当前位置:文档之家› 中央空调机房群控系统的构建

中央空调机房群控系统的构建

中央空调机房群控系统的构建
中央空调机房群控系统的构建

浅析中央空调机房群控系统的构建摘要空调系统的节能潜力与机房系统群控有很大的关系,特别与主机和水泵的控制方式密切相关。因此,要合理设计主机和水泵的控制方式,最大限度地发挥主机和水泵的节能潜力。通过对某单位的中央空调机房建立机房群控系统,使该中央空调机房管理更简洁方便,又达到一定节能减排目的。

关键词群控;控制方式;变频

中图分类号tb663 文献标识码a 文章编号 1674-6708(2011)43-0019-02

0 引言

根据美国ari 标准和中国行业标准jb/t4329-97,集中空调系统通常10%的时间,负荷在90%以上;30%的时间,负荷在60%以上;60%的时间,负荷在40% [1]。集中空调系统往往处理半负荷状态,做好其运行管理能带来较大的节能空间。而整个空调系统的节能潜力与机房系统群控有很大的关系,特别与主机和水泵的控制方式密切相关。因此要合理设计主机和水泵的控制方式,最大限度地发挥主机和水泵的节能潜力[2]。

1 配置概况

某单位现有两幢大楼都使用了水冷螺杆式中央空调机组,具体配置如下:

一号机房:冷冻主机3台,冷冻泵3台,

冷机群控方案及其解决方法

冷机台数自控中存在的问题及其解决方法
2008-10-28 14:35:19 作者:张子慧 来源: 《电气&智能建筑》 浏览次数:67 文 字大小: 大】 中】 小】 【 【 【 简介: 简介:发布时间: 2003-12-3 16:00:31
摘 要 文章阐述了冷机台数自动控
制的方法, 列举了有关参数测量系统组建方案及不正确的测量方法。 提出需要有关各专业相 互配合,正确设计、施工及调试,才能使系统有可测性、可控性,达 ... 关键字: 关键字:冷机台数控制
摘 要 文章阐述了冷机台数自动控制的方法, 列举了有关参数测 量系统组建方案及不正确的测量方法。提出需要有关各专业相互配 合,正确设计、施工及调试,才能使系统有可测性、可控性,达到节 能效果。 目前,中央空调系统的冷源主要采用两种,一种是机械压缩式制 冷,主要形式为以消耗电能换取冷量;另一种是热力吸收式制冷,以 消耗热能(燃气、蒸汽、高温热水)换取冷量,其电能或热能的消耗 都是可观的,是建筑设备中能耗大户。实际工程中,制冷机组一般设 置两台或两台以上。为了减少运行费用、节约能源,多根据实需冷负 荷来调节冷机的运行台数,在《在智能建筑设计标准》(GB-T5 0314-2000)中将冷机台数控制定为甲级设计标准条件之 一。
根据我们对实际工程的考查,在冷机台数控制方面有成功的范例, 但也有失败的工程,其成功与否,是由设计、施工和调试等诸方面决

定的。本文详细阐述了工程中出现的问题,提出解决的办法,与同行 商讨,使设计、施工等各个环节保证实际工程能获得可测性、可控性 和节能性。 1 冷机台数控制方式 实际工程中,对制冷系统中的联动控制设备(冷冻泵、冷却泵、 冷却塔及相应电动蝶阀等)及制冷机等已纳入BAS集散控制系统 中,其中对冷机台数控制可分为以下两种方式。 1.1 操作指导控制 这种控制方式是根据集散监控系统实测冷负荷,一方面显示、记 录实际冷负荷;另一方面由操作人员对数据进行分析、判断,实施冷 机运行台数控制及相应联动设备的控制。这是一种开环控制结构,其 优点是结构简单、控制灵活,特别适合对于冷负荷变化规律尚不清楚 和对大型冷机的启、停要求比较严格的场合。这种方法也是实施闭环 控制方法的第一步,可为闭环控制摸索经验。但操作指导控制的缺点 是仍要人工进行操作,控制过程慢、实时性差,节能效果受到限制。 1.2 闭环控制 这种控制方式主要是根据实测冷负荷由DDC直接数字控制器 自动控制冷机运行台数以相应联动设备, 同时对冷负荷进行显示和 记录。 这种控制方式属闭环控制,由DDC直接承担监控任务,所以实 时性好,适应性强。并且由于DDC计算能力强,可实现各种复杂的 控制规律。

数据中心机房空调系统气流组织研究与分析

IDC机房空调系统气流组织研究与分析 摘要:本文阐述了IDC机房气流组织的设计对机房制冷效率有重要影响,叙述现有空调系统气流组织的常见形式。同时重点对IDC机房常见的几种气流组织进行了研究与分析,对比了几种气流组织的优缺点,从理论与实践中探讨各种气流组织情况下冷却的效率。 关键词:IDC、气流组织、空调系统 一、概述 在IDC机房中,运行着大量的计算机、服务器等电子设备,这些设备发热量大,对环境温湿度有着严格的要求,为了能够给IDC机房等提供一个长期稳定、合理、温湿度分布均匀的运行环境,在配置机房精密空调时,通常要求冷风循环次数大于30次,机房空调送风压力75Pa,目的是在冷量一定的情况下,通过大风量的循环使机房内运行设备发出的热量能够迅速得到消除,通过高送风压力使冷风能够送到较远的距离和加大送风速度;同时通过以上方式能够使机房内部的加湿和除湿过程缩短,湿度分布均匀。 大风量小焓差也是机房专用空调区别于普通空调的一个非常重要的方面,在做机房内部机房精密空调配置时,通常在考虑空调系统的冷负荷的同时要考虑机房的冷风循环次数,但在冷量相同的条件下,空调系统的空调房间气流组织是否合理对机房环境的温湿度均匀性有直接的影响。 空调房间气流组织是否合理,不仅直接影响房间的空调冷却效果,而且也影响空调系统的能耗量,气流组织设计的目的就是合理地组织室内空气的流动使室内工作区空气的温度、湿度、速度和洁净度能更好地满足要求。 影响气流组织的因素很多,如送风口位置及型式,回风口位置,房间几何形状及室内的各种扰动等。 二、气流组织常见种类及分析: 按照送、回风口布置位置和形式的不同,可以有各种各样的气流组织形式,大致可以归纳以下五种:上送下回、侧送侧回、中送上下回、上送上回及下送上回。 1) 投入能量利用系数 气流组织设计的任务,就是以投入能量为代价将一定数量经过处理成某种参数的空气送进房间,以消除室内某种有害影响。因此,作为评价气流组织的经济指标,就应能够反映投入能量的利用程度。 恒温空调系统的“投入能量利用系数”βt,定义: (2-1) 式中: t0一一送风温度, tn一一工作区设计温度, tp一一排风温度。 通常,送风量是根据排风温度等于工作区设计温度进行计算的.实际上,房间内的温度并不处处均匀相等,因此,排风口设置在不问部位,就会有不同的排风温度,投入能量利用系数也不相同。 从式(2—1)可以看出: 当tp = tn 时,βt =1.0,表明送风经热交换吸收余热量后达到室内温度,并进而排出室外。 当tp > tn时,βt >1.0,表明送风吸收部分余热达到室内温度、且能控制工作区的温度,而排风温度可以高于室内温度,经济性好。 当tp < tn时,βt <1.0,表明投入的能量没有得到完全利用,住住是由于短路而未能发挥送入风量的排热作用,经济性差。 2) 上送下回 孔板送风和散流器送风是常见的上送下回形式。如图2-1和图2-2所示.

中央空调冷源系统群控浅析

中央空调冷源系统群控浅析 摘要中央空调系统在冷源系统的群控功能是智能化大厦的一项重要功能,实现冷源的群控功能对于降低建筑能耗有明显效果,以某酒店的冷源系统为例,探讨冷源系统实现群控的过程、步骤和方法。在酒店采用群控实现对冷源系统的控制后节能效果明显,设备运行均衡,设备出现故障的现象也减少。 关键词群控;冷源;节能 中央空调系统由于其舒适性和美观,在现代建筑特别是大型建筑中应用很广,在建筑内机电设备的能源消耗占70%~90%;其中冷冻机组占30%,空调机组占15%。因此对中央空调系统中的冷冻机组的能耗控制现代建筑物节能控制的重点。 中央空调系统传统的工作方式是人工根据水温判断启动冷水机组数量,再启动冷却泵、冷冻泵、冷却塔的数量。由于人工判断存在误差及滞后性,冷冻泵经常由于流量不足而高负荷运转,这些都是极大的能源消耗。在中央空调系统的节能控制中使用的方法在智能建筑的楼宇自控系统称为群控,楼宇自控系统常用DDC(直接数字控制器)或PLC(可编程控制器)实现群控的控制。DDC或PLC能利用通信接口和冷水机组的控制器通信,通过DDC或PLC采集到冷水机组的内部数据,再传送到上一级监控系统,实现对冷水机组各个运行参数的实时监控。 本文以太原花园国际大酒店的冷冻站群控系统为例,分析群控系统的实现过程。在本工程采用美国HONEYWELL XCL5010的CPU加LON扩展模块。冷冻站设备中,包括冷水机组、冷冻泵、冷却泵、冷却塔、蝶阀等。 1设备控制 1.1开机顺序 开冷却阀—开冷却塔阀—开冷却泵—开冷却塔风机—开冷冻阀—开冷冻泵—开冷水机组。 当系统设置开机时间到且室外温度大于设定温度,首先启动一台冷水机组首台冷水机组运行开始根据监测的冷冻水回水温度和流量来计算冷负荷,并与设定值相比较以确定需要启动冷水机组的台数。 1)开机条件满足。2)计算各组设备的累计运行时间,依次排列各组设备启动顺序。冷水机组、冷却泵、冷冻泵和冷却塔风机。当有一台同类设备启动后,不再执行本步骤。3)当第一台冷水机组启动后开始根据监测的冷冻水回水温度和计算冷负荷,并与设定值相比较以确定需要启动的冷水机组。4)检测准备启动的冷水机组符合自动且正常状态;如果检测到准备启动的冷水机组处于手动状态或者有故障报警,则撤销此设备的启动命令,同时自动检测排列当中的下一台冷水机组是否

绿色数据中心空调系统设计方案

绿色数据中心空调系统设计方案 北京中普瑞讯信息技术有限公司(以下简称中普瑞讯),是成立于北京中关村科技园区的一家高新技术企业,汇集了多名在硅谷工作过的专家,率先将机房制冷先进的氟泵热管空调系统引进到中国。 氟泵热管空调系统技术方案适用于各种IDC机房,通信机房核心网设备,核心机房PI路由器等大功率机架;中普瑞讯对原有的产品做了优化和改良,提高节能效率的同时大大降低成本。 中普瑞讯目前拥有实用专有技术4项、发明专有技术2项;北京市高新技术企业;合肥通用所、泰尔实验室检测报告;中国移动“绿色行动计划”节能创新合作伙伴,拥有国家高新企业资质。 中普瑞讯的氟泵热管空调系统技术融合了结构简单、安装维护便捷、高效安全、不受机房限制等诸多优点,目前已在多个电信机房得到实地应用,取得广大用户一致认可,并获得相关通信部门的多次嘉奖。 中普瑞讯的ZP-RAS氟泵热管背板空调系统专门用于解决IDC高热密度机房散热问题,降低机房PUE值,该系统为采用标准化设计的新型机房节能产品,由以下三部分组成。

第一部分,室内部分,ZP-RAS-BAG热管背板空调。 第二部分,室外部分,ZP-RAS-RDU制冷分配单元。 第三部分,数据机房环境与能效监控平台。 中普瑞讯的ZP-RAS氟泵热管背板空调体统工作原理:室外制冷分配单元(RDU)机组通过与系统冷凝器(风冷、水冷)完成热交换后,RDU通过氟泵将冷却后的液体冷媒送入机房热管背板空调(BGA)。 冷媒(氟利昂)在冷热温差作用下通过相变实现冷热交换,冷却服务器排风,将冷量送入机柜,同时冷媒受热汽化,把热量带到RDU,由室外制冷分配单元(RDU)与冷凝器换热冷却,完成制冷循环。 1.室外制冷分配单元(RDU)分为风冷型和水冷型两种。制冷分配单元可以灵活选择安装在室内或室外。室外RDU可以充分利用自然冷源自动切换工作模式,当室外温度低于一定温度时,可以利用氟泵制冷,这时压缩机不运行,充分利用自然免费冷源制冷,降低系统能耗,同时提高压缩机使用寿命。 北方地区以北京为例每年可利用自然冷源制冷的时间占全年一半以上左右。从而大大降低了机房整体PUE值,机房PUE值可控制在较低的数值。 2.热管背板空调(ZP-RAS-BGA)是一种新型空调末端系统,是利用分离式热管原理将空调室内机设计成机柜背板模

机房群控知识

简析冷热源群控系统 0 引言 空调系统冷热源的能耗在整个空调系统中占有相当大的比例.而冷源系统的能耗主要由冷水机组电耗及冷冻水泵、冷却水泵、冷却塔风机电耗构成,采取群控策略可以恰当地调节冷水机组运行状态.降低冷冻水泵、冷却水泵及冷却塔风机电耗.最大限度地实现空调冷热源系统的节能运行 1 群控系统的优势 民用建筑内中央空凋设备种类繁多.各设备运行是相互关联的。群控系统按照T艺流程控制各设备的启停.如果局部设备发生故障.群控系统能及时进行逻辑判断并决定是否启用备用设备或全面停机。所有的逻辑控制及设备关联控制的实现均由群控系统控制主机完成.能真正做到协涮统一而对于BA系统的DDC控制器来说.各控制器的功能独立完成.通过控制器间的指令传递来执行先后顺序.没有全面协调的“大脑”.很难实现逻辑性很强的设备关联控制因此.采用群控系统对冷热源设备运行进行优化控制.在提高空凋系统的运行效率方面具有很大的优势 2 冷热源群控系统构成 本文结合光启城项目对冷热源群控系统进行分析光启城项目总建筑面积约为163 868 mz,业态为裙房商业和塔楼办公相结合的综合体项目。该项目冷热源设备如表1、表2所示。 --------------- 冷热源群控系统由冷热源监测系统、冷冻机房设备监控系统、直燃机房设备监控系统构成冷热源群控系统管理主机设于地下室冷冻机房值班室内.共设置监控管理主机两台(互为备用),对冷冻监控系统及锅炉监控系统中相关设备的运行状态等进行监测并通过TCP/IP 协议与本项目的BA系统通信.接受其对冷热水机组、板式换热器及配套设备的总体监测、控制和管理。冷热源群控系统网络拓扑结构如图1所示。 冷冻机房设备监控系统用于集中监测、控制和管理冷源设备,由冷水机组群控系统、配套设备群控系统、冷却塔群控系统及冷冻水二次变频泵群控系统共同组成。在冷水机组群控系统中.7台冷水机组通过各自的机组管理模块连接到网络控制器.实现与冷水机组工作站的通信。冷水机组网络拓扑结构见图2直燃机组工作站通过RS485总线连接每台锅炉控制器,通过直燃机组群控系统对各锅炉实时监控.根据热水负荷的变化合理控制锅炉运行台数网络拓扑结构见图3 3冷热源群控系统分析

机房群控系统技术方案

XXX机房群控系统技术方案 目录

一、江森自控特别优势说明 1. 建筑设施效益技术领先和工程经验丰富 江森自控有125年的控制业经验,对建筑设施能源管理精通无比。世界各地成千上万的商业、机构和政府建筑设施的业主和经理们请江森自控为他们提供最舒适、最富成效、最安全和最节能的环境。 江森自控有一百二十多年历史,被公认为世界上最主要建筑设备自动化管理系统的和工程承建商,可为建筑物提供节能、环境控制、防火、保安、自动化管理系统及工业控制设备,并可为各种建筑物提供从设计、产品制造、系统安装调试、维修到的全过程优质服务。 2005年,江森自控和全球知名的空调冷冻机制造专家---约克公司合并,自控专家和空调冷机专家的强强联合,使得江森自控在建筑设施效益领域里有无可比拟的优势。 2. 机房群控系统和冷水主机实现无缝连接 本项目采用约克中央空调冷水机组,2台YK离心机组和1台YS螺杆机组,均可实现与江森自控METASYS机房群控系统的完全无缝连接。通讯协议采用BACNET MS/TP协议。 3. COEE针对本项目的强力支持 CoEE优秀工程技术中心(Center of Excellence in Engineering)为江森自控在大中华地区自控业务强大的技术支持力量,有庞大的技术专家团队。已经完成国内大型项目超过200多个,其中包括中央电视台、上海环球金融中

心、奥运国家体育馆、南京绿地广场、首都国际机场航站楼等,完成点位超过50万点。CoEE本着专业化、标准化,品质至上的宗旨,为客户提供卓越有效的技术支持,有效的保障了江森自控提供的极具竟争力的先进控制技术方案,编程调试的实施和一流的售后技术服务。 4. 完善的售后服务体系 江森自控拥有非常完善的售后服务网络,合并了约克国际以后售后服务网络更是进一步扩大,让客户无后顾之忧,放心地使用江森/约克产品,为此公司专门成立了江森自控售后服务中心。 江森自控售后服务中心面向全国,为数以万计的江森/约克用户提供完善的售后技术服务。 江森自控杭州办事处设有专业售后服务工程师10人,服务中心为用户提供包括系统软件、就地控制器、阀门及传感器以及约克空调冷冻设备的安装、开机、调试、保用、保养、维修、技术改造、人员培训等一条龙服务。 在江森自控系统保修期内,我们为客户提供如下服务: 1. 系统定期巡检, 出具系统检测报告。 2. 对于制造质量有问题的产品进行免费及时更换。 3. 系统管理工程师对系统功能进行保养维护, 并总结运行经验, 深化楼宇设施系统的管理及节能功能达到最优效果。 4. 接到报修后,我司保证在30分钟内予以答复,2小时内派专业工程师到达指定现场 . 5.江森自控公司有属于自己的仓库备品备件保税仓库 中华人民共和国上海海关批准,江森公司在上海市中心(西康路1390号)设立了经外贸委特批的保税仓库,储存充足的直接由原厂生产的原装进口零配件,以供用户之需。用户可以足不出户,通过电话或传真,并可用人民币直接购买所需的零、配件。同时也欢迎用户亲临维修中心的开放式货架陈列的上海门市部,直接选购零配件和进口的专用工具器具及仪表等。签订常年保养协议的用户,购买零配件还可获得优惠。 江森自控有信心凭借以上优势定能满足业主对XXXX机房群控系统的各种

数据中心空调设计浅析

数据中心空调设计浅析 数据中心空调设计浅析 摘要随着网络时代的发展,服务器集成度的提高,数据中心机房的能耗急剧增加,这就要求数据中心的空调设计必须高效、节能、合理、经济,本文结合某工程实例浅谈下数据中心空调的特点和设计思路。 关键词:数据中心气流组织机房专用空调节能措施 数据中心是容纳计算机房及其支持区域的一幢建筑物或是建筑 物中的一部分。数据中心空调系统的主要任务是为数据处理设备提供合适的工作环境,保证数据通信设备运行的可靠性和有效性。本文结合工程实例浅析一下数据中心机房空调设计的特点和机房空调的节 能措施。 一、冷源及冷却方式 数据中心的空调冷源有以下几种基本形式:直接膨胀风冷式系统、直接膨胀水冷式系统、冷冻水式系统、自然冷却式系统等。 数据中心空调按冷却方式主要为三种形式:风冷式机组、水冷式机组以及双冷源机组。 二、空调设备选型 (1)空气温度要求 我国《电子信息系统机房设计规范》(GB50174―2008 )中规定:电子信息系统机房划分成 3级。对于A级与B级电子信息系统机房,其主机房设计温度为2 3±1°C,C级机房的温度控制范围是1 8―2 8°C 。 (2)空气湿度要求 我国《电子信息系统机房设计规范》(GB50174―2008 )中规定:电子信息系统机房划分成3级。对于A级与B级电子信息系统机房,其主机房设计湿度度为40―55%,C级机房的温度控制范围是 40―60%。 (3)空气过滤要求

在进入数据中心机房设备前,室外新风必须经过滤和预处理,去除尘粒和腐蚀性气体。空气中的尘粒将影响数据机房设备运行。 (4)新风要求 数据中心空调系统必须提供适量的室外新风。数据通信机房保持正压可防止污染物渗入室内。 三、气流组织合理布置 数据中心的气流组织形有下送上回、上送侧回、弥漫式送风方式。 1.下送上回 下送上回是大型数据中心机房常用的方式,空调机组送出的低温空气迅速冷却设备,利用热力环流能有效利用冷空气冷却率,如图1所示为地板下送风示意图: 图1地板下送风示意图 数据中心内计算机设备及机架采用“冷热通道”的安装方式。将机柜采用“背靠背,面对面”摆放。在热空气上方布置回风口到空调系统,进一步提高制冷效果。 2.上送侧回 上送侧回通常是采用全室空调送回风的方式,适用于中小型机房。空调机组送风出口处宜安装送风管道或送风帽。回风可通过室内直接回风。如图2所示为上送侧回示意图: 图2上送侧回示意图 四、节能措施 1、选择合理的空调冷源系统方式 在节能型数据中心空调冷源形式的选择过程中,除了要考虑冷源系统形式的节能性以外,还要综合考虑数据中心的规模、数据中心的功率密度、数据中心的投资规模、工作人员的维护能力、数据中心所在地的气候条件以及数据中心的基础条件等。 2、设计合理的室内空气温湿度 越低的送风温度意味着越低的空调系统能量利用效率。笔者认为冷通道设计温度为l5―22℃,热通道为25―32℃。 3、提高气流组织的效率 数据中心空调气流组织应尽量避免扩散和混合。在数据中心机房

制冷机房群控系统方案

1、机房能源管理系统功能 冷水系统的机房群控系统包括以下主要内容:一是实现冷水系统的能量控制管理,主要包括根据冷量负荷计算对冷水机组进行台数控制、根据系统压差实现一次泵变流量控制、根据冷却水供水温度实现对冷却水泵的控制管理;二是根据大厦的日程安排自动开关冷水机组、冷冻水泵、冷却水泵等,并实现各设备之间开关机顺序及连锁保护功能;三是累计每台冷水机组、冷冻水泵、冷却水泵运行时间,自动选择运行时间最短的设备启动,使每台设备运行时间基本相等,延长机组的寿命;四是动态显示机组、水泵及相关设备的运行状态和报警信息,自动记录系统数据,如遇故障则自动停泵,备用泵自动投入使用。 (A)系统冷量控制管理 制冷系统的制冷量是采用自动监测计算系统负荷方式,通过DDC控制系统 控制制冷机组运行台数进行控制。系统的供、回水温度以及回水流量可通过传感器输入到现场DDC控制器,根据这些参数,系统将能够计算出用户实际所需要的冷量,并将计算出的冷量值输入到能量管理系统。 根据冷负荷对冷水机组进行台数控制,设计根据分、集水器上的供回水温差及回水流量计算出系统冷负荷:Q=C X L X (T2-T1) 式中:Q ------ 计算冷负荷;L --------- 流量,L=L1+L2+L3 ; T2 ----- 回水温度;T1 --------- 供水温度; C ------ 水比热。

同时,在低负荷时,系统实时监测冷水机组的冷冻水出水温度,当冷水机组出水温度低于系统冷冻水温度设定值并持续一段时间后,系统会自动关闭低负荷冷水机组,此时冷冻水系统仍继续运行,满足系统冷量低负荷运行要求;当冷冻水温度超出系统冷冻水温度设定值并持续一段时间后,系统自动运行冷水机组,自适应冷水系统的负荷变化。 系统在启动或低负荷运行时,先运行一台冷水机组,当第一台冷水机组启动60min后,冷水机组出水温度基本达稳定温度,系统再启动负荷控制管理功能。每30min把计算出的实际冷负荷与当前运行机组的额定冷量比较,当实际负荷小于当前机组的额定总负荷一定量时,减少相应的机组台数运行;当实际负荷大于当前机组的额定总负荷一定量时,增加相应的机组台数运行。 (B)冷水机组运行台数控制管理 DDC系统将输入的冷量值与所有正在运行的制冷机组额定制冷量的总和进行比较,如果用户实际消耗冷量少于一台制冷机的额定制冷量时,DDC系统将 发出一个开关量信号,该信号将使一台制冷机组停止运行,制冷机组在停机后将输入动作信号至DDC系统,DDC系统确认机组已经停止运行后,将输出关

数据中心维护_精密空调CRAC

为什么需要精密空调? 现在,恒温恒湿环境控制要求已经远远超出了传统数据中心或计算机室的围,包括更大的一套应用,称为“技术室”。典型的技术室应用包括: ?医疗设备套件(MRI、CAT 扫描) ?洁净室 ?实验室 ?打印机/复印机/CAD 中心 ?服务器室 ?医疗设施(手术室、隔离室) ?电信(交换机室、发射区) 为什么需要精密空调? 在许多重要的工作息处理是不可或缺的一个环节。因此,贵公司的正常运转离不开恒温恒湿的技术室。 IT硬件产生不寻常的集中热负荷,同时,对温度或湿度的变化又非常敏感。温度和/或湿度的波动可能会产生一些问题,例如,处理时出现乱码,严重时甚至系统彻底停机。这会给公司带来大量的损失,具体数额取决于系统中断时间以及所损失数据和时间的价值。标准舒适型空调的设计并非为了处理技术室的热负荷集中和热负荷组成,也不是为了向这些应用提供所需的精确的温度和湿度设定点。精密空调系统的设计是为了进行精确的温度和湿度控制。精密空调系统具有高可靠性,保证系统终年连续运行,并且具有可维修性、组装灵活性和冗余性,可以保证技术室四季空调正常运行。 温度和湿度设计条件 保持温度和湿度设计条件对于技术室的平稳运行至关重要。设计条件应在72-75°F (22-24°C)以及 35-50% 的相对湿度 (R.H.)。与环境条件不合适可能造成损坏一样,温度的快速波动也可能会对硬件运行产生负面影响。这就是即使硬件未在处理数据也要使其保持运行状态的一个原因。相反,舒适型空调系统的设计只是为了在夏天 95°F

(35°C)的气温和48% R.H.的外界条件下,使室的温度和湿度分别保持80°F (27°C)和 50% R.H.的水平。相对而言,舒适型空调系统的设计只是为了在夏天95°F (35°C)的条件和48% R.H.的外界条件下,保持80°F (27°C)和50% R.H.。舒适空调没有专用的加湿及控制系统,简单的控制器无法保持温度所需的设定点的整定值(23±2°C),因此,可能会出现高温、高湿而导致环境温湿度场大围的波动。 环境不适合所造成的问题 如果技术室的环境运行不当,将对数据处理和存储工作产生负面影响。结果,可能使数据运行出错、宕机,甚至使系统故障频繁而彻底关机。 1、高温和低温 高温、低温或温度快速波动都有可能会破坏数据处理并关闭整个系统。温度波动可能会改变电子芯片和其他板卡元件的电子和物理特性,造成运行出错或故障。这些问题可能是暂时的,也可能会持续多天。即使是暂时的问题,也可能很难诊断和解决。 2、高湿度 高湿度可能会造成磁带物理变形、磁盘划伤、机架结露、纸粘连、MOS 电路击穿等故障发生。 3、低湿度 低湿度不仅产生静电,同时还加大了静电的释放。此类静电释放将会导致系统运行不稳定甚至数据出错。 欲了解更多APC相关容,请登录.apc./cn 技巧:精密空调系统工作原理及维护过程解析 精密空调的构成除了前面介绍的压缩机、冷凝器、膨胀阀和蒸发器外,还包括:风机、空气过滤器、加湿器、加热器、排水器等。因此我们在日常的机房管理工作中对空调的管理和维护,主要是针对以上部件去维护的。精密空调的构成除了前面介绍的压缩机、冷凝器、膨胀阀和蒸发器外,还包括:风机、空气过滤器、加湿器、加热器、排水器等。因此我们在日常的机房管理工作中对空调的管理和维护,主要是针对以上部件去维护的。 一、精密空调的结构及工作原理 精密空调主要由压缩机、冷凝器、膨胀阀和蒸发器组成。

机房群控系统控制逻辑说明.

1 ECO PD 501-01CN COPYRIGHT?MCQUAY CHINA 瑞虹新城三期群控系统方案说明 麦克维尔中央空调有限公司 系统控制部 日期Date:2016-06-16

1.工程及系统概况 (3) 1.1系统概况 (3) 1.2控制点表 (3) 1.3群控设计 (4) 2.群控系统主要控制功能 (5) 2.1冷水机组与辅设的联动控制 (5) 2.2依据温度的机组台数控制 (7) 2.3冷却塔风机控制 (9) 2.4冷冻水泵的频率控制 (10) 3.节能策略 (12) 3.1机组台数&顺序启停控制 (13) 3.2冷冻水温度重置(基于总供回水温差) (13) 3.3供回水管流量控制 (14) 3.4机组启动/停机时间优化 (15) 3.5CSM ECO?其它控制策略 (15) 4.集中控制管理站 (16) 4.1M C Q UAY W EB用户界面 (16) 4.2与第三方集成 (17) 5.相关案例 (17) 2 │ECO PD 502-01 CN 麦克维尔系统控制解决方案

ECO PD 502-01 CN 麦克维尔系统控制解决方案 │ 3 1. 工程及系统概况 本项目共1个冷冻机房系统,系统配置为一套群控系统及一套管理软件。群控系统对系统内的相关设备实现分散控制集中管理,可以实现联动控制、台数控制、轮换控制、故障切换等自动功能;系统管理工作站可以直观动态的浏览和控制机房内的相关设备,实现高效管理、节能运行。 1.1 系统概况 1) 机房冷源系统设备概况 4台离心式水冷冷水机组 1台热交换器 4台冷水机冷冻侧电动阀 4台冷水机冷却侧电动阀 5台变频冷冻泵 5台定频冷却泵 1个冷冻水压差旁通阀 8个冷却塔共8个高低速风机 8个冷却塔进出水电动阀 相关温度、压力、流量、液位、室外温湿度监测 加药装置、补水装置监测 1.2 控制点表

数据中心空调系统应用白皮书

数据中心空调系统应用白皮书

目录 一引言 (5) 1.1目的和范围 (5) 1.2编制依据 (5) 1.3编制原则 (6) 二术语 (6) 三数据中心分级 (8) 3.1概述 (9) 3.2 数据中心的分类和分级 (9) 四:数据中心的环境要求 (10) 4.1 数据中心的功能分区 (10) 4.2 数据中心的温、湿度环境要求 (11) 4.2.1 数据中心环境特点 (11) 4.2.2 国标对数据中心环境的规定和要求 (12) 4.3 数据中心的其它相关要求 (16) 五: 数据中心的机柜和空调设备布局 (18) 5.1 机柜散热 (19) 5.1.1数据中心机柜 (19) 5.1.2 机柜的布局 (21) 5.2 机房空调及其布置 (23) 5.2.1 机房空调概述 (23) 5.2.2 机房空调送回风方式 (25) 5.2.3 机房空调布局 (25) 六:数据中心空调方案设计 (26) 6.1 数据中心的制冷量需求确定 (26) 6.2 数据中心的气流组织 (29) 6.2.1 下送上回气流组织 (29) 6.2.2 上送下(侧)回气流组织 (33) 6.2.3 局部区域送回风方式 (36) 6.3 空调系统的冷却方式选择 (37) 6.4 空调设备的选择 (46) 七: 数据中心中高热密度解决方案 (48) 7.1 区域高热密度解决方案 (48) 7.2 局部热点解决方式 (50) 7.3高热密度封闭机柜 (52) 7.4其它高热密度制冷方式 (54) 八: 数据中心制冷系统发展趋势 (54) 8.1数据中心发展趋势: (54) 8.2 数据中心制冷系统发展趋势 (57) 九机房环境评估和优化 (58) 附件一:数据中心要求控制环境参数的原因 (62) 附件二:机房专用空调机组 (70)

中央空调水系统的群控管理系统

中央空调系统的群控管理系统 陈颖 吴静涛 (上海富田空调冷冻设备有限公司) 摘要摘要::采用组态软件和上位机对中央空调的主设备、辅助设备进行楼宇自动化高效管理。对群控管理系统的工作过程和组成做一些介绍。对远程无线监控管理做一些介绍。介绍一个中央空调工程实例。 关键词关键词::群控管理、中央空调系统、远程监控管理 1.概况概况概况::在工业高速发展和环境要求越来越高的今天,随着计算机、测控、数字通讯、 人机介面等多种技术的发展,对工业设备实施集中监控管理的需求日益增加,近几年要求对中央空调设备实施集中监控管理和远程监控的用户逐年增加,这方面技术已经得到较广泛的应用,采用组态软件和上位机对中央空调系统实施楼宇自动化高效管理是目前主要的应用趋势,国内许多用户采用了这种方式,系统运行证明这类系统具有稳定可靠、操作简单、管理高效轻松、精确灵活、功能齐全等特点。在浙江某商贸城宾馆办公楼中央空调水系统监控管理中,该系统解决了用户要求的自动控制、负荷控制、设备优化组合、备用设备管理、系统冷冻水温度控制、冷却塔出水温度控制、远程通讯、局域网通讯、数据记录查询打印等要求,采用该系统本地管理人员和远程管理人员都可以及时了解水系统的即时、详细运转情况。 2.水系统设备组成水系统设备组成水系统设备组成::商贸城宾馆办公楼采用三台水冷冷水机组,水系统分为宾馆水系统 和办公楼水系统两个水系统,需要进行群控管理的设备共31个,包括: 2.1. 宾馆水系统: 1)冷水机组2台; 2)冷却水泵3台(2用1备) 3)冷冻水泵3台(2用1备) 4)冷却水路蝶阀3套(2用1备) 5)冷冻水路蝶阀3套(2用1备) 6)冷却塔2个:共4个冷却风扇 7)分水器、集水器间的压差旁通阀1个; 2.2. 办公楼水系统: 1)冷水机组1台; 2)冷却水泵2台(1用1备) 3)冷冻水泵2台(1用1备) 4)冷却水路蝶阀2套(1用1备) 5)冷冻水路蝶阀2套(1用1备) 6)冷却塔1个:共2个冷却风扇 7)分水器、集水器间的压差旁通阀1个; 2.3.系统需要采集的信号: 1)设备启停信号、运转状态信号和警报信号; 2)各设备累计运转时间(小时) 3)冷水机组压缩机等部件工作状态和各保护点状态; 4)冷水机组运转负荷(%)和压缩机电流(A); 5)冷水机组冷冻水和冷却水温度(℃); 6)分水器和集水器温度(℃);

机房专用精密空调群控管理系统研究

龙源期刊网 https://www.doczj.com/doc/4b17793222.html, 机房专用精密空调群控管理系统研究 作者:陈林富 来源:《科技与创新》2016年第03期 摘要:在机房专用精密空调系统中,制冷、制热、加湿和除湿空调系统是独立的运行 的,在这种运行机制下,会出现部分能量相互抵消的情况,造成能量的浪费。针对这一问题,需要应用合理的群控管理系统,在控制机房环境的基础上,优化空调运行效果,并实现节能目标。对机房专用精密空调群控管理系统展开了研究,以提高机房专用精密空调的运行水平。 关键词:机房;精密空调;群控管理系统;自动分工 中图分类号:TU831.3+1 文献标识码:A DOI:10.15913/https://www.doczj.com/doc/4b17793222.html,ki.kjycx.2016.03.116 近些年来,能源问题日益突出,节能减排成为了社会发展的迫切要求,因此,做好机房专用精密空调的节能工作十分必要。在机房专用精密空调系统中,各个不同功能的空调系统是单独运行的,彼此之间缺乏有效协调,且制冷、制热、加湿等空调系统同时运行,能量相互抵消,降低了系统运行的科学性,造成能量浪费。因此,加强对机房专用精密空调群控管理系统的研究,做好空调子系统之间的协调管理工作,有着十分重要的现实意义。 1 群控管理系统的设计和基本功能 1.1 群控管理系统的设计 在机房专用精密空调系统中,群控管理系统采用的是Co-Work模块化主从形式,通过网 线来实现联网群控。随意选择一台空调当作主控机组,将4台双系统空调或者8台单系统空调联网,并将各个空调的网络地址分别设置在主板I/O扩展板上。 在机房中央群控管理系统的运行中,需要根据机房的面积、设备情况(设备发热量、数量和摆放情况)和空调性能(空调制冷量、风场和区域温度)等信息,通过模拟建模的方式计算出合理的制冷参数,并进行多次测试,结合测试情况进行微调,使机房专用精密空调处于最佳运行状态,实现最佳运行效果。 此群控管理系统具有的功能包括自动分工、顺序加载、数据同步等,以及对各台空调运行参数进行精准控制,在保证机房区域温湿度适当的基础上,实现多台空调之间的精细化协作,有效降低非必要的能量损耗。 1.2 群控管理系统的基本功能 1.2.1 自动分工功能

制冷机房群控系统方案

、机房能源管理系统功能 冷水系统的机房群控系统包括以下主要内容:一是实现冷水系统的能量控制管理,主要包括根据冷量负荷计算对冷水机组进行台数控制、根据系统压差实现一次泵变流量控制、根据冷却水供水温度实现对冷却水泵的控制管理;二是根据大厦的日程安排自动开关冷水机组、冷冻水泵、冷却水泵等,并实现各设备之间开关机顺序及连锁保护功能;三是累计每台冷水机组、冷冻水泵、冷却水泵运行时间,自动选择运行时间最短的设备启动,使每台设备运行时间基本相等,延长机组的寿命;四是动态显示机组、水泵及相关设备的运行状态和报警信息,自动记录系统数据,如遇故障则自动停泵,备用泵自动投入使用。 (A)系统冷量控制管理 制冷系统的制冷量是采用自动监测计算系统负荷方式,通过DDC控制系统控制制冷机组运行台数进行控制。系统的供、回水温度以及回水流量可通过传感器输入到现场DDC控制器,根据这些参数,系统将能够计算出用户实际所需要的冷量,并将计算出的冷量值输入到能量管理系统。 根据冷负荷对冷水机组进行台数控制,设计根据分、集水器上的供回水温差及回水流量计算出系统冷负荷:Q=C×L×(T2-T1) 式中:Q———计算冷负荷;L———流量,L=L1+L2+L3; T2———回水温度;T1———供水温度; C———水比热。

同时,在低负荷时,系统实时监测冷水机组的冷冻水出水温度,当冷水机组出水温度低于系统冷冻水温度设定值并持续一段时间后,系统会自动关闭低负荷冷水机组,此时冷冻水系统仍继续运行,满足系统冷量低负荷运行要求;当冷冻水温度超出系统冷冻水温度设定值并持续一段时间后,系统自动运行冷水机组,自适应冷水系统的负荷变化。 系统在启动或低负荷运行时,先运行一台冷水机组,当第一台冷水机组启动60min后,冷水机组出水温度基本达稳定温度,系统再启动负荷控制管理功能。每30min 把计算出的实际冷负荷与当前运行机组的额定冷量比较,当实际负荷小于当前机组的额定总负荷一定量时,减少相应的机组台数运行;当实际负荷大于当前机组的额定总负荷一定量时,增加相应的机组台数运行。 (B)冷水机组运行台数控制管理 DDC系统将输入的冷量值与所有正在运行的制冷机组额定制冷量的总和进行比较,如果用户实际消耗冷量少于一台制冷机的额定制冷量时,DDC系统将发出一个开关量信号,该信号将使一台制冷机组停止运行,制冷机组在停机后将输入动作信号至DDC系统,DDC系统确认机组已经停止运行后,将输出关闭与

数据中心机房制冷空调系统运维技术考核题目答案参考

数据中心(机房)制冷空调系统运维技术考核题目答案参考 类数据机房温湿度范围?单点温湿度波动范围? A类机房温湿度要求:23±1℃,40--55% ;单点温度波动小于5℃/h,湿度波动小于5%/h 参考:GB50174《电子信息系统机房设计规范》 2.空调回风参数:温度25℃,相对湿度50%;求露点温度? ℃参考:标准大气压湿空气焓湿图;此题关注会查空气状态点对应的露点温度和湿球温度 3.自然冷却模式、预冷模式、普通制冷模式的切换依据,对应的环境湿球温度值是多少? 湿球温度<10℃适合自然冷却模式,10--15℃之间适合预冷模式,>15℃适合普通制冷模式 参考:水冷自控系统供冷模式转换控制逻辑 4.机房空调送风距离多少米为宜?6-10m为宜 5.数据机房采用地板送风,风速范围多少m/s为宜? ( m/s最佳)参考:GB50174《电子信息系统机房设计规范》 6.数据机房新风正压要求数值? 机房与走廊;机房与室外参考:GB50174《电子信息系统机房设计规范》 7.数据机房新风量:人均参考值?每平米参考值?按机房换气次数每小时几次为宜? 按工作人员每人40m3/h;每平米25--30 m3/h;机房换气次数次/h(人员进出的机房取4次/h) 8.计算:900个标准机柜(13A)需要多大面积的机房合适?如选用艾默生冷水型机房空调P3150G至少需要多少台?按4-5台以上备份1台的标准,最多需要多少台?需要多大冷量的冷水机组提供冷源?需要多大风量的新风空调提供机房正压? 每个机柜加上冷热通道,平均面积取;×900=2070㎡(可分成4个㎡模块间,每个模块225台机柜) 每平米可用制冷量不能小于+每平米维护结构热负荷=每平米冷量需求 总冷量需求:×2070=3312KW 查艾默生冷水型空调样本:P3150G标准冷量为;需留有20%的预留(使用系数取) 艾默生P3150G冷水型空调单机净冷量:×= ○标准需求台数:3312÷≈28台;冗余配置(4+1):28÷4=7台(需配备机7台);含备机需28+7=35台 ○IT设备功耗转换成热量系数(取计算);13A机柜功耗,转换为热量÷≈ 总热负荷:×900=3429KW,除以P3150G空调单机净冷量≈29台,按冗余配置(4+1),需配备机7台;含备机需29+7=36台 ○空调系统制冷量取IT负载的倍;IT总负载:×900=2574KW;空调系统总制冷量:2574×= 除以P3150G空调单机净冷量≈28台,按冗余配置(4+1),需配备机7台;含备机需28+7=35台 ●需要冷量为3429KW(约1000RT)的冷水机组(离心式)1台提供冷源 新风量每平米25--30 m3/h(取30 m3/h);总新风需求30×2070=62100 m3/h,建议规划4个模块间单独提供新风62100÷4=15525 m3/h,需要新风量15525 m3/h的组合空调4台 9.制冷设备能效比EER是如何计算的? EER即制冷设备的制冷性能系数,也称能效比,表示制冷设备的单位功率制冷量。EER值越高,表示制冷设备中蒸发吸收的热量较多,压缩机耗电较少。数学计算公式:EER=制冷量(KW)/制冷消耗功率(KW) 单位:W/W或KW/h/W 10.冷站(动力站)COP是如何计算的? 冷水机组实际制冷量和配套设备(压缩机-马达+冷冻水循环泵+冷却水循环泵+冷却塔风机-马达)实际输入功率之比 11.数据机房PUE是如何计算的?绿色节能机房PUE标准? PUE是评价数据中心能源效率的指标,是数据中心消耗的所有能源(电能)与IT负载使用的能源(电能)之比PUE=数据中心总设备能耗/IT设备能耗;基准是2,越接近1表明能效水平越好 绿色节能机房PUE标准:以下 12.接题目8,匹配适合该冷水机组的冷却塔参数(流量)?冷却塔设在楼顶距冷站(动力站)20米,匹配适合该冷水机组的冷却循环泵参数(扬程和流量)?匹配适合该冷水机组和机房空调的冷冻循环泵参数(扬程和流量)(注:水泵出口至管网最高点垂直高度15米)? 水量需求:冷凝器()/RT 蒸发器(3/h)/RT

机房群控系统控制逻辑说明书

瑞虹新城三期群控系统方案说明 麦克维尔中央空调有限公司 系统控制部 日期Date:2016-06-16

1.工程及系统概况 (3) 1.1系统概况 (3) 1.2控制点表 (3) 1.3群控设计 (4) 2.群控系统主要控制功能 (5) 2.1冷水机组与辅设的联动控制 (5) 2.2依据温度的机组台数控制 (7) 2.3冷却塔风机控制 (9) 2.4冷冻水泵的频率控制 (10) 3.节能策略 (12) 3.1机组台数&顺序启停控制 (13) 3.2冷冻水温度重置(基于总供回水温差) (13) 3.3供回水管流量控制 (14) 3.4机组启动/停机时间优化 (15) 3.5CSM ECO?其它控制策略 (15) 4.集中控制管理站 (16) 4.1M C Q UAY W EB用户界面 (16) 4.2与第三方集成 (17) 5.相关案例 (17)

1.工程及系统概况 本项目共1个冷冻机房系统,系统配置为一套群控系统及一套管理软件。群控系统对系统内的相关设备实现分散控制集中管理,可以实现联动控制、台数控制、轮换控制、故障切换等自动功能;系统管理工作站可以直观动态的浏览和控制机房内的相关设备,实现高效管理、节能运行。 1.1系统概况 1)机房冷源系统设备概况 4台离心式水冷冷水机组 1台热交换器 4台冷水机冷冻侧电动阀 4台冷水机冷却侧电动阀 5台变频冷冻泵 5台定频冷却泵 1个冷冻水压差旁通阀 8个冷却塔共8个高低速风机 8个冷却塔进出水电动阀 相关温度、压力、流量、液位、室外温湿度监测 加药装置、补水装置监测 1.2控制点表

控制点表 1.3群控设计 1)冷却塔 3组冷却塔和对应的机组统筹考虑轮换启停及台数对应,原则上是依据室外湿球温度和出水温度值保证尽量低冷却水出水温度(不能低于最低设定温度)以提高水冷冷水机组的效率; 2)冷却泵 5台冷却泵与水冷冷水机组做联动控制,冷却泵轮换启停,每次启动选择运行时间最短的水泵运行。当选定的或运行的某台冷却水泵出现故障时自动切入待运行的备用泵,同时发出报警提醒。 3)冷冻水泵 5台冷冻水泵轮换启停,运行频率根据末端负荷的增减产生的压差的变化来调节,保证冷冻水泵的使用寿命。当选定的或运行的某台冷冻水泵出现故障时自动切入待运行的备用泵,同时发出报警提醒。

XXX机房群控系统技术设计方案

XXX机房群控系统技术方案 目录 一、江森自控特别优势说明 (2) 1.建筑设施效益技术领先和工程经验丰富 (2) 2.机房群控系统和冷水主机实现无缝连接 (3) 3.COEE针对本项目的强力支持 (3) 4.完善的售后服务体系 (3) 5.江森自控公司有属于自己的仓库备品备件保税仓库 (4) 二、冷冻站自控系统监控内容 (5) 2.1主要监控内容 (5) 2.2主要控制功能 (12) 2.3冷冻站整体控制 (27) 2.4系统安全性 (30) 2.5系统报警功能 (30) 2.6数据库管理功能 (31) 2.7与大楼BMS(BAS)系统通讯 (31) 三、系统结构及产品介绍 (33) 3.1系统结构 (33) 3.2系统选用设备 (34) 3.2.1数据管理软件 (34)

3.2.2用户管理分控操作站 (42) 3.2.3网络控制引擎 (44) 3.2.4DDC控制器及扩展模块 (48) 3.2.5末端传感器及电动阀门需求 (51) 四、附件 (53) 1、XXXX机房群控点表 (53) 2、XXXX机房群控原理图、系统图 (53) 一、江森自控特别优势说明 1. 建筑设施效益技术领先和工程经验丰富 江森自控有125年的控制业经验,对建筑设施能源管理精通无比。世界各地成千上万的商业、机构和政府建筑设施的业主和经理们请江森自控为他们提供最舒适、最富成效、最安全和最节能的环境。 江森自控有一百二十多年历史,被公认为世界上最主要建筑设备自动化管理系统的生产商和工程承建商,可为建筑物提供节能、环境控制、防火、保安、自动化管理系统及工业控制设备,并可为各种建筑物提供从设计、产品制造、系统安装调试、维修到物业管理的全过程优质服务。 2005年,江森自控和全球知名的空调冷冻机制造专家---约克公司合并,自控专家和空调冷机专家的强强联合,使得江森自控在建筑设施效益领域里有无可比拟的优势。

相关主题
文本预览
相关文档 最新文档