当前位置:文档之家› 直流电机的启动过程

直流电机的启动过程

直流电机的启动过程
直流电机的启动过程

首先,电厂中的直流油泵用在什么地方,一般多用在润滑油系统,称为直流润滑油泵或事故油泵;如是氢冷发电机组的话,密封油系统通常也设置一台,名称也是直流密封油泵或事故密封油泵。作用是什么呢?一般是考虑全厂失电的情况下,保护汽轮机大轴和氢气扩散至空气中,这些都可以从部颁的二十五项反措中找到设计直流油泵的原因,什么防汽轮机大轴弯曲了,氢爆了等等。

其次,再说直流电机的分类,一般有串励、并励、他励三种,至于派生出什么积复励和差复励等等咱就不研究了。像刚才所说的油泵电机,容量都不会太大,所以此类直流电机一般都设计为并励直流电机。像15楼所述怕电机飞车这种情况一般只出现在自励直流电机上;当然了,自励电机和并励电机各自有各自的优缺点,在什么地方使用跟需要实现什么功能有关,这里就不再啰嗦了

第三,先上一个图,这是电厂直流油泵电机典型的接线图,辅助的一些元件我没有画出来,比方说KM的合跳、信号回路、电流指示回路等,甚至有些单位还加了一些时间继电器等等。

启动电阻

电枢绕组

励磁绕组

其中KM是直流电机的主接触器,KM1就是楼主所述的辅助接触器,电枢绕组为转子线圈,其阻值一般都很小,微欧级。励磁绕组为静子的磁极线圈,有兴趣的可以利用设备解体的时候学习一下,直流电机静子上不但有磁极线圈,还有换向极线圈(在两个主磁极之间的那个),励磁绕组的那个阻值一般都在百欧级。

接下来我们要说直流电机的启动过程,假如没有KM1和启动电阻的话,直流电压(一般为220V)直接加在一个微欧级的电阻上,你们可以计算一下电流有多大。直流电机的主回路会受不了这么大的电流的。忘了说了那个启动电阻一般的阻值为零点几到几欧姆之间吧,根据各单位限流的幅值倍数而定,可自行设计。所以啊,直流电机的启动过程必须要加限流的措施,一般采用的方法如上图所示。KM先动作合闸,此时KM1不动作,启动电阻串在电枢回路里,此时的电流值可依据设计的启动电流倍数而定,一般不超额定的4-7倍,此时电流值在我们的控制范围内。当电机启动完成后,我们当然不希望启动电阻串在电枢回路里,发热会很厉害,也不节能,所以必须得切除。什么时间切除呢,大家都注意到了KM1这个接触器的线圈是并在电枢回路里,随着电机转速逐渐升高的时候,它的反电势也在逐步增加,增加到KM1的动作电压时,KM1吸合,切除启动电阻,直流电机启动完成。

至于楼主说的两个接触器是串联关系,我认为说的不太确切,只能说是混联,或者说不存在串并联关系,因为,这两个接触器动作的次序不一样,只有在电机启动完成后,才勉强可以说是串联的。

另外一点,在电机启动而启动电阻未切除的时候,随着反电势的建立(方向与电源极性相反),启动电流是呈下降趋势的,相当于加在电枢绕组两端电压在下降,U1=U-E。

直流电机在电厂用处不是十分广泛,但无他不行,所以有关直流电机的资料和经验都很少,欢迎大家来一起交流直流电机的运行心得和经验教训。

直流电机串电阻启动(DOC)

指导教师评定成绩: 审定成绩: 重庆邮电大学移通学院 课程设计报告 设计题目:直流电机的串电阻启动过程设计 学校: 学生姓名: 专业: 班级: 学号: 指导教师: 设计时间:年月 重庆邮电大学移通学院

目录 一、直流电动机的综述 (4) 1.1直流电动机的基本工作原理 (4) 1.2直流电动机的分类 (5) 1.3直流电动机的特点 (5) 二、他励直流电动机 (5) 2.1他励直流电动机的机械特性 (5) 2.2固有机械特性与人为机械特性 (6) 三、他励直流电动机的起动 (7) 3.1直流电动机的启动过程分析 (8) 3.2他励直流电动机起动电阻的计算 (9) 四、设计内容 (10) 五、结论 (11) 六、心得体会 (12) 七、参考文献 (12)

一、直流电动机的综述 1.1直流电动机的基本工作原理 图1 是一台最简单的直流电动机的模型,N和S是一对固定的磁极(一般是电磁铁,也可以是永久磁铁)。磁极之间有一个可以转动的铁质圆柱体,称为电枢铁心。铁心表面固定一个用绝缘导体构成的电枢线圈abcd,线圈的两端分别接到相互绝缘的两个弧形铜片上,弧形铜片称为换向片,它们的组合体称为换向器。在换向器上放置固定不动而与换向片滑动接触的电刷A和B,线圈abcd通过换向器和电刷接通外电路。电枢铁心、电枢线圈和换向器构成的整体称为电枢。 如果将电源正负极分别接电刷A和B,则线圈abcd中流过电流。在导体ab中,电流由a 流向b,在导体cd中,电流由c流向d,如图(a)所示。载流导体ab和cd均处于N和S 极之间的磁场当中,受到的电磁力的作用。用左手定则可知,载流导体ab受到的电磁力F 的方向是向左的,力图使电枢逆时针方向运动,载流导体cd受到的电磁力F的方向是向右的, 也是力图使电枢逆时针方向运动,这一对电磁力形成一个转矩, 即电磁转矩T,其方向为逆时针方向,使整个电枢沿逆时针方向转动。当电枢转过180°, 导体cd转到N极下,ab转到S极上,如图(b)所示。由于电流仍从电刷A流入,使cd中的电流变为由d流向c,而ab中的电流由b流向a,再从电刷B流出。用左手定则判别可知,导体cd受到的电磁力的方向是向左的,ab受到的电磁力的方向是向右的,因而电磁转矩的方向仍是逆时针方向,使电枢沿逆时针方向继续转动。当电枢在转过180°,就又回到图(a)所示的情况。这就是直流电动机的基本工作原理。

直流电机驱动电路设计

直流电机驱动电路设计 一、直流电机驱动电路的设计目标 在直流电机驱动电路的设计中,主要考虑一下几点: 1. 功能:电机是单向还是双向转动?需不需要调速?对于单向的电机驱动,只要用一个大功率三极管或场效应管或继电 器直接带动电机即可,当电机需要双向转动时,可以使用由4个功率元件组成的H桥电路或者使用一个双刀双掷的继电器。 如果不需要调速,只要使用继电器即可;但如果需要调速,可以使用三极管,场效应管等开关元件实现PWM(脉冲宽度调制)调速。 2. 性能:对于PWM调速的电机驱动电路,主要有以下性能指标。 1)输出电流和电压范围,它决定着电路能驱动多大功率的电机。 2)效率,高的效率不仅意味着节省电源,也会减少驱动电路的发热。要提高电路的效率,可以从保证功率器件的开关工作状态和防止共态导通(H桥或推挽电路可能出现的一个问题,即两个功率器件同时导通使电源短路)入手。 3)对控制输入端的影响。功率电路对其输入端应有良好的信号隔离,防止有高电压大电流进入主控电路,这可以用高的输入阻抗或者光电耦合器实现隔离。 4)对电源的影响。共态导通可以引起电源电压的瞬间下降造成高频电源污染;大的电流可能导致地线电位浮动。 5)可靠性。电机驱动电路应该尽可能做到,无论加上何种控制信号,何种无源负载,电路都是安全的。 二、三极管-电阻作栅极驱动

1.输入与电平转换部分: 输入信号线由DATA引入,1脚是地线,其余是信号线。注意1脚对地连接了一个2K欧的电阻。当驱动板与单片机分别供电时,这个电阻可以提供信号电流回流的通路。当驱动板与单片机共用一组电源时,这个电阻可以防止大电流沿着连线流入单片机主板的地线造成干扰。或者说,相当于把驱动板的地线与单片机的地线隔开,实现“一点接地”。 高速运放KF347(也可以用TL084)的作用是比较器,把输入逻辑信号同来自指示灯和一个二极管的2.7V基准电压比较,转换成接近功率电源电压幅度的方波信号。KF347的输入电压范围不能接近负电源电压,否则会出错。因此在运放输入端增加了防止电压范围溢出的二极管。输入端的两个电阻一个用来限流,一个用来在输入悬空时把输入端拉到低电平。 不能用LM339或其他任何开路输出的比较器代替运放,因为开路输出的高电平状态输出阻抗在1千欧以上,压降较大,后面一级的三极管将无法截止。 2.栅极驱动部分: 后面三极管和电阻,稳压管组成的电路进一步放大信号,驱动场效应管的栅极并利用场效应管本身的栅极电容(大约 1000pF)进行延时,防止H桥上下两臂的场效应管同时导通(“共态导通”)造成电源短路。 当运放输出端为低电平(约为1V至2V,不能完全达到零)时,下面的三极管截止,场效应管导通。上面的三极管导通,场效应管截止,输出为高电平。当运放输出端为高电平(约为VCC-(1V至2V),不能完全达到VCC)时,下面的三极管导通,场效

无刷直流电机的驱动及控制

无刷直流电机驱动 James P. Johnson, Caterpiller公司 本章的题目是无刷直流电动机及其驱动。无刷直流电动机(BLDC)的运行仿效了有刷并励直流电动机或是永磁直流电动机的运行。通过将原直流电动机的定子、转子内外对调—变成采用包含电枢绕组的交流定子和产生磁场的转子使得该仿效得以可能。正如本章中要进一步讨论的,输入到BLDC定子绕组中的交流电流必须与转子位置同步更变,以便保持磁场定向,或优化定子电流与转子磁通的相互作用,类似于有刷直流电动机中换向器、电刷对绕组的作用。该原理的实际运用只能在开关电子学新发展的今天方可出现。BLDC电机控制是今天世界上发展最快的运动控制技术。可以预见,随着BLDC的优点愈益被大家所熟知且燃油成本持续增加,BLDC必然会进一步广泛运用。 2011-01-30 23.1 BLDC基本原理 在众文献中无刷直流电动机有许多定义。NEMA标准《运动/定位控制电动机和控制》中对“无刷直流电动机”的定义是:“无刷直流电动机是具有永久磁铁转子并具有转轴位置监测来实施电子换向的旋转自同步电机。不论其驱动电子装置是否与电动机集成在一起还是彼此分离,只要满足这一定义均为所指。”

图23.1 无刷直流电机构形 2011-01-31 若干类型的电机和驱动被归类于无刷直流电机,它们包括: 1 永磁同步电机(PMSMs); 2 梯形反电势(back - EMF)表面安装磁铁无刷直流电机; 3 正弦形表面安装磁铁无刷直流电机; 4 内嵌式磁铁无刷直流电机; 5 电机与驱动装置组合式无刷直流电机; 6 轴向磁通无刷直流电机。 图23.1给出了几种较常见的无刷直流电机的构形图。永磁同步电机反电势是正弦形的,其绕组如同其他交流电机一样通常不是满距,或是接近满距的集中式绕组。许多无刷直流电

直流电机启动方法

直流电机启动方法 直流电机从接通电源开始转动,直至升速到某一固定转数稳定运行,这一过程称为电动机的启动过程。直流电机有直接合闸起动、串电阻起动和降电压启动三种方法。 由于直流电机电枢回路电阻和电感都较小,而转动体具有一定的机械惯性,因此当直流电机接通电源后,起动的开始阶段电枢转速以及相应的反电动势很小,起动电流很大。最大可达额定电流的15~20倍。这一电流会使电网受到扰动、机组受到机械冲击、换向器发生火花。因此直接合闸起动只适用于功率不大于4千瓦的电动机。 为了限制起动电流,常在电枢回路内串入专门设计的可变电阻。在起动过程中随着转速的不断升高及时逐级将各分段电阻短接,使起动电流限制在某一允许值以内。这种起动方法称为串电阻起动,非常简单,设备轻便,广泛应用于各种中小型直流电机中。但由于起动过程中能量消耗大,不适于经常起动的电机和中、大型直流电机。但对于某些特殊需要,例如城市电车虽经常起动,为了简化设备,减轻重量和操作维修方便,通常采用串电阻起动方法。 对容量较大的直流电机,通常采用降电压起动。即由单独的可调压直流电源对电机电枢供电,控制电源电压既可使电机平滑起动,又能实现调速。此种方法电源设备比较复杂。下面和松文机电具体了解一下这些启动方式。 a.直接合闸起动。 直接合闸起动就是将电动机直接接入到额定电压的电源上启动。由于电动机所加的是额定电源,而电动机开始接通电源瞬间电枢不动,电枢反电动势E。为零,所以启动时电流很大。启动时电动机最大电流为正因为电动机启动电流很大,所以启动转矩大,电动机启

动迅速,启动时间短。 不过,电动机一旦开始运转,电枢绕组就有感应电动势产生,且转数越高,电枢反电动势就越大。随着电动机转数上升,电流迅速下降,电磁转矩也随之下降。当电动机电磁转矩与负载阻力转矩相平衡时,电动机的启动过程结束而进人稳定运行状态。 直接合闸起动的优点是不需其他设备,操作简便;缺点是启动电流大。它只适用于小型电动机,如家用电器中的直流电机。 b. 串电阻起动 串电阻起动就是在启动时将一组启动电阻RP串人电枢回路,以限制启动电流,而当转数上升到额定转数后,再把启动变阻器从电枢回路中切除。 串电阻起动的优点是启动电流小;缺点是变阻器比较笨重,启动过程中要消耗很多的能量。 c.降电压起动。 降电压起动就是在启动时通过暂时降低电动机供电电压的办法来限制启动电流,当然降压启动要有一套可变电压的直流电源,这种方法只适合于大功率直流电机。

直流电机驱动电路设计

应用越来越广泛的直流电机,驱动电路设计 Source:电子元件技术| Publishing Date:2009-03-20 中心论题: ?在直流电机驱动电路的设计中,主要考虑功能和性能等方面的因素 ?分别介绍几种不同的栅极驱动电路并比较其性能优缺点 ?介绍PWM调速的实现算法及硬件电路 ?介绍步进电机的驱动方案 解决方案: ?根据实际电路情况以及要求仔细选择驱动电路 ?使用循环位移算法及模拟电路实现PWM调速 ?对每个电机的相应时刻设定相应的分频比值,同时用一个变量进行计数可实现步进电机的分频调速 直流电机驱动电路的设计目标 在直流电机驱动电路的设计中,主要考虑一下几点: 功能:电机是单向还是双向转动?需不需要调速?对于单向的电机驱动,只要用一个大功率三极管或场效应管或继电器直接带动电机即可,当电机需要双向转动时,可以使用由4个功率元件组成的H桥电路或者使用一个双刀双掷的继电器。如果不需要调速,只要使用继电器即可;但如果需要调速,可以使用三极管,场效应管等开关元件实现PWM(脉冲宽度调制)调速。 性能:对于PWM调速的电机驱动电路,主要有以下性能指标。 1。输出电流和电压围,它决定着电路能驱动多大功率的电机。 2。效率,高的效率不仅意味着节省电源,也会减少驱动电路的发热。要提高电路的效率,可以从保证功率器件的开关工作状态和防止共态导通(H桥或推挽电路可能出现的一个问题,即两个功率器件同时导通使电源短路)入手。 3。对控制输入端的影响。功率电路对其输入端应有良好的信号隔离,防止有高电压大电流进入主控电路,这可以用高的输入阻抗或者光电耦合器实现隔离。

4。对电源的影响。共态导通可以引起电源电压的瞬间下降造成高频电源污染;大的电流可能导致地线电位浮动。 5。可靠性。电机驱动电路应该尽可能做到,无论加上何种控制信号,何种无源负载,电路都是安全的。 三极管-电阻作栅极驱动 1.输入与电平转换部分: 输入信号线由DATA引入,1脚是地线,其余是信号线。注意1脚对地连接了一个2K欧的电阻。当驱动板与单片机分别供电时,这个电阻可以提供信号电流回流的通路。当驱动板与单片机共用一组电源时,这个电阻可以防止大电流沿着连线流入单片机主板的地线造成干扰。或者说,相当于把驱动板的地线与单片机的地线隔开,实现“一点接地”。 高速运放KF347(也可以用TL084)的作用是比较器,把输入逻辑信号同来自指示灯和一个二极管的2。7V 基准电压比较,转换成接近功率电源电压幅度的方波信号。KF347的输入电压围不能接近负电源电压,否则会出错。因此在运放输入端增加了防止电压围溢出的二极管。输入端的两个电阻一个用来限流,一个用来在输入悬空时把输入端拉到低电平。

直流电动机起动实验

实验一直流电动机起动实验 一、实验目的理解直流电机的工作原理,测试直流电动及直接起动的波形。说明负载转矩、转速、电流、电磁转矩之间为何具有相应的对应关系。 二、实验的主要内容 仿真一台直流并励电动机的起动过程。电动机参数为: PN =17kW, U N = 220V, n0= 3000r/min,电枢回路电阻R a =0. 0870,电枢电感La =0. 0032H,励磁回路电阻R F=181.50,电机转动惯量J=0.76 kg ?m2。 三、实验的基本原理直流电动机刚与电源接通的瞬间,转子尚未转动起来时,他励和串励电动机的电枢电流以及并励和复励电动机的输入电流称为起动电流,这时的电磁转矩称为起动转矩。一般情况下,在额定电压下直接起动时,起动电流可达电枢电流额定值的10~20倍,起动转矩也能达到额定转矩的10~20倍,这样的起动电流是换向所不允许的,而且过大的起动转矩会使电动机和它所拖动的生产机械遭受突然的巨大冲击,以致损坏传动机械和生产机械。由此可见,除了额定功率在数百瓦以下的微型直流电动机,因电枢绕组导线细、枢电阻大以及转动惯量又比较小,可以直接起动以外,一般的直流电动机是不允许采用直接起动的。 四、实验步骤 1) 建立并激电动机的仿真模型:直流电动机DCmotor 的电枢和励磁并联后由直流电源DC 供电,用Step 模块给定电动机的负载转矩,在DCmotor 的m 端连接了Demux 模块,将m 端输出的4 个信号分为4 路,以便通过示波器Scope 观察,m 端输出的转速单位为rad/s,这里使用了一个放大器(Gain), 将rad/s 转换为习惯的r/min,变换系数为:k=60/2 π =9.55。 2) 计算电动机参数: 励磁电流 励磁电感在恒定磁场控制时可取“ 0” 电枢电阻 R a =0.0870 电枢电感估算

直流电机的启动过程

首先,电厂中的直流油泵用在什么地方,一般多用在润滑油系统,称为直流润滑油泵或事故油泵;如是氢冷发电机组的话,密封油系统通常也设置一台,名称也是直流密封油泵或事故密封油泵。作用是什么呢?一般是考虑全厂失电的情况下,保护汽轮机大轴和氢气扩散至空气中,这些都可以从部颁的二十五项反措中找到设计直流油泵的原因,什么防汽轮机大轴弯曲了,氢爆了等等。 其次,再说直流电机的分类,一般有串励、并励、他励三种,至于派生出什么积复励和差复励等等咱就不研究了。像刚才所说的油泵电机,容量都不会太大,所以此类直流电机一般都设计为并励直流电机。像15楼所述怕电机飞车这种情况一般只出现在自励直流电机上;当然了,自励电机和并励电机各自有各自的优缺点,在什么地方使用跟需要实现什么功能有关,这里就不再啰嗦了 第三,先上一个图,这是电厂直流油泵电机典型的接线图,辅助的一些元件我没有画出来,比方说KM的合跳、信号回路、电流指示回路等,甚至有些单位还加了一些时间继电器等等。 启动电阻 电枢绕组 励磁绕组 其中KM是直流电机的主接触器,KM1就是楼主所述的辅助接触器,电枢绕组为转子线圈,其阻值一般都很小,微欧级。励磁绕组为静子的磁极线圈,有兴趣的可以利用设备解体的时候学习一下,直流电机静子上不但有磁极线圈,还有换向极线圈(在两个主磁极之间的那个),励磁绕组的那个阻值一般都在百欧级。 接下来我们要说直流电机的启动过程,假如没有KM1和启动电阻的话,直流电压(一般为220V)直接加在一个微欧级的电阻上,你们可以计算一下电流有多大。直流电机的主回路会受不了这么大的电流的。忘了说了那个启动电阻一般的阻值为零点几到几欧姆之间吧,根据各单位限流的幅值倍数而定,可自行设计。所以啊,直流电机的启动过程必须要加限流的措施,一般采用的方法如上图所示。KM先动作合闸,此时KM1不动作,启动电阻串在电枢回路里,此时的电流值可依据设计的启动电流倍数而定,一般不超额定的4-7倍,此时电流值在我们的控制范围内。当电机启动完成后,我们当然不希望启动电阻串在电枢回路里,发热会很厉害,也不节能,所以必须得切除。什么时间切除呢,大家都注意到了KM1这个接触器的线圈是并在电枢回路里,随着电机转速逐渐升高的时候,它的反电势也在逐步增加,增加到KM1的动作电压时,KM1吸合,切除启动电阻,直流电机启动完成。 至于楼主说的两个接触器是串联关系,我认为说的不太确切,只能说是混联,或者说不存在串并联关系,因为,这两个接触器动作的次序不一样,只有在电机启动完成后,才勉强可以说是串联的。 另外一点,在电机启动而启动电阻未切除的时候,随着反电势的建立(方向与电源极性相反),启动电流是呈下降趋势的,相当于加在电枢绕组两端电压在下降,U1=U-E。 直流电机在电厂用处不是十分广泛,但无他不行,所以有关直流电机的资料和经验都很少,欢迎大家来一起交流直流电机的运行心得和经验教训。

直流电机驱动控制电路_NMosfet

1 引言 长期以来,直流电机以其良好的线性特性、优异的控制性能等特点成为大多数变速运动控制和闭环位置伺服控制系统的最佳选择。特别随着计算机在控制领域,高开关频率、全控型第二代电力半导体器件(GTR、GTO、MOSFET、IGBT等)的发展,以及脉宽调制(PWM)直流调速技术的应用,直流电机得到广泛应用。为适应小型直流电机的使用需求,各半导体厂商推出了直流电机控制专用集成电路,构成基于微处理器控制的直流电机伺服系统。但是,专用集成电路构成的直流电机驱动器的输出功率有限,不适合大功率直流电机驱动需求。因此采用N沟道增强型场效应管构建H桥,实现大功率直流电机驱动控制。该驱动电路能够满足各种类型直流电机需求,并具有快速、精确、高效、低功耗等特点,可直接与微处理器接口,可应用PWM技术实现直流电机调速控制。 2 直流电机驱动控制电路总体结构 直流电机驱动控制电路分为光电隔离电路、电机驱动逻辑电路、驱动信号放大电路、电荷泵电路、H桥功率驱动电路等四部分,其电路框图如图一 由图可以看出,电机驱动控制电路的外围接口简单。其主要控制信号有电机运转方向信号Dir电机调速信号PWM及电机制动信号Brake,Vcc为驱动逻辑电路部分提供电源,Vm为电机电源电压,M+、M-为直流电机接口。 在大功率驱动系统中,将驱动回路与控制回路电气隔离,减少驱动控制电路对外部控制电路的干扰。隔离后的控制信号经电机驱动逻辑电路产生电机逻辑控制信号,分别控制H桥的上下臂。由于H桥由大功率N沟道增强型场效应管构成,不能由电机逻辑控制信号直接驱动,必须经驱动信号放大电路和电荷泵电路对控制信号进行放大,然后驱动H桥功率驱动电路来驱动直流电机。 3 H桥功率驱动原理 直流电机驱动使用最广泛的就是H型全桥式电路,这种驱动电路方便地实现直流电机的四象限运行,分别对应正转、正转制动、反转、反转制动。H桥功率驱动原理图如图2所示。

直流电动机启动、调速控制电路实验.

实验题目类型:设计型 《电机与拖动》实验报告 实验题目名称:直流电动机启动、调速控制电路 实验室名称:电机及自动控制 实验组号:X组指导教师:XXX 报告人:XXX 学号:XXXXXXXXX 实验地点:XXXX 实验时间:20XX年XX月X日指导教师评阅意见与成绩评定

一、实验目的 掌握直流电动机电枢电路串电阻起动的方法; 掌握直流电动机改变电枢电阻调速的方法; 掌握直流电动机的制动方法; 二、实验仪器和设备 三、实验内容 (1)电动机数据和主要实验设备的技术数据

四、实验原理 直流电动机的起动:包括降低电枢电压起动与增加电枢电阻起动,降低电枢电压起动需要有可调节电压的专用直流电源给电动机的电枢电路供电,优点是起动平稳,起动过程中能量损耗小,缺点是初期投资较大;增加电枢电阻起动有有级(电机额定功率较小)、无极(电机额定功率较大)之分。是在起动之前将变阻器调到最大,再接通电源,随着转速的升高逐渐减小电阻到零。 直流电动机的调速:改变Ra、Ua和?中的任意一个使转子转速发生变化。 直流电动机的制动:使直流电动机停止转动。制动方式有能耗制动:制动时电源断开,立即与电阻相连,使电机处于发电状态,将动能转化成电能消耗在电路内。反接制动:制动时让E与Ua的作用方向一致,共同产生电流使电动机转换的电能与输入电能一起消耗在电路中。回馈制动:制动时电机的转速大于理想空转,电机处于发电状态,将动能转换成电能回馈给电网。 五、实验内容 (一)、实验报告经指导教师审阅批准后方可进入实验室实验 (二)、将本次实验所需的仪器设备放置于工作台上并检查其是否正常运行,检验正常后将所需型号和技术数据填入到相应的表内(若是在检验中发现 问题要及时调换器件) (三)、按实验前准备的实验步骤实验

有刷直流马达驱动电路

有刷直流马达驱动电路MX612 有刷直流马达驱动电路 MX612 概述 该产品为电池供电的玩具、低压或者电池供电的运动控制应用提供了一种集成的有刷直流马达驱动解决方案。电路内部集成了采用N沟和P沟功率MOSFET设计的H桥驱动电路,适合于驱动有刷直流马达或者驱动步进马达的一个绕组。该电路具备较宽的工作电压范围(从2V到10V),最大持续输出电流达到1.2A,最大峰值输出电流达到2.5A。 该驱动电路内置过热保护电路。通过驱动电路的负载电流远大于电路的最大持续电流时,受封装散热能力限制,电路内部芯片的结温将会迅速升高,一旦超过设定值(典型值150℃),内部电路将立即关断输出功率管,切断负载电流,避免温度持续升高造成塑料封装冒烟、起火等安全隐患。内置的温度迟滞电路,确保电路恢复到安全温度后,才允许重新对电路进行控制。 特性 ●低待机电流(小于0.1uA); ●低静态工作电流; ●集成的H桥驱动电路; ●内置防共态导通电路; ●低导通内阻的功率MOSFET管; ●内置带迟滞效应的过热保护电路(TSD); ●抗静电等级:3KV (HBM)。 典型应用 ● 2-6节AA/AAA干电池供电的玩具马达驱动; ● 2-6节镍-氢/镍-镉充电电池供电的玩具马达驱动; ● 1-2节锂电池供电的马达驱动

引脚排列 引脚定义 功能框图

注:D A JA T A表示电路工作的环境温度,θJA为封装的热阻。150℃表示电路的最高工作结温。 (2)、电路功耗的计算方法: P =I2*R 其中P为电路功耗,I为持续输出电流,R为电路的导通内阻。电路功耗P必须小于最大功耗P D (3)、人体模型,100pF电容通过1.5KΩ 电阻放电。 注:(1)、逻辑控制电源VCC与功率电源VDD内部完全独立,可分别供电。当逻辑控制电源VCC掉电之后,电路将进入待机模式。 (2)、持续输出电流测试条件为:电路贴装在PCB上测试,SOP8封装的测试PCB板尺寸为25mm*15mm。

直流电动机启动调速控制线路

` 实验题目类型:设计型 《电机与拖动》实验报告 实验题目名称:直流电动机启动、调速控制线路实验室名称:电机及自动控制 实验组号:指导教师: 报告人:学号: 实验地点:实验时间: 指导教师评阅意见与成绩评定

文档Word ` 一、实验目的 1、掌握并励直流电动机电枢电路串电阻起动的方法。 2、掌握并励直流电动机改变电枢电阻和改变励磁电流调速的方法。 3、掌握并励直流电动机的制动方法。 4、提交实验成果。 二、实验设备

实验技术路线三、 :实验前预习要点直流电动机的起动1. 起动的方法串电阻起动a)串入电枢回路,以限制启动电串电阻起动就是在启动时将一组启动电阻R 流,而当转数上升到额定转数后,再把启动变阻器从电枢回路中切除。启动过程中要消缺点是变阻器比较笨重,串电阻起动的优点是启动电流小;耗很多的能量。 降电压起动b)降电压起动就是在启动时通过暂时降低电动机供电电压的办法来限制启动这种方法只适合于大功率直当然降压启动要有一套可变电压的直流电源,电流,流电机。 文档Word ` 2.直流电动机的调速 调速的种类与方法: 调节电枢供电电压 a)改变电枢电压主要是从额定电压往下降低电枢电压,从电动机额定转速向下变速,属恒转矩调速方法。对于要求在一定围无级平滑调速的系统来说,这种方法最好。变化遇到的时间常数较小,能快速响应,但是需要大容量可调直流电源。 b)改变电动机主磁通 改变磁通可以实现无级平滑调速,但只能减弱磁通进行调速(简称弱磁调速),从电机额定转速向上调速,属恒功率调速方法。变化时间遇到的时间常数同变化遇到的相比要大得多,响应速度较慢,但所需电源容量小。 c)电枢回路串电阻调速 电动机电枢回路外串电阻进行调速的方法,设备简单,操作方便。但是只能进行有级调速,调速平滑性差,机械特性较软;空载时几乎没什么调速作用;还会在调速电阻上消耗大量电能。 3.直流电动机的制动方法能耗制动在电枢两端从电源断开的同并励直流电动机在能耗制动时要保持励磁电流不变,电枢因机械惯性这时电动机主磁场保持不变,时,其立即接到一个制动电阻上。从而电动机由电动机状态立即转至发电机

L293D直流电机驱动电路图和解答

我没有自己设计电路来实现“H”桥,而是决定查找一种商用的解决方案。本应用 选择了Unitrode的“293D”电机驱动芯片,因为它连接简单,而且能够控制在各种电 压下向电机、继电器或其他磁性元件提供最大2安培的电流。 图12-8没有实际画出293D的引出线,以“H“桥连接方式,通过将电机的两个导 线连接在芯片的各半边,能够使用293D来控制电机。 第一个也许也是最重要的一项功能是4各驱动器中的每一个都有嵌位二极管来抑制 电机关断时的反EMF。这一点很重要,因为在驱动器关闭时,所有的磁性元件都会产 生大的电压尖峰信号。这些大的尖峰信号是由电流断开时正在消失的磁场引起的。因此,在线圈的两端接一个二极管,以便防止这些反EMF干扰或者损坏任何的电子元件。 293D的另一个特性是每个驱动器有一个允许信号。不必修改驱动器控制部分,就 能够使用这些信号实现脉宽调制(PWM)速度控制。 293D的晶体管控制会在芯片内产生1.5V的压降,也就是说,如果想让机器人电机 工作在1.5V,因此使用两个1.5V电池串联来控制完全没有问题。 最后一个特点是该芯片能够控制和传递给驱动器的电压范围宽。对于大电流应用系统,安装该芯片的印制板应该是293D地线引脚周围设计大的散热区。这个区域能够 为该芯片提供更多的铜,以便让电流产生的热辐射出去。 使用293D,能够建立图12-9所示的电路来控制墙角老鼠的两个电机。这个电路是后面的5各应用示例的基础。后面将只说明硬件的增强以及它们如何与AT89C2051连接,而不是在此电路的基础上添加。 ——飘风抄自《精通80C51程序设计》【Myke Predko编著,田玉敏等译】,这本书里面的语言是汇编语言,以美语为母语的人说汇编就跟我们说成语似的。兄弟啊,出个人吧,编本以汉子为基础的程序语言吧。那样的话,中华的技术爱好者比例 将超过60%。而你。会获得大量的财富的。中华人会感激你一辈子的。 L293D,额在长春的电子市场买的,价格是10块钱一个。

直流电机控制电路(伺服)

直流电机控制电路专辑—6 伺服电机是一种传统的电机。它是自动装置的执行元件。伺服电机的最大特点是可控。在有控制信号时,伺服电机就转动,且转速大小正比于控制电压的大小。去掉控制电压后,伺服电机就立即停止转动。伺服电机的应用甚广,几乎所有的自动控制系统都需要用到。在家电产品中,例如录相机、激光唱机等都是不可缺少的重要组成部分。 1.简单伺服电机的工作原理 图22示出了伺服电机的最简单的应用。电位器RV1由伺服电机带动。电机可选用电流不超过700mA,电压为12~24V的任一种伺服电机。图中RV1和RV2是接成惠斯登(Wheatstone)电桥。集成电路LM378是双路4瓦功率放大器,也以桥接方式构成电机驱动差分放大器。当RV2的任意变化,都将破坏电桥的平衡,使RV1—RV2之间产生一差分电压,并且加以放大后送至电机。电机将转动,拖动电位器RV1到新的位置,使电桥重新达到新的平衡。所以说,RV1是跟踪了RV2的运动。 图23是用方块图形式,画出了测速传感器伺服电机系统,能用作唱机转盘精密速度控制的原理图。电机用传统的皮带机构驱动转盘。转盘的边缘,用等间隔反射条文图形结构。用光电测速计进行监视和检测。光电测速计的输出信号正比于转盘的转速。把光电测速计输出信号的相位和频率,与标准振荡器的相位和频率进行比较,用它的误差信号控制电机驱动电路。因此,转盘的转速就精确地保持在额定转速上。额定转速的换档,可由操作开关控制。

这些控制电路,已有厂家做成专用的集成电路 2.数字比例伺服电机 伺服电机的最好类型之一,是用数字比例遥控系统。实际上这些装置是由三部份组成:采用集成电路、伺服电机、减速齿轮盒电位器机构。图24是这种系统的方块图。电路的驱动输入,是用周期为15ms而脉冲宽度为1~2ms的脉冲信号驱动。输入脉冲的宽度,控制伺服机械输出的位置。例如:1ms脉宽,位置在最左边;1.5ms在中是位置,2ms在最右边的位置 每一个输入脉冲分三路同时传送。一路触发1.5ms脉宽的固定脉冲发生器。一路输入触发脉冲发生器,第三路送入脉宽比较电路。用齿轮盒输出至RV1,控制可变宽度的脉冲发生器。这三种脉冲同时送到脉宽比较器后,一路确定电机驱动电路的方向。另一路送给脉宽扩展器,以控制伺服电机的速度,使得RV1迅速驱动机械位置输出跟随输入脉宽的任何变化。 上述伺服电机型常用于多路遥控系统。图25示出了四路数字比例控制系统的波形图。上述伺服电机型常用于多路遥控系统。图25示出了四路数字比例控制系统的波形图。 从图中可以看出是串行数据输入,经过译码器分出各路的控制信号。每一帧包含4ms 的同步脉冲,紧接在后面的是四路可变宽度(1~2ms)顺序的“路”脉冲。译码器将四路脉冲变换为并行形式,就能用于控制伺服电机。 3.数字伺服电机电路 数字伺服电机控制单元,可以买到现成的集成电路。例如ZN409CE或NE544N型伺服电机放大器集成电路。图26和图27示出了这两种集成电路的典型应用 。

他励直流电机的启动原理与运行

他励直流电机的运行 直流电动机的起动 电动机接到规定电源后,转速从0上升到稳态转速的过程称为起动过程。 他励直流电动机起动时,必须先保证有磁场(即先通励磁电流),而后加电枢电压。 合闸瞬间的起动电流很大应尽可能的缩短启动时间,减少能量损耗以及减少生产中的损耗 起动电流大的原因: 1、起动开始时:n=0,Ea=CeΦn=0, 2、电枢电流:Ia=(U-Ea)/Ra=U/Ra Ra一般很小 这样大的起动电流会引起后果: 1、电机换向困难,产生严重的火花 2、过大转矩将损坏拖动系统的传动机构和电机电枢 3、供电线路产生很大的压降。变频器整流回路的启动电阻 结论:因此必须采取适当的措施限制起动电流,除容量极小的电机外,绝不允许直接起动 起动方法: 电枢串电阻启动——起动过程中有能量损耗,现在很少用,在实验室中用降压启动——适用于电动机的直流电源是可调的,投资较大,但启动过程中没有能量损耗。 直流启动器 电枢串电阻起动: 最初起动电流:Ist=U/(Ra+Rst) 最初起动转矩:Tst=KTΦIst 启动电阻:Rst=(UN/λi IN)-Ra 为了在限定的电流Ist下获得较大的起动转矩Tst,应该使磁通Φ尽可能大些,因此起动时串联在励磁回路的电阻应全部切除。 有了一定的转速n后,电势Ea不再为0,电流Ist会逐步减小,转矩Tst 也会逐步减小。 为了在起动过程中始终保持足够大的起动转矩,一般将起动器设计为多级,随着转速n的增大,串在电枢回路的起动电阻Rst逐级切除,进入稳态后全部切除。 起动电阻Rst一般设计为短时运行方式,不容许长时间通过较大的电流。

降压起动: 对于他励直流电动机,可以采用专门设备降低电枢回路的电压以减小起动电流。 起动时电压Umin,起动电流Ist: Ist= Umin/Ra< λiIN 启动过程中U随Ea上升逐渐上升,直到U=UN 串励电动机绝对不允许空载起动。 串电阻起动设备简单,投资小,但起动电阻上要消耗能量; 电枢降压起动设备投资较大,但起动过程节能。 直流电动机的调速 为提高产品质量和生产效率,工作机械的运行速不可能是单一的。按照工作机械的要求认为地调节拖动电动机的运行速度。 例如:车床切削工件时,精加工用高速,粗加工用低速。 改变传动机构的变比——机械调速 改变电动机参数——电气调速:直流和交流 直流调速系统中大多数为他励直流电动机 一、他励直流电动机人为机械特性 电动机转速特性和机械特性的一般表达式:

直流电机(H桥)驱动电路

直流电机(H桥)驱动电路 图4.12中所示为一个典型的直流电机控制电路。电路得名于“H桥驱动电路”是因为它的形状酷似字母 H。4个三极管组成H的4条垂直腿,而电机就是H中的横杠(注意:图4.12及随后的两个图都只是示意图,而不是完整的电路图,其中三极管的驱动电路没有画出来)。 如图所示,H桥式电机驱动电路包括4个三极管和一个电机。要使电机运转,必须导通对角线上的一对三极管。 根据不同三极管对的导通情况,电流可能会从左至右或从右至左流过电机,从而控制电机的转向。 图4.12 H桥驱动电路 要使电机运转,必须使对角线上的一对三极管导通。例如,如图4.13所示,当Q1管和Q4管导通时,电流就从电源正极经Q1从左至右穿过电机,然后再经 Q4回到电源负极。按图中电流箭头所示,该流向的电 流将驱动电机顺时针转动。当三极管Q1和Q4导通时,电流将从左至右流过电机,从而驱动电机按特定方向转动(电机周围的箭头指示为顺时针方向)。

图4.13 H桥电路驱动电机顺时针转动 图4.14所示为另一对三极管Q2和Q3导通的情况,电流将从右至左流过电机。当三极管Q2和Q3导通时,电流将从右至左流过电机,从而驱动电机沿另一方向转动(电机周围的箭头表示为逆时针方向)。 图4.14 H桥驱动电机逆时针转动 驱动电机时,保证H桥上两个同侧的三极管不会同时导通非常重要。如果三极管Q1和Q2同时导通,那么电流就会从正极穿过两个三极管直接回到负极。此时,电路中除了三极管外没有其他任何负载,因此电路

上的电流就可能达到最大值(该电流仅受电源性能限制),甚至烧坏三极管。基于上述原因,在实际驱动电 路中通常要用硬件电路方便地控制三极管的开关。 图4.155 所示就是基于这种考虑的改进电路,它在基本H桥电路的基础上增加了4个与门和2个非门。4个与门同一个“使能”导通信号相接,这样,用这一个信号就能控制整个电路的开关。而2个非门通过提供一种方向输人,可以保证任何时候在H桥的同侧腿上都只有一个三极管能导通。(与本节前面的示意图一样,图4.15所示也不是一个完整的电路图,特别是图中与门和三极管直接连接是不能正常工作的。) 图4.15 具有使能控制和方向逻辑的H桥电路 采用以上方法,电机的运转就只需要用三个信号控制:两个方向信号和一个使能信号。如果DIR-L信号为0,DIR-R信号为1,并且使能信号是1,那么三极管Q1和Q4导通,电流从左至右流经电机(如图4.16所示);如果DIR-L信号变为1,而DIR-R信号变为0,那么Q2和Q3将导通,电流则反向流过电机。 图4.16 使能信号与方向信号的使用

直流电机的H型驱动

电动小车的电机驱动及控制探讨 一个电动小车整体的运行性能,首先取决于它的电池系统和电机驱动系统。电动小车的驱动系统一般由控制器、功率变换器及电动机三个主要部分组成。电动小车的驱动不但要求电机驱动系统具有高转矩重量比、宽调速范围、高可靠性,而且电机的转矩-转速特性受电源功率的影响,这就要求驱动具有尽可能宽的高效率区。我们所使用的电机一般为直流电机,主要用到永磁直流电机、伺服电机及步进电机三种。直流电机的控制很简单,性能出众,直流电源也容易实现。本文即主要介绍这种直流电机的驱动及控制。 1.H 型桥式驱动电路 直流电机驱动电路使用最广泛的就是H型全桥式电路,这种驱动电路可以很方便实现直流电机的四象限运行,分别对应正转、正转制动、反转、反转制动。它的基本原理图如图1所示。 全桥式驱动电路的4只开关管都工作在斩波状态,S1、S2为一组,S3、S4 为另一组,两组的状态互补,一组导通则另一组必须关断。当S1、S2导通时,S3、 S4关断,电机两端加正向电压,可以实现电机的正转或反转制动;当S3、S4导通时,S1、S2关断,电机两端为反向电压,电机反转或正转制动。

在小车动作的过程中,我们要不断地使电机在四个象限之间切换,即在正转和反转之间切换,也就是在S1、S2导通且S3、S4关断,到S1、S2关断且S3、 S4导通,这两种状态之间转换。在这种情况下,理论上要求两组控制信号完全互补,但是,由于实际的开关器件都存在开通和关断时间,绝对的互补控制逻辑必然导致上下桥臂直通短路,比如在上桥臂关断的过程中,下桥臂导通了。这个过程可用图2说明。 因此,为了避免直通短路且保证各个开关管动作之间的协同性和同步性,两组控制信号在理论上要求互为倒相的逻辑关系,而实际上却必须相差一个足够的死区时间,这个矫正过程既可以通过硬件实现,即在上下桥臂的两组控制信号之间增加延时,也可以通过软件实现(具体方法参看后文)。 驱动电流不仅可以通过主开关管流通,而且还可以通过续流二极管流通。当电机处于制动状态时,电机便工作在发电状态,转子电流必须通过续流二极管流通,否则电机就会发热,严重时烧毁。 开关管的选择对驱动电路的影响很大,开关管的选择宜遵循以下原则: (1)由于驱动电路是功率输出,要求开关管输出功率较大; (2)开关管的开通和关断时间应尽可能小;

2021年直流电机启动方法

直流电机启动方法 欧阳光明(2021.03.07) 直流电机从接通电源开始转动,直至升速到某一固定转数稳定运行,这一过程称为电动机的启动过程。直流电机有直接合闸起动、串电阻起动和降电压启动三种方法。 由于直流电机电枢回路电阻和电感都较小,而转动体具有一定的机械惯性,因此当直流电机接通电源后,起动的开始阶段电枢转速以及相应的反电动势很小,起动电流很大。最大可达额定电流的15~20倍。这一电流会使电网受到扰动、机组受到机械冲击、换向器发生火花。因此直接合闸起动只适用于功率不大于4千瓦的电动机。 为了限制起动电流,常在电枢回路内串入专门设计的可变电阻。在起动过程中随着转速的不断升高及时逐级将各分段电阻短接,使起动电流限制在某一允许值以内。这种起动方法称为串电阻起动,非常简单,设备轻便,广泛应用于各种中小型直流电机中。但由于起动过程中能量消耗大,不适于经常起动的电机和中、大型直流电机。但对于某些特殊需要,例如城市电车虽经常起动,为了简化设备,减轻重量和操作维修方便,通常采用串电阻起动方法。 对容量较大的直流电机,通常采用降电压起动。即由单独的可调压直流电源对电机电枢供电,控制电源电压既可使电机平滑起动,又能实现调速。此种方法电源设备比较复杂。下面和松文机电具体了解一下这些启动方式。 a.直接合闸起动。

直接合闸起动就是将电动机直接接入到额定电压的电源上启动。由于电动机所加的是额定电源,而电动机开始接通电源瞬间电枢不动,电枢反电动势E。为零,所以启动时电流很大。启动时电动机最大电流为正因为电动机启动电流很大,所以启动转矩大,电动机启动迅速,启动时间短。 不过,电动机一旦开始运转,电枢绕组就有感应电动势产生,且转数越高,电枢反电动势就越大。随着电动机转数上升,电流迅速下降,电磁转矩也随之下降。当电动机电磁转矩与负载阻力转矩相平衡时,电动机的启动过程结束而进人稳定运行状态。 直接合闸起动的优点是不需其他设备,操作简便;缺点是启动电流大。它只适用于小型电动机,如家用电器中的直流电机。 b. 串电阻起动 串电阻起动就是在启动时将一组启动电阻RP串人电枢回路,以限制启动电流,而当转数上升到额定转数后,再把启动变阻器从电枢回路中切除。 串电阻起动的优点是启动电流小;缺点是变阻器比较笨重,启动过程中要消耗很多的能量。 c.降电压起动。 降电压起动就是在启动时通过暂时降低电动机供电电压的办法来限制启动电流,当然降压启动要有一套可变电压的直流电源,这种方法只适合于大功率直流电机。

直流电机驱动电路设计的一些知识

一、直流电机驱动电路的设计目标 在直流电机驱动电路的设计中,主要考虑一下几点: 1.功能:电机是单向还是双向转动?需不需要调速?对于单向的电机驱动,只要用一个大功率三极管或场效应管或继电器直接带动电机即可,当电机需要双向转动 时,可以使用由4个功率元件组成的H桥电路或者使用一个双刀双掷的继电器。 如果不需要调速,只要使用继电器即可;但如果需要调速,可以使用三极管, 场效应管等开关元件实现PWM(脉冲宽度调制)调速。 2.性能:对于PWM调速的电机驱动电路,主要有以下性能指标。 1)输出电流和电压范围,它决定着电路能驱动多大功率的电机。 2)效率,高的效率不仅意味着节省电源,也会减少驱动电路的发热。要提高电路的效率,可以从保证功率器件的开关工作状态和防止共态导通(H桥或推挽电路可能出现的一个问题,即两个功率器件同时导通使电源短路)入手。 3)对控制输入端的影响。功率电路对其输入端应有良好的信号隔离,防止有高电压大电流进入主控电路,这可以用高的输入阻抗或者光电耦合器实现隔离。 4)对电源的影响。共态导通可以引起电源电压的瞬间下降造成高频电源污染;大的电流可能导致地线电位浮动。 5)可靠性。电机驱动电路应该尽可能做到,无论加上何种控制信号,何种无源负载,电路都是安全的。 二、三极管-电阻作栅极驱动 1.输入与电平转换部分: 输入信号线由DA TA引入,1脚是地线,其余是信号线。注意1脚对地连接了一个2K欧的电阻。当驱动板与单片机分别供电时,这个电阻可以提供信号电流回流的通路。当驱动板与单片机共用一组电源时,这个电阻可以防止大电流沿着连线流入单片机主板的地线造成干扰。或者说,相当于把驱动板的地线与单片机的地线隔开,实现“一点接地”。 高速运放KF347(也可以用TL084)的作用是比较器,把输入逻辑信号同来自指示灯和一个二极管的2.7V基准电压比较,转换成接近功率电源电压幅度的方波信号。KF347的输入电压范围不能接近负电源电压,否则会出错。因此在运放输入端增加了防止电压范围溢出的二极管。输入端的两个电阻一个用来限流,一个用来在输入悬空时把输入端拉到低电平。 不能用LM339或其他任何开路输出的比较器代替运放,因为开路输出的高电平状态输出阻抗在1千欧以上,压降较大,后面一级的三极管将无法截止。 2.栅极驱动部分: 后面三极管和电阻,稳压管组成的电路进一步放大信号,驱动场效应管的栅极并利用场效应管本身的栅极电容(大约1000pF)进行延时,防止H桥上下两臂的场效应管同时导通(“共态导通”)造成电源短路。 当运放输出端为低电平(约为1V至2V,不能完全达到零)时,下面的三极管截止,场效

他励直流电动机启动

运动控制系统课程设计 课题:他励直流电动机启动 系别:电气与信息工程学院 专业: 学号: 姓名: 指导教师: 河南城建学院 2015年1月4日

成绩评定· 一、指导教师评语(根据学生设计报告质量、答辩情况及其平时表现综合评定)。 二、评分 课程设计成绩评定 成绩:(五级制) 指导教师签字年月日

目录 一、设计目的 (1) 二、设计要求 (1) 三、设计内容 (1) 3.1、直流电动机 (1) 3.1.1直流电动机 (1) 3.1.2直流电动机的分类 (2) 3.1.3他励直流电机工作原理 (2) 3.2 他励直流电动机的启动 (3) 3.2.1 他励直流电动机串电阻启动 (3) 3.2.2 直流电动机电枢串电阻起动设计方案 (6) 3.2.3 多级启动的规律 (7) 3.3 结论 (7) 3.4他励直流电动机串电阻起动特性分析 (8) 四、设计体会 (10) 五、参考文献 (10)

一、设计目的 通过对一个实用控制系统的设计,综合运用科学理论知识,提高工程意识和实践技能,使学生获得控制技术工程的基本训练,培养学生理论联系实际、分析解决实际问题的初步应用能力。 二、设计要求 完成所选题目的分析与设计,进行系统总体方案的设计、论证和选择;系统单元主电路和控制电路的设计、元器件的选择和参数计算;课程设计报告的整理工作。 三、设计内容 有一台他励直流电动机,已知参数如下Pan=200kw ;Uan=440v ;Ian=497A ;Nn=1500r/min;Ra=0.076Ω;采用分级启动,启动电流最大不超过2IA,,求出各段电阻值,并作出机械特性曲线,对启动特性进行分析。 他励直流电动机的启动时间虽然很短,但是如果不能采用正确的启动方法,电动机就不能正常地投入运行。为此,应对电动机的启动过程和方法进行必要的分析。 直接启动时,他励直流电动机电枢加额定电压Un,电枢回路不串任何电阻,此时由于n=0,Ea=0,所以启动电流Ist=Un/Ra,由于电枢回路总电阻Ra较小,所以Ist可以达到额定电流In的十几甚至几十倍。这样大的电流可能造成电机换向严重不良,产生火花,甚至正、负电刷间出现电弧,烧毁电刷及换向器。另外,过大的启动电流使启动转矩Tst 过大,会使机械撞击,也会引起供电电网电波动,从而引起其他接于同一电网上的电气设备的正常运行,因此是不允许的。一般只有微型直流电动机,由于自身电枢电阻大,转动惯量小,启动时间短,可以直接启动,其他直流电机都不允许直接启动。 在拖动装置要求不高的场合下,可以采用降低启动电压或在电枢回路串电阻的方法。他励直流电动机在电枢回路中串电阻,具有良好的启动特性、较大的启动转矩和较小的启动电流,可以满足生产机械需要的要求。本文借助图像对整个过程及各个变量与时间的相互关系进行了描绘,对更加清楚地了解和设计他励直流电机启动的特点具有重要意义。3.1直流电动机 3.1.1直流电动机的工作原理 下图所示为最简单的直流电动机工作原理示意图。

相关主题
文本预览
相关文档 最新文档