当前位置:文档之家› SRAM特点及工作原理

SRAM特点及工作原理

SRAM特点及工作原理
SRAM特点及工作原理

SRAM特点及工作原理

中心议题:

?SRAM的基本简介

?SRAM的主要规格与特点

?SRAM的结构与工作原理

解决方案:

?CPU与主存之间的高速缓存

?CPU内部的L1/L2或外部的L2高速缓存

?CPU外部扩充用的COAST高速缓存

SRAM是英文StaticRAM的缩写,它是一种具有静止存取功能的内存,不需要刷新电路即能保存它内部存储的数据.

基本简介

SRAM不需要刷新电路即能保存它内部存储的数据。而DRAM(DynamicRandomAccessMemory)每隔一段时间,要刷新充电一次,否则内部的数据即会消失,因此SRAM具有较高的性能,但是SRAM也有它的缺点,即它的集成度较低,相同容量的DRAM内存可以设计为较小的体积,但是SRAM却需要很大的体积,且功耗较大。所以在主板上SRAM存储器要占用一部分面积。

主要规格

一种是置于CPU与主存间的高速缓存,它有两种规格:一种是固定在主板上的高速缓存(CacheMemory);另一种是插在卡槽上的COAST(CacheOnAStick)扩充用的高速缓存,另外在CMOS芯片1468l8的电路里,它的内部也有较小容量的128

字节SRAM,存储我们所设置的配置数据。还有为了加速CPU内部数据的传送,自80486CPU起,在CPU的内部也设计有高速缓存,故在PentiumCPU就有所谓的L1Cache(一级高速缓存)和L2Cache(二级高速缓存)的名词,一般L1Cache 是内建在CPU的内部,L2Cache是设计在CPU的外部,但是PentiumPro把L1和L2Cache同时设计在CPU的内部,故PentiumPro的体积较大。最新的PentiumII 又把L2Cache移至CPU内核之外的黑盒子里。SRAM显然速度快,不需要刷新的操作,但是也有另外的缺点,就是价格高,体积大,所以在主板上还不能作为用量较大的主存。

基本特点

现将它的特点归纳如下:

◎优点,速度快,不必配合内存刷新电路,可提高整体的工作效率。

◎缺点,集成度低,功耗较大,相同的容量体积较大,而且价格较高,少量用于关键性系统以提高效率。

◎SRAM使用的系统:

○CPU与主存之间的高速缓存。

○CPU内部的L1/L2或外部的L2高速缓存。

○CPU外部扩充用的COAST高速缓存。

○CMOS146818芯片(RT&CMOSSRAM)。

主要用途

SRAM主要用于二级高速缓存(Level2Cache)。它利用晶体管来存储数据。与DRAM 相比,SRAM的速度快,但在相同面积中SRAM的容量要比其他类型的内存小。

SRAMSRAM的速度快但昂贵,一般用小容量的SRAM作为更高速CPU和较低速DRAM之间的缓存(cache).SRAM也有许多种,如

AsyncSRAM(AsynchronousSRAM,异步SRAM)、SyncSRAM(SynchronousSRAM,同步SRAM)、PBSRAM(PipelinedBurstSRAM,流水式突发SRAM),还有INTEL 没有公布细节的CSRAM等。

基本的SRAM的架构如图1所示,SRAM一般可分为五大部分:存储单元阵列(corecellsarray),行/列地址译码器(decode),灵敏放大器(SenseAmplifier),控制电路(controlcircuit),缓冲/驱动电路(FFIO)。SRAM是静态存储方式,以双稳态电路作为存储单元,SRAM不象DRAM一样需要不断刷新,而且工作速度较快,但由于存储单元器件较多,集成度不太高,功耗也较大。

工作原理

图2六管单元电路图SRAM的工作原理:

假设准备往图2的6T存储单元写入“1”,先将某一组地址值输入到行、列译码器中,选中特定的单元,然后使写使能信号WE有效,将要写入的数据“1”通过写入电路变成“1”和“0”后分别加到选中单元的两条位线BL,BLB上,此时选中单元的WL=1,晶体管N0,N5打开,把BL,BLB上的信号分别送到Q,QB点,从而使Q=1,QB=0,这样数据“1”就被锁存在晶体管P2,P3,N3,N4构成的锁存器中。写入数据“0”的过程类似。

SRAM的读过程以读“1”为例,通过译码器选中某列位线对BL,BLB进行预充电到电源电压VDD,预充电结束后,再通过行译码器选中某行,则某一存储单元被选中,由于其中存放的是“1”,则WL=1、Q=1、QB=0。晶体管N4、N5导通,有电流经N4、N5到地,从而使BLB电位下降,BL、BLB间电位产生电压差,当电压差达到一定值后打开灵敏度放大器,对电压进行放大,再送到输出电路,读出数据。

结构原理

SRAM(StaticRAM),即静态RAM.它也由晶体管组成。接通代表1,断开表示0,并且状态会保持到接收了一个改变信号为止。这些晶体管不需要刷新,但停机或断电时,它们同DRAM一样,会丢掉信息。SRAM的速度非常快,通常能以20ns 或更快的速度工作。一个DRAM存储单元仅需一个晶体管和一个小电容.而每个SRAM单元需要四到六个晶体管和其他零件。所以,除了价格较贵外,SRAM芯片在外形上也较大,与DRAM相比要占用更多的空间。由于外形和电气上的差别,SRAM和DRAM是不能互换的。

SRAM的高速和静态特性使它们通常被用来作为Cache存储器。计算机的主板上都有Cache插座。

SRAM下图所示的是一个SRAM的结构框图。由上图看出SRAM一般由五大部分组成,即存储单元阵列、地址译码器(包括行译码器和列译码器)、灵敏放火器、控制电路和缓冲/驱动电路。在图中,A0-Am-1为地址输入端,CSB.WEB和OEB为控制端,控制读写操作,为低电平有效,1100-11ON-1为数据输入输出端。存储阵列中的每个存储单元都与其它单元在行和列上共享电学连接,其中水平方向的连线称为“字线”,而垂直方向的数据流入和流出存储单元的连线称为“位线”。通过输入的地址可选择特定的字线和位线,字线和位线的交叉处就是被选中的存储单元,每一个存储单元都是按这种方法被唯一选中,然后再对其进行读写操作。有的存储器设计成多位数据如4位或8位等同时输入和输出,这样的话,就会同时有4个或8个存储单元按上述方法被选中进行读写操作。

在SRAM中,排成矩阵形式的存储单元阵列的周围是译码器和与外部信号的接口电路。存储单元阵列通常采用正方形或矩阵的形式,以减少整个芯片面积并有利于数据的存取。以一个存储容量为4K位的SRAM为例,共需12条地址线来保证每一个存储单元都能被选中(212=-4096)。如果存储单元阵列被排列成只包含一列的长条形,则需要一个12/4K位的译码器,但如果排列成包含64行和64列的正方形,这时则只需一个6/64位的行译码器和一个6/64位的列译码器,行、列译码器

可分别排列在存储单元阵列的两边,64行和64列共有4096个交叉点,每一个点就对应一个存储位。

因此,将存储单元排列成正方形比排列成一列的长条形要大大地减少整个芯片地面积。存储单元排列成长条形除了形状奇异和面积大以外,还有一个缺点,那就是排在列的上部的存储单元与数据输入/输出端的连线就会变得很长,特别是对于容量比较大得存储器来说,情况就更为严重,而连线的延迟至少是与它的长度成线性关系,连线越长,线上的延迟就越大,所以就会导致读写速度的降低和不同存储单元连线延迟的不一致性,这些都是在设计中需要避免的。

三层交换机工作原理及特点

三层交换机 三层交换机就是具有部分路由器功能的交换机,三层交换机的最重要目的是加快大型局域网内部的数据交换,所具有的路由功能也是为这目的服务的,能够做到一次路由,多次转发。对于数据包转发等规律性的过程由硬件高速实现,而象路由信息更新、路由表维护、路由计算、路由确定等功能,由软件实现。 应用背景 出于安全和管理方便的考虑,主要是为了减小广播风暴的危害,必须把大型局域网按功能或地域等因素划成一个个小的局域网,这就使VLAN技术在网络中得以大量应用,而各个不同VLAN间的通信都要经过路由器来完成转发,随着网间互访的不断增加。单纯使用路由器来实现网间访问,不但由于端口数量有限,而且路由速度较慢,从而限制了网络的规模和访问速度。基于这种情况三层交换机便应运而生,三层交换机是为IP设计的,接口类型简单,拥有很强二层包处理能力,非常适用于大型局域网内的数据路由与交换,它既可以工作在协议第三层替代或部分完成传统路由器的功能,同时又具有几乎第二层交换的速度,且价格相对便宜些。 在企业网和教学网中,一般会将三层交换机用在网络的核心层,用三层交换机上的千兆端口或百兆端口连接不同的子网或VLAN。不过应清醒认识到三层交换机出现最重要的目的是加快大型局域网内部的数据交换,所具备的路由功能也多是围绕这一目的而展开的,所以它的路由功能没有同一档次的专业路由器强。毕竟在安全、协议支持等方面还有许多欠缺,并不能完全取代路由器工作。 在实际应用过程中,典型的做法是:处于同一个局域网中的各个子网的互联以及局域网中VLAN间的路由,用三层交换机来代替路由器,而只有局域网与公网互联之间要实现跨地域的网络访问时,才通过专业路由器。 三层交换机工作原理 三层交换技术就是二层交换技术+三层转发技术。传统的交换技术是在OSI网络标准模型中的第二层——数据链路层进行操作的,而三层交换技术是在网络模型中的第三层实现了数据包的高速转发。应用第三层交换技术即可实现网络路由的功能,又可以根据不同的网络状况做到最优的网络性能。 为什么使用三层交换机? 1、网络骨干少不了三层交换 要说三层交换机在诸多网络设备中的作用,用“中流砥柱”形容并不为过。在校园网、城域教育网中,从骨干网、城域网骨干、汇聚层都有三层交换机的用武之地,尤其是核心骨干网一定要用三层交换机,否则整个网络成千上万台的计算机都在一个子网中,不仅毫无安全可言,也会因为无法分割广播域而无法隔离广播风暴。

步进电动机的工作原理与特点

步进电动机的工作原理及特点随着微电子和计算机技术的发展,步进电机的需求量与日俱增,它广泛用于打印机、电动玩具等消费类产品以及数控机床、工业机器人、医疗器械等机电产品中,其在各个国民经济领域都有应用。研究步进电机的控制系统,对提高控制精度和响应速度、节约能源等都具有重要意义。 1 步进电机概述 步进电动机又称脉冲电动机或阶跃电动机,国外一般称为Steppingmotor、Pulse motor或Stepper servo,其应用发展已有约80年的历史。步进电机是一种把电脉冲信号变成直线位移或角位移的控制电机,其位移速度与脉冲频率成正比,位移量与脉冲数成正比。步进电机在结构上也是由定子和转子组成,可以对旋转角度和转动速度进行高精度控制。当电流流过定子绕组时,定子绕组产生一矢量磁场,该矢量场会带动转子旋转一角度,使得转子的一对磁极磁场方向与定子的磁场方向一着该磁场旋转一个角度。因此,控制电机转子旋转实际上就是以一定的规律控制定子绕组的电流来产生旋转的磁场。每来一个脉冲电压,转子就旋转一个步距角,称为一步。根据电压脉冲的分配方式,步进电机各相绕组的电流轮流切换,在供给连续脉冲时,就能一步一步地连续转动,从而使电机旋转。步进电机每转一周的步数相同,在不丢步的情况下运行,其步距误差不会长期积累。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,同时步进电机只有周期性的误差而无累积误差,精度高,步进电动机可以在宽广的频率围通过改变脉冲频率来实现调速、快速起停、正反转控制等,这是步进电动机最突出的优点[1]。 正常情况下,步进电机转过的总角度和输入的脉冲数成正比;连续输入一定频率的脉冲时,电动机的转速与输入脉冲的频率保持严格的对应关系,不受电压波动和负载变化的影响。由于步进电动机能直接接收数字量的输入,所以特别适合于微机控制。 2国外的研究概况 步进电机是国外发明的。中国在文化大革命中已经生产和应用,例如、、、、都生产,而且都在各行业使用,驱动电路所有半导体器件都是完全国产化的,当时是全分立元器件构成的逻辑运算电路,还有电容耦合输入的计数器,触发器,环形分配器。国外在大功率的工业设备驱动上,目前基本不使用大扭矩步进电动机,因为从驱动电路的成本,效率,噪音,加速度,绝对速度,系统惯量与最大扭矩比来比较,比较不划算,还是用直流电动机,加电动机编码器整体技术和经济指标高。一些少数高级的应用,就用空心转杯电机,交流电机。国外在小功率的场合,还使用步进电机,例如一些工业器材,工业生产装备,打印机,复印件,速印机,银行自动柜员机。国外用许多现代的手段将步进电机排挤出驱动应用,除了前面提到的旋转编码器,打印机还使用光电编码带或感应编码带配合直流电动机,实现闭环直线位移控制。国过去是用大力矩步进电动机实现机床数控,有实力的公司现在也采用交流电动机驱动数控机床,在驱动设备的主要差距,是国外对交流电动机的控制理论与工程分析和应用能力强,先进的控制理论作为软件,写在控制器部。 总的来说,步进电机是一种简易的开环控制,对运用者的要求低,不适合在大功率的场合使用。 在卫星、雷达等应用场合,中国在文化大革命后期,就生产了力矩电机,就生产了环形

浅谈机械设计中链传动的类型和特点

浅谈机械设计中链传动的类型和特点 发表时间:2018-05-07T10:59:53.773Z 来源:《知识-力量》2018年2月下作者:刘星 [导读] 在我们进行机械设计过程中,永远少不了传动的问题。譬如:链传动、齿轮传动、带传动、蜗轮蜗杆传动等等。本文主要介绍链传动 刘星 (西华大学,四川成都 610039) 摘要:在我们进行机械设计过程中,永远少不了传动的问题。譬如:链传动、齿轮传动、带传动、蜗轮蜗杆传动等等。本文主要介绍链传动,链传动是通过链条将具有特殊齿形的主动链轮的运动和动力传递到具有特殊齿形的从动链轮的一种传动方式。链传动有许多优点,与带传动相比,无弹性滑动和打滑现象,平均传动比准确,工作可靠,效率高;传递功率大,过载能力强,相同工况下的传动尺寸小;所需张紧力小,作用于轴上的压力小;能在高温、潮湿、多尘、有污染等恶劣环境中工作。链传动的缺点主要有:仅能用于两平行轴间的传动;成本高,易磨损,易伸长,传动平稳性差,运转时会产生附加动载荷、振动、冲击和噪声,不宜用在急速反向的传动中。本文主要介绍链传动的主要类型以及相应的特点。 关键词:机械设计链传动类型特点 一、链传动的分类 链传动由主动轮、从动轮和绕在链轮上并与链轮啮合的链条组成。按照工作特性分可以分为:起重链、牵引链、传动链。按照传动链接形式可以分为:套筒链、滚子链、齿形链、成型链等。当然,各种形式的链条其工作速度是不相同的,每一种链条都有其相适应的工作速度范围。 二、链传动的特点 (一)和带传动相比。链传动能保持平均传动比不变;传动效率高;张紧力小,因此作用在轴上的压力较小;能在低速重载和高温条件下及尘土飞扬的不良环境中工作。 (二)和齿轮传动相比。链传动可用于中心距较大的场合且制造精度较低。 (三)只能传递平行轴之间的同向运动,不能保持恒定的瞬时传动比,运动平稳性差,工作时有噪声。通常链传动传递的功率P小于100KW,广泛应用于农业机械、建筑工程机械、轻纺机械、石油机械等各种机械传动中。 三、滚子链传动 滚子链由内链板、套筒、销轴、外链板和滚子组成,内链板和套筒、外链板和销轴用过盈配合固定,构成内链节和外链节。销轴和套筒之间为间隙配合,构成铰链,将若干内外链节依次铰接形成链条。滚子松套在套筒上可自由转动,链轮轮齿与滚子之间的摩擦主要是滚动摩擦。链条上相邻两销轴中心的距离称为节距, 用p表示,节距是链传动的重要参数。节距p越大,链的各部分尺寸和重量也越大,承载能力越高,且在链轮齿数一定时,链轮尺寸和重量随之增大。因此,设计时在保证承载能力的前提下,应尽量采取较小的节距。载荷较大时可选用双排链或多排链,但排数一般不超过三排或四排,以免由于制造和安装误差的影响使各排链受载不均。链条的长度用链节数表示,一般选用偶数链节,这样链的接头处可采用开口销或弹簧卡片来固定。当链节为奇数时,需采用过渡链节,由于过渡链节的链板受附加弯矩的作用,一般应避免采用。GB/T1243-97规定滚子链分为A、B系列,其中A系列较为常用。链速和传动比的变化使链传动中产生加速度,从而产生附加动载荷、引起冲击振动,故链传动不适合高速传动。为减小动载荷和运动的不均匀性,链传动应尽量选取较多的齿数z 和较小的节距p(这样可使减小),并使链速在允许的范围内变化。 四、链传动的失效形式 由于链条的强度比链轮的强度低,故一般链传动的失效主要是链条失效,其失效形式主要有以下几种: (一)链条铰链磨损。链条铰链的销轴与套筒之间承受较大的压力且又有相对滑动,故在承压面上将产生磨损。磨损使链条节距增加,极易产生跳齿和脱链。 (二) 链板疲劳破坏。链传动紧边和松边拉力不等,因此链条工作时,拉力在不断地发生变化,经一定的应力循环后,链板发生疲劳断裂。 (三)多次冲击破断。链传动在启动、制动、反转或重复冲击载荷作用下,链条、销轴、套筒发生疲劳断裂。 (四)链条铰链的胶合。链速过高时销轴和套筒的工作表面由于摩擦产生瞬时高温使两摩擦表面相互粘结,并在相对运动中将较软的金属撕下,这种现象称为胶合。链传动的极限速度受到胶合的限制。 (五)链条的静力拉断。在低速(v < 0.6m/s)重载或突然过载时,载荷超过链条的静强度,链条将被拉断。 五、链传动的润滑方式有四种: (一)人工定期用油壶或油刷给油; (二)用油杯通过油管向松边内外链板间隙处滴油; (三)油浴润滑或用甩油盘将油甩起,以进行飞溅润滑; (四)用油泵经油管向链条连续供油,循环油可起润滑和冷却的作用。 封闭于壳体内的链传动,可以防尘、减轻噪声及保护人身安全。润滑油可选用L-AN32、L-AN46、L-AN68全损耗系统用油,环境温度高或载荷大时宜取粘度高者;反之粘度宜低。 六、总结 链传动具有各种各样的优点,而且在实际应用当中十分的广泛。所以我们在使用的过程当中,必须了解到每一种链条的适用范围,合理的选择相应的链条,并且有效的避免它失效的产生。这样子对我们实际生活中的应用相当有效。

请说明BS模型的工作原理及其特点

第1页(共5页) 题目1 [50 分] (1)请说明B/S模型的工作原理及其特点。(出自第一单元) B/S网络结构模式是基于Intranet的需求而出现并发展的。Intranet是应用TCPIP 协议建立的企事业单位内部专用网络,它采用诸如TCPIP、HTTP、SMTP和HTML 等Internet技术和标准,能为企事业单位内部交换信息提供服务。同时,它具有连接Internet的功能和防止外界入侵的安全措施。另一方面,由于数据库具有强大的数据存储和管理能力,并且能够动态地进行数据输入和输出,如果把数据库应用于Intranet上,不仅可以实现大量信息的网上发布,而且能够为广大用户提供动态的信息查询和数据处理服务,进而加强企事业单位内部部门之间、上级部门与下级部门之间、企事业单位员工之间、企事业单位与客户之间以及企事业单位与企事业单位之间的信息交流,降低企事业单位的日常工作成本,提高企事业单位的经济效益。 3.1 BS模式的模型结构 BS模式,即浏览器/服务器模式,是一种从传统的二层CS模式发展起来的新的网络结构模式,其本质是三层结构CS模式。 3.2 BS模式的工作原理 在B/S模式中,客户端运行浏览器软件。浏览器以超文本形式向Web服务器提出访问数据库的要求,Web服务器接受客户端请求后,将这个请求转化为SQL语法,并交给数据库服务器,数据库服务器得到请求后,验证其合法性,并进行数据处理,然后将处理后的结果返回给Web服务器,Web服务器再一次将得到的所有结果进行转化,变成HTML文档形式,转发给客户端浏览器以友好的Web页面形式显示出来。 3.3 BS模式的特点 BS模式管理信息系统基本上克服了CS 模式管理信息系统的不足,其主要表现在: 3.3.1系统开发、维护和升级的经济性

LC振荡电路的工作原理及特点

简单介绍LC振荡电路的工作原理及特点 LC振荡电路,顾名思义就是用电感L和电容C组成的一个选频网络的振荡电路,这个振荡电路用来产生一种高频正弦波信号。常见的LC振荡电路有好多种,比如变压器反馈式、电感三点式及电容三点式,它们的选频网络一般都采用LC并联谐振回路。这种振荡电路的辐射功率跟振荡频率的四次方成正比,如果要想让这种电路向外辐射足够大的电磁波的话,就必须提高其振荡频率,而且还必须是电路具备开放的形式。 LC振荡电路之所以有振荡,是因为该电路通过运用电容跟电感的储能特性,使得电磁这两种能量在交替转化,简而言之,由于电能和磁能都有最大和最小值,所以才有了振荡。当然,这只是一个理想情况,现实中,所有的电子元件都有一些损耗,能量在电容和电感之间转化是会被损耗或者泄露到外部,导致能量不断减小。所以LC 振荡电路必须要有放大元件,这个放大元件可以是三极管,也可以是集成运放或者其他的东西。有了这个放大元件,这个不断被消耗的振荡信号就会被反馈放大,从而我们会得到一个幅值跟频率都比较稳定的信号。 开机瞬间产生的电扰动经三极管V组成的放大器放大,然后由LC选频回路从众多的频率中选出谐振频率F0。并通过线圈L1和L2之间的互感耦合把信号反馈至三极管基极。设基极的瞬间电压极性为正。经倒相集电压瞬时极性为负,按变压器同名端的符号可以看出,L2的上端电压极性为负,反馈回基极的电压极性为正,满足相位平衡条件,偏离F0的其它频率的信号因为附加相移而不满足相位平衡条件,只要三极管电流放大系数B和L1与L2的匝数比合适,满足振幅条件,就能产生频率F0的振荡信号。 LC振荡电路物理模型的满足条件 ①整个电路的电阻R=0(包括线圈、导线),从能量角度看没有其它形式的能向内能转化,即热损耗为零。 ②电感线圈L集中了全部电路的电感,电容器C集中了全部电路的电容,无潜布电容存在。 ③LC振荡电路在发生电磁振荡时不向外界空间辐射电磁波,是严格意义上的闭合电路,LC电路内部只发生线圈磁场能与电容器电场能之间的相互转化,即便是电容器内产生的变化电场,线圈内产生的变化磁场也没有按麦克斯韦的电磁场理论激发相应的磁场和电场,向周围空间辐射电磁波。 能产生大小和方向都随周期发生变化的电流叫振荡电流。能产生振荡电流的电路叫振荡电路。其中最简单的振荡电路叫LC回路。 振荡电流是一种交变电流,是一种频率很高的交变电流,它无法用线圈在磁场中转动产生,只能是由振荡电路产生。 充电完毕(放电开始):电场能达到最大,磁场能为零,回路中感应电流i=0。 放电完毕(充电开始):电场能为零,磁场能达到最大,回路中感应电流达到最大。 充电过程:电场能在增加,磁场能在减小,回路中电流在减小,电容器上电量在增加。从能量看:磁场能在向电场能转化。 放电过程:电场能在减少,磁场能在增加,回路中电流在增加,电容器上的电量在减少。从能量看:电场能在向磁场能转化。 在振荡电路中产生振荡电流的过程中,电容器极板上的电荷,通过线圈的电流,以及跟电流和电荷相联系的

最新机械设计基础教案——第9章链传动

第 9 章链传动 一)教学要求 1、了解套筒滚子链结构、掌握链运动的不均匀性 2、掌握链传动失效形式 3、了解链传动的设计计算方法 二)教学的重点与难点 1、链传动的多边形效应 2、链传动的失效形式 3、链传动的设计方法 三)教学内容 9.1概述 链传动工作原理与特点 1、工作原理:(至少)两轮间以链条为中间挠性元件的啮合来传递动力和运动。但非共轭曲线啮合,靠三段圆弧和一直线啮合。其磨损、接触应力冲击均小,且易加工。 2、组成;主、从动链轮、链条、封闭装置、润滑系统和张紧装置等。 3、特点(与带、齿轮传动比较) 优点:①平均速比i m准确,无滑动;②结构紧凑,轴上压力Q小;③传动效率高η=98%; ④承载能力高P=100KW ;⑤可传递远距离传动a max=8mm ;⑥成本低。 缺点:①瞬时传动比不恒定i;②传动不平衡;③传动时有噪音、冲击;④对安装粗度要求较高。 4、应用:适于两轴相距较远,工作条件恶劣等,如农业机械、建筑机械、石油机械、采矿、起重、金属切削机床、摩托车、自行车等。中低速传动:i≤8(I=2~4),P≤100KW, V≤12-15m/s,无声链V max=40m/s。(不适于在冲击与急促反向等情况下采用) 9.2传动链的结构特点 链传动的主要类型 1)按工作特性分:

起重链——用于提升重物——V ≤0.25m/s;牵(线)引链——运输机械——V ≤ 2~4m/s; 传动链——用于传递运动和动力——V ≤12~15m/s。 优点:结构简单、重量轻、价廉、适于低速、寿命长、噪音小、应用广。 2)传动链接形式分:套筒链; (套筒)滚子链—属标准件选用、合理确定链轮与链条尺寸,—短节距精密滚子链; 齿形链;成型链四种。 ①套筒滚子链(结构与特点)动配合,可 相对运动,相当于活动铰链,承压面积A(投影)——宽×长投影组成: 5 滚子;4 套筒;3 销轴;2 外链板;1 内链板动配合。当链节进入、退出啮合时,滚子沿 齿滚动,实现滚动摩擦,减小磨损。套筒与内链板、销轴与外链板分别用过盈配合(压配)固联,使内、外链板可相对回 转。 为减轻重量、制成“ 8”字形,亦有弯板。这样质量小,惯性小,具有等强度。磨损:——主 要指滚子与销轴截面之间磨损。而内、外板之间留有间隙,保证润滑油进入,此润滑降低磨损。 表9-1,P 越大,承载能力越高。 参数:P—节距,b1—内链板间距,C—板厚,d1—滚子直径,d2—销轴直径,P—排距当低速时也可以不用滚子——称套筒链多排链——单排链用销轴并联——称多排链(或双排链)排数↑→承载能力↑ 但排↑→制造误差↑→受力不均↑一般不超过3~4 列为宜 链接头型式:链节数为偶数(常用)——内链板与外链板相接——弹性锁片(称弹簧卡)或大节距(称开口销)——受力较好 弹性锁片——端外链板与错轴为间隙配合链节数为奇数——用过渡链节固联——(如图9-4b)产生附加弯矩——受力不利, 尽量不用。 固联——内(外)链板与内(外)链板相接 图9-4c —是板链—弹性好、缓冲、吸振在低速、重载、冲击和经常正反转工作情况。安全过渡链节(图9-4c)——弯板与销滚子链标记:链号—排数×链节数标准号套筒滚子链规格与主要参数——表9-1 2、齿形链——如图9-5 各组齿形链板要错排列,通过销轴联接而成。链板两工作侧边为直边, 夹角为60°或70°,由链板工作边与链轮齿啮合实现传动。齿形链轴可以是圆柱销轴,也可以是其它形式(滚 柱式)——图9-6,b——两个链片、c 图为连接两链片的一对棱柱销轴,链节相对转动时,两棱柱可相互滚动。使铰链磨损减少。 齿形链设导板,以防链条轴向窜动:内导板—导向性好;外导板铰链形式:圆销式;轴互式;滚柱式齿形链的齿形特点:传动平稳、承受冲击好、齿多受力均匀、噪音较小、故称无声链。 允许速度V 高,特殊设计齿形链V=40m/s ,但结构较复杂、价格贵、制造较困难、也较重。摩 托车用链应用于高速机运动精度,要求较高的场合,故目前应用较少。 0.95 ~ 0.98 一般 0.98 ~ 0.99 润滑良好 9.3滚子链链轮的结构与材料(套筒滚子链) 要求掌握:1)链轮齿形的设计要求;2)链轮齿形特点;3)链轮的主要参数; 4)链轮的结构型式有哪些;5)对链轮的材料要求及适用情况

IGBT的工作原理和工作特性

IGBT的工作原理和工作特性 IGBT的开关作用是通过加正向栅极电压形成沟道,给PNP晶体管提供基极电流,使IGBT导通。反之,加反向门极电压消除沟道,流过反向基极电流,使IGBT关断。IGBT的驱动方法和MOSFET 基本相同,只需控制输入极N一沟道MOSFET,所以具有高输入阻抗特性。当MOSFET的沟道形成后,从P+基极注入到N一层的空穴(少子),对N一层进行电导调制,减小N一层的电阻,使IGBT在高电压时,也具有低的通态电压。 IGBT的工作特性包括静态和动态两类: 1.静态特性 IGBT的静态特性主要有伏安特性、转移特性和开关特性。IGBT的伏安特性是指以栅源电压Ugs 为参变量时,漏极电流与栅极电压之间的关系曲线。输出漏极电流比受栅源电压Ugs的控制,Ugs 越高,Id越大。它与GTR的输出特性相似.也可分为饱和区1、放大区2和击穿特性3部分。在截止状态下的IGBT,正向电压由J2结承担,反向电压由J1结承担。如果无N+缓冲区,则正反向阻断电压可以做到同样水平,加入N+缓冲区后,反向关断电压只能达到几十伏水平,因此限制了IGBT的某些应用范围。 IGBT的转移特性是指输出漏极电流Id与栅源电压Ugs之间的关系曲线。它与MOSFET的转移特性相同,当栅源电压小于开启电压Ugs(th)时,IGBT处于关断状态。在IGBT导通后的大部分漏极电流范围内,Id与Ugs呈线性关系。最高栅源电压受最大漏极电流限制,其最佳值一般取为15V左右。IGBT的开关特性是指漏极电流与漏源电压之间的关系。IGBT处于导通态时,由于它的PNP晶体管为宽基区晶体管,所以其B值极低。尽管等效电路为达林顿结构,但流过MOSFET 的电流成为IGBT总电流的主要部分。此时,通态电压Uds(on)可用下式表示: Uds(on)=Uj1+Udr+IdRoh (2-14) 式中Uj1——JI结的正向电压,其值为0.7~IV; Udr——扩展电阻Rdr上的压降;Roh——沟道电阻。 通态电流Ids可用下式表示:Ids=(1+Bpnp)Imos (2-15) 式中Imos——流过MOSFET的电流。 由于N+区存在电导调制效应,所以IGBT的通态压降小,耐压1000V的IGBT通态压降为2~3V。IGBT处于断态时,只有很小的泄漏电流存在。 2.动态特性 IGBT在开通过程中,大部分时间是作为MOSFET来运行的,只是在漏源电压Uds下降过程后期,PNP晶体管由放大区至饱和,又增加了一段延迟时间。td(on)为开通延迟时间,tri为电流上升时间。实际应用中常给出的漏极电流开通时间ton即为td(on)tri之和。漏源电压的下降时间由tfe1和tfe2组成,如图2-58所示

四大触摸屏技术工作原理及特点分析

四大触摸屏技术工作原理及特点分析 为了操作上的方便,人们用触摸屏来代替鼠标或键盘。工作时,我们必须首先用手指或其它物体触摸安装在显示器前端的触摸屏,然后系统根据手指触摸的图标或菜单位置来定位选择信息输入。触摸屏由触摸检测部件和触摸屏控制器组成;触摸检测部件安装在显示器屏幕前面,用于检测用户触摸位置,接受后送触摸屏控制器;而触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再送给CPU,它同时能接收CPU发来的命令并加以执行。 触摸屏的主要类型 按照触摸屏的工作原理和传输信息的介质,我们把触摸屏分为四种,它们分别为电阻式、电容感应式、红外线式以及表面声波式。每一类触摸屏都有其各自的优缺点,要了解那种触摸屏适用于那种场合,关键就在于要懂得每一类触摸屏技术的工作原理和特点。下面对上述的各种类型的触摸屏进行简要介绍一下: 1.电阻式触摸屏

电阻式触摸屏的工作原理 这种触摸屏利用压力感应进行控制。电阻触摸屏的主要部分是一块与显示器表面非常配合的电阻薄膜屏,这是一种多层的复合薄膜,它以一层玻璃或硬塑料平板作为基层,表面涂有一层透明氧化金属(透明的导电电阻)导电层,上面再盖有一层外表面硬化处理、光滑防擦的塑料层、它的表面也涂有一层涂层、在他们之间有许多细小的(小于1/1000英寸)的透明隔离点把两层导电层隔开绝缘。当手指触摸屏幕时,两层导电层在触摸点位置就有了接触,电阻发生变化,在X 和Y两个方向上产生信号,然后送触摸屏控制器。控制器侦测到这一接触并计算出(X,Y)的位置,再根据模拟鼠标的方式运作。这就是电阻技术触摸屏的最基本的原理。电阻类触摸屏的关键在于材料科技,常用的透明导电涂层材料有:(1)ITO,氧化铟,弱导电体,特性是当厚度降到1800个埃(埃=10-10米)以下时会突然变得透明,透光率为80%,再薄下去透光率反而下降,到300埃厚度时又上升到80%。ITO是所有电阻技术触摸屏及电容技术触摸屏都用到的主要材料,实际上电阻和电容技术触摸屏的工作面就是ITO涂层。 (2)镍金涂层,五线电阻触摸屏的外层导电层使用的是延展性好的镍金涂层材料,外导电层由于频繁触摸,使用延展性好的镍金材料目的是为了延长使用寿命,但是工艺成本较为高昂。镍金导电层虽然延展性好,但是只能作透明导体,不适合作为电阻触摸屏的工作面,因为它导电率高,而且金属不易做到厚度非常均匀,不宜作电压分布层,只能作为探层。 1.1 四线电阻屏 四线电阻模拟量技术的两层透明金属层工作时每层均增加5V恒定电压:一个竖直方向,一个水平方向。总共需四根电缆。特点:高解析度,高速传输反

最新带传动和链传动(教案)

授课教师:日期: 教学环节及时间分配、备注师生 活动 教学内容4学时 新课引入 准备知识学习 学习重点和难点 学生 回答 教师 补充 理论 知识 学习 实物 展示 第六章带传动和链传动 学习目标 了解带传动与链传动的类型、工作原理、特点及应用; 了解V带的标记及V带轮的机构; 了解带传动与链传动的失效分析; 了解带传动与链传动的安装与维护常识。 新课引入 举例:自己在生活中见过的带传动或者链传动的例子有哪些? 如自行车的链条传动,生产流水线上的带传动等等。(结合PPT形象生动)粗略讲解PPT中展示图片的工作机理。 6.1 带传动的工作原理、类型及特点(一下内容结合PPT)教材P83 1、主动轮,从动轮。 2、带传动的组成主动轮 从动轮 传动带 3、带传动的分类:1、摩擦式(靠摩擦力工作,工作时不需要润滑,成本低) 2、啮合式(不打滑,精度高) 3.1 摩擦式:平带f1 V带f2=3f1(分类、结构) 多楔带(功率大的场合) 圆带(多见于早起缝纫机) P96 练习:判断题1、2 选择题1、2、3、4 6.2 普通V带及V带轮 1、结构P 85 帘布芯结构抗拉强度好

PPT图演示 讲授 举例说明 绳芯结构柔韧性好 2、V带的几何参数: θ:楔角,一般取 40° 3、V带标准化的认识 4、普通V带轮 4.1 V带轮结构: θ一般都小于40° 以铸造为主 小结:带传动的特点P84 6.3 带传动工作能力分析 简单的讲述受力情况。并引出包角的概念 摩擦式带传动打滑的地方在小轮。原因是包角小。带传动的失效形式:打滑、传动带磨损、疲劳断裂 6.4 带传动的张紧、安装与维护 1、张紧装置:1、通过滑道调节螺钉

交流电动机的工作原理及特性

习题及思考题 5.1 有一台四极三相异步电动机,电源电压的频率为50H Z,满载时电动机的转 差率为0.02求电动机的同步转速、转子转速和转子电流频率。 n0=60f/p S=(n0-n)/ n0 =60*50/2 0.02=(1500-n)/1500 =1500r/min n=1470r/min 电动机的同步转速1500r/min. 转子转速1470 r/min, 转子电流频率.f2=Sf1=0.02*50=1 H Z 5.2将三相异步电动机接三相电源的三根引线中的两根对调,此电动机是否会反 转?为什么? 如果将定子绕组接至电源的三相导线中的任意两根线对调,例如将B,C两根线对调,即使B相遇C相绕组中电流的相位对调,此时A相绕组内的电流导前于C相绕组的电流2π/3因此旋转方向也将变为A-C-B向逆时针方向旋转,与未对调的旋转方向相反. 5.3 有一台三相异步电动机,其n N=1470r/min,电源频率为50H Z。设在额定负 载下运行,试求: ①定子旋转磁场对定子的转速; 1500 r/min ②定子旋转磁场对转子的转速; 30 r/min ③转子旋转磁场对转子的转速; 30 r/min

④ 转子旋转磁场对定子的转速; 1500 r/min ⑤ 转子旋转磁场对定子旋转磁场的转速。 0 r/min 5.4 当三相异步电动机的负载增加时,为什么定子电流会随转子电流的增加而增 加? 因为负载增加n 减小,转子与旋转磁场间的相对转速( n0-n)增加,转子导体被 磁感线切割的速度提高,于是转子的感应电动势增加,转子电流特增加,。定子的感 应电动使因为转子的电流增加而变大,所以定子的电流也随之提高。 5.5 三相异步电动机带动一定的负载运行时,若电源电压降低了,此时电动机的 转矩、电流及转速有无变化?如何变化? 若电源电压降低, 电动机的转矩减小, 电流也减小。 转速不变。 5.6 有一台三相异步电动机,其技术数据如下表所示。 试求:①线电压为380V 时,三相定子绕组应如何接法? ②求n 0,p,S N ,T N ,T st ,T max 和I st ; ③额定负载时电动机的输入功率是多少? ① 线电压为380V 时,三相定子绕组应为Y 型接法。 ② T N =9.55P N /n N =9.55*3000/960=29.8Nm 型号 P N /k W U N /V 满载时 I st /I N Tst /T N T max /T N n N /r ·min -1 I N /A ηN ×100 cos φ Y132S-6 3 220/ 380 960 12.8/7.2 83 0.75 6.5 2.0 2.0

皮带传动、链传动和齿轮传动特点

皮带传动是一种依靠摩擦力来传递运动和动力的机械传动。它的特点主要表现在:皮带有良好的弹性,在工作中能缓和冲击和振动,运动平稳无噪音。载荷过大时皮带在轮上打滑,因而可以防止其他零件损坏,起安全保护作用。皮带是中间零件。它可以在一定范围内根据需要来选定长度,以适应中心距要求较大的工作条件。结构简单制造容易,安装和维修方便,成本较低。 缺点是:靠摩擦力传动,不能传递大功率。传动中有滑动,不能保持准确的传动比,效率较低。在传递同样大的圆周力时,外廓尺寸和轴上受力都比齿轮传动等啮合传动大。皮带磨损 较快,寿命较短。 链传动的特点: 1)与带传动相比,没有弹性滑动,能保持准确的平均传动比,传动效率较高;链条不需要大的张紧力,所以轴与轴承所受载荷较小;不会打滑,传动可靠,过载能力强,能在低速重载下较好工作; 2)与齿轮传动相比,可以有较大的中心距,可在高温环境和多尘环境中工作,成本较低; 3)缺点是瞬时链速和瞬时传动比都是变化的,传动平稳性较差,工作中有冲击和噪声,不适合高速场合,不适用于转动方向频繁改变的情况。 齿轮传动能传递两个平行轴或相交轴或交错轴间的回转运动和转矩。 一、齿轮传动的特点 1)效率高在常用的机械传动中,以齿轮传动效率为最高,闭式传动效率为96%~99%,这对大功率传动有很大的经济意义。 2)结构紧凑比带、链传动所需的空间尺寸小。 4)传动比稳定传动比稳定往往是对传动性能的基本要求。齿轮传动获得广泛应用,正是由于其具有这一特点。 3)工作可靠、寿命长设计制造正确合理、使用维护良好的齿轮传动,工作十分可靠,寿命可长达一二十年,这也是其它机械传动所不能比拟

的。这对车辆及在矿井内工作的机器尤为重要。 但是齿轮传动的制造及安装精度要求高,价格较贵,且不宜用于传动距离过大的场合。 常见传动方式的分类及其特点 在机械传动方面,常见的传动种类:带传动,链传动,轴传动,齿轮传动,蜗杆涡轮传动,摩擦轮传动,螺旋传动,液压传动,气压传动。 带传动一般有以下特点: 1.带有良好的饶性,能吸收震动,缓和冲击,传动平稳噪音小。 2.当带传动过载时,带在带轮上打滑,防止其他机件损坏,起到过载保护作用。 3.结构简单,制造,安装和维护方便; 4.带与带轮之间存在一定的弹性滑动,故不能保证恒定的传动比,传动精度和传动效率较低。 5.由于带工作时需要张紧,带对带轮轴有很大的压轴力。 6.带传动装置外廓尺寸大,结构不够紧凑。 7.带的寿命较短,需经常更换。 由于带传动存在上述特点,故通常用与中心距较大的两轴之间的传动传递功率一般不超过50KW。 链传动兼有带传动和齿轮传动的特点。 主要优点:与摩擦型带传动相比,链传动无弹性滑动和打滑现象,因而能保持准确的传动比(平均传动比),传动效率较高(润滑良好的链传动的效率约为97 98%);又因链条不需要象带那样张得很紧,所以作用在轴上的压轴力较小;在同样条件下,链传动的结构较紧凑;同时链传动能在温度较高、有水或油等恶劣环境下工作。与齿轮传动相比,链传动易于安装,成本低廉;在远距离传动时,结构更显轻便。 主要缺点:运转时不能保持恒定传动比,传动的平稳性差;工作时冲击和噪音较大;磨损后易发生跳齿;只能用于平行轴间的传动。

链传动工作原理与特点

套筒链条尺寸 链传动工作原理与特点 1、工作原理:(至少)两轮间以链条为中间挠性元件的啮合来传递动力和运动。但非共轭曲线啮合,靠三段圆弧()一直线啮合。其磨损、接触应力冲击均小,且易加工。 2、组成;主、从动链轮、链条、封闭装置、润滑系统和张紧装置等。 3、特点(与带、齿轮传动比较) 准确,无滑动;②结构紧凑,轴上压力Q小;③传动效率优点:①平均速比i m 高η=98%;④承载能力高P=100KW;⑤可传递远距离传动a =8mm;⑥成本低。 max 缺点:①瞬时传动比不恒定i;②传动不平衡;③传动时有噪音、冲击;④对安装粗度要求较高。 4、应用: 适于两轴相距较远,工作条件恶劣等,如农业机械、建筑机械、石油机械、采矿、起重、金属切削机床、摩托车、自行车等。中低速传动:i≤8(I=2~4),P≤100KW, =40m/s。(不适于在冲击与急促反向等情况下采用) V≤12-15m/s,无声链V max §2 传动链的结构特点 链传动的主要类型 1)按工作特性分: 起重链——用于提升重物——V≤0.25m/s; 牵(线)引链——运输机械——V≤2~4m/s; 传动链——用于传递运动和动力——V≤12~15m/s。 优点:结构简单、重量轻、价廉、适于低速、寿命长、噪音小、应用广。 2)传动链接形式分: 套筒链; (套筒)滚子链—属标准件选用、合理确定链轮与链条尺寸,—短节距精密滚子链;

齿形链;成型链四种。 1、套筒滚子链(结构与特点) 动配合,可相对运动,相当于活动铰链,承压面积A(投影)——宽×长投影组成: 5滚子;4套筒;3销轴;2外链板;1内链板 当链节进入、退出啮合时,滚子沿齿滚动,实现滚动摩擦,减小磨损。 套筒与内链板、销轴与外链板分别用过盈配合(压配)固联,使内、外链板可相对回转。 为减轻重量、制成“8”字形,亦有弯板。这样质量小,惯性小,具有等强度。 磨损:——主要指滚子与销轴截面之间磨损。而内、外板之间留有间隙,保证润滑油进入,此润滑可降低磨损。 P越大,承载能力越高。 参数:P—节距,b 1—内链板间距,C—板厚,d 1 —滚子直径,d 2 —销轴直径,P— 排距 当低速时也可以不用滚子——称套筒链 多排链——单排链用销轴并联——称多排链(或双排链) 排数↑→承载能力↑ 但排数↑→制造误差↑→受力不均↑一般不超过3~4列为宜 链接头型式: 链节数为偶数(常用)——内链板与外链板相接——弹性锁片(称弹簧卡)或大节距(称开口销)——受力较好 弹性锁片——端外链板与错轴为间隙配合 链节数为奇数——用过渡链节固联产生附加弯矩——受力不利,尽量不用。 固联——内(外)链板与内(外)链板相接 板链—弹性好、缓冲、吸振在低速、重载、冲击和经常正反转工作情况。 安全过渡链节——弯板与销

SRAM特点及工作原理

SRAM特点及工作原理 中心议题: ?SRAM的基本简介 ?SRAM的主要规格与特点 ?SRAM的结构与工作原理 解决方案: ?CPU与主存之间的高速缓存 ?CPU内部的L1/L2或外部的L2高速缓存 ?CPU外部扩充用的COAST高速缓存 SRAM是英文StaticRAM的缩写,它是一种具有静止存取功能的内存,不需要刷新电路即能保存它内部存储的数据. 基本简介 SRAM不需要刷新电路即能保存它内部存储的数据。而DRAM(DynamicRandomAccessMemory)每隔一段时间,要刷新充电一次,否则内部的数据即会消失,因此SRAM具有较高的性能,但是SRAM也有它的缺点,即它的集成度较低,相同容量的DRAM内存可以设计为较小的体积,但是SRAM却需要很大的体积,且功耗较大。所以在主板上SRAM存储器要占用一部分面积。 主要规格 一种是置于CPU与主存间的高速缓存,它有两种规格:一种是固定在主板上的高速缓存(CacheMemory);另一种是插在卡槽上的COAST(CacheOnAStick)扩充用的高速缓存,另外在CMOS芯片1468l8的电路里,它的内部也有较小容量的128

字节SRAM,存储我们所设置的配置数据。还有为了加速CPU内部数据的传送,自80486CPU起,在CPU的内部也设计有高速缓存,故在PentiumCPU就有所谓的L1Cache(一级高速缓存)和L2Cache(二级高速缓存)的名词,一般L1Cache 是内建在CPU的内部,L2Cache是设计在CPU的外部,但是PentiumPro把L1和L2Cache同时设计在CPU的内部,故PentiumPro的体积较大。最新的PentiumII 又把L2Cache移至CPU内核之外的黑盒子里。SRAM显然速度快,不需要刷新的操作,但是也有另外的缺点,就是价格高,体积大,所以在主板上还不能作为用量较大的主存。 基本特点 现将它的特点归纳如下: ◎优点,速度快,不必配合内存刷新电路,可提高整体的工作效率。 ◎缺点,集成度低,功耗较大,相同的容量体积较大,而且价格较高,少量用于关键性系统以提高效率。 ◎SRAM使用的系统: ○CPU与主存之间的高速缓存。 ○CPU内部的L1/L2或外部的L2高速缓存。 ○CPU外部扩充用的COAST高速缓存。 ○CMOS146818芯片(RT&CMOSSRAM)。 主要用途 SRAM主要用于二级高速缓存(Level2Cache)。它利用晶体管来存储数据。与DRAM 相比,SRAM的速度快,但在相同面积中SRAM的容量要比其他类型的内存小。 SRAMSRAM的速度快但昂贵,一般用小容量的SRAM作为更高速CPU和较低速DRAM之间的缓存(cache).SRAM也有许多种,如

三相异步电动机的工作原理及特性(精)

三相异步电动机的工作原理及特性 1 三相异步电动机 实现电能与机械能相互转换的电工设备总称为电机。电机是利用电磁感应原理实现电能与机械能的相互转换。把机械能转换成电能的设备称为发电机,而把电能转换成机械能的设备叫做电动机。 在生产上主要用的是交流电动机,特别三相异步电动机,因为它具有结构简单、坚固耐用、运行可靠、价格低廉、维护方便等优点。它被广泛地用来驱动各种金属切削机床、起重机、锻压机、传送带、铸造机械、功率不大的通风机及水泵等。2.三相异步电动机的转动原理 1).基本原理 为了说明三相异步电动机的工作原理,我们做如下演示实验,如图5-2所示。 图5-2 三相异步电动机工作原理 (1).演示实验:在装有手柄的蹄形磁铁的两极间放置一个闭合导体,当转动手柄带动蹄形磁铁旋转时,将发现导体也跟着旋;若改变磁铁的转向,则导体的转向也跟着改变。 (2).现象解释:当磁铁旋转时,磁铁与闭合的导体发生相对运动,鼠笼式导体切割磁力线而在其内部产生感应电动势和感应电流。感应电流又使导体受到一个电磁力的作用,于是导体就沿磁铁的旋转方向转动起来,这就是异步电动机的基本原理。 转子转动的方向和磁极旋转的方向相同。 (3).结论:欲使异步电动机旋转,必须有旋转的磁场和闭合的转子绕组。

1).三相异步电动机的基本结构 三相异步电动机由定子和转子构成,定子和转子之间有气隙. (1)定子 定子由铁心,绕组,机座三部分组成. 铁心由0.5mm 的硅钢片叠压而成; 三相绕组连接成星形或三角形; 机座一般用铸铁作成,主要用于固定和支撑定子铁心. (2)转子 转子由铁心和绕组组成. 转子同样由硅钢片叠压而成,压装在转轴上; 转子绕组分为鼠笼式和线绕式两种. 线绕式异步电动机还有滑环,电刷机构. 2).三相异步电动机的工作原理 1)三相正弦交流电通入电动机定子的三相绕组,产生旋转磁场,旋转磁场的转速称之为同步转速; (2)旋转磁场切割转子导体,产生感应电势; (3)转子绕组中感生电流; (4)转子电流在旋转磁场中产生力,形成电磁转矩,电动机就转动起来了. 电动机的转速达不到旋转磁场的转速,否则,就不能切割磁力线,就没有感应电势,电动机就停下来了.转子转速与同步转速不一样,差那么一些,称之为异步. 设同步转速为no,电动机的转速为n,则转速差为 ; no-n; 电动机的转速差与同步转速之比定义为异步电动机的转差率S,S 是分析异步电动机运行情况的主要参数,且可得异步电动机的转速方程式为: 异步电动机的调速方法主要有三种:变磁极对数p;变转差率S;变频率f. 电动机启动方式包括:全压直接启动、自耦减压起动、Y-△起动、软起动器、变频器。 1、全压直接起动: n n n S -=p f n 600=)1(60S p f n -=

齿轮、带、链传动对比

齿轮传动、带传动、链传动是机械传动种比较重要的几类传动, 许多同学在学习过程中很容易混淆,那么他们各自的优缺点是什 么呢,我们来综合比较一下。 齿轮传动的特点: ①能保证瞬时传动比恒定,平稳性较高,传递运动准确可靠 ; ②传递的功率和速度范围较大; ③结构紧凑、工作可靠,可实现较大的传动比; ④传动效率高,使用寿命长; ⑤齿轮的制造、安装要求较高. 缺点:制造和安装精度要求较高,不能缓冲,无过载保护作用,有噪音 带传动特点: ①结构简单,适用于两轴中心距较大的传动场合; ②传动平稳无噪声,能缓冲、吸振; ③过载时带将会在带轮上打滑,可防止薄弱零部件损坏, 起到安全保护作用; ④不能保证精确的传动比.带轮材料一般是铸铁等. 有滑动,传动比不能保持恒定,外廓尺寸大,带的寿命较短(通常为3500h~5000h),由于带的摩擦起电不宜用于易燃、易爆的地方,轴和轴承上作用力大 链传动的特点: ①和齿轮传动比较,它可以在两轴中心相距较远的情况下 传递运动和动力; ②能在低速、重载和高温条件下及灰土飞扬的不良环境 中工作; 在高温、油、酸等恶劣条件下能可靠工作,轴和轴承上的作用力 小 ③和带传动比较,它能保证准确的平均传动比,传递功率

较大,且作用在轴和轴承上的力较小; ④传递效率较高,一般可达0.95~0.97; ⑤链条的铰链磨损后,使得节距变大造成脱落现象; ⑥安装和维修要求较高.链轮材料一般是结构钢等. 虽然平均速比恒定,但运转时瞬时速度不均匀,有冲击、振动和噪音,寿命较低(一般为5000h~15000h) 蜗轮蜗杆传动 结构紧凑,外廓尺寸小,传动比大,传动比恒定,传动平稳,无噪音,可做成自锁机构 效率低,传递功率不宜过大,中高速需用价贵的青铜,制造精度要求高,刀具费用高 另外齿轮传动里面直齿轮、斜齿轮、锥齿轮、蜗杆的传动特点又不尽相同,我们在这里就不作一一论述。 带传动 缺点: 优点: 远距离传动可缓冲、减振,运转平稳过载保护结构简单, 精度低, 成本低外廓尺寸大弹性滑动,传动比不固定,效率低轴与轴承受力大寿命短需要张紧装置不宜用于高温, 易燃场合 ?带传动:?适合传动中心距较大的场合。?带具有弹性,可减缓吸振,传动平稳。?过载打滑,起过载保护作用。?结构简单、成本低廉。?链传动:?没有弹性?负载能力小

相关主题
文本预览
相关文档 最新文档