当前位置:文档之家› 天体运动复习和例题解析

天体运动复习和例题解析

天体运动复习和例题解析
天体运动复习和例题解析

万有引力定律与天体运动问题

一.总体思路:高中阶段中研究天体运动的轨迹近似为圆轨道,向心力唯一来源于万有引力,所以有下列几个参量:线速度V 、角速度ω、周期T 、加速度a 都决定与轨道半径r ,参量之间相互制约。 二.建立方程解决问题的方向:运动学参量给出物体需要的向心力都应与万有引力建立方程.................

,进行讨论。即:F 引=G 2r Mm =???

????????

=

?=

?=?=?GM r T r T

m r GM r m r

GM

v r v m r GM a m a 3222322

244ππωω

讨论问题应从a 、v 、ω、T 等的最终表达式.....出发。 辅助公式:(1)球体体积公式:V =

3

4

πR 3 (2)密度公式:ρ=

V

M 。 (3)一个重要等式:GM=gR 2,其中g 中心体表面重力加速度,R 为中心球体半经。

三.开普勒第三定律准确应用: (1)条件:对于同一中心天体。

(2)结论:绕椭圆轨道运动的星体半长轴三次方与周期平方比值为定值即:23

T

r =k 。

四.了解几个天体运动中问题:

1.卫星的发射,回收以及平稳运动时物体超、失重问题:

2.所有地球卫星可能存在的轨道问题:

3.“黑洞”问题:“黑洞”不是洞,是一种天体。

4.人造卫星运动中几个关系问题: (1)环绕速度V 与运动半径r 关系:

(2)人造地球卫星作离心运动和向心运动的关系: (3)重力加速度g 与向心加速度a 的关系: (4)宇宙速度(发射速度)与环绕速度关系: 五、同步卫星问题。 六、“神舟”飞船的发射、变轨、漫游和返回着落问题: 1.“神舟”飞船的发射:“神舟”飞船的点火发射,飞船处于加速阶段,飞船的加速度可达a=4g 。而船箭分离时,宇航员突然有腾空的感觉,此时又进入了失重状态。飞船入轨后人处于完全失重状态,有“漂浮”的感觉。

2.飞船在椭圆轨道上运动的情景。 4.“神州”飞船遨游太空作圆周运动: 5、“神州”五号飞船安全返回着陆:

七.典型例题例析:

例1.某星球的质量约为地球的9倍,半径为地球一半,若从地球上高为h 处平抛一物体,射程为60m ,则在该星球上以同样初速度平抛同一物体,射程为多少?

解析:设地球表面重力加速度为g,质量为M0,半径为R0,抛出物体时间为t,射程为s0,某星球对应物理参量为g、M0、R、t、s.

∴mg0=G2

0R m

M ①; mg=G2R m M ② 地球表面:s0=v0t0=v0

02g h ③; 星球表面:s=v0t=v0g

h

2 ④; 由①②③④得:s=10m。

例2.地球赤道上的物体重力加速度为g ,物体在赤道上随地球自转的向心加速度为a ,要使赤道上物体“飘”起来,则地球的转速应为原来的( ) A 、

a g ; B 、a a g +; C 、a a g -; D 、a

g 。 解析:∵ω

ωπω/

/2=??=n n n 。 用F表示万有引力,F N表示地面给物体的支持力,∴F-FN=F-mg=mR2

ω

又有:F=ma/

=ma+mg=mR2

/ω ②

由①②得:a

a

g +=

ωω/。 例3.一物体在地球表面重16N ,它在以5m /s 2的加速度上升的火箭中的视重为9N 。则此时火箭

离地面的距离为地球半径的( )倍。

A 、1

B 、3

C 、5

D 、7。

解析:mg=16N ① 在火箭中视重为9N,即所受支持力F N =9N ② ∴FN-F引=ma ③ 由①②③得:F引=1N.

由F引=G 得:20

引Rr

=F mg .

∴r=4R0. ∴高度为h=3R0。

例4.地核的体积为整个地球体积的1600。地核的质量约为整个地球质量的4300,经估算,地核的平均密度为多少㎏/m 3?R=6.4x106

解析:(1)错解:根据密度公式,设地球质量为M,地球的半径为R则地核的密度:3

00003

41643R

M

πρ=

, 在赤道表面取一质量为m 的物体,它随地球一起作圆周运动,运动周期等于地球自转周期即为

24h ,根据万有引力等于圆周运动的向心力有:.R T m r Mm G 2

22??

?

??=π

联立两式: 3

2

/75.403m g T

G ==

πρ 以上结论显然是错误的,导致错误的原因在于对万有引力与向心力的关系不清楚,对地球赤道表面 的物体与环绕地面运行的卫星区别没有弄清楚,。

正确解答:由于是估算,可以利用地球表面的重力与地球质量半径的关系进而确定地球的密度. 由:mg=G

2

R

m M ① ρ=

v

M

② 由①②得:3

336

11/105.5/10

4.614.3107.648.9343m kg m kg GR g ?=??????==

-πρ ∴???

????

?=??∴===343321111/102.1/105.516.034.016.034.016.034.034.0m kg m kg v v v v M m ==地核平均密度且即由题设1ρρρ

例5.中子星是由密集的中子组成的星体,具有极大的密度。通过观察已知某中子星的自转角速度

πω60=rad/s ,该中子星并没有因为自转而解体,则计算中子星的密度最小值的表达式是怎样的?该中子星的密度至少为多少?

解析:密度最小时即中子星刚好没有解体时的状态,此时赤道上的物体所受万有引力提供向心力,即:G

2R

m M =mRω2

G

R M 2

3ω=?.

∴ρ=v M =G R M πωπ433

42

3=. 代入数据可求得:ρ=1.3×1014kg /m3

例6.某颗地球同步卫星正下方的地球表面上有一观测者,他用天文望远镜观察被太阳光照射的此卫星。试问,春分那天(太阳光直射赤道)在日落12小时内有多长时间该观测者看不到此卫星?已知地球半径为R ,地球表面处的重力加速度为g ,地球自转周期为T ,不考虑大气对光的折射。 解析:设t 时间观测者看不到此卫星,如图,设此同步卫星轨道半径为r ,因为太阳光直射轨道, 由图可知,αsin ?=r R ,

又由万有引力得:

r T m r Mm G ?=2224π,2

gR GM =,32

2

24πR gT r =∴; 由对称性可知32

24arcsin 22gT R παθ==

3

2

24arcsin /2gT

R

T T t πππθωθ===∴ 例7.我国“神州”四号飞船于2002年12月30日在酒泉载人航天发射场由长征二号F 运载火箭成功发射升空。若长征二号F 运载火箭起飞时总重量为4.05×103㎏,起飞推动力为1.35×105N ,运载火箭发射塔高100m 。(g=10m/s 2)试问: (1)运载火箭起飞时的加速度多大?

(2)假如运载火箭起飞时在推力不变的情况下,忽略空气阻力及运载火箭质量的变化,试确定运载火箭需经多长时间才能飞离发射塔?

(3)这段时间飞船中的“仿真宇航员”承受多大的平均冲击力?(设“仿真宇航员”的质量为65㎏)

(4)飞船在发射升空时,如果真实的宇航员在太空舱内采用站立的姿势,那么,它的心血管系统会受到何种影响?你认为宇航员应采取什么姿势为好? 解析:(1)运载火箭起飞时的加速度:

a=3

3510

50.4101050.41035.1???-?=-M Mg F =20m/s2

(2)由s=

21at2

可求得运载火箭飞离发射塔时间:t=1020

10022=?=a s s≈3.16s. (3)这段时间飞船中的“仿真宇航员”承受的平均冲击力由牛顿第二定律得:F -mg=ma ∴F =mg+ma=65(20+20)≈1.95×103N.

(4)飞船在发射升空时处于超重状态,宇航员若采用站立姿势头部血压会降低,足部血压会升高,

大量血液淤积在下肢静脉中,严重影响静脉血液回流,使心脏输出血量不足,造成头部供血不足。轻则引起视觉障碍,重则可能导致意识的丧失,所以宇航员采用平躺姿势为好。 例8.

例9.一组太空人乘坐太空穿梭机,去修理位于地球表面6.0×105

m 的圆形轨道上的哈勃太空望远镜H ,机组人员使穿梭机S 进入与H 相同的轨道并关闭助推火箭,而望远镜H 在S 前方数公里外,如图所示,设G 为引力常量而M 为地球质量,地球半径为R =6400Km ,

回答下列问题:

(1)在穿梭机内,一质量为70㎏的太空人的视重是多少?

(2)计算轨道上的重力加速度及穿梭机在轨道上的速率和周期? (3)穿梭机S 能追上哈勃望远镜H 吗?回答“能”还是“不能”,并说明道理。 解析:(1)穿梭机内的人处于完全失重状态,所以视重为零。

(2)由mg=G2r Mm 得:g/

=2/

r GM ; ∴()

(

)

2

652

62/2/104.6106104.6?+??=

=r r g g =0.84,

∴g/=0.84g=0.84×9.8m/s2=8.2m/s2

又由G2r Mm =mr v 2得:v=r

GM

∴()5

6//10

646104.6?+?==r r

v v =0.96m/s. v/

=0.96v=0.96×7.9km/s=7.6km/s. 由T =()

≈??+???=3

56//10

6.7106104.614.322v r π 5.8×103

s。 (3)不能。s要追赶上H,只有先进入较低轨道,必须有G2r Mm >mr

v 2

,即先减速,才有较大

的角速度以超前望远镜,而后再加速进入角H所在的轨道方可追赶上H。

高中物理天体运动经典习题

十年高考试题分类解析-物理 1.假设地球是一半径为R 、质量分布均匀的球体。一矿井深度为d 。已知质量分布均匀的球壳对壳内物体的引力为零。矿井底部和地面处的重力加速度大小之比为 A.R d - 1 B.R d +1 C.2)(R d R - D.2 )(d R R - 2.一卫星绕某一行星表面附近做匀速圆周运动,其线速度大小为v 。假设宇航员在该行星表面上用弹簧测力计测量一质量为m 的物体重力,物体静止时,弹簧测力计的示数为N ,已知引力常量为G,,则这颗行星的质量为 A .mv 2 /GN B .mv 4 /GN . C .Nv 2 /Gm .D .Nv 4 /Gm . 3.(2012·北京理综)关于环绕地球运动的卫星,下列说法正确的是 4A C 5A. B.各小行星绕太阳运动的周期均小于一年 C.小行星带内侧小行星的向心加速度值大于外侧小行星的向心 加速度值 D.小行星带内各小行星圆周运动的线速度值大于地球公转的线速度值 6.(2012·全国理综)一单摆在地面处的摆动周期与在某矿井底部摆动周期的比值为k 。设地球的半径为R 。假定地球的密度均匀。已知质量均匀分布的球壳对壳内物体的引力为零,求矿井的深度d . 1.(2011重庆理综第21题)某行星和地球绕太阳公转的轨道均可视为圆。每过N 年,该行星会运行到日地连线的延长线上,如题21图所示。该行星与地球的公转半径比为

A .231N N +?? ??? B.23 1N N ?? ?-?? C .3 2 1N N +?? ??? D.32 1N N ?? ?-?? 2(2011四川理综卷第17题)据报道,天文学家近日发现了 一颗距地球40光年的 “超级地球”,名为“55Cancrie ”,该行星绕母星(中心天体)运行的周期约为地球绕太阳运行周期的 1 480 ,母星的体积约为太阳的60倍。假设母星与太阳密度相同,“55Cancrie ”与地球均做匀速圆周运动,则“55Cancrie ”与地球的 A. B. C.1.m 1、m 2、M (M >>m 1,M >>m 2).在C 的万有引力作用下,a 、b 从2运行周期和相应的圆轨道半径,T 0和R 0是 3.(2010,在月球绕地球运行的轨道处由地球引力产生的加速度大小为2g ,则 A .1g a =B .2g a =C .12g g a +=D .21g g a -= 4(2010四川理综卷第17题).a 是地球赤道上一栋建筑,b 是在赤道平面内做匀速圆周运动、距地面9.6×106 m 的卫星,c 是地球同步卫星,某一时刻b 、c 刚好位于a 的正上方(如图甲所示),经48h ,a 、b 、c 的大致位置 是图乙中的(取地球半径R=6.4×106m ,地球表面重力加速度g=10m/s 2 ,π 5.(2010安徽理综)为了对火星及其周围的空间环境进行探测,我国预计于2011年10月发射第一颗火星探测器“萤火一号”。假设探测器在离火星表面高度分别为h 1和h 2的圆轨道上运动时,周期分别为T 1和T 2。火星可视为质量分布均匀的球体,且忽略火星的自转影响,万有引力常量为G 。仅利用以上数据,可以计算出 A .火星的密度和火星表面的重力加速度

天体运动习题及答案

1.若知道太阳的某一颗行星绕太阳运转的轨道半径为r ,周期为T ,引力常量为G ,则 可求得( B ) A .该行星的质量 B .太阳的质量 C .该行星的平均密度 D .太阳的平均密度 2.有一星球的密度与地球的密度相同,但它表面处的重力加速度是地面表面处重力加速 度的4倍,则该星球的质量将是地球质量的(D ) A .14 B .4倍 C .16倍 D .64倍 3.火星直径约为地球直径的一半,质量约为地球质量的十分之一,它绕太阳公转的轨道 半径约为地球绕太阳公转半径的1.5倍.根据以上数据,下列说法中正确的是(AB ) A .火星表面重力加速度的数值比地球表面小 B .火星公转的周期比地球的长 C .火星公转的线速度比地球的大 D .火星公转的向心加速度比地球的大 4.若有一艘宇宙飞船在某一行星表面做匀速圆周运动,设其周期为T ,引力常量为G , 那么该行星的平均密度为(B ) A .GT 23π B .3πGT 2 C .GT 24π D .4πGT 2 5.为了对火星及其周围的空间环境进行监测,我国预计于2011年10月发射第一颗火星 探测器“萤火一号”.假设探测器在离火星表面高度分别为h 1和h 2的圆轨道上运动时, 周期分别为T 1和T 2.火星可视为质量分布均匀的球体,且忽略火星的自转影响,引力常 量为G .仅利用以上数据,可以计算出( A ) A .火星的密度和火星表面的重力加速度 B .火星的质量和火星对“萤火一号”的引力 C .火星的半径和“萤火一号”的质量 D .火星表面的重力加速度和火星对“萤火一号”的引力 6.设地球半径为R ,a 为静止在地球赤道上的一个物体,b 为一颗近地绕地球做匀速圆 周运动的人造卫星,c 为地球的一颗同步卫星,其轨道半径为r.下列说法中正确的是( D ) A .a 与c 的线速度大小之比为r R B .a 与c 的线速度大小之比为R r C .b 与c 的周期之比为r R D .b 与c 的周期之比为R r R r 7.2008年9月27日“神舟七号”宇航员翟志刚顺利完成出舱活动任务,他的第一次太 空行走标志着中国航天事业全新时代的到来.“神舟七号”绕地球做近似匀速圆周运动, 其轨道半径为r ,若另有一颗卫星绕地球做匀速圆周运动的轨道半径为2r ,则可以确定

万有引力与航天 典型例题

万有引力与航天--例题 考点一 天体质量与密度的计算 1.解决天体(卫星)运动问题的基本思路 (1)天体运动的向心力来源于天体之间的万有引力,即 G Mm r 2=ma n =m v 2r =m ω2r =m 4π2r T 2 (2)在中心天体表面或附近运动时,万有引力近似等于重力,即G Mm R 2=mg (g 表示天体表面的重力加速度). 2.天体质量与密度的计算 (1)利用天体表面的重力加速度g 与天体半径R 、 由于G Mm R 2=mg ,故天体质量M =gR 2G , 天体密度ρ=M V =M 43 πR 3=3g 4πGR 、 (2)通过观察卫星绕天体做匀速圆周运动的周期T 与轨道半径r 、 ①由万有引力等于向心力,即G Mm r 2=m 4π2T 2r ,得出中心天体质量M =4π2r 3 GT 2; ②若已知天体半径R ,则天体的平均密度 ρ=M V =M 43 πR 3=3πr 3GT 2R 3; ③若天体的卫星在天体表面附近环绕天体运动,可认为其轨道半径r 等于天体半径R ,则天体密 度ρ=3πGT 2、可见,只要测出卫星环绕天体表面运动的周期T ,就可估算出中心天体的密度.

例 1 1798年,英国物理学家卡文迪许测出万有引力常量G ,因此卡文迪许被人们称为能称出地球质量的人.若已知万有引力常量G ,地球表面处的重力加速度g ,地球半径R ,地球上一个昼夜的时间T 1(地球自转周期),一年的时间T 2(地球公转周期),地球中心到月球中心的距离L 1,地球中心到太阳中心的距离L 2、您能计算出( ) A.地球的质量m 地=gR 2G B.太阳的质量m 太=4π2L 32GT 22 C.月球的质量m 月=4π2L 31GT 21 D.可求月球、地球及太阳的密度 1.[天体质量的估算]“嫦娥一号”就是我国首次发射的探月卫星,它在距月球表面高度为200

2018年高考物理复习天体运动专题练习(含答案)

2018年高考物理复习天体运动专题练习(含答 案) 天体是天生之体或者天然之体的意思,表示未加任何掩盖。查字典物理网整理了天体运动专题练习,请考生练习。 一、单项选择题(本题共10小题,每小题6分,共60分.) 1.(2014武威模拟)2013年6月20日上午10点神舟十号航天员首次面向中小学生开展太空授课和天地互动交流等科 普教育活动,这是一大亮点.神舟十号在绕地球做匀速圆周运动的过程中,下列叙述不正确的是() A.指令长聂海胜做了一个太空打坐,是因为他不受力 B.悬浮在轨道舱内的水呈现圆球形 C.航天员在轨道舱内能利用弹簧拉力器进行体能锻炼 D.盛满水的敞口瓶,底部开一小孔,水不会喷出 【解析】在飞船绕地球做匀速圆周运动的过程中,万有引

力充当向心力,飞船及航天员都处于完全失重状态,聂海胜做太空打坐时同样受万有引力作用,处于完全失重状态,所以A错误;由于液体表面张力的作用,处于完全失重状态下的液体将以圆球形状态存在,所以B正确;完全失重状态下并不影响弹簧的弹力规律,所以拉力器可以用来锻炼体能,所以C正确;因为敞口瓶中的水也处于完全失重状态,即水对瓶底部没有压强,所以水不会喷出,故D正确. 【答案】 A 2.为研究太阳系内行星的运动,需要知道太阳的质量,已知地球半径为R,地球质量为m,太阳与地球中心间距为r,地球表面的重力加速度为g,地球绕太阳公转的周期T.则太阳的质量为() A.B. C. D. 【解析】地球表面质量为m的物体万有引力等于重力,即G=mg,对地球绕太阳做匀速圆周运动有G=m.解得M=,D正确.

【答案】 D 3.(2015温州质检)经国际小行星命名委员会命名的神舟星和杨利伟星的轨道均处在火星和木星轨道之间.已知神舟星平均每天绕太阳运行1.74109 m,杨利伟星平均每天绕太阳运行1.45109 m.假设两行星都绕太阳做匀速圆周运动,则两星相比较() A.神舟星的轨道半径大 B.神舟星的加速度大 C.杨利伟星的公转周期小 D.杨利伟星的公转角速度大 【解析】由万有引力定律有:G=m=ma=m()2r=m2r,得运行速度v=,加速度a=G,公转周期T=2,公转角速度=,由题设知神舟星的运行速度比杨利伟星的运行速度大,神舟星的轨道半径比杨利伟星的轨道半径小,则神舟星的加速度比杨利伟星的加速度大,神舟星的公转周期比杨利伟星的公转周期小,神舟星的公转角速度比杨利伟星的公转角速度大,故选

天体运动经典例题含答案.docx

. 1.人造地球卫星做半径为r,线速度大小为v 的匀速圆周运动。当其角速度变为原来的 2 4 倍后,运动半径 为,线速度大小为。 【解析】由 G Mm m 2r 可知,角速度变为原来的 2 r 可知,角速度变为原 倍后,半径变为 2r ,由v r 24 222 来的 4 倍后,线速度大小为2 v。【答案】2r,2 v 2.一卫星绕某一行星表面附近做匀速圆周运动,其线速度大小为 v0假设宇航员在该行星表面上用弹簧测力 计测量一质量为 m 的物体重力,物体静止时,弹簧测力计的示数为N0,已知引力常量为 G,则这颗行星的质量为 A. mv 2 B. mv 4 C. Nv 2 D. Nv 4 GN GN Gm Gm 【解析】卫星在行星表面附近做匀速圆周运动,万有引力提供向心力,根据牛顿第二定律有 G M m /m / v2,宇航员在行星表面用弹簧测力计测得质量为m 的物体的重为N ,则G M m N ,解 R 2R R 2 得 M= mv 4, B 项正确。【答案】B GN 3.如图所示,在火星与木星轨道之间有一小行星带。假设该带中的小行星只受到太阳的引力,并绕太阳做匀速圆周运动。下列说确的是 A.太阳对小行星的引力相同 B.各小行星绕太阳运动的周期小于一年 C.小行星带侧小行星的向心加速度值大于小行星带外侧小行星的向心加速度值 D.小行星带各小行星圆周运动的线速度值大于地球公转的线速度值 【答案】 C【解析】根据行星运行模型,离地越远,线速度越小,周期越大,角速度越小,向心加速度等于 万有引力加速度,越远越小,各小行星所受万有引力大小与其质量相关,所以只有 C 项对。 4.宇航员在地球表面以一定初速度竖直上抛一小球,经过时间 t 小球落回原处 ;若他在某星球表面以相同的速 度竖直上抛同一小球 ,需经过时间 5t 小球落回原处 .(取地球表面重力加速度 2 g=10 m/s ,空气阻力不计 ) (1)求该星球表面附近的重力加速度g ′. (2)已知该星球的半径与地球半径之比为R 星∶ R 地 =1 ∶4,求该星球的质量与地球质量之比M 星∶M 地.

天体运动经典题型分类

万有引力和航天知识的归类分析 一.开普勒行星运动定律 1、开普勒第一定律(轨道定律):所有行星绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。 2、开普勒第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。 3、开普勒第三定律(周期定律):所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等。 实例、飞船沿半径为r 的圆周绕地球运动,其周期为T ,如图所示。若飞船要返回地面,可在轨道上某点处将速率降到适当的数值,从而使飞船沿着以地心为焦点的椭圆轨道运行,椭圆与地球表面在某点相切,已知地球半径为R ,求飞船由远地点运动到近地点所需要的时间。 二.万有引力定律 实例2、设想把质量为m 的物体放到地球的中心,地球的质量为M ,半径为R ,则物体与地球间的万有引力是 ( ) A 、零 B 、无穷大 C 、 2 R GMm D 、无法确定 小结:F= 2 2 1r m Gm 的适用条件是什么 三.万有引力与航天 (一)核心知识 万有引力定律和航天知识的应用离不开两个核心 1、 一条主线 ,本质上是牛顿第二定律,即万有引力提供天体做圆周运动所需要的向心力。 2、 黄金代换式 GM =g R 2 此式往往在未知中心天体的质量的情况下和一条主线结合使用 (二)具体应用 应用一、卫星的四个轨道参量v 、ω、T 、a 向与轨道半径r 的关系及应用 1、理论依据:一条主线 2、实例分析 如图所示,a 、b 是两颗绕地球做匀速圆周运动的人造卫星,它们距地面 的高度 分别是R 和2R(R 为地球半径).下列说法中正确的是( ) A.a 、b 的线速度大小之比是 2∶1 B.a 、b 的周期之比是1∶2 C.a 、b 的角速度大小之比是3 ∶4 D.a 、b 的向心加速度大小之比是9∶4 小结: 轨道模型: 在中心天体相同的情况下卫星的r 越大v 、ω、a 越小,T 越大,r 相同,则卫星的v 、ω、a 、T 也相同,r 、 v 、ω、a 、T 中任一发生变化其它各量也会变化。 应用二、测量中心天体的质量和密度 1、方法介绍 方法一、“T 、r ”计算法 在知道“T 、r ”或“v 、r ”或“ω、r ”的情况下,根据一条主线均可计算出中心天体的质量,这种方法统称为“T 、r ”计算法。在知道中心天体半径的情况下利用密度公式还可以计算出中心天体的密度。 方法二、“g 、R ”计算法 利用天体表面的重力加速度g 和天体半径R. 2、实例分析 例4:已知万有引力常量G,地球半径R,月球和地球之间的距离r,同步卫星距地面的高度h,月球:绕地球的运转周期T 1,地球的自转周期T 2 , 天体密度故天体质量由于,,2 2G gR M mg R Mm G ==.π43π3 43 GR g R M V M = ==

2019高考物理一轮复习天体运动题型归纳

天体运动题型归纳 李仕才 题型一:天体的自转 【例题1】一物体静置在平均密度为ρ的球形天体表面的赤道上。已知万有引力常量为G ,若由于天体自转使物体对天体表面压力怡好为零,则天体自转周期为( ) A .1 2 4π3G ρ?? ??? B .1 2 34πG ρ?? ??? C .1 2 πG ρ?? ??? D .1 2 3πG ρ?? ??? 解析:在赤道上2 2 R m mg R Mm G ω+=① 根据题目天体表面压力怡好为零而重力等于压力则①式变为 22R m R Mm G ω=②又 T π ω2= ③ 33 4 R M ρπ= ④ ②③④得:2 3GT π ρ= ④即21 )3(ρπG T =选D 练习 1、已知一质量为m 的物体静止在北极与赤道对地面的压力差为ΔN ,假设地球是质量分布 均匀的球体,半径为R 。则地球的自转周期为( ) A. 2T = 2T =R N m T ?=π2 D.N m R T ?=π2 2、假设地球可视为质量均匀分布的球体,已知地球表面的重力加速度在两极的大小为g 0,在赤道的大小为g ;地球自转的周期为T ,引力常数为G ,则地球的密度为: A. 0203g g g GT π- B. 0203g g g GT π- C. 23GT π D. 23g g GT πρ=

题型二:近地问题+绕行问题 【例题1】若宇航员在月球表面附近高h 处以初速度0v 水平抛出一个小球,测出小球的水平射程为L 。已知月球半径为R ,引力常量为G 。则下列说法正确的是 A .月球表面的重力加速度g 月=hv 2 L 2 B .月球的质量m 月=hR 2v 20 GL C .月球的第一宇宙速度v = v 0 L 2h D .月球的平均密度ρ=3hv 2 2πGL 2R 解析 根据平抛运动规律,L =v 0t ,h =12g 月t 2 ,联立解得g 月=2hv 2 0L 2;由mg 月=G mm 月R 2, 解得m 月=2hR 2v 2 0GT 2;由mg 月=m v 2 R ,解得v =v 0L 2hR ;月球的平均密度ρ=m 月43πR 3=3hv 2 2πGL 2R 。 练习:“玉兔号”登月车在月球表面接触的第一步实现了中国人“奔月”的伟大梦想。机器人“玉兔号”在月球表面做了一个自由下落试验,测得物体从静止自由下落h 高度的时间t ,已知月球半径为R ,自转周期为T ,引力常量为G 。则下列说法正确的是 A .月球表面重力加速度为t 2 2h B .月球第一宇宙速度为 Rh t C .月球质量为hR 2 Gt 2 D .月球同步卫星离月球表面高度 3hR 2T 2 2π2t 2-R 【例题2】过去几千年来,人类对行星的认识与研究仅限于太阳系内,行星“51 peg b ”的发现拉开了研究太阳系外行星的序幕。“51 peg b ”绕其中心恒星做匀速圆周运动,周期约为4天,轨道半径约为地球绕太阳运动半径的1 20 。该中心恒星与太阳的质量比约为 A.1 10 B .1 C .5 D .10

2017-2019高考物理真题分类解析---万有引力定律与航天

2017-2019高考物理真题分类解析---万有引力定律 与航天 1.(2019·新课标全国Ⅰ卷)在星球M 上将一轻弹簧竖直固定在水平桌面上,把物体P 轻放在弹簧上端,P 由静止向下运动,物体的加速度a 与弹簧的压缩量x 间的关系如图中实线所示。在另一星球N 上用完全相同的弹簧,改用物体Q 完成同样的过程,其a –x 关系如图中虚线所示,假设两星球均为质量均匀分布的球体。已知星球M 的半径是星球N 的3倍,则 A .M 与N 的密度相等 B .Q 的质量是P 的3倍 C .Q 下落过程中的最大动能是P 的4倍 D .Q 下落过程中弹簧的最大压缩量是P 的4倍 【答案】AC 【解析】A 、由a –x 图象可知,加速度沿竖直向下方向为正方向,根据牛顿第二定律有:mg kx ma -=,变形式为:k a g x m =- ,该图象的斜率为k m -,纵轴截距为重力加速度g 。根据图象的纵轴截距可知,两星球表面的重力加速度之比为: 0033 1 M N a g g a ==;又因为在某星球表面上的物体,所受重力和万有引力相等,即:2Mm G m g R '=',即该星球的质量2gR M G =。又因为:3 43R M πρ=,联立得34g RG ρπ=。 故两星球的密度之比为: 1:1N M M N N M R g g R ρρ=?=,故A 正确;B 、当物体在弹簧上运动过程中,加速度为0的一瞬间,其所受弹力和重力二力平衡,mg kx =,即:kx m g = ;结合a –x 图象可知,当物体P 和物体Q 分别处于平衡位置时,弹簧的压缩量之比为:00122 P Q x x x x ==,故物体P 和物体Q 的质量之比

高中天体运动必备基础知识及例题讲解

授课主题 万有引力与重力的关系 教学目的 理解万有引力与重力之间的关系及会运用知识解此类问题 授课日期及时段 2013.04.06 ;3课时 教学内容 一, 本周错题讲解 二, 知识归纳 .考点梳理 (1).基本方法:把天体运动近似看作圆周运动,它所需要的向心力由万有引力提供, 即: Gr v m r Mm 22==mω2 r=mr T 224π (2).估算天体的质量和密度 由G 2r Mm =mr T 224π得:M=2 3 24Gt r π.即只要测出环绕星体M 运转的一颗卫星运转的半径和周期,就可以计算出中心天体的质量. 由ρ=V M ,V=34πR3 得: ρ=3 233R GT r π.R 为中心天体的星体半径 特殊:当r=R时,即卫星绕天体M 表面运行时,ρ=2 3GT π (2003年高考),由此可以测量天体的密度. (3)行星表面重力加速度、轨道重力加速度问题

表面重力加速度g 0,由02GMm mg R = 得:02GM g R = 轨道重力加速度g ,由 2()GMm mg R h =+ 得:2 2 0()()GM R g g R h R h ==++ (4)卫星的绕行速度、角速度、周期与半径的关系 (1)由Gr v m r Mm 22=得:v=r GM . 即轨道半径越大,绕行速度越小 (2)由G 2 r Mm =mω2 r得:ω=3r GM 即轨道半径越大,绕行角速度越小 (3)由2 224Mm G m r r T π=得:3 2r T GM π = 即轨道半径越大,绕行周期越大. (5)地球同步卫星 所谓地球同步卫星是指相对于地面静止的人造卫星,它的周期T =24h .要使卫星同步,同步卫星只能位于赤道正上方某一确定高度h . 由: G 2 224()Mm m R h T π=+(R+h) 得: 2 3 2 4h R GMT π=-=3.6×104km=5.6R R表示地球半径 三.热身训练 1.把火星和地球绕太阳运行的轨道视为圆周。由火星和地球绕太阳运动的周期之比可求得 A .火星和地球的质量之比 B .火星和太阳的质量之比 C .火星和地球到太阳的距离之比 D .火星和地球绕太阳运动速度之比 2.宇航员在探测某星球时,发现该星球均匀带电,且电性为负,电荷量为Q .在一次实验时,宇航员将一带负电q (q <

万有引力与航天重点知识归纳及经典例题练习

第五讲 万有引力定律重点归纳讲练 知识梳理 考点一、万有引力定律 1. 开普勒行星运动定律 (1) 第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。 (2) 第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。 (3) 第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期二次方的比值都相等,表达式: k T a =23 。其中k 值与太阳有关,与行星无关。 (4) 推广:开普勒行星运动定律不仅适用于行星绕太阳运转,也适用于卫星绕地球运转。当卫星绕行星旋转时,k T a =2 3 ,但k 值不同,k 与行星有关,与卫星无关。 (5) 中学阶段对天体运动的处理办法: ①把椭圆近似为园,太阳在圆心;②认为v 与ω不变,行星或卫星做匀速圆周运动; ③k T R =2 3 ,R ——轨道半径。 2. 万有引力定律 (1) 内容:万有引力F 与m 1m 2成正比,与r 2 成反比。 (2) 公式:2 21r m m G F =,G 叫万有引力常量,2211 /10 67.6kg m N G ??=-。 (3) 适用条件:①严格条件为两个质点;②两个质量分布均匀的球体,r 指两球心间的距离;③一个均匀球体和球外一个质点,r 指质点到球心间的距离。 (4) 两个物体间的万有引力也遵循牛顿第三定律。 3. 万有引力与重力的关系 (1) 万有引力对物体的作用效果可以等效为两个力的作用,一个是重力mg ,另一个是物体随地球自转所需的向心力f ,如图所示。 ①在赤道上,F=F 向+mg ,即R m R Mm G mg 22 ω-=; ②在两极F=mg ,即mg R Mm G =2 ;故纬度越大,重力加速度越大。 由以上分析可知,重力和重力加速度都随纬度的增加而增大。 (2) 物体受到的重力随地面高度的变化而变化。在地面上,2 2 R GM g mg R Mm G =?=;在地球表面高度为h 处: 22)()(h R GM g mg h R Mm G h h +=?=+,所以g h R R g h 2 2 ) (+=,随高度的增加,重力加速度减小。 考点二、万有引力定律的应用——求天体质量及密度 1.T 、r 法:2 3 2224)2(GT r M T mr r Mm G ππ=?=,再根据3 23 33,34R GT r V M R V πρρπ=?== ,当r=R 时,2 3GT πρ= 2.g 、R 法:G g R M mg R Mm G 22 = ?=,再根据GR g V M R V πρρπ43,3 43=?== 3.v 、r 法:G rv M r v m r Mm G 2 22 =?=

天体运动高考真题(高考复习一遍过)

天 体运动 1.(2017·北京理综)利用引力常量G 和下列某一组数据,不能计算出地球质量的是( ) A .地球的半径及重力加速度(不考虑地球自转) B .人造卫星在地面附近绕地球做圆周运动的速度及周期 C .月球绕地球做圆周运动的周期及月球与地球间的距离 D .地球绕太阳做圆周运动的周期及地球与太阳间的距离 D 本题考查天体运动.已知地球半径R 和重力加速度g ,则mg =G M 地m R 2, 所以M 地=gR 2G ,可求M 地;近地卫星做圆周运动,G M 地m R 2=m v 2R ,T =2πR v ,可解 得M 地=v 2R G =v 2T 2πG ,已知v 、T 可求M 地;对于月球:G M 地·m r 2=m 4π2 T 2月r ,则M 地=4π2r 3 GT 2月 ,已知r 、T 月可求M 地;同理,对地球绕太阳的圆周运动,只可求出太阳质量M 太,故此题符合题意的选项是D 项. 2.(多选)2016年4月6日1时38分,我国首颗微 重力科学实验卫星——实践十号返回式科学实验卫星, 在酒泉卫星发射中心由长征二号丁运载火箭发射升空, 进入近百万米预定轨道,开始了为期15天的太空之旅, 大约能围绕地球转200圈,如图所示.实践十号卫星的 微重力水平可达到地球表面重力的10-6g ,实践十号将在太空中完成19项微重力科学和空间生命科学实验,力争取得重大科学成果.以下关于实践十号卫星的相关描述中正确的有( ) A .实践十号卫星在地球同步轨道上 B .实践十号卫星的环绕速度一定小于第一宇宙速度 C .在实践十号卫星内进行的19项科学实验都是在完全失重状态下完成的 D .实践十号卫星运行中因受微薄空气阻力,需定期点火加速调整轨道 BD 实践十号卫星的周期T =15×24200 h =1.8 h ,不是地球同步卫星,所以

高一物理天体运动方面练习题

物理测试 1、 两颗人造卫星A 、B 绕地球做圆周运动,周期之比为TA :TB=1:8;则轨道半径之比和运动速率之比分别为( ) A 、RA :RB=4:1 vA :vB=1:2 B、RA :RB=4:1 vA :vB=2:1 C、RA :RB=1:4 vA :vB=1:2 D、RA :RB=1:4 vA :vB=2:1 2、如图,在一个半径为R、质量为M的均匀球体中,紧贴着球的边缘挖去一个半径为R/2的球星空穴后,剩余的 阴影部分对位于球心和空穴中心连线上、与球心相距d的质点m的引力是多大? 3、两个球形的行星A、B各有一个卫星a和b,卫星的圆轨迹接近各行星的表面。如果两行星质量之比为MA/MB=p,两个行星半径之比RA/RB=q,则两卫星周期之比TA/TB为______ 4、一颗人在地球卫星以初速度v发射后,可绕地球做匀速圆周运动,若使发射速度为2v,该卫星可能( ) A、绕地球做匀速圆周运动,周期变大 B、绕地球运动,轨道变为椭圆 C、不绕地球运动,轨道变为椭圆 D、挣脱太阳引力的束缚,飞到太阳系以外的宇宙 5、如图,有A、B两颗行星绕同一颗恒星做圆周运动,A行星的周期为T1,B行星的周期为T2,在某一时刻两行星相距最近,则 (1)至少经过多长时间,两行星再次相距最近? (2)至少经过多长时间,两行星相距最远? 6、已知地球的质量为M,地球的半径为R,地球的自传周期为T,地球表面的重力加速度为g,无线电信号的传播 速度为C,如果你用卫星电话通过地球卫星中的转发器发的无线电信号与对方通话,则在你讲完话后要听到对 方的回话,所需要的最短时间为( ) A、322244πT gR c ? B 、322242πT gR c ? C 、)4(43222R T gR c -?π D 、)4(23222R T gR c -?π 7、在天体演变过程中,红色巨星发生爆炸后,可以形成中子星,中子星具有极高的密度。 (1)若已知某中子星的密度为ρ,该中子星的卫星绕它作圆周运动,试求该中子星运行的最小周期。

天体运动经典例题含答案

1.人造地球卫星做半径为r ,线速度大小为v 的匀速圆周运动。当其角速度变为原来的 24倍后,运动半径为_________,线速度大小为_________。 【解析】由22Mm G m r r ω=可知,角速度变为原来的24倍后,半径变为2r ,由v r ω=可知,角速度变为原来的24倍后,线速度大小为22v 。【答案】2r ,22 v 2.一卫星绕某一行星表面附近做匀速圆周运动,其线速度大小为0v 假设宇航员在该行星表面上用弹簧测力 计测量一质量为m 的物体重力,物体静止时,弹簧测力计的示数为 N ,已知引力常量为G,则这颗行星的质量为 A .2GN mv B.4GN mv C . 2Gm Nv D.4Gm Nv 【解析】卫星在行星表面附近做匀速圆周运动,万有引力提供向心力,根据牛顿第二定律有 R v m M G 2/2/R m =,宇航员在行星表面用弹簧测力计测得质量为m 的物体的重为N ,则 N M G =2R m ,解得M=GN 4 mv ,B 项正确。【答案】B 3.如图所示,在火星与木星轨道之间有一小行星带。假设该带中的小行星只受到太阳的引力,并绕太阳做匀速圆周运动。下列说法正确的是 A.太阳对小行星的引力相同 B.各小行星绕太阳运动的周期小于一年 C.小行星带内侧小行星的向心加速度值大于小行星带外侧小行星的向心加速度值 D.小行星带内各小行星圆周运动的线速度值大于 地球公转的线速度值 【答案】C 【解析】根据行星运行模型,离地越远,线速度越小,周期越大,角速度越小,向心加速度等于万有引力加速度,越远越小,各小行星所受万有引力大小与其质量相关,所以只有C 项对。 4.宇航员在地球表面以一定初速度竖直上抛一小球,经过时间t 小球落回原处;若他在某星球表面以相同的 速度竖直上抛同一小球,需经过时间5t 小球落回原处.(取地球表面重力加速度g=10 m/s 2,空气阻力不计) (1)求该星球表面附近的重力加速度g ′. (2)已知该星球的半径与地球半径之比为R 星∶R 地=1∶4,求该星球的质量与地球质量之比M 星∶M 地. 答案 (1)2 m/s2 (2)1∶80

天体运动高考必考题

天体运动高考必题 1、如图2所示,同步卫星离地心距离为r ,运行速率为v 1,加速度为a 1,地球赤道上的物体随地球自转的向心加速度为a 2,第一宇宙速度为v 2,地球的半径为R ,则下列比值正确的是( ) 图2 A .a 1a 2=r R B .a 1a 2=????R r 2 C . v 1v 2=r R D . v 1v 2 = R r 2、2009年5月,航天飞机在完成对哈勃空间望远镜的维修任务后,在A 点从圆形轨道 Ⅰ 进入椭圆轨道 Ⅱ ,B 为轨道 Ⅱ 上的一点,如图3所示.关于航天飞机的运动,下列说法中不正确的有( ) A .在轨道 Ⅱ 上经过A 的速度小于经过 B 的速度 B .在轨道 Ⅱ 上经过A 的动能小于在轨道 Ⅰ 上经过A 的动能 C .在轨道 Ⅱ 上运动的周期小于在轨道 Ⅰ 上运动的周期 D .在轨道 Ⅱ 上经过A 的加速度小于在轨道 Ⅰ 上经过A 的加速度 3、如图4所示,假设月球半径为R ,月球表面的重力加速度为g 0,飞船在距月球表面高度为3R 的圆形轨道Ⅰ运动,到达轨道的A 点点火变轨进入椭圆轨道Ⅱ,到达轨道的近月点B 再次点火进入近月轨道Ⅲ绕月球做圆周运动.则( ) A .飞船在轨道Ⅰ上的运行速度为 1 2 g 0R B .飞船在A 点处点火时,动能增加 C .飞船在轨道Ⅰ上运行时通过A 点的加速度大于在轨道Ⅱ上运行时通过A 点的加速度 D .飞船在轨道Ⅲ绕月球运行一周所需的时间为2π R g 0 4、随着“神七”飞船发射的圆满成功,中国航天事业下一步的进展备受关注.“神八”发射前,将首先发射试验性质的小型空间站“天宫一号”,然后才发射“神八”飞船,两个航天器将在太空实现空间交会对接.空间交会对接技术包括两部分相互衔接的空间操作,即空间交会和空间对接.所谓交会是指两个或两个以上的航天器在轨道上按预定位置和时间相会,而对接则为两个航天器相会后在结构上连成一个整体.关于“天宫一号”和“神八”交会时的情景,以下判断正确的是( ) A .“神八”加速可追上在同一轨道的“天宫一号” B .“神八”减速方可与在同一轨道的“天宫一号”交会

2015年高考物理真题分类汇编:万有引力和天体运动

2015年高考物理真题分类汇编:万有引力和天体运动 (2015新课标I-21). 我国发射的“嫦娥三号”登月探测器靠近月球后,先在月球表面附近的近似圆轨道上绕月运行;然后经过一系列过程,在离月面4m高处做一次悬停(可认为是相对于月球静止);最后关闭发动机,探测器自由下落,已知探测器的质量约为1.3×103kg,地球质量约为月球质量的81倍,地球半径约为月球半径的3.7倍,地球表面的重力加速度约为9.8m/s2,则此探测器 A. 着落前的瞬间,速度大小约为8.9m/s B. 悬停时受到的反冲作用力约为2×103N C. 从离开近月圆轨道这段时间内,机械能守恒 D. 在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上运行的线速度 【答案】B、D 【考点】万有引力定律及共应用;环绕速度 【解析】在中心天体表面上万有引力提供重力:= mg , 则可得月球表面的重力加速度 g月= ≈ 0.17g地= 1.66m/s2 .根据平衡条件,探测器悬停时受到的反作用力F = G探= m探 g月≈ 2×103N,选项B正确;探测器自由下落,由V2=2g月h ,得出着落前瞬间的速度v ≈3.6m/s ,选项A错误;从离开近月圆轨道,关闭发动机后,仅在月球引力作用下机械能守恒,而离开近月轨道后还有制动悬停,发动机做了功,机械能不守恒,故选项C错误;在近月圆轨道 万有引力提供向心力:= m,解得运行的线速度V月= = < , 小于近地卫星线速度,选项D正确。 【2015新课标II-16】16. 由于卫星的发射场不在赤道上,同步卫星发射后需要从转移轨道经过调整再进入地球同步轨道。当卫星在转移轨道上飞经赤道上空时,发动机点火,给卫星一附加速度,使卫星沿同步轨道运行。已知同步卫星的环绕速度约为3.1x103/s,某次发 射卫星飞经赤道上空时的速度为1.55x103/s,此时 卫星的高度与同步轨道的高度相同,转移轨道和 同步轨道的夹角为30°,如图所示,发动机给卫星 的附加速度的方向和大小约为 A. 西偏北方向,1.9x103m/s B. 东偏南方向,1.9x103m/s C. 西偏北方向,2.7x103m/s D. 东偏南方向,2.7x103m/s 【答案】B

高中物理天体运动多星问题 (2)

双星模型、三星模型、四星模型 天体物理中的双星,三星,四星,多星系统是自然的天文现象,天体之间的相互作用遵循万 有引力的规律,他们的运动规律也同样遵循开普勒行星运动的三条基本规律。双星、三星系统的等效质量的计算,运行周期的计算等都是以万有引力提供向心力为出发点的。双星系统的引力作用遵循牛顿第三定律:F F =',作用力的方向在双星间的连线上,角速度相等,ωωω==21。 【例题1】天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星。双星系统在银 r ,1、 持不变,并沿半径不同的同心轨道作匀速园周运动,设双星间距为L ,质量分别为M 1、M 2,试计算(1)双星的轨道半径(2)双星运动的周期。 解析:双星绕两者连线上某点做匀速圆周运动,即: 22 21212 21L M L M L M M G ωω==---------? ..L L L =+21-------?由以上两式可得:L M M M L 2121+= ,L M M M L 2 12 2+= 又由1 2212214L T M L M M G π=.----------?得:) (221M M G L L T +=

【例题3】我们的银河系的恒星中大约四分之一是双星.某双星由质量不等的星体S 1和S 2构成,两 星在相互之间的万有引力作用下绕两者连线上某一定点C 做匀速圆周运动.由天文观察测得其运动周期为T ,S 1到C 点的距离为r 1,S 1和S 2的距离为r ,已知引力常量为G .由此可求出S 2的质量为(D ) A .2 12)(4GT r r r -2π B .2 312π4GT r C .2 32π4GT r D .2 122π4GT r r 答案:D , 球A 引球看成似处理 这样算得的运行周期T 。已知地球和月球的质量分别为且A 对A 根据牛顿第二定律和万有引力定律得L m M T m L +=22)( 化简得) (23 m M G L T +=π ⑵将地月看成双星,由⑴得) (23 1m M G L T +=π 将月球看作绕地心做圆周运动,根据牛顿第二定律和万有引力定律得 L T m L GMm 2 2 )2(π= 化简得GM L T 3 22π=

2018高考物理总复习专题天体运动的三大难点破解2赤道物体、近地卫星、同步卫星参量比较讲义

赤道物体、近地卫星、同步卫星参量比较 一、考点突破: 二、重难点提示: 重点:赤道物体、近地卫星、同步卫星区别和联系。 难点:赤道物体、近地卫星、同步卫星向心力来源。 一、同步卫星、近地卫星与赤道物体的相同点 1. 三者都在绕地轴做匀速圆周运动,向心力都与地球的万有引力有关; 2. 同步卫星与赤道上物体的运行周期相同:T =24h; 3. 近地卫星与赤道上物体的运行轨道半径相同:r =R 0(R 0为地球半径)。 二、同步卫星、近地卫星与赤道物体的不同点 1. 轨道半径不同 如图所示,同步卫星的轨道半径同r =R 0+h ,h 为同步卫星离地面的高度,大约为36000千米,近地卫星与赤道物体的轨道半径近似相同,都是R 0,半径大小关系为: 赤近同r r r =>; 2. 向心力不同 同步卫星和近地卫星绕地球运行的向心力完全由地球对它们的万有引力来提供,赤道物体的向心力由万有引力的一个分力来提供,万有引力的另一个分力提供赤道物体的重力;

3. 向心加速度不同 由ma r Mm G =2得:2r GM a =,又近 同r r >,所以: 近 同a a <;由 ma T mr =22 4π得:r T a 22 4π=,又赤同r r >,所以:赤同a a >;向心加速度的大 小关系为:赤同近a a a >>; 4. 周期不同 近地卫星的周期由2 2 4T mR mg π=得:==g R T 0 2π min 84;同步卫星和赤道物体的周期都为24h ,周期的大小关系为:近赤同T T T >=; 5. 线速度不同 由r m r Mm G 22υ=得:r GM =υ,又近同 r r >,所以:近同υυ<;由T r πυ2= 和赤同 r r >得:赤同υυ>,故线速度的大小关系为:赤同近υυυ>>; 6. 角速度不同 由2 2 ωmr r Mm G =得:3r GM =ω,又近同r r >,所以:近同ωω<;由赤 同T T =得:赤同 ωω=,从而角速度的大小关系为:近赤同ωωω<=。 例题1 地球赤道地面上有一物体随地球的自转而做圆周运动,所受的向心力为F 1,向心加速度为a 1,线速度为v 1,角速度为ω1;绕地球表面附近做圆周运动的人造卫星(高度忽略)所受的向心力为F 2,向心加速度为a 2,线速度为v 2,角速度为ω2;地球同步卫星所受的向心力为F 3,向心加速度为a 3,线速度为v 3,角速度为ω3;地球表面重力加速度为g ,第一宇宙速度为v ,假设三者质量相等,则下列结论正确的是( ) A. F 1=F 2>F 3 B. a 1=a 2=g >a 3 C. v 1=v 2=v >v 3 D. ω1=ω3<ω2 思路分析:在赤道上随地球自转的物体所受的向心力由万有引力和支持力的合力提供, 即F 1=G 2 1 R Mm -F N ,绕地球表面附近做圆周运动的卫星向心力由万有引力提供,F 2=22R GMm ,同步卫星的向心力F 3=2 3) (h R GMm +,所以F 2>F 1,F 2>F 3,A 错误;地面附近mg =G 2R Mm ,F 1a 3,B 错误; 2 R GMm =m R v 2 ,F 1<2R GMm ,所以v 1v 3,C 错误;地球自转角速度ω=R v 1,赤道上随地球自转的物体和同步卫星的角速度与

《万有引力与天体运动》练习题

第三节 万有引力?天体运动 随堂演练巩固 1.(2010安徽高考,17)为了对火星及其周围的空间环境进行探测,我国预计于2011年10月发射第一颗火星探测器”萤火一号”.假设探测器在离火星表面高度分别为1h 和2h 的圆轨道上运动时,周期分别为1T 和2T .火星可视为质量分布均匀的球体,且忽略火星的自转影响,万有引力常量为G.仅利用以上数据,可以计算出( ) A.火星的密度和火星表面的重力加速度 B.火星的质量和火星对”萤火一号”的引力 C.火星的半径和”萤火一号”的质量 D.火星表面的重力加速度和火星对”萤火一号”的引力 2.(2010江苏高考,6)2009年5月,航天飞机在完成对哈勃空间望远镜的维修任务后,在A 点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B 为轨道Ⅱ上的一点,如图所示,关于航天飞机的运动,下列说法中正确的有( ) A.在轨道Ⅱ上经过A 的速度小于经过B 的速度 B.在轨道Ⅱ上经过A 的动能小于在轨道Ⅰ上经过A 的动能 C.在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期 D.在轨道Ⅱ上经过A 的加速度小于在轨道Ⅰ上经过A 的加速度 3.(2011宁夏银川二中月考,2)地球同步卫星是指相对地面静止不动的人造地球卫星( ) A.它只能在赤道正上方,且离地心的距离是一定的 B.它可以在地面上任一点的正上方,且离地心的距离可按需要选择不同的值 C.它可以在地面上任一点的正上方,但离地心的距离是一定的 D.它只能在赤道的正上方,但离地心的距离可按需要选择不同的值 4.(人教版必修2,P 44习题4改编)金星的半径是地球的倍,质量是地球的倍,则关于金星表面的自由落体加速度和第一宇宙速度,下列数据正确的是( ) m/2 7, km/s m/2s , km/s m/2s , km/s m/2s ,46 km/s 5.我们的银河系的恒星中大约四分之一是双星.某双星由质量不等的星体1S 和2S 构成,两星在相互之间的万有引力作用下绕两者连线上某一定点O 做匀速圆周运动.由天文观察测得其运动周期为1T S ,到O 点的距离为11r S ,和2S 间的距离为r,已知引力常量为G.由此可求出 2S 的质量为( ) A. 2212 4r (r r ) GT π- B. 2312 4r GT π

相关主题
文本预览
相关文档 最新文档