对磷、硫有高灵敏度及高选择性的火焰光度检测器(特别是对硫化物唯有采用火焰光度检测器测定)。 故火焰光度检测器可以广泛应用在生物、农业、环保、化工、医药、食品等行业的质量检验。 GC126-FPD火焰光度检测器有两个单元所组成,其一是火焰光度控制器包括微电流放大器和负高压稳压输出;其二是火焰光度检测器。本使用说明书仅对GC126-FPD火焰光度检测器的结构原理、操作方法和仪器保养、检修作较详细的说明。 1.1.2 GC126-FPD火焰光度检测器基本参数 1.1. 2.1 技术指标 检测限:对磷:Dt≤2×10-11g/s(p)(甲基对硫磷) 对硫:Dt≤1×10-10g/s(s)(甲基对硫磷) 基线噪声:≤10μV P;108;衰减1/32 (1mV量程) S;108;衰减1/8 (1mV量程) 基线漂移:≤30μV/30min 线性范围:对磷:103 对硫:102 启动时间:检测器开机≤2h应能正常工作。

1.1. 2.2 检测器使用要求 电源电压:220V±22V,50Hz±0.5Hz 功率:≤100W 环境温度:+5℃~35℃ 相对湿度:≤85% 环境条件:检测器安装室内应没有腐蚀性气体及不致使电子器件的放大器、色谱数据处理机及色谱工作站正常工作的电场和电磁场存在,检 测器安装后工作台应稳固,不能有振动,以免影响检测器正常工 作。在接氢气瓶或氢发生器的室内2m内不得有火种存在或发火 装置的可能性。 1.1. 2.3 外形体积 510mm(长)×370mm(宽)×200mm(高) 1.1. 2.4 重量 1kg(该重量是指本检测器所带附件及备件经包装后的重量参考值)。 1.1. 2.5 检测器成套性 GC126-FPD火焰光度检测器一台 附件、备件清单、合格证、说明书与检测器同装纸箱。 1.1.3 开箱与验收 收到仪器后,应该校对检测器型号与选购的检测器订单是否相符合。同时开箱检查仪器在运输过程中是否有损坏,若有明显损坏现象应立即与本厂质量检验科联系酌情处理。检测器自用户购买日起14个月内,厂方免费为用户进行非用户人为所至的故障修理。

火焰光度计标准操作规程

目的:建立FP6410火焰光度计标准操作规程,规范检验人员的操作。 范围:本规程适用于本公司FP6410火焰光度计的操作。 职责:QC检验人员按本规程实施操作,QC负责人监督本规程的执行。 内容: 1操作步骤 1.1 在正式测试前,正确的选择仪器上的浓度开关、空气压力、燃气压力等参数,进行设置。 1.2 打开主机电源开关,打开空气压缩机电源开关,将进样毛细管放入蒸馏水中。 1.3打开液化气钢瓶开关,执行点火操作。 1.4按“确认”键,进入初始菜单,选择元素、单位和校正方法。 1.5选“标定”,按“确认”键进入“标定菜单”。 1.6在“标定菜单”中,输入序号,选“标定”,按“确认”进入数据输入屏幕,按确定的格式设置标准数据输入,检查无误后,按“确认”键。以此类推,输入所有标样序号的数据。 1.7在点火预热25分钟后,在确信用最高浓度的标准溶液进样时,模拟量不会溢出(即模拟量不超过1000)的前提下,用标准溶液逐个进样,得到标准曲线。 1.8在“标定菜单”中选择“测试”,按“确认”键进入样品测试操作,按序号依次进样,待数据稳定,选“确定”,按“确认”存储数据。 1.9检查数据,按标定操作重做结果有疑问的样品。测试完成(按实际扩大或缩小)计算结果。 1.10关机前,在燃烧状态下用蒸馏水清洗5分钟,然后先关液化气钢瓶开关,再关主机电源开关及空气压缩机电源开关。 1.11 清洁仪器和工作台,填写仪器使用记录。

2.注意事项 2.1燃气和助燃气(空气)必须是干燥的,纯净而没有污染的,不要在湿度很高、粉尘很多的环境中使用仪器。 2.2仪器与钢瓶周围不能摆放易燃易爆物品。实验环境必须通风良好,有条件的地方可设置强制排气装置或在通风橱中操作仪器仪器。 2.3必须使用稳定的220V的电源电压,工作环境附近不能有功率较大、频率启动的电气设备。接地线必须可靠接地,不能用零线代替接地线。 2.4操作过程中,燃烧室与烟囱罩都是非常烫的,不能将身体凑近或者用手触摸这些地方,也不要从上而下张望。 2.5从废液杯里流出的排放液要集中收集,适当处理,不要随意处置。 2.6定期保养清洗雾化室、燃烧头。雾化室清洗后前盖板上喷射器的安装螺母一定要反复拧紧;碰撞球与喷口的间隙要重新仔细调整。如果做了高盐样品测试,蒸馏水喷烧的时间要适当延长。 2.7一些表面张力较大的样品,需要加入适量的表面活性剂,同时注意在样品标准空白中加入的量要相同。 2.8 标准测试液必须精确配置。长期保存时,请注意保存条件,并要加入适当的抑菌剂。任何样品不能存放在钠玻璃的器皿中。 2.9 样品中不能含有颗粒状物质,最好过滤后使用。操作中经常注意液面高度,使塑料毛细管只吸取上层溶液。

相关主题
文本预览
相关文档 最新文档