当前位置:文档之家› 大总结L298N的详细资料驱动直流电机和步进电机

大总结L298N的详细资料驱动直流电机和步进电机

大总结L298N的详细资料驱动直流电机和步进电机
大总结L298N的详细资料驱动直流电机和步进电机

大总结

L298N的详细资料驱动直流电机和步进电机

电机驱动电路;电机转速控制电路(PWM信号)

主要采用L298N,通过单片机的I/O输入改变芯片控制端的电平,即可以对电机进行正反转,停止的操作,输入引脚与输出引脚的逻辑关系图为

驱动原理图

--------------------------------------------------------

L298N电机驱动模块图???

实物图??

原理图???

各种电机实物接线图???

各种电机原理图???

模块接口说明???

L298N电机驱动模块图

实物图

正面背面

原理图

各种电机实物接线图

直流电机实物接线图

4相步进电机实物接线图

3相步进电机实物接线图

1.4各种电机原理图

直流电机原理图步进电机原理图

模块接口说明

+5V:芯片电压5V。

VCC:电机电压,最大可接50V。

GND:共地接法。

A-~D-:输出端,接电机。

A~D+ :为步进电机公共端,模块上接了VCC。

EN1、EN2:高电平有效,EN1、EN2分别为 IN1和IN2、IN3和IN4的使能端。

IN1~ IN4:输入端,输入端电平和输出端电平是对应的。

我正在用L298N驱动我的小车的两个直流减速电机,其实它很好用,

1和15和8引脚直接接地,

4管脚VS接到46的电压,它是用来驱动电机的,

9引脚是用来接到7V的电压的,它是用来驱动L298芯片的,

记住,L298需要从外部接两个电压,一个是给电机的,另一个给L298芯片的

6和11引脚是它的使能端,一个使能端控制一个电机,至于那个控制那个你自己焊接,你可以把它理解为总开关,只有当它们都是高电平的时候两个电机才有可能工作,

5,7,10,12是298的信号输入端和单片机的IO口相连,

2,3,13,14是输出端,

输入5和7控制输出2和3, 输入的10,12控制输出的13,14

L298N型驱动器的原理及应用

L298N是SGS公司的产品,内部包含4通道逻辑驱动电路。是一种二相和四相电机的专用驱动器,即内含二个H桥的高电压大电流双全桥式驱动器,接收标准TTL逻辑电平信号,可驱动46V、2A以下的电机。其引脚排列如图1中U4所示,1脚和15脚可单独引出连接电流采样电

阻器,形成电流传感信

L298N的恒压恒流桥式2A驱动芯片L298N说明及应用

L298是SGS公司的产品,比较常见的是15脚Multiwatt封装的L298N,内部同样包含4通道逻辑驱动电路。可以方便的驱动两个直流电机,或一个两相步进电机。L298N芯片可以驱动两个二相电机,也可以驱动一个四相电机,输出电压最高可达50V,可以直接通过电源来调节输出电压;可以直接用单片机的IO口提供信号;而且电路简单,使用比较方便。L298N 可接受标准TTL逻辑电平信号V SS,V SS可接4.5~7 V电压。4脚VS接电源电压,VS电压范围VIH为+2.5~46 V。输出电流可达2.5 A,可驱动电感性负载。1脚和15脚下管的发射极分别单独引出以便接入电流采样电阻,形成电流传感信号。L298可驱动2个电动机,OUT1,OUT2和OUT3,OUT4之间可分别接电动机,本实验装置我们选用驱动一台电动机。5,7,10,12脚接输入控制电平,控制电机的正反转。EnA,EnB接控制使能端,控制电机的停转。表1是L298N功能逻辑图。

In3,In4的逻辑图与表1相同。由表1可知EnA为低电平时,输入电平对电机控制起作用,当EnA为高电平,输入电平为一高一低,电机正或反转。同为低电平电机停止,同为高电平电机刹停。

L298N控制器原理如下:图3是控制器原理图,由3个虚线框图组成。

下面是3个虚线框图功能:

(1)虚线框图1控制电机正反转,U1A,U2A是比较器,VI来自炉体压强传感器的电压。当VI>VRBF1时,U1A输出高电平,U2A输出高电平经反相器变为低电平,电机正转。同理VI <VRBF1时,电机反转。电机正反转可控制抽气机抽出气体的流量,从而改变炉体压强。(2)虚线框图2中,U3A,U4A两个比较器组成双限比较器,当VB<VI<VA时输出低电平,当VI>VA,VI<VB时输出高电平。VA,VB是由炉体压强转感器转换电压的上下限,即反应炉体压强控制范围。根据工艺要求,我们可自行规定VA,VB的值,只要炉体压强在VA,VB 所确定范围之间电机停转(注意VB<VRBF1<VA,如果不在这个范围内,系统不稳定)。(3)虚线框图3是一个长延时电路。U5A是一个比较器,Rs1是采样电阻,VRBF2是电机过流电压。Rs1上电压大于VREF2,电机过流,U5A输出低电平。由上面可知,框图1控制电机正反转,框图2控制炉体压强的纹波大小。当炉体压强太小或太大时,电动机转到两端固定位置停止,根据直流电机稳态运行方程[3]:

U=CeФN+RaIa

其中:Ф为电机每极磁通量;Ce为电动势常数; N为电机转数; Ia为电枢电流;

Ra电枢回路电阻。

电机转数N为0,电机的电流急剧增加,时间过长将会使电机烧坏。但电机起动时,电机中线圈中的电流也急剧变大,因此我们必须把这两种状态分开。长延时电路可把这两种状态区分出来。长延时电路工作原理:当Rs1过流U5A产生一个负脉冲经过微分后,脉冲触发555的2脚,电路置位,3脚输出高电平,由于放电端7脚开路,C1,R5及U6A组成积分器开始积分,电容C1上的充电电压线性上升,延时运放积分常数为100R5C1。当C1上充电电压,即6脚电压超过2/3 VCC,555电路复位,输出低电平。电机启动时间一般小于0.8 s,C1充电时间一般为0.8~1 s。U5A输出电平与555的3脚输出电平经U7相或,如果U5A 输出低电平大于C1充电时间,U7在C1充电后输出低电平由与门U8输入到L298N的6脚ENA 端使电机停止。如果U5A的输出电平小于C1充电时间,6脚不动作电机的正常启动。长延时电路吸收电机启动过流电压波形,从而使电机正常启动。

下图是其引脚图:

1、15脚是输出电流反馈引脚,其它与L293相同。

在通常使用中这两个引脚也可以直接接地。上图是其与51单片机连接的电路图。

--------------------------------------------------------------------

L298应用实例

实例一:用L298驱动两台直流减速电机的电路。引脚6,9可用于PWM控制。如果机器人项目只要求直行前进,则可将5,10和7,12两对引脚分别接高电平和低电平,仅用单片机的两个端口给出PWM信号控制6,11即可实现直行、转弯、加减速等动作。

实例二:用L298实现二相步进电机控制。

步进电机原理及其使用说明

一、前言

步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。

虽然步进电机已被广泛地应用,但步进电机并不能象普通的直流电机,交流电机在常规下使用。它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等许多专业知识。

目前,生产步进电机的厂家的确不少,但具有专业技术人员,能够自行开发,研制的厂家却非常少,大部分的厂家只一、二十人,连最基本的设备都没有。仅仅处于一种盲目的仿制阶段。这就给用户在产品选型、使用中造成许多麻烦。签于上述情况,我们决定以广泛的感应子式步进电机为例。叙述其基本工作原理。望能对广大用户在选型、使用、及整机改进时有所帮助。

二、感应子式步进电机工作原理

(一)反应式步进电机原理

由于反应式步进电机工作原理比较简单。下面先叙述三相反应式步进电机原理。

1、结构:

电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。0、1/3て、2/3て,(相邻两转子齿轴线间的距离为齿距以て表示),即A与齿1相对齐,B与齿2向右错开1/3て,C与齿3向右错开2/3て,A'与齿5相对齐,(A'就是A,齿5就是齿1)下面是定转子的展开图:

2、旋转:

如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何力以下均同)。

如B相通电,A,C相不通电时,齿2应与B对齐,此时转子向右移过1/3て,此时齿3与C偏移为1/3て,齿4与A偏移(て-1/3て)=2/3て。

如C相通电,A,B相不通电,齿3应与C对齐,此时转子又向右移过1/3て,此时齿4与A偏移为1/3て对齐。

如A相通电,B,C相不通电,齿4与A对齐,转子又向右移过1/3て。

这样经过A、B、C、A分别通电状态,齿4(即齿1前一齿)移到A相,电机转子向右转过一个齿距,如果不断地按A,B,C,A……通电,电机就每步(每脉冲)1/3て,向右旋转。如按A,C,B,A……通电,电机就反转。

由此可见:电机的位置和速度由导电次数(脉冲数)和频率成一一对应关系。而方向由导电顺序决定。

不过,出于对力矩、平稳、噪音及减少角度等方面考虑。往往采用A-AB-B-BC-C-CA-A 这种导电状态,这样将原来每步1/3て改变为1/6て。甚至于通过二相电流不同的组合,使其1/3て变为1/12て,1/24て,这就是电机细分驱动的基本理论依据。

不难推出:电机定子上有m相励磁绕阻,其轴线分别与转子齿轴线偏移1/m,2/m……(m-1)/m,1。并且导电按一定的相序电机就能正反转被控制——这是步进电机旋转的物理条件。只要符合这一条件我们理论上可以制造任何相的步进电机,出于成本等多方面考虑,市场上一般以二、三、四、五相为多。

3、力矩:

电机一旦通电,在定转子间将产生磁场(磁通量Ф)当转子与定子错开一定角度产生力F与(dФ/dθ)成正比

其磁通量Ф=Br*S ;Br为磁密;S为导磁面积; F与L*D*Br成正比;L为铁芯有效长度;D为转子直径;Br=N·I/RN·I为励磁绕阻安匝数(电流乘匝数)R为磁阻。

力矩=力*半径力矩与电机有效体积*安匝数*磁密成正比(只考虑线性状态)

因此,电机有效体积越大,励磁安匝数越大,定转子间气隙越小,电机力矩越大,反之亦然。

(二)感应子式步进电机

1、特点:

感应子式步进电机与传统的反应式步进电机相比,结构上转子加有永磁体,以提供软磁材料的工作点,而定子激磁只需提供变化的磁场而不必提供磁材料工作点的耗能,因此该电机效率高,电流小,发热低。因永磁体的存在,该电机具有较强的反电势,其自身阻尼作用比较好,使其在运转过程中比较平稳、噪音低、低频振动小。

感应子式步进电机某种程度上可以看作是低速同步电机。一个四相电机可以作四相运行,也可以作二相运行。(必须采用双极电压驱动),而反应式电机则不能如此。例如:四相,八相运行(A-AB-B-BC-C-CD-D-DA-A)完全可以采用二相八拍运行方式.不难发现其条件为C=,D=。

一个二相电机的内部绕组与四相电机完全一致,小功率电机一般直接接为二相,而功率大一点的电机,为了方便使用,灵活改变电机的动态特点,往往将其外部接线为八根引线(四相),这样使用时,既可以作四相电机使用,可以作二相电机绕组串联或并联使用。

2、分类

感应子式步进电机以相数可分为:二相电机、三相电机、四相电机、五相电机等。以机座号(电机外径)可分为:42BYG(BYG为感应子式步进电机代号)、57BYG、86BYG、110BYG、(国际标准),而像70BYG、90BYG、130BYG等均为国内标准。

3、步进电机的静态指标术语

相数:产生不同对极N、S磁场的激磁线圈对数,常用m表示。

拍数:完成一个磁场周期性变化所需脉冲数或导电状态用n表示,或指电机转过一个齿距角所需脉冲数,以四相电机为例,有四相四拍运行方式即AB-BC-CD-DA-AB,四相八拍运行方式即 A-AB-B-BC-C-CD-D-DA-A。

步距角:对应一个脉冲信号,电机转子转过的角位移用θ表示。θ=360度(转子齿数J*运行拍数),以常规二、四相,转子齿为50齿电机为例。四拍运行时步距角为θ=360度/(50*4)=度(俗称整步),八拍运行时步距角为θ=360度/(50*8)=度(俗称半步)。

定位转矩:电机在不通电状态下,电机转子自身的锁定力矩(由磁场齿形的谐波以及机械误差造成的)

静转矩:电机在额定静态电作用下,电机不作旋转运动时,电机转轴的锁定力矩。此力矩是衡量电机体积(几何尺寸)的标准,与驱动电压及驱动电源等无关。

虽然静转矩与电磁激磁安匝数成正比,与定齿转子间的气隙有关,但过份采用减小气隙,增加激磁安匝来提高静力矩是不可取的,这样会造成电机的发热及机械噪音。

4、步进电机动态指标及术语

1、步距角精度:步进电机每转过一个步距角的实际值与理论值的误差。用百分比表示:误差/步距角*100%。不同运行拍数其值不同,四拍运行时应在5%之内,八拍运行时应在15%以内。

2、失步:电机运转时运转的步数,不等于理论上的步数。称之为失步。

3、失调角:转子齿轴线偏移定子齿轴线的角度,电机运转必存在失调角,由失调角产生的误差,采用细分驱动是不能解决的。

4、最大空载起动频率:电机在某种驱动形式、电压及额定电流下,在不加负载的情况下,能够直接起动的最大频率。

5、最大空载的运行频率:电机在某种驱动形式,电压及额定电流下,电机不带负载的最高转速频率。

6、运行矩频特性:电机在某种测试条件下测得运行中输出力矩与频率关系的曲线称为运行矩频特性,这是电机诸多动态曲线中最重要的,也是电机选择的根本依据。如下图所示:

其它特性还有惯频特性、起动频率特性。

电机一旦选定,电机的静力矩确定,而动态力矩却不然,电机的动态力矩取决于电机运行时的平均电流(而非静态电流),平均电流越大,电机输出力矩越大,即电机的频率特性越硬。

如下图所示:

其中,曲线3电流最大、或电压最高;曲线1电流最小、或电压最低,曲线与负载的交点为负载的最大速度点。

要使平均电流大,尽可能提高驱动电压,使采用小电感大电流的电机。

7、电机的共振点:步进电机均有固定的共振区域,二、四相感应子式步进电机的共振区一般在180-250pps之间(步距角度)或在400pps左右(步距角为度),电机驱动电压越高,电机电流越大,负载越轻,电机体积越小,则共振区向上偏移,反之亦然,为使电机输出电矩大,不失步和整个系统的噪音降低,一般工作点均应偏移共振区较多。

8、电机正反转控制:当电机绕组通电时序为AB-BC-CD-DA或()时为正转,通电时序为DA-CA-BC-AB或()时为反转。

三、驱动控制系统组成

使用、控制步进电机必须由环形脉冲,功率放大等组成的控制系统,其方框图如下:

1、脉冲信号的产生

脉冲信号一般由单片机或CPU产生,一般脉冲信号的占空比为左右,电机转速越高,占空比则越大.

2、信号分配

我厂生产的感应子式步进电机以二、四相电机为主,二相电机工作方式有二相四拍和二相八拍二种,具体分配如下:二相四拍为,步距角为度;二相八拍为,步距角为度。四相电机工作方式也有二种,四相四拍为AB-BC-CD-DA-AB,步距角为度;四相八拍为AB-B-BC-C-CD-D-AB,(步距角为度)。

3、功率放大功率放大是驱动系统最为重要的部分。步进电机在一定转速下的转矩取决于它的动态平均电流而非静态电流(而样本上的电流均为静态电流)。平均电流越大电机力矩越大,要达到平均电流大这就需要驱动系统尽量克服电机的反电势。因而不同的场合采取不同

的的驱动方式,到目前为止,驱动方式一般有以下几种:恒压、恒压串电阻、高低压驱动、恒流、细分数等。为尽量提高电机的动态性能,将信号分配、功率放大组成步进电机的驱动电源。我厂生产的SH系列二相恒流斩波驱动电源与单片机及电机接线图如下:

说明:

CP 接CPU脉冲信号(负信号,低电平有效)

OPTO 接CPU+5V

FREE 脱机,与CPU地线相接,驱动电源不工作

DIR 方向控制,与CPU地线相接,电机反转

VCC 直流电源正端

GND 直流电源负端

A 接电机引出线红线

接电机引出线绿线

B 接电机引出线黄线

接电机引出线蓝线

步进电机一经定型,其性能取决于电机的驱动电源。步进电机转速越高,力距越大则要求电机的电流越大,驱动电源的电压越高。电压对力矩影响如下:

4、细分驱动器

在步进电机步距角不能满足使用的条件下,可采用细分驱动器来驱动步进电机,细分驱动器的原理是通过改变相邻(A,B)电流的大小,以改变合成磁场的夹角来控制步进电机运转的。

四、步进电机的应用

(一)步进电机的选择

步进电机有步距角(涉及到相数)、静转矩、及电流三大要素组成。一旦三大要素确定,步进电机的型号便确定下来了。

1、步距角的选择

电机的步距角取决于负载精度的要求,将负载的最小分辨率(当量)换算到电机轴上,每个当量电机应走多少角度(包括减速)。电机的步距角应等于或小于此角度。目前市场上步进电机的步距角一般有度/度(五相电机)、度/度(二、四相电机)、度/3度(三相电机)等。

2、静力矩的选择

步进电机的动态力矩一下子很难确定,我们往往先确定电机的静力矩。静力矩选择的依据是电机工作的负载,而负载可分为惯性负载和摩擦负载二种。单一的惯性负载和单一的摩擦负载是不存在的。直接起动时(一般由低速)时二种负载均要考虑,加速起动时主要考虑惯性负载,恒速运行进只要考虑摩擦负载。一般情况下,静力矩应为摩擦负载的2-3倍内好,静力矩一旦选定,电机的机座及长度便能确定下来(几何尺寸)

3、电流的选择

静力矩一样的电机,由于电流参数不同,其运行特性差别很大,可依据矩频特性曲线图,判断电机的电流(参考驱动电源、及驱动电压)

综上所述选择电机一般应遵循以下步骤:

4、力矩与功率换算

步进电机一般在较大范围内调速使用、其功率是变化的,一般只用力矩来衡量,力矩与功率

换算如下:

P= Ω·M Ω=2π·n/60 P=2πnM/60

其P为功率单位为瓦,Ω为每秒角速度,单位为弧度,n为每分钟转速,M为力矩单位为牛顿·米

P=2πfM/400(半步工作)

其中f为每秒脉冲数(简称PPS)

(二)、应用中的注意点

1、步进电机应用于低速场合---每分钟转速不超过1000转,(度时6666PPS),最好在1000-3000PPS度)间使用,可通过减速装置使其在此间工作,此时电机工作效率高,噪音低。

2、步进电机最好不使用整步状态,整步状态时振动大。

3、由于历史原因,只有标称为12V电压的电机使用12V外,其他电机的电压值不是驱动电压伏值,可根据驱动器选择驱动电压(建议:57BYG采用直流24V-36V,86BYG采用直流50V,110BYG采用高于直流80V),当然12伏的电压除12V恒压驱动外也可以采用其他驱动电源,不过要考虑温升。

4、转动惯量大的负载应选择大机座号电机。

5、电机在较高速或大惯量负载时,一般不在工作速度起动,而采用逐渐升频提速,一电机不失步,二可以减少噪音同时可以提高停止的定位精度。

6、高精度时,应通过机械减速、提高电机速度,或采用高细分数的驱动器来解决,也可以采用5相电机,不过其整个系统的价格较贵,生产厂家少,其被淘汰的说法是外行话。

延时电路工作原理:当Rs1过流U5A产生一个负脉冲经过微分后,脉冲触发555的2脚,电路置位,3脚输出高电平,由于放电

步进电机控制原理

步进电机是数字控制电机,它将脉冲信号转变成角位移,即给一个脉冲信号,步进电机就转动一个角度,因此非常适合于单片机控制。步进电机可分为反应式步进电机(简称VR)、永磁式步进电机(简称PM)和混合式步进电机(简称HB)。

步进电机区别于其他控制电机的最大特点是,它是通过输入脉冲信号来进行控制的,即电机的总转动角度由输入脉冲数决定,而电机的转速由脉冲信号频率决定。

步进电机的驱动电路根据控制信号工作,控制信号由单片机产生。其基本原理作用如下:(1)控制换相顺序

通电换相这一过程称为脉冲分配。例如:三相步进电机的三拍工作方式,其各相通电顺序为A-B-C-D,通电控制脉冲必须严格按照这一顺序分别控制A,B,C,D相的通断。

(2)控制步进电机的转向

如果给定工作方式正序换相通电,步进电机正转,如果按反序通电换相,则电机就反转。(3)控制步进电机的速度

如果给步进电机发一个控制脉冲,它就转一步,再发一个脉冲,它会再转一步。两个脉冲的间隔越短,步进电机就转得越快。调整单片机发出的脉冲频率,就可以对步进电机进行调速。L298N直流电机\步进电机两用驱动器

驱动器尺寸:宽42mm、长78mm、最大高度23mm

主要元件:恒压恒流桥式2A驱动芯片L298N、光电耦合器TLP521-4

工作电压方式:直流

工作电压:信号端 4~6V、控制端 5~36V

调速方式:直流电动机采用PWM信号平滑调速。

特点:

1、可实现电机正反转及调速。

2、启动性能好,启动转矩大。

3、工作电压可达到36V,4A。

4、可同时驱动两台直流电机。

5、适合应用于机器人设计及智能小车的设计中。

实例一:用L298驱动两台直流减速电机的电路。引脚A,B可用于PWM控制。如果机器人项目只要求直行前进,则可将IN1,IN2和IN3,IN4两对引脚分别接高电平和低电平,仅用单片机的两个端口给出PWM信号控制A,B即可实现直行、转弯、加减速等动作。

实例二:用L298实现二相步进电机控制。将IN1,IN2和IN3,IN4两对引脚分别接入单片机的某个端口,输出连续的脉冲信号。信号的快慢决定了电机的转速。改变绕组脉冲信号的顺序即可实现正反转。

步进电机及其驱动系统简介中英文翻译

步进电机及其驱动系统简介中英文翻译Step characteristics for machine for angular displacement for entering the electrical engineering is first kind will give or get an electric shocking the pulse signal conversion cowgirl or line potential moving battery carry outing a piece, having the fast stopping, accurate step entering and directly accepting the arithmetic figure measuring, because of but got the extensive application.Such as in the drafting machine, print the machine and optical instrument inside, and all adopt the inside of a place control system for entering the electrical engineering to positioning to paint the pen print head or optical prinipal, especially indrstry process the type control, and move to spread to feel the to can immediately attain the precision fixed position because of its precision and need not potential, and control the technique along with the calculator of continuously deveolp, applied to would be more and more extensive. Control and can is divided into the simple control sum the complicacy to control to motor two kind.The simple control points to proceeds to start to motor, the system move, positive and negative revolution and sequential https://www.doczj.com/doc/4b3706538.html,plicacy the control point to the motor's revolving speed, screw angle, turning moment, tension, electric current etc. physics quantisty progress control.Control technique that the

实用的步进电机驱动电路图

实用的步进电机驱动电路(图) 概述 步进电机是一种将电脉冲转化为角位移的执行机构,可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。 目前,对步进电机的控制主要有由分散器件组成的环形脉冲分配器、软件环形脉冲分配器、专用集成芯片环形脉冲分配器等。本设计选用第三种方案,用PMM8713三相或四相步进电机的脉冲分配器、SI-7300A 两相或四相功率驱动器,组成四相步进电机功率驱动电路,以提高集成度和可靠性,步进电机控制框图见图1。 图1 步进电机控制系统框图 硬件简介 ● PMM8713原理框图及功能 PMM8713是日本三洋电机公司生产的步进电机脉冲分配器,适用于控制三相或四相步进电机。控制三相或四相步进电机时都可以选择3种励磁方式,每相最小吸入与拉出电流为20mA,它不仅满足后级功率放大器的输入要求,而且在其所有输入端上均内嵌施密特触发电路,抗干扰能力强,其原理框图如图2所示。

图2 PMM8713的原理框图 在PMM8713的内部电路中,时钟选通部分用于设定步进电机的正反转脉冲输入发。PMM8713有两种脉冲输入法:双脉冲输入法和单脉冲输入法。采用双脉冲输入法时,CP、CU两端分别输入步进电机正反转的控制脉冲。当采用单脉冲输入时,步进电机的正反转方向由U/D的高、低电位决定。 激励方式控制电路用来选择采用何种励磁方式。激励方式判断电路用于输出检测;而可逆环形计数器则用于产生步进电机在选定的励磁方式下的各相通断时序信号。 ● SI-7300A的结构及功率驱动原理 SI-7300A是日本三青公司生产的高性能步进电机集成功率放大器,该器件为单极性四相驱动,采用SIP18封装。 步进电机功率驱动级电路可分为电压和电流两种驱动方式。电流驱动方式最常用的是PWM恒流斩波驱动电路,也是最常用的高性能驱动方式,其中一相的等效电路图如图3所示。

直流无刷与有刷电机与直流减速电机与步进电机

直流无刷与有刷电机直流减速电机步进电机 直流无刷电机的原理是在有刷电机的基础上开发和演变的。在未来的一段时间里将是有刷的替代品随着世界各地发起的保护地球的口号有刷终终究会被无刷所取代。无刷直流电机的基本原理去掉了碳刷用电子元器件代替。用电子元器件的开关特性取代机械碳刷使换向变得无机械接触。无刷相对有刷的电机来说有如下优点一、运行声音小这将是我们这个文明社会必将行进的方向。另何工具它都要求降低噪声来保护我们的声音环境。现在最关键的是用在一些需要安静的地方如医院、银行、机场学校等等安静的场所。二、无火花在一些场合就可以大显身手了有一些易燃易爆的地方。三、寿命长因为它用控制器代替了换向器和碳刷是有刷电机的几倍甚至十几倍。碳刷的寿命是有一定的限度的比如一千个小时碳刷就会磨损殆尽只能更换电刷可是更换电机。四、速度高因为采用了磁场感应没有实质的接触速度可以做的更快。有了这么多的优点但是也有不好的地方一、造价高控制器的成本增加至少百元拿微电机来说。原来的换向器和碳刷的成本要低的多。二、如果使用的环境是在高磁场的地方或曾经接触或和高磁场很近电机将失去 作用。因为电机本身的转子部件是磁体所作是经过充磁才有磁性的经过高磁场将改变转子的磁场或是消掉了部分的磁性电机都将不能正常工作。再给你补全一点 1 有位置传感器控制方式优点①因为有霍尔位置传感器所以电机换相准确转子位置

检测的准确度不受电机转速的影响②不需要外加的转子位置检测电路硬件电路简单③电机换相控制编程简单不需要处理滤波延迟等问题。缺点①增大了电机的体积。安装了位置传感器后一方面电机结构变复杂了另一方面电机的体积相对来说变大了妨碍了电机的小型化②增加了电机成本。容量在数百瓦以下的小容量方波型无刷直流电机常用的霍尔位置传感器的成本相对于电机本体来说所占比例比较大③传感器的输出信号易受到干扰。传感器的输出信号都是弱电信号在高温、冷冻、湿度大、有腐蚀物质、空气污浊等工作环境及振动、高速运行等工作条件下都会降低传感器的可靠性。若传感器损坏还可能连锁反应引起逆变器等器件的损坏④传感器的安装精度对电机的运行性能影响很大相对增加了生产工艺的难度。 2 无位置传感器控制方式优点①降低成本减小电机的体积②抗干扰能力强能在高温、湿度大、有腐蚀物质、空气污浊的环境中工作③无传感器安装的问题减小电机的生产难度。缺点①如反电势法等转子位置检测方法在低速时检测准确度都不高需要其他方法辅助电机起动②由于各种滤波、比较电路引起的相位延迟必须在算法中加以补偿所以算法编程难度较大③由于架构了转子位置检测电路所以增加了硬件的复杂性。 直流减速电机,即齿轮减速电机,是在普通直流电机的基础上,加上配套齿轮减速箱。齿轮减速箱的作用是,提供较低的转速,较大的力矩。同时,齿轮箱不同的减速比可以提供不同的转速和力矩。这大大提高了,直流电机在自动化行业中的使用率。减速电机是指减速机和电机(马达)的集成体。这种集成体通常也可称为

直流电机VS交流电机VS步进电机VS伺服电机-如何正确选择步进电机和伺服电机

什么是直流电机,什么是交流电机,什么是步进电机,什么是伺服电机? (1) 一般直流电机与直流伺服电机的区别 (2) 直流伺服电动机工作原理是什么? (2) 伺服马达的工作原理 (4) 伺服马达和步进马达的区别 (5) 如何正确选择伺服电机和步 (5) 1,如何正确选择伺服电机和步进电机? (5) 2,选择步进电机还是伺服电机系统? (5) 3,如何配用步进电机驱动器? (6) 4,2相和5相步进电机有何区别,如何选择? (6) 5,何时选用直流伺服系统,它和交流伺服有何区别? (6) 6,使用电机时要注意的问题? (7) 7,步进电机启动运行时,有时动一下就不动了或原地来回动,运行时有时还会失步,是什么问题? (7) 8,我想通过通讯方式直接控制伺服电机,可以吗? (8) 9,用开关电源给步进和直流电机系统供电好不好? (8) 10,我想用±10V或4~20mA的直流电压来控制步进电机,可以吗? (8) 11,我有一个的伺服电机带编码器反馈,可否用只带测速机口的伺服驱动器控制? (8) 12,伺服电机的码盘部分可以拆开吗? (8) 13,步进和伺服电机可以拆开检修或改装吗? (8) 14,几台伺服电机可以作同步运行吗? (8) 15,伺服控制器能够感知外部负载的变化吗? (8) 16,可以将国产的驱动器或电机和国外优质的电机或驱动器配用吗? (8) 17,使用大于额定电压值的直流电源电压驱动电机安全吗? (8) 18,我如何为我的应用选择适当的供电电源? (9) 19,对于伺服驱动器我可以选择那种工作方式? (9) 20,驱动器和系统如何接地? (10) 21,减速器为什么不能和电机正好相配在标准转矩点? (10) 22,我如何选择使用行星减速器还是正齿轮减速器? (10) 23,何为负载率(duty cycle)? (11) 24,标准旋转电机的驱动电路可以用于直线电机吗? (12) 25,直线电机是否可以垂直安装,做上下运动? (12) 26,在同一个平台上可以安装多个动子吗? (12) 27,是否可以将多个无刷电机的动子线圈安装于同一个磁轨道上? (12) 28,AMS的直线电机是否可以用于特殊环境,如水溅、真空、洁净室、辐射等环境? (12) 29,使用直线电机比滚珠丝杆的线性电机有何优点? (12) 30,你们的滑台可以做多个组合一起使用吗? (12) 什么是直流电机,什么是交流电机,什么是步进电机,什么是伺服电机? 1、什么是直流电机? 答:输出或输入为直流电能的旋转电机,称为直流电机 2、什么是交流电机

步进电机及其驱动电路

第三节步进电动机及其驱动 一、步进电机的特点与种类 1.步进电机的特点 步进电机又称脉冲电机。它是将电脉冲信号转换成机械角位移的执行元件。每当输入一个电脉冲时,转子就转过一个相应的步距角。转子角位移的大小及转速分别与输入的电脉冲数及频率成正比,并在时间上与输入脉冲同步。只要控制输入电脉冲的数量、频率以及电机绕组通电相序即可获得所需的转角、转速及转向。 步进电动机具有以下特点: ?工作状态不易受各种干扰因素(如电压波动、电流大小与波形变化、温度等)的影响; ?步进电动机的步距角有误差,转子转过一定步数以后也会出现累积误差,但转子转过一转以后,其累积误差变为“零” ; ?由于可以直接用数字信号控制,与微机接口比较容易; ?控制性能好,在起动、停止、反转时不易“丢步”; ?不需要传感器进行反馈,可以进行开环控制; ?缺点是能量效率较低。 就常用的旋转式步进电动机的转子结构来说,可将其分为以下三种: (1)可变磁阻(VR-Variable Reluctance),也叫反应式步进电动机 (2)永磁(PM-Permanent Magnet)型 (3)混合(HB-Hybrid)型 (1)可变磁阻(VR-Variable Reluctance) 结构原理:该类电动机由定子绕组产生的反应电磁力吸引用软磁钢制成的齿形转子作步进驱动,故又称作反应式步进电动机。其结构原理如图3.5定子1 上嵌有线圈,转子2朝定子与转子之间磁阻最小方向转动,并由此而得名可变磁阻型。

图3.6 可变式阻步进电机 可变磁阻步进电机的特点: 反应式电动机的定子与转子均不含永久磁铁,故无励磁时没有保持力; 需要将气隙作得尽可能小,例如几个微米; 结构简单,运行频率高,可产生中等转矩,步距角小(0.09~9°) 制造材料费用低; 有些数控机床及工业机器人上使用。 (3)混合(HB-Hybrid)型 结构原理 这类电机是PM式和VR式的复合形式。其定子与VR类似,表面制有小齿,转子由永磁铁和铁心构成,同样切有小齿,为了减小步距角可以在结构上增加转子和定子的齿数。其结构如图3.7所示。 混合式步进电机特点: HB兼有PM和VR式步进电机的特点: 步距角可以做得较小(0.9~3.6°); 无励磁时具有保持力; 可以产生较大转矩,应用较广。

直流电机与步进电机同步实现方案

重庆邮电大学研究生堂下考试答卷 2012-2013学年第1学期 考试科目机电系统控制理论 姓名 年级 专业 2012年12 月31 日

目录 1 设计任务书------------------------------------------------------------------------------------1 1.1功能介绍--------------------------------------------------------------------------------1 1.2技术指标--------------------------------------------------------------------------------1 2 技术书明书-----------------------------------------------------------------------------------2 2.1 设计方案-------------------------------------------------------------------------------2 2.1.1 MCU的选择-------------------------------------------------------------------2 2.1.2 步进电机的驱动模块--------------------------------------------------------2 2.1.3 直流电机的驱动模块--------------------------------------------------------2 2.1.4 测速模块-----------------------------------------------------------------------2 2.1.5 显示模块-----------------------------------------------------------------------2 2.2 原理图设计----------------------------------------------------------------------------2 2.3 PCB图设计-----------------------------------------------------------------------------2 2.4 元件类型-------------------------------------------------------------------------------2 3 程序代码-------------------------------------------------------------------------------------3

步进电机驱动程序(汇编)

附件: ORG 0000H LJMP MAIN ORG 0003H LJMP Speed_Up ORG 0013H LJMP Speed_Down ORG 0100H MAIN: ;打开外部中断IT0/IT1 SETB EA SETB EX0 SETB EX1 SETB IT0 SETB IT1 ;扫描键盘,无键按下显示0,并继续扫描 MAKEY: MOV DPTR,#TAB MOV A,#0 MOVC A,@A+DPTR MOV P0,A MOV P3,#0FFH MOV A,P3 CPL A JZ MAKEY LCALL D10MS JZ MAKEY ;当有键按下时,启动步行电机转动 Speed EQU 20H Num EQU 21H MOV Speed,#60 ;Speed初始化,Speed控制延时的时间,即脉冲的频率 MOV Num,#1 ;Num初始化,Num存放数码管显示的转速数值 JNB ACC.4,TO_TWO ;默认设置为正向转动,转速为1,当有反向键按下,按反向转动 ;------------------------ 1号程序:控制步行电机正转-------------------------------- TO_ONE:

MOV R7,#4 MOV A,#01H MOV P3,#0FFH LP1: MOV P1,A LCALL DELAY LCALL DISPLAY RL A ; 正向输入脉冲信号 DJNZ R7,LP1 JNB P3.4,TO_TWO ; 有反向键按下,跳转到2号程序 LJMP TO_ONE ;------------------------2号程序:控制步行电机反转---------------------------------- TO_TWO: MOV R7,#4 MOV A,#08H MOV P3,#0FFH LP2: MOV P1,A LCALL DELAY LCALL DISPLAY RR A ; 反向输入脉冲信号 DJNZ R7,LP2 JNB P3.5,TO_ONE ;有正向键按下,跳转到1号程序 LJMP TO_TWO ;----------------------------中断服务程序----------------------------------------------- Speed_Up: ; 外部中断IT0,控制加速 PUSH ACC LCALL D10MS MOV A,Speed CJNE A,#12,L1 ; 最大速度时,速度不再增加 LJMP L2 L1: ; 速度加1(减小脉冲周期) SUBB A,#12 MOV Speed,A INC Num L2: POP ACC RETI Speed_Down: ;外部中断IT1,控制减速 PUSH ACC

步进电机与伺服电机的区别

步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件,在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲个数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机安设定的方向转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的,同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到高速的目的。 伺服电机又称执行电机,在自动控制系统中,用作执行元件,把收到的电信号转换成电机轴上的角位移或角速度输出。伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)也就是说伺服电机本身具备发出脉冲的功能,它每旋转一个角度,都会发出对应数量的脉冲,这样伺服驱动器和伺服电机编码器的脉冲形成了呼应,所以它是闭环控制,步进电机是开环控制。 步进电机和伺服电机的区别在于:1、控制精度不同。步进电机的相数和拍数越多,它的精确度就越高,伺服电机取块于自带的编码器,编码器的刻度越多,精度就越高。2、控制方式不同;一个是开环控制,一个是闭环控制。3、低频特性不同;步进电机在低速时易出现低频振动现象,当它工作在低速时一般采用阻尼技术或细分技术来克服低频振动现象,伺服电机运转非常平稳,即使在低速时也不会出现振动现象。交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能(FFT),可检测出机械的共振点便于系统调整。4、矩频特性不同;步进电机的输出力矩会随转速升高而下降,交流伺服电机为恒力矩输出,5、过载能力不同;步进电机一般不具有过载能力,而交流电机具有较强的过载能力。6、运行性能不同;步进电机的控制为开环控制,启动频率过高或负载过大易丢步或堵转的现象,停止时转速过高易出现过冲现象,交流伺服驱动系统为闭环控制,驱动器可直接对电机编码器反馈信号进行采样,内部构成位置环和速度环,一般不会出现步进电机的丢步或过冲的现象,控制性能更为可靠。7、速度响应性能不同;步进电机从静止加速到工作转速需要上百毫秒,而交流伺服系统的加速性能较好,一般只需几毫秒,可用于要求快速启停的控制场合。 综上所述,交流伺服系统在许多性能方面都优于步进电机,但是价格比就不一样了。

步进电机驱动器的技术发展

将“电机固有步距角”细分成若干小步的驱动方法,称为细分驱动,细分是通过驱动器精确控制步进电机的相电流实现的,与电机本身无关。其原理是,让定子通电相电流并不一次升到位,而断电相电流并不一次降为0(绕组电流波形不再是近似方波,而是N级近似阶梯波),则定子绕组电流所产生的磁场合力,会使转子有N个新的平衡位置(形成N个步距角)。 最新技术发展: 国内外对细分驱动技术的研究十分活跃,高性能的细分驱动电路,可以细分到上千甚至任意细分。目前已经能够做到通过复杂的计算使细分后的步距角均匀一致,大大提高了步进电机的脉冲分辨率,减小或消除了震荡、噪声和转矩波动,使步进电机更具有“类伺服”特性。 采用细分技术与步进电机精度提高的关系:步进电机的细分技术实质上是一种电子阻尼技术,其主要目的是减弱或消除步进电机的低频振动,提高电机的运转精度只是细分技术的一个附带功能。 步电机系统解决方案

细分后电机运转时对每一个脉冲的分辨率提高了,但运转精度能 否达到或接近脉冲分辨率还取决于细分驱动器的细分电流控制精度 等其它因素。不同厂家的细分驱动器精度可能差别很大;细分数越大精度越难控制。 真正的细分对驱动器要有相当高的技术要求和工艺要求,成本亦会较高。国内有一些驱动器采用对电机相电流进行“平滑”处理来取代细分,属于“假细分”,“平滑”并不产生微步,会引起电机力矩的下降。真正的细分控制不但不会引起电机力矩的下降,相反,力矩会有所增加。 对实际步距角的作用:在没有细分驱动器时,用户主要靠选择不同相数的步进电机来满足自己对步距角的要求。如果使用细分驱动器,则用户只需在驱动器上改变细分数,就可以大幅度改变实际步距角,步进电机的‘相数’对改变实际步距角的作用几乎可以忽略不计。 深圳市维科特机电有限公司成立于2005年,是步进电机产品的销售、系统集成和应用方案提供商。我们和全球产品性价比高的生产 厂家合作,结合本公司专家团队多年的客户服务经验,给客户提供有 步电机系统解决方案

步进电机及其驱动

步进电机及其驱动 1.步进电机的特点与种类 (1)步进电机的特点 步进电机又称脉冲电动机。它是将电脉冲信号转换成机械角位移的执行元件。其输入一个电脉冲就转动一步,即每当电动机绕组接受一个电脉冲,转子就转过一个相应的步距角。转子角位移的大小及转速分别与输入的电脉冲数及频率成正比,并在时间上与输入脉冲同步,只要控制输入电脉冲的数量、频率以及电动机绕组通电相序即可获得所需的转角、转速及转向、很容易用微机实现数字控制。步进电机具有如下特点: 1)步进电机的工作状态不易受各种干扰因素(如电源电压的波动、电流的大小与波形的变化、温度等)的影响,只要在它们的大小未引起步进电机产生“丢步”现象之前,就不影响其正常工作; 2)步进电机的步距角有误差,转子转过一定步数以后也会出现累积误差,但转子转过一转以后,其累积误差变为“零”,因此不会长期积累; 3)控制性能好,在启动、停止、反转时不易“丢步”。因此,步进电机被广泛应用于开环控制的机电一体化系统,使系统简化,并可靠地获得较高的位置精度。 (2)步进电机的种类 步进电机的种类很多,有旋转式步进电机,也有直线步进电机;从励磁相数来分有三相、四相、五相、六相等步进电机。就常用的旋转式步进电机的转子结构来说,可将其分为以下三种: 1)可变磁阻(VR-VariableReluctance)型 该类电动机由定子绕组产生的反应电磁力吸引用软磁钢制成的齿形转子作步进驱动,故又称反应式步进电机。其结构原理如下图所示。其定子1与转子2由铁心构成,没有永久磁铁,定子上嵌有线圈,转子朝定子与转子之间磁阻最小方向转动,并由此而得名可变磁型。 此类电动机的转子结构简单、转子直径小,有利于高速响应。由于VR型步进电机的铁心无极性,故不需改变电流极性,因此多为单极性励磁。

步进电机驱动器说明书

TB6600升级版 两相步进驱动器 使用说明书 [使用前请仔细阅读本手册,以免损坏驱动器]

目录 一、产品简介 (3) 概述 (3) 特点 (3) 二、接口和接线介绍 (3) 信号输入端 (3) 电机绕组连接 (3) 电源电压连接 (4) 状态指示 (4) 接线方式 (4) 接线要求 (5) 三、电流、细分拨码开关设定 (5) 细分设定 (5) 工作(动态)电流设定 (6) 四、机械和环境指标 (6) 使用环境及参数 (6) 机械安装图 (7) 五、电机适配 (7) 电机适配 (7) 电机接线 (8) 供电电压和输出电流的选择 (8) 五、常见问题 (9) 应用中常见问题和处理方法 (9) 六、保修条款 (10)

一、产品简介 ◆概述 TB6600升级版驱动器是一款专业的两相混合式步进电机驱动器,可适配国内外各种品牌,电流在4.0A及以下,外径39,42,57mm的四线,六线,八线两相混合式步进电机。适合各种小中型自动化设备和仪器,例如:雕刻机、打标机、切割机、激光照排、绘图仪、数控机床、拿放装置等。在用户期望低成本、大电流运行的设备中效果特性。 ◆特点 ※信号输入:单端,脉冲/方向 ※细分可选:1/2/4/8/16/32细分 ※输出电流:0.5A-4.0A ※输入电压:9-42VDC ※静止时电流自动减半 ※可驱动4,6,8线两相、四相步进电机 ※光耦隔离信号输入,抗干扰能力强 ※具有过热、过流、欠压锁定、输入电压防反接保护等功能 ※体积小巧,方便安装 ※外部信号3.3-24V通用,无需串联电阻 二、接口和接线介绍 ◆信号输入端 PUL+ PUL-脉冲输入信号。默认脉冲上升沿有效。为了可靠响应脉冲信号,脉冲宽度应大于1.2us。 DIR+ DIR-方向输入信号,高/低电平信号,为保证电机可靠换向,方向信号应先于脉冲信号至少5us建立。电机的初始运行方向与电机绕组接线有关,互换任一相绕组(如A+、A-交换)可以改变电机初始运行方向。 ENA+ ENA-使能输入信号(脱机信号),用于使能或禁止驱动器输出。使能时,驱动器将切断电机各相的电流使电机处于自由状态,不响应步进脉冲。当不需用此功能时,使能信号端悬空即可。 ◆电机绕组连接 A+,A-电机A相绕组。 B+,B-电机B相绕组。

直流电动机与步进电动机

直流电动机与步进电动机 [实验目的] 1、了解直流电动机的调速方法。 2、了解步进电动机的驱动方式。 3、了解编码器的工作原理。 [ *此实验需要携带U盘保存波形。 [实验内容] 1.他励直流电动机的调速 直流电动机的调速有改变励磁电流、电枢电压或电枢电阻几种方法。本实验测试改变电枢电压的调速方式。实验接线图如下: 图1 直流电动机调速实验接线图 调速测试电动机是直流并励电动机DJ15,其励磁绕组接电源屏的励磁电源,电压约220V,

电枢绕组接电源屏的电枢电源,电压从0到240V连续可调。直流测功机DJ23相当于一个发电机,作用是为测试电动机DJ15提供阻力力矩。DJ23的励磁绕组与可调电阻R f串联后接至励磁电源。R f选用D42的900Ω串联900Ω共1800Ω,其作用是保证直励磁电流I f为所要求的值。DJ23的电枢两端接入负载可调负载电阻R L,R L选用D42的900Ω串联900Ω再加900Ω并联900Ω共2250Ω。R L越小,电枢输出电流I越大,输出力矩T 越大,具体数值见表1(由厂家提供)。 表1 校正直流测功机DJ23输出力矩T与输出电流I的关系 (用标准测功机测试,并取该类电机的典型值) 实验时改变电枢电压,同时调节R L,使得测功机的输出电流保持不变,测量电动机转速与DJ15的电枢电流。为了了解编码器的工作原理,实验中同时观察编码器的输出信号,并用频率计测量其频率。 2.步进电动机的驱动方式 步进电机BSZ-1与智能控制箱D54的接线方式如图2所示。 图2 步进电机接线图图3 运行方式指示 通过控制箱的可以选择电机的运行模式和参数。操作简介如下:开启电源开关,面板上三位数字频率计将显示“000”,控制器进入自检状态(显示倒计时)。自检结束后可用

伺服电机与步进电机的对比

关于伺服电机和步进电机的28个问答 1,如何正确选择伺服电机和步进电机? 主要视具体应用情况而定,简单地说要确定:负载的性质(如水平还是垂直负载等),转矩、惯量、转速、精度、加减速等要求,上位控制要求(如对端口界面和通讯方面的要求),主要控制方式是位置、转矩还是速度方式。供电电源是直流还是交流电源,或电池供电,电压范围。据此以确定电机和配用驱动器或控制器的型号。 2,选择步进电机还是伺服电机系统? 其实,选择什么样的电机应根据具体应用情况而定,各有其特点。 3,如何配用步进电机驱动器? 根据电机的电流,配用大于或等于此电流的驱动器。如果需要低振动或高精度时,可配用细分型驱动器。对于大转矩电机,尽可能用高电压型驱动器,以获得良好的高速性能。 4,2 相和5 相步进电机有何区别,如何选择? 2 相电机成本低,但在低速时的震动较大,高速时的力矩下降快。5 相电机则振动较小,高速性能好,比 2 相电机的速度高30~50% ,可在部分场合取代伺服电机。 5,何时选用直流伺服系统,它和交流伺服有何区别? 直流伺服电机分为有刷和无刷电机。 有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护,但维护方便(换碳刷),产生电磁干扰,对环境有要求。因此它可以用于对成本敏感的普通工业和民用场合。 无刷电机体积小,重量轻,出力大,响应快,速度高,惯量小,转动平滑,力矩稳定。控制复杂,容易实现智能化,其电子换相方式灵活,可以方波换相或正弦波换相。电机免维护,效率很高,运行温度低,电磁辐射很小,长寿命,可用于各种环境。 交流伺服电机也是无刷电机,分为同步和异步电机,目前运动控制中一般都用同步电机,它的功率范围大,可以做到很大的功率。大惯量,最高转动速度低,且随着功率增大而快速降低。因而适合做低速平稳运行的应用。 6,使用电机时要注意的问题? 上电运行前要作如下检查: 1)电源电压是否合适(过压很可能造成驱动模块的损坏);对于直流输入的+/- 极性一定不能接错,驱动控制器上的电机型号或电流设定值是否合适(开始时不要太大); 2)控制信号线接牢靠,工业现场最好要考虑屏蔽问题(如采用双绞线); 3)不要开始时就把需要接的线全接上,只连成最基本的系统,运行良好后,再逐步连接。 4)一定要搞清楚接地方法,还是采用浮空不接。 5)开始运行的半小时内要密切观察电机的状态,如运动是否正常,声音和温升情况,发现问题立即停机调整。 7,步进电机启动运行时,有时动一下就不动了或原地来回动,运行时有时还会失步,是什么问题? 一般要考虑以下方面作检查: 1)电机力矩是否足够大,能否带动负载,因此我们一般推荐用户选型时要选用力矩比实际需要大50%~100% 的电机,因为步进电机不能过负载运行,哪怕是瞬间,都会造成失步,严重时停转或不规则原地反复动。

步进电机 知识及驱动芯片选型指南

步进电机驱动芯片选型指南 以下是中国步进电机网对步进电机驱动系统所做的较为完整的表述: 1、系统常识: 步进电机和步进电机驱动器构成步进电机驱动系统。步进电机驱动系统的性能,不但取决于步进电机自身的性能,也取决于步进电机驱动器的优劣。对步进电机驱动器的研究几乎是与步进电机的研究同步进行的。 2、系统概述: 步进电机是一种将电脉冲转化为角位移的执行元件。当步进电机驱动器接收到一个脉冲信号(来自控制器),它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。 3、系统控制: 步进电机不能直接接到直流或交流电源上工作,必须使用专用的驱动电源(步进电机驱动器)。控制器(脉冲信号发生器)可以通过控制脉冲的个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。 4、用途: 步进电机是一种控制用的特种电机,作为执行元件,是机电一体化的关键产品之一,随着微电子和计算机技术的发展(步进电机驱动器性能提高),步进电机的需求量与日俱增。步进电机在运行中精度没有积累误差的特点,使其广泛应用于各种自动化控制系统,特别是开环控制系统。 5、步进电机按结构分类: 步进电机也叫脉冲电机,包括反应式步进电机(VR)、永磁式步进电机(PM)、混合式步进电机(HB)等。 (1)反应式步进电机: 也叫感应式、磁滞式或磁阻式步进电机。其定子和转子均由软磁材料制成,定子上均匀分布的大磁极上装有多相励磁绕组,定、转子周边均匀分布小齿和槽,通电后利用磁导的变化产生转矩。一般为三、四、五、六相;可实现大转矩输出(消耗功率较大,电流最高可达20A,驱动电压较高);步距角小(最小可做到六分之一度);断电时无定位转矩;电机内阻尼较小,单步运行(指脉冲频率很低时)震荡时间较长;启动和运行频率较高。 (2)永磁式步进电机: 通常电机转子由永磁材料制成,软磁材料制成的定子上有多相励磁绕组,定、转子周边没有小齿和槽,通电后利用永磁体与定子电流磁场相互作用产生转矩。一般为两相或四相;输出转矩小(消耗功率较小,电流一般小于2A,驱动电压12V);步距角大(例如7.5度、15度、22.5度等);断电时具有一定的保持转矩;启动和运行频率较低。(3)混合式步进电机: 也叫永磁反应式、永磁感应式步进电机,混合了永磁式和反应式的优点。其定子和四相反应式步进电机没有区别(但同一相的两个磁极相对,且两个磁极上绕组产生的N、S极性必须相同),转子结构较为复杂(转子内部为圆柱形永磁铁,两端外套软磁材料,周边有小齿和槽)。一般为两相或四相;须供给正负脉冲信号;输出转矩较永磁式大(消耗功率相对较小);步距角较永磁式小(一般为1.8度);断电时无定位转矩;启动和运行频率较高;是目前发展较快的一种步进电机。 6、步进电机按工作方式分类:可分为功率式和伺服式两种。 (1)功率式:输出转矩较大,能直接带动较大负载(一般使用反应式、混合式步进电机)。 (2)伺服式:输出转矩较小,只能带动较小负载(一般使用永磁式、混合式步进电机)。 7、步进电机的选择: (1)首先选择类型,其次是具体的品种与型号。 (2)反应式、永磁式和混合式三种步进电机的性能指标、外形尺寸、安装方法、脉冲电源种类和控制电路等都不同,价格差异也很大,选择时应综合考虑。 (3)具有控制集成电路的步进电机应优先考虑。 8、步进电机的基本参数: (1)电机固有步距角:它表示控制系统每发一个步进脉冲信号,电机所转动的角度。电机出厂时给出了一个步距角

步进电机 直流伺服电机 交流伺服电机的优缺点

交流伺服电机 优点 ⑴无电刷和换向器,因此工作可靠,对维护和保养要求低。 ⑵定子绕组散热比较方便。 ⑶惯量小,易于提高系统的快速性。 ⑷适应于高速大力矩工作状态。 直流伺服电机 直流伺服电机特指直流有刷伺服电机——电机成本高结构复杂,启动转矩大,调速范围宽,控制容易,需要维护,但维护不方便(换碳刷),会产生电磁干扰,对环境有要求。因此它可以用于对成本敏感的普通工业和民用场合。 直流伺服电机不包括直流无刷伺服电机——电机体积小,重量轻,出力大,响应快,速度高,惯量小,转动平滑,力矩稳定,电机功率有局限做不大。容易实现智能化,其电子换相方式灵活,可以方波换相或正弦波换相。电机免维护不存在碳刷损耗的情况,效率很高,运行温度低噪音小,电磁辐射很小,长寿命,可用于各种环境。 用途: 1、各类数字控制系统中的执行机构驱动。 2、需要精确控制恒定转速或需要精确控制转速变化曲线的动力驱动。 按电机惯量大小可分为: 1、小惯量直流电机——印刷电路板的自动钻孔机 2、中惯量直流电机(宽调速直流电机)——数控机床的进给系统 3、大惯量直流电机——数控机床的主轴电机 4、特种形式的低惯量直流电机 步进电机 优点

1、电机旋转的角度正比于脉冲数; 2、电机停转的时候具有最大的转矩(当绕组激磁时); 3、由于每步的精度在百分之三到百分之五,而且不会将一步的误差积累到下一步因而有较好的位置精度和运动的重复性; 4、优秀的起停和反转响应; 5、由于没有电刷,可靠性较高,因此电机的寿命仅仅取决于轴承的寿命; 6、电机的响应仅由数字输入脉冲确定,因而可以采用开环控制,这使得电机的结构可以比较简单而且控制成本; 7、仅仅将负载直接连接到电机的转轴上也可以极低速的同步旋转; 8、由于速度正比于脉冲频率,因而有比较宽的转速范围。 缺陷 1、如果控制不当容易产生共振; 2、难以运转到较高的转速; 3、难以获得较大的转矩; 4、在体积重量方面没有优势,能源利用率低; 5、超过负载时会破坏同步,高速工作时会发出振动和噪声。 综上所述,交流伺服系统在许多性能方面都优于步进电机。但在一些要求不高的场合也经常用步进电机来做执行电动机。所以,在控制系统的设计过程中要综合考虑控制要求、成本等多方面的因素,选用适当的控制电机。

步进电机驱动方案概述

步进电机驱动方案概述 众所周知,步进电机的驱动方式有整步,半步,细分驱动。三者即有区别又有联系,目前,市面上很多驱动器支持细分驱动方式。本文主要描述这三种驱动的概述 如下图是两相步进电机的内部定子示意图,为了使电机的转子能够连续、平稳地转动,定子必须产生一个连续、平均的磁场。因为从宏观上看,电机转子始终跟随电机定子合成的磁场方向。如果定子合成的磁场变化太快,转子 跟随不上,这时步进电机就出现失步现象。 既然电机转子是跟随电机定子磁场转动,而电机定子磁场的强度和方向是由定子合成电流决定且成正比。即只要控制电机的定子电流,则可以达到驱动电机的目的。下图是两相步进电机的电流合成示意图。其中Ia是由A-A`相产生,Ib是由B-B`相产生,它们两个合成后产生的电流I就是电机定子的合成电流,它可以代表电机定子产生 磁场的大小和方向。 有了以上的步进电机背景描述后,对于步进电机的整步、半步、细分的三种驱动方式,都会是同一种方法,只是电流把一个圆(360°)分割的粗细程序不同。 整步驱动 对于整步驱动方式,电机是走一个整步,如对于一个步进角是3.6°的步进电机,整步驱动是每走一步是走3.6°。下图是整步驱动方式中,电机定子的电流次序示意图: 由上图可知,整步驱动每一时刻只有一个相通电,所以这种驱动方式的驱动电路可以是很简单,程序代码也是相对容易实现,且由上图可以得到电机整步驱动相序如下: BB’→A’A→B’B→AA’→BB’

下图是这种驱动方式的电流矢量分割图: 可见,整步驱动方式的电流矢量把一个圆平均分割成四份。 下图是整步驱动方式的A、B相的电流I vs T图: 可以看出,整步驱动描出的正弦波是粗糙的。使用这种方式驱动步进电机,低速时电机会抖动,噪声会比较大。但是,这种驱动方式无论在硬件或软件上都是相对简单,从而驱动器制造成本容易得到控制。 半步驱动 对于半步驱动方式,电机是走一个半步,如对于一个步进角是3.6°的步进电机,半步驱动是每走一步,是走 1.8°(3.6°/2)。 下图是半步驱动方式中,电机定子的电流次序示意图: 由上图可见,半步驱动方式的比整步驱动方式相对复杂一些,在同一时刻,可能两个相都需要被通电,如果要求电机转动的力矩平稳,则需要在两相同时通电时,通电电流应该为单相通电电流的sin(45°),即√2/2。当然,可以直接通以和单相通电流相等的电流,结果是电机转动过程中的力矩不恒定,但它带来的好处是驱动电路或软件编写的简化。具体应用视实际场合而定。以下是这种的驱动方式的驱动相序: BB’→BB’ A’A→A’A→B’B A’A→B’B→B’B AA’→AA’→AA’ BB’

美国欧米茄步进电机及驱动器

步进电机及 驱动器简介 步进电机是一种将数字量脉冲转换为机械轴旋转的无刷同步电动机。步进电机的每一转均细分为若干个离散的步(许多情况下为200 步),执行每一步时都必须向电机发送单独的脉冲。步进电机每次仅能执行一步,并且每一步的大小相同。由于每个脉冲会使电机旋转一个精确的角度(通常为1.8°),因此无需反馈机制即可控制电机的位置。随着数字量脉冲 频率的增加,步进运动逐渐变为连续的旋转,其转速直接与脉冲频率成正比。由于步进电机具有成本低、可靠性高、低速高转矩以及结构简单坚固等特点,因此适用于几乎所有环境,在工业和商业应用中得到广泛的使用。\ 步进电机的优点 1.电机的旋转角度与输入脉冲成正比。 2.电机在停转时达到满转矩(如果绕组已激磁)。 3.由于好的步进电机每步精度在3% 到5% 之间,并且每步的误差不会积累到下一步, 因此有较好的位置精度和运动重复性。 4.具有极佳的起动/停止/反转响应。 5.由于电机中无接触电刷,可靠性极高。因此,步进电机的使用寿命仅取决于轴承的 寿命。 6.步进电机对数字量输入脉冲做出响应,因而可实现开环控制,从而使电机结构得到 简化并降低了控制成本。 7.负载直接耦合到转轴时,可在极低速度下实现同步旋转。 8.由于转速正比于输入脉冲的频率,因此可实现较宽的转速范围。 步进电机的类型 步进电机分三种基本类型:变磁阻式、永磁式和混合式。本文主要讨论混合式电机,这种电机综合了变磁阻式电机和永磁式电机的最佳特性。混合式电机由多齿定子磁极和永磁转子组成(请参见图A)。标准混合式电机(如Omegamation TM提供的型号)有200 个转子齿,每步的旋转角度为1.8o。这种电机在极高的步速下表现出较高的静态和动态转矩,因此广泛适用于各种商业应用,包括计算机磁盘驱动器、打印机/绘图仪以及CD 播放器。步进电机还可用于一些工业和科学应用,包括机器人、机床、贴装机、自动切线接线机以及精准流体控制设备。 步进模式 步进电机的“步进模式”包括整步、半步和微步三种。任何步进电机的步进模式输出类型都取决于驱动器的设计。Omegamation?提供带有整步/半步模式可选开关的步进电机驱动器以及分辨率可由开关或软件选择的微步驱动器。 整步 标准混合式步进电机的转子齿数为200,也就是说电机轴旋转一周需要200 个整步。200

相关主题
文本预览
相关文档 最新文档