当前位置:文档之家› 医学图像融合技术及运用

医学图像融合技术及运用

医学图像融合技术及运用
医学图像融合技术及运用

医学图像融合技术及使用

1医学图像融合技术

1.1图像融合的内涵图像融合是指将多源图像传感器所采集到的关于同一目标的图像经过一定的图像处理,提取各自的有用信息,最后综合

成同一图像以供观察或进一步处理。从信息论的角度讲,融合后的图像将比组成它的各个子图像具有更优越的性能,综合整体信息大于各部分信息之和,也就是说,融合的结果应该比任何一个输入信息源包含更多

的有用信息,即1+1>2,这就是图像信息的融合2。

1.2医学图像融合的分类一个完整的医学图像融合系统应该是各种成像设备、处理设备与融合软件的总和。因为融合图像的应用目的不同,决定了医学图像融合具有各种各样的形式。根据被融合图像成像方式

不同,可分为同类方式融合和交互方式融合。同类方式融合(也称单模

融合,mono2mo2dality)是指相同成像方式的图像融合,如SPECT图像间融合,MR图像间融合等;交互方式融合(也成多模融合,multi2mo2dality)是指不同成像方式的图像融合,如SPECT与MR图像融合,PET与CT图像融合等。按融合对象不同,可分为单样本时间融合、单样本空间融合以及模板融合。单样本时间融合:跟踪某一病人在一段时间内对同一脏

器所做的同种检查图像实行融合,可用于对比以跟踪病情发展和确定该检查对该疾病的特异性;单样本空间融合:将某个病人在同一时间内(临床上将一周左右的时间视为同时)对同一脏器所做几种检查的图像

实行融合,有助于综合利用多种信息,对病情做出更确切的诊断;模板融合:是将病人的检查图像与电子图谱或模板图像实行融合,有助于研究某些疾病的诊断标准。另外,还能够将图像融合分为短期图像融合(如

跟踪肿瘤的发展情况时在1~3个月内做的检查图像实行融合)与长期图像融合(如治疗效果评估时实行的治疗后2~3年的图像与治疗后当时的图像实行融合)。综上所述,依据不同的分类原则,医学图像融合有多种方式,在实际应用中,临床医师还能够根据各种不同的诊断与治疗目的

持续设计出更多的融合方式。

1.3医学图像融合的主要技术方法与步骤医学图像融合的过程是一个

渐进的过程,不同的融合方法有各自具体的操作和处理,但是,不管应用

何种技术方法,图像融合一般都要经过三大主要的步骤来完成,分别是

图像预处理、图像配准和融合图像的创建。

1.3.1图像预处理医学图像预处理是指对获取的各种图像数据做去除

噪声、对比度增强、感兴趣区域分割等处理,统一各种数据的格式、图

像大小和分辨率,对于有条件的图像还能够实行重新断层分层以确保图

像在空间分辨率和空间方位上的大体接近。在此基础上,还可根据目标

特点或不同应用目的建立适当的数学模型。

一系列空间变换,使它与另一幅医学图像上的对应点达到空间上的一致。这种一致是指人体上的同一解剖点在两幅匹配图像上有相同的空间位置,配准的结果应使两幅图像上所有的解剖点,或至少是所有具有诊断

意义的点及手术感兴趣的点都达到匹配。图像配准是图像融合的先决

条件与关键,图像配准精度的高低直接决定着融合结果的质量。当前,

已存有多种配准方法,文献3对医学图像配准技术做了详细的归纳和总结,配准处理一般能够分为图像变换和图像定位两步:(1)图像变换:

其目的在于确保多源图像的像素或体素表达的实际空间区域相同。确

保多源图像对同一脏器在空间描述上的一致性。图像的变换包括平移、旋转、定标、反射等处理,医学图像常用的基本变换有:刚体变换、仿

射变换、投影变换和非线性变换。在图像融合实践中,以上几种方法经

常联合使用,一般都由计算机自动完成,并可实行一些人工的修正,从而

提升结果的准确性。(2)图像定位:在实际应用中,图像分辨率越高,图

像细节越丰富,实现点到点意义的对应难度越大。图像的定位(配准)方

法可大致分为两大类:基于外部定位和基于内部特征的方法。基于外

部定位的方法有:定标架法、面膜法和皮肤标记法等,其优点是定位简单,精度高(一般都可达到像素级的精度),缺点是这些方法仅限于刚体

变换,而且有时会对人体产生一定水准的损伤。基于内部特征的方法是

从不同成像模式中提取共有特征的体位标志实行定位,这些体位标志包

括解剖标志、几何标志、局部点、线、表面轮廓特征和像素特征等,这

类方法仅基于病人自身图像的信息,是回顾性算法,不需在成像之前对

病人做任何特殊处理,缺点是内部标志的寻找相当困难和麻烦,计算量大,需要人为介入,配准精度由具体算法决定。其主要方法有:①标志点法:包括解剖标志点法和几何标志点法;②图像分割配准法:包括曲线法、表面法等;③基于像素特征的配准法:有矩和主轴法、相关法、最大互信息法和图谱法等。近年来小波变换也被应用于图像配准中,它能够利用在低分辨率下的配准参数作为基础和引导,得到在高分辨率下更为准确的结果,这种方法有较强的鲁棒性,而且能够加快配准时间。此外,基于一定数学物理模型的非线形配准也是近年研究的热点。

1.3.3医学图像融合医学图像在空间域配准之后,就能够实行融合了,融合图像的创建又分为图像数据的融合与融合图像的显示两部分来完成。

(1)图像数据融合:在当前的研究中,主要有两类方法:以像素为基础的方法和以图像特征为基础的方法4。以像素为基础的方法,即点对点的方法。因为像素是图像的基本元素,像素间灰度值的差异显现出图像中所包含的结构信息,所以简单地把两幅图像对应像素点的灰度值实行加权求和、灰度取大或者灰度取小等操作,便可得到一幅融合图像。这类方法是对图像实行逐点处理,所以用到的数学原理易于理解,算法实现也比较简单,不过实现效果和效率都相对较差,融合后图像会出现一定水准的模糊。以图像特征为基础的方法,要对图像实行特征提取、目标分割等处理,用到的算法原理复杂,但是实现效果却比较理想,能够满足诊断的要求。现有的基于图像特征的融合方法几乎都是从变换域上的图像编码和压缩技术延伸来的,有Laplacian金字塔法5、Gaussian 金字塔法6、比率低通金字塔法7、多分辨率形态滤波法8和小波变换法9等,这类方法融合的一般步骤为:①将源图像分别变换至一定的变换域上;②在变换域上设计一定的融合规则;③根据选择的规则在变换域上创建融合图像;④逆变换重建融合图像。

(2)融合图像的显示:融合图像有多种直观的显示方法,常用的有伪彩色显示法、断层显示法和三维显示法等。①伪彩色显示法:因为人眼对彩色图像的分辨水平是灰度图像的几千倍,所以对融合图像采用伪彩

色显示可大大提升观察者对图像特征的识别水平。融合图像的伪彩色

显示往往是以某个图像为基准,该图像用灰度色阶显示,另一幅图像叠

加在基准图像上,用彩色色阶显示;②断层显示法:对于某些图像能够

将融合后的三维数据以横断面、冠状面和矢状面断层图像同步地显示,

便于观察者实行诊断,这种显示要求观察者对于图像三维层面特征有丰

富的经验;③三维显示法:将融合后的三维数据以三维图像的形式显示,使观察者可更直观地观察病灶的空间解剖位置,这在外科手术设计和放

疗计划制定中有重要意义。

2医学图像融合的应用前景

经过近些年的研究,图像融合技术已开始应用在临床治疗和影像诊断中,并取得了很多令人可喜的成果。原发癫痫病灶的准确定位一直是困

扰医学影像界的一大难题,很多学者利用融合技术对此做了富有成效的

探索。例如:Pelizzari等10对癫痫病人的MRI、PET图像融合处理后,可观察到病人的脑外伤、炎症、硬化症等的变化,还可看到手术及麻醉

前后的区别;Lewis等11研究表明,于发作期和发作间期对癫痫患者分

别实行SPECT检查,将二者的图像相减,再分别于MRI图像融合,可使功

能损伤的解剖学标记更准确,以SPECT所示的局部脑血流对大脑新皮质

的癫痫灶准确定位,从而为手术提供重要依据。将图像融合技术应用于

脑颅成像中,能够精确定位颅内病变,提升诊断准确性。例如:Hill等

12融合CT和MRI图像,建立了大脑的三维坐标系统,以辅助脑的定位治疗,其定位精度高于单独从一个图中的定位;Rubinstein等13使用T1、TC、FDG脑图像与MR图像融合对脑肿瘤手术或放疗后的变化和复发实

行监测,对发现治疗后肿瘤体积大小改变,区别肿瘤坏死与复发部分,均

具有极高的诊断价值。在胸腹部图像融合的应用中,因为胸腹部脏器形

状不规则又易受呼吸游动影响,很难做到精确配准,所以这方面的融合

报道较少,但也有学者实行了有益的尝试。如:Li14将MR融合到三维PET代谢图中,显示代谢与解剖信息,在对内脏肿瘤患者的试验中,以不

同色彩显示腹部各区域的三维图像;Magnani等15证实,CT/PET对非小

细胞肺癌侵犯纵隔淋巴结的分期诊断中,二者的融合图像比单纯应用CT 或PET更为准确。在放射治疗的应用中,利用融合图像精确定位照射区

与周围正常组织的空间关系,可减少周围正常组织的放射性损伤。Wong 等16对轫致辐射SPECT和CT图实行三维融合,从而定位要实行放射治疗的灌注后肿瘤,得到良好效果;Pinz等17应用图像融合技术测定用核素标记的单抗治疗淋巴瘤、肺癌和前列腺癌等恶性肿瘤的剂量,可详细确定其放射性分布。在外科手术的应用中,准确了解病变与周围组织的关系对制定手术方案,决定手术是否成功至关重要,Sannazzari等18以融合技术确定放射线标记的单克隆抗体聚积(SPECT)的解剖结构(CT),可对术前及治疗中的肿瘤实行精确分级和定位。

3医学图像融合技术难点与存有的问题

当前,医学图像融合技术中还存有很多尚未解决的技术难题。首先,因为各种成像系统的成像原理不同,其图像采集方式、格式以及图像的大小、质量、空间与时间特性都有很大差别,所以研究稳定且精度较高的全自动医学图像配准与融合方法是图像融合技术的难点之一;其次,图像理解是医学图像融合的最终目的,图像融合的潜力在于综合处理应用各种成像设备所得信息以获得新的有助于临床诊断的信息,因为图像融合技术当前还是一个全新的研究领域,所以,如何理解和利用这些新的综合信息,还需要持续地实验和证明;最后,因为在实际图像融合时,很多差异都是未知的,不可能达到绝对的最优,到当前为止,在多种多样的图像融合优化准则中,很难说某一种准则一定比另一种好,特别是不存有一种绝对完美的融合图像做参考,所以进一步研究能够客观比较和评价不同方法融合性能的标准也是亟需解决的问题。在图像融合技术研究中,持续有新的方法出现,其中小波变换在图像融合中的应用,基于有限元分析的非线形配准以及人工智能技术在图像融合中的应用将是今后图像融合研究的热点与方向。因为融合研究起步较晚,以至现有的技术方法还仅仅针对具体病症、具体问题发挥作用,通用性相对较弱;通过大量资料的查询发现,国外在融合方面的研究较多,不过绝大多数也还仅仅以少数几个或几十个病例为试验对象,并没有真正的普及到临床诊断中去;医学图像融合的研究和临床应用主要集中在大脑的诊断和手术治疗,以及脏器肿瘤的诊断、定位等;另外,图像的模态也主要以CT、MRI、核医学图像为主,超声等成本较低图像的应用较少。相信,随着研

究的持续深入,多模态医学图像融合技术在融合速度、精度、稳定性等方面将会日趋完善,应用也会更加广泛和普遍,从而更好地辅助医生诊断和临床治疗。医学图像融合技术发展至今,各个学科的交叉渗透已是发展的必然趋势,它作为提升现代医疗诊断水平的有力依据,使实施风险低、创伤性小的化疗、手术方案等成为可能,必将在医药信息研究领域受到更多的注重。

医学图像融合技术及使用

医学影像学的发展与现状

医学影像发展与医学影像技术学的形成 医学影像是临床医学中发展最快的学科之一,它发展速度快,更新周期短,每1~2年就出现一项新技术。显著的特点是从疾病的形态学诊断发展到疾病的功能诊断,从大体形态诊断发展到分子水平诊断,以及定性和定量的诊断,从诊断的临床辅助科室发展到临床治疗的介入科室。以致在医学影像学的基础上形成了医学影像诊断学、医学影像治疗学和医学影像技术学等亚学科。 1895年德国物理学家伦琴发现X线,并把X线用于人体检查,开创了放射医学的先河。在此后的100多年内X线检查占着主导地位,幷广泛地用于临床,使得放射医学逐渐形成一个独立的学科,对临床疾病的诊断起着举足轻重的作用。当时的放射科医生来源有二,在大的教学医院的主要是医疗系毕业的学生,中小医院主要是放射中专班毕业的学生。此时放射科技术人员,在大的教学医院有解放前教会医院培养的技术人员和自己培养的学徒,中小医院的放射科诊断和技术没分家。在20世纪60~80年代,放射科医生基本上是正规学校毕业的学生,而技术人员则是招工顶职、复员军人、护士改行,或者是初高毕业生。 随着科学技术的发展,医学影像发展很快,新的医学影像设备不断涌现,新的影像技术不断产生,医学影像检查和治疗在临床的作用越来越大,应用范围不断扩展。对人员的要求越来越高。20世纪60年代出现影像增强技术,使得放射科以上在黑暗房间的检查彻底解放出来;20世纪70年代出现CT成像技术,该设备以高的密度分辨率使得放射科结束只能观察人体的骨骼和骷髅的历史,还能够观察人体的软组织病变,解决了传统X线难以解决的诊断难题,尤其是三维成像技术,为临床疾病的诊断和治疗开辟广阔的前景;20世纪80年代出现MR 成像技术,它以更高的软组织分辨率和多方位多参数的检查技术,能够观察人体更加细微的病变,解决普通X现、CT和心血管造影难以解决的问题,同时具有无辐射损伤和无创伤的特点,在人体的功能成像和分子水平有其独特的优势;20世纪80年代出现介入放射学,它通过微小的创伤解决了临床上某些疾病难以处理或创伤大的问题,使得放射科成为继内科和外科后的第三大治疗学科;20世纪80~90年代出现CR和DR成像技术,使得放射科进入全面的数字化X线检查,在成像质量、工作效率、图像保存和劳动强度等方面显示极大的优越性;20世纪90年代出现激光打印技术,使放射科技术人员彻底告别暗室手工冲洗胶片的历史,提高了工作效率,降低了劳动强度,保证了图像质量,幷实现了数字化图像的传输和打印;超声技术近来发展越来越快,临床应用范围越来越广,它以无创伤、效率高、诊断准确而受到广大的临床科室亲眯;核素扫描技术近年来发展很快,临床应用范围也不断扩大,它是真正意义上的功能水平和分子水平的成像。20世纪90年代后出现了PACS,实现了医学影像的大融合,将各种数字化的图像串联起来,可进行数字化图像的远程传输和远程会诊,并与医院的HIS、CIS、RIS等进行联网,实现了数字化医院。 由于医学影像设备的不断发展,医学影像技术的日新月异,医学影像学的CT、MR、介入、普放,超声和核医学等亚学科逐渐建立,医学影像技术学科也逐渐形成。 医学影像学的发展经历了三个阶段;X线的临床应用,放射学的形成,医学影像学的形成。总体走向是建立现代医学影像学:从大体形态学向分子、生理、功能代谢/基因成像过渡;从胶片采集、显示向数字采集/电子传输发展;对比剂从一般性组织增强向组织/疾病特异性增强发展。;介入治疗,以及与内镜、微创治疗/外科的融合、发展。具体走向是:影像信息更加具有敏感性、直观性、特异性、早期性;图像分析由定性向定量发展:由显示诊断信息向提供手术路径方案发展;图像采集与显示:由二维模拟向三维全数字化发展;图像存储由胶片硬拷贝向软拷贝无胶片化,乃至图像传输网络化发展;从单一图像技术向综合图像技术发展

谈医学影像的融合(一)

谈医学影像的融合(一) 科技的进步带动了现代医学的发展,计算机技术的广泛应用,又进一步推动了影像医学向前迈进。各类检查仪器的性能不断地提高,功能不断地完善,并且随着图像存档和传输系统(PACS)的应用,更建立了图像信息存储及传输的新的模式。而医学影像的融合,作为图像后处理技术的完善和更新,将会成为影像学领域新的研究热点,同时也将是医学影像学新的发展方向。所谓医学影像的融合,就是影像信息的融合,是信息融合技术在医学影像学领域的应用;即利用计算机技术,将各种影像学检查所得到的图像信息进行数字化综合处理,将多源数据协同应用,进行空间配准后,产生一种全新的信息影像,以获得研究对象的一致性描述,同时融合了各种检查的优势,从而达到计算机辅助诊断的目的〔1,2〕。本文将从医学影像融合的必要性、可行性、关键技术、临床价值及应用前景5个方面进行探讨。 1医学影像融合的必要性 1.1影像的融合是技术更新的需要随着计算机技术在医学影像学中的广泛应用,新技术逐渐替代了传统技术,图像存档和PACS的应用及远程医疗的实施,标志着在图像信息的存储及传输等技术上已经建立了新的模式。而图像后处理技术也必须同步发展,在原有的基础上不断地提高和创新,才能更好更全面地发挥影像学的优势。影像的融合将会是后处理技术的全面更新。 1.2影像的融合弥补了单项检查成像的不足目前,影像学检查手段从B超、传统X线到DSA、CR、CT、MRI、PET、SPECT等,可谓丰富多彩,各项检查都有自身的特点和优势,但在成像中又都存在着缺陷,有一定的局限性。例如:CT检查的分辨率很高,但对于密度非常接近的组织的分辨有困难,同时容易产生骨性伪影,特别是颅后窝的检查,影响诊断的准确性;MRI检查虽然对软组织有超强的显示能力,但却对骨质病变及钙化病灶显示差;如果能将同一部位的两种成像融合在一起,将会全面地反映正常的组织结构和异常改变,从而弥补了其中任何一种单项检查成像的不足。 1.3影像的融合是临床的需要影像诊断最终服务于临床治疗;先进的检查手段,清晰的图像,有助于提高诊断的准确性,而融合了各种检查优势的全新的影像将会使诊断更加明确,能够更好地辅助临床诊治疾病。 2医学影像融合的可行性 2.1影像学各项检查存在着共性和互补性为影像的融合奠定了基础尽管每项检查都有不同的检查方式、成像原理及成像特征,但它们具有共同的形态学基础,都是通过影像来反映正常组织器官的形态、结构和生理功能,以及病变的解剖、病理和代谢的改变。而且,各项检查自身的缺陷和成像中的不足,都能够在其他检查中得到弥补和完善。例如:传统X线、CT 检查可以弥补对骨质成像的不足;MRI检查可以弥补对软组织和脊髓成像的不足;PET、SPECT 检查则可以弥补功能测定的不足。 2.2医学影像的数字化技术的应用为影像的融合提供了方法和手段现在,数字化技术已充分应用于影像的采集、存储、后处理、传输、再现等重要的技术环节。在首要环节即影像的采集中,应用了多种技术手段,包括:(1)同步采集数字信息,实时处理;(2)同步采集模拟信号,经模数转换装置转换成数字信号;(3)通过影像扫描仪和数码相机等手段,对某些传统检查如普通X线的胶片进行数字转换等;将所采集的普通影像转换成数字影像,并以数据文件的形式进行存储、传输,为进一步实施影像融合提供了先决条件。 3医学影像融合的关键技术 信息融合在医学图像研究上的作用一般是通过协同效应来描述的,影像融合的实施就是实现医学图像的协同;图像数据转换、图像数据相关、图像数据库和图像数据理解是融合的关键技术。(1)图像数据转换是对来自不同采集设备的图像信息的格式转换、三维方位调整、尺度变换等,以确保多源图像的像/体素表达同样大小的实际空间区域,确保多源图像对组织

多模图像配准融合

多模图像配准融合

浅析多模态医学图像的配准与融合技术 来源:本站原创作者:朱俊林发布时间:2009-06-07 1 医学图像的配准技术简介 医学图像的配准技术是90年代才发展起来的医学图像处理一个重要分支,并且日益受到了医学界和工程界的重视。医学图像的配准是指对于一幅医学图像寻求一种或者是一系列的空间变换,使两幅图像的对应点达到空间位置和解剖结构的一致,这种一致是指人体上的同一解剖点在两张匹配的图像上有相同的空间位置。简单地说医学图像配准就是解决两幅图像的严格对齐问题。配准的结果应使两幅图像上所有的解剖点,或至少是所有具有诊断意义的解剖点及手术感兴趣的点都达到匹配。 医学图像的配准按图像来源分为:单模态(mono-modality)与多模态配准(multi-modality)。单模态配准是指对来自同一成像设备的不同时刻或不同角度的图像进行配准。但在实际临床应用中,单一模态的图像往往不能提供医生所需要的足够信息,通常需要将不同模态的图像融合在一起得到更丰富的信息量,从而作出准确的诊断,制订出合适的治疗方案。所谓多模态配准,是将来自不同形式的医学图像进行空间上的对准,将对应的相同解剖位置标记出来以实现图像融合和进一步后期处理。多模态图像之间的配准使用最频繁,主要应用在诊断方面,可分为解剖—解剖的配准和解剖—功能的配准两大类,前者将显示组织形态学不同方面的两幅图像混合,后者将组织的新陈代谢与它相对于解剖结构的空间位置联系起来。目前,主要的研究工作重点是进行CT、MRI以及PET、fMRI等图像的配准。 2 医学图像融合技术简介 医学图像的融合是指将两幅(或两幅以上)来自不同成像设备或不同时刻获取的已配准图像,采用某种算法,把各个图像的优点或互补性有机结合起来,获得信息量更为丰富的新图像的技术。医学诊断往往要综合许多不同信息进行,传统的方法是,临床医生利用灯箱分别观看这些胶片,综合对比,得到结果。如果能够把这些互补信息以某种方式综合在一起作为一个整体作为医学诊断的依据,使得临床医生只要在一张综合图像上就能看到不同原始图像的信息,那么就能提供全方位的信息细节。 3 医学图像配准及融合的关系及意义 医学图像的配准和融合有着非常密切的关系,特别是对于多模态图像而言,配准和融合是密不可分的。配准是融合的前提,也是决定图像融合技术发展的关键技术,若事先不对待融合图像进行空间上的对准,那么融合后的图像也是毫无意义的。融合是配准的目的,通过来自不同影像设备的图像融合,可以得到更多的信息,提高影像数据的利用率。在多模态医学图像信息融合中,是要把相对应的组织结构融合在一起,而待融合的图像往往来自不同的成像设备,它们的成像方位、角度和分辨率等因素都是不同的,所以这些图像中相应组织的位置、大小等都是有差异的,必须先进行配准处理,才能实现准确地融合。

医学影像技术名词解释

PACS系统是Picture Archiving and Communication Systems的缩写,意为影像归档和通信系统。它是应用在医院影像科室的系统,主要的任务就是把日常产生的各种医学影像(包括核磁,CT,超声,各种X 光机,各种红外仪、显微仪等设备产生的图像)通过各种接口(模拟,DICOM,网络)以数字化的方式海量保存起来,当需要的时候在一定的授权下能够很快的调回使用,同时增加一些辅助诊断管理功能。它在各种影像设备间传输数据和组织存储数据具有重要作用。 MRI也就是磁共振成像,英文全称是:Magnetic Resonance Imaging。在这项技术诞生之初曾被称为核磁共振成像,到了20世纪80年代初,作为医学新技术的NMR成像(NMR imaging)一词越来越为公 众所熟悉。随着大磁体的安装,有人开始担心字母“N”可能会对磁共 振成像的发展产生负面影响。另外,“nuclear”一词还容易使医院工作人员对磁共振室产生另一个核医学科的联想。因此,为了突出这一检查技术不产生电离辐射的优点,同时与使用放射性元素的核医学相区别,放射学家和设备制造商均同意把“核磁共振成像术”简称为“磁共振成像(MRI)”。

电子计算机X射线断层扫描简称X—CT或CT,就是利用x射线对人体进行断层扫描后,由探测器收得的模拟信号再变成数字信号,经电子计算机计算出每一个像素的衰减系数,再重建图像,而能显示出人体各部位的断层结构的装置。它以断层的图像形式,较清晰地显示人体组织的细微差别。彻底解决了内部重叠显示问题,而且能将人体各种组织对x线的吸收系数以相当精确的数字表示出来,因而对软组织中的病变也能正确诊断。CT要区分不同的密度组织,则用C T 值来表示,其范围取—1000至十1000,以空气为—1000,水为0,骨骼为十1000 超声(Ultrasound,简称US)医学是声学、医学、光学及电子学相结合的学科。凡研究高于可听声频率的声学技术在医学领域中的应用即超声医学。包括超声诊断学、超声治疗学和生物医学超声工程,所以超声医学具有医、理、工三结合的特点,涉及的内容广泛,在预防、诊断、治疗疾病中有很高的价值。

医学图像融合技术及运用

医学图像融合技术及使用 1医学图像融合技术 1.1图像融合的内涵图像融合是指将多源图像传感器所采集到的关于同一目标的图像经过一定的图像处理,提取各自的有用信息,最后综合 成同一图像以供观察或进一步处理。从信息论的角度讲,融合后的图像将比组成它的各个子图像具有更优越的性能,综合整体信息大于各部分信息之和,也就是说,融合的结果应该比任何一个输入信息源包含更多 的有用信息,即1+1>2,这就是图像信息的融合2。 1.2医学图像融合的分类一个完整的医学图像融合系统应该是各种成像设备、处理设备与融合软件的总和。因为融合图像的应用目的不同,决定了医学图像融合具有各种各样的形式。根据被融合图像成像方式 不同,可分为同类方式融合和交互方式融合。同类方式融合(也称单模 融合,mono2mo2dality)是指相同成像方式的图像融合,如SPECT图像间融合,MR图像间融合等;交互方式融合(也成多模融合,multi2mo2dality)是指不同成像方式的图像融合,如SPECT与MR图像融合,PET与CT图像融合等。按融合对象不同,可分为单样本时间融合、单样本空间融合以及模板融合。单样本时间融合:跟踪某一病人在一段时间内对同一脏 器所做的同种检查图像实行融合,可用于对比以跟踪病情发展和确定该检查对该疾病的特异性;单样本空间融合:将某个病人在同一时间内(临床上将一周左右的时间视为同时)对同一脏器所做几种检查的图像 实行融合,有助于综合利用多种信息,对病情做出更确切的诊断;模板融合:是将病人的检查图像与电子图谱或模板图像实行融合,有助于研究某些疾病的诊断标准。另外,还能够将图像融合分为短期图像融合(如 跟踪肿瘤的发展情况时在1~3个月内做的检查图像实行融合)与长期图像融合(如治疗效果评估时实行的治疗后2~3年的图像与治疗后当时的图像实行融合)。综上所述,依据不同的分类原则,医学图像融合有多种方式,在实际应用中,临床医师还能够根据各种不同的诊断与治疗目的 持续设计出更多的融合方式。

医学图像配准

《数字医学图像》报告 内容:图像配准专题 专业: 2012级信息管理与信息系统班级:信管一班 小组成员: 20120701020 韩望欣 20120701008 毕卓帅 20120701005 胡庆 指导老师:彭瑜 完成日期: 2015 年 10月 25日

图像配准专题 简介:图像配准是对取自不同时间,不同传感器或不同视角的同一场景的两幅图像或者多幅图像匹配的过程。图像配准广泛用于多模态图像分析,是医学图像处理的一个重要分支,也是遥感图像处理,目标识别,图像重建,机器人视觉等领域中的关键技术之一,也是图像融合中要预处理的问题,待融合图像之间往往存在偏移、旋转、比例等空间变换关系,图像配准就是将这些图像变换到同一坐标系下,以供融合使用。 一:图像配准方法国内外进展情况 图像配准最早在美国七十年代的飞行器辅助导航系统、武器投射系统的末端制导以及寻地等应用研究中提出,并得到军方的大力支持与赞助。经过长达二十多年的研究,最终成功地用于中程导弹及战斧式巡航导弹上,使其弹着点平均圆误差半径不超过十几米,从而大大提高了导弹的命中率。八十年代后,在很多领域都有大量配准技术的应用,如遥感领域,模式识别,自动导航,医学诊断,计算机视觉等。各个领域的配准技术都是对各自具体的应用背景结合实际情况量身订制的技术。但是不同领域的配准技术之间在理论方法上又具有很大的相似性,从而使得在某领域的配准技术很容易移植到其它相关领域。目前国内外研究图像配准技术比较多的应用领域有红外图像处理、遥感图像处理、数字地图定位和医学图像处理等领域。 二、图像配准在医学领域的应用 20世纪以来随着计算机技术的不断发展,医学成像技术得到了快速的发展。尖端的新型医疗影像设备层出不穷,如计算机线摄影、数字减影等等,这些已经成为现代医学诊断必不可少的医学数字成像手段。由于这些医学数字成像设备有不同的灵敏度和分辨率,它们有各自的使用范围和局限性。多种模式图像的结合能充分利用图像自身的特点并做到信息互补。近几十年以来,图像配准在医学上的应用日益受到医学界和工程界的重视,己在世界范围广泛展开,在相关文献中己经提出了很多种医学图像配准的方法,这些研究成果广泛地运用到医学领域中。图像配准在医学中的应用领域主要有以下几方面: ?组织切片图像的处理与显微结构三维重建 ?疾病诊断及其发展和消退的过程检测 ?神经外科手术可视化、神经外科手术一计划及术前评估 ?感觉运动和认知过程的神经功能解剖学研究 ?神经解剖变异性的形态测量分析学 ?放射治疗和立体定向放射外科治疗计划 三、图像配准的定义 对于二维图像配准可定义为两幅图像在空间和灰度上的映射,如果给定尺寸的二维矩阵F 1和F2代表两幅图像F1(X,Y)和F2(X,Y)分别表示相应位置(X,Y)上的灰度值。则图像间的映射可表示为:F (X,Y)=G(F (H(X,Y))),式中H表示一个二维空间坐标变换,即(X’,Y’)=H(X,Y),且G是一维灰度变换。 四、图像配准方法的分类 1、维数 主要是根据待配准图像的空间维数及时间维数来划分的。图像仅含空间维数或者是图像的时间序列中带有空间数,其配准可根据图像的空间维数分2D/2D,2D/3D,3D/3D,4D/4D

医学图像融合技术及运用

医学图像融合技术及运用 1医学图像融合技术 图像融合的内涵图像融合是指将多源图像传感器所采集到的关于同一目标的图像经过一定的图像处理,提取各自的有用信息,最后综合成同一图像以供观察或进一步处理。从信息论的角度讲,融合后的图像将比组成它的各个子图像具有更优越的性能,综合整体信息大于各部分信息之和,也就是说,融合的结果应该比任何一个输入信息源包含更多的有用信息,即1+1>2,这就是图像信息的融合[2]。 医学图像融合的分类一个完整的医学图像融合系统应该是各种成像设备、处理设备与融合软件的总和。由于融合图像的应用目的不同,决定了医学图像融合具有各种各样的形式。根据被融合图像成像方式不同,可分为同类方式融合和交互方式融合。同类方式融合是指相同成像方式的图像融合,如SPECT图像间融合,MR图像间融合等;交互方

式融合是指不同成像方式的图像融合,如SPECT与MR图像融合,PET与CT图像融合等。按融合对象不同,可分为单样本时间融合、单样本空间融合以及模板融合。单样本时间融合:跟踪某一病人在一段时间内对同一脏器所做的同种检查图像进行融合,可用于对比以跟踪病情发展和确定该检查对该疾病 的特异性;单样本空间融合:将某个病人在 同一时间内对同一脏器所做几种检查的图 像进行融合,有助于综合利用多种信息,对 病情做出更确切的诊断;模板融合:是将病 人的检查图像与电子图谱或模板图像进行 融合,有助于研究某些疾病的诊断标准。另外,还可以将图像融合分为短期图像融合与长期图像融合。综上所述,依据不同的分类原则,医学图像融合有多种方式,在实际应 用中,临床医师还可以根据各种不同的诊断与治疗目的不断设计出更多的融合方式。 医学图像融合的主要技术方法与步骤 医学图像融合的过程是一个渐进的过程,不同的融合方法有各自具体的操作和处理,但是,不管应用何种技术方法,图像融合一般

医学图像配准技术 综述

医学图像配准技术 A Survey of Medical Image Registration 张剑戈综述,潘家普审校 (上海第二医科大学生物医学工程教研室,上海 200025) 利用CT、MRI、SPECT及PET等成像设备能获取人体内部形态和功能的图像信息,为临床诊断和治疗提供了可靠的依据。不同成像模式具有高度的特异性,例如CT通过从多角度的方向上检测X线经过人体后的衰减量,用数学的方法重建出身体的断层图像,清楚地显示出体内脏器、骨骼的解剖结构,但不能显示功能信息。PET是一种无创性的探测生理性放射核素在机体内分布的断层显象技术,是对活机体的生物化学显象,反映了机体的功能信息,但是图像模糊,不能清楚地反映形态结构。将不同模式的图像,通过空间变换映射到同一坐标系中,使相应器官的影像在空间中的位置一致,可以同时反映形态和功能信息。而求解空间变换参数的过程就是图像配准,也是一个多参数优化过程。图像配准在病灶定位、PACS系统、放射治疗计划、指导神经手术以及检查治疗效果上有着重要的应用价值。 图像配准算法 可以从不同的角度对图像配准算法进行分类[1]:同/异模式图像配准,2D/3D图像配准,刚体/非刚体配准。本文根据算法的出发点,将配准算法分为基于图像特征(feature-based)和基于像素密度(intensity-based)两类。 基于特征的配准算法 这类算法利用从待配准图像中提取的特征,计算出空间变换参数。根据特征由人体自身结构中提取或是由外部引入,分为内部特征(internal feature)和外部特征(external feature)。

【作者简介】张剑戈(1972-),男,山东济南人,讲师,硕士 1. 外部特征 在物体表面人为地放置一些可以显像的标记物(外标记,external marker)作为基准,根据同一标记在不同图像空间中的坐标,通过矩阵运算求解出空间变换参数。外标记分为植入性和非植入性[2]:立体框架定位、在颅骨上固定螺栓和在表皮加上可显像的标记。Andre G[3]等将该方法用于机器人辅助手术,对于股骨移植,位移误差小于1.5mm,角度误差小于3°,由于计算量小,可以实现实时配准。但是标记物必须事先被固定好,不能用于回顾性配准,而且该方法只适用刚体配准。 2. 内部特征 从医学影像中可以提取出点、线和面:血管的交点、血管、胸腹之间的横膈膜等,这些特征作为内标记点(internal marker) ,利用其空间位置同样可以求解出空间变换参数。Hill DL[4]用11个形态点对脑部配准,误差<1mm,方差为1.73mm。Meyer CR[5]除了血管树的交点,还使用了左右脑之间的间隔等特征。Maurer CR[6,7]赋予点、线、面等几何特征不同的权重(weighted geometrical features, WGF),进一步改进了算法。内标记点配准是一种交互性的方法,将3D图像配准简化为点、线和面的匹配,可以进行回顾性研究,不会造成患者的不适。但是医生对特征位置的判断影响到配准精度,为了克服人为误差,需要多次重复操作,以平均值作为最终结果。 表面匹配算法也利用了内部特征[8]:进行图像分割,提取出轮廓曲线、物体表面等内部特征,使2D/3D图像配准简化为2D曲线和3D曲面的匹配,不再考虑物体内部像素。典型的应用是刚体配准的“头帽”算法[9],从头部的3D图像中分割出表面轮廓,分别作为头模型和帽模型。配准的目标函数是头表面和帽表面之间的均方距离,该距离是空间变换参数的函数。表面匹配算法是一种自动算法,在物体表面轮廓相似并且清晰的情况下,配准效果很好。其不足之处在于:准确地进行图像分割很困难;不同模式的图像,如CT/PET图像,由于器官的轮廓差异较大,难于精确地匹配。 3. 在非刚体配准中的应用 进行非刚体配准前要确定物理模型,常见有弹性模型、粘稠液体模型、生物力学模型。通过在感兴趣区域中提取参考点、2D或是3D轮廓线,使待配准图像

谈医学影像的融合

科技的进步带动了现代医学的发展,计算机技术的广泛应用,又进一步推动了影像医学向前迈进。各类检查仪器的性能不断地提高,功能不断地完善,并且随着图像存档和传输系统(PACS)的应用,更建立了图像信息存储及传输的新的模式。而医学影像的融合,作为图像后处理技术的完善和更新,将会成为影像学领域新的研究热点,同时也将是医学影像学新的发展方向。所谓医学影像的融合,就是影像信息的融合,是信息融合技术在医学影像学领域的应用;即利用计算机技术,将各种影像学检查所得到的图像信息进行数字化综合处理,将多源数据协同应用,进行空间配准后,产生一种全新的信息影像,以获得研究对象的一致性描述,同时融合了各种检查的优势,从而达到计算机辅助诊断的目的[1,2]。本文将从医学影像融合的必要性、可行性、关键技术、临床价值及应用前景5个方面进行探讨。 1医学影像融合的必要性 1.1影像的融合是技术更新的需要随着计算机技术在医学影像学中的广泛应用,新技术逐渐替代了传统技术,图像存档和PACS的应用及远程医疗的实施,标志着在图像信息的存储及传输等技术上已经建立了新的模式。而图像后处理技术也必须同步发展,在原有的基础上不断地提高和创新,才能更好更全面地发挥影像学的优势。影像的融合将会是后处理技术的全面更新。 1.2影像的融合弥补了单项检查成像的不足目前,影像学检查手段从B超、传统X线到DSA、CR、CT、MRI、PET、SPECT等,可谓丰富多彩,各项检查都有自身的特点和优势,但在成像中又都存在着缺陷,有一定的局限性。例如:CT检查的分辨率很高,但对于密度非常接近的组织的分辨有困难,同时容易产生骨性伪影,特别是颅后窝的检查,影响诊断的准确性;MRI检查虽然对软组织有超强的显示能力,但却对骨质病变及钙化病灶显示差;如果能将同一部位的两种成像融合在一起,将会全面地反映正常的组织结构和异常改变,从而弥补了其中任何一种单项检查成像的不足。 1.3影像的融合是临床的需要影像诊断最终服务于临床治疗;先进的检查手段,清晰的图像,有助于提高诊断的准确性,而融合了各种检查优势的全新的影像将会使诊断更加明确,能够更好地辅助临床诊治疾病。2医学影像融合的可行性 2.1影像学各项检查存在着共性和互补性为影像的融合奠定了基础尽管每项检查都有不同的检查方式、成像原理及成像特征,但它们具有共同的形态学基础,都是通过影像来反映正常组织器官的形态、结构和生理功能,以及病变的解剖、病理和代谢的改变。而且,各项检查自身的缺陷和成像中的不足,都能够在其他检查中得到弥补和完善。例如:传统X线、CT检查可以弥补对骨质成像的不足;MRI检查可以弥补对软组织和脊髓成像的不足;PET、SPECT检查则可以弥补功能测定的不足。 2.2医学影像的数字化技术的应用为影像的融合提供了方法和手段现在,数字化技术已充分应用于影像的采集、存储、后处理、传输、再现等重要的技术环节。在首要环节即影像的采集中,应用了多种技术手段,包括:(1)同步采集数字信息,实时处理;(2)同步采集模拟信号,经模数转换装置转换成数字信号;(3)通过影像扫描仪和数码相机等手段,对某些传统检查如普通X线的胶片进行数字转换等;将所采集的普通影像转换成数字影像,并以数据文件的形式进行存储、传输,为进一步实施影像融合提供了先决条件。 [!--empirenews.page--] 3医学影像融合的关键技术信息融合在医学图像研究上的作用一般是通过协同效应来描述的,影像融合的实施就是实现医学图像的协同;图像数据转换、图像数据相关、图像数据库和图像数据理解是融合的关键技术。(1)图像数据转换是对来自不同采集设备的图像信息的格式转换、三维方位调整、尺度变换等,以确保多源图像的像/体素表达同样大小的实际空间区域,确保多源图像对组织脏器在空间描述上的一致性。它是影像融合的基本。(2)影像融合首先要实现相关图像的对位,也就是点到点的一一对应。而图像分辨率越高,图像细节越多,实现对位就越困难。因而,在进行高分辨率图像(如CT图像和MRI图像)的对位时,目前借助于外标记。(3)建立图像数据库用以完成典型病例、典型图像数据的存档和管理以及信息的提取。它是融合的数据支持。(4)数据理解在于综合处理和应用各种成像设备所得信息,以获得新的有助于临床诊断的信息[1]。图像融合的方法主要有4种:(1)界标配对:界标作为两种图像相对应的融合点且决定融合的

医学图像处理综述参考模板

医学图像处理综述 墨南-初夏2010-07-24 23:51:56 医学图像处理的对象是各种不同成像机理的医学影像。广泛使用的医学成像模式主要分为X射线成像(X—CT) ,核磁共振成像(MRI),核医学成像(NMI)和超声波成像(UI) 这四类。 (1)x射线成像:传统x射线成像基于人体不同器官和组织密度不同。对x射线的吸收衰减不同形成x射线影像。(例如人体中骨组织密度最大,在图像上呈白影,肺是软组织并且含有气体,密度最低,在照片上的图像通常是黑影。)常用于对人体骨骼和内脏器官的疾病或损伤进行诊断和定位。现代的x射线断层成像(x—cT) 发明于20世纪70年代,是传统影像技术中最为成熟的成像模式之一,其速度已经快到可以对心脏实现动态成像。其缺点是医生要在病人接收剂量和片厚之间进行折衷选择,空间分辨率和对比度的还需进一步提高。 (2)核磁共振成像(MIR) 发展于20世纪70年代,到80年代才进入市场,这种成像设备具有在任意方向上的多切片成像、多参数和多核素成像、可实现整个空问的真三维数据采集、结构和功能成像,无放射性等优点。目前MRI的功能成像(fMRI) 是MIR设备应用的前沿领域,广泛应用于大脑功能性疾病的诊断,并为肿瘤等占位性病变提供功能信息。MRI 受到世人的广泛重视,其技术尚在迅速发展

过程中。 (3)核医学成像(NMI ) ,目前以单光子计算机断层成像(SPECT) 和正电子断层成像(PET) 为主,其基本原理是向人体注射放射性核素示踪剂,使带有放射性核素的示踪原子进入人体内要成像的脏器或组织通过测量其在人体内的分布来成像。NMI不仅可以提供静态图像,而且可提供动态图像。 (4)超声波成像(Ultrasonic Imaging ) ,属于非电离辐射的成像模态,以二维平面成像的功能为主,加上血液流动的彩色杜普勒超声成像功能在内,在市场上已经广泛使用。超声成像的缺点是图像对比度差、信噪比不好、图像的重复性依赖于操作人员。但是,它的动态实时成像能力是别的成像模式不可代替的 在目前的影像医疗诊断中,主要是通过观察一组二维切片图象去发现病变体.这往往需要借助医生的经验来判定。至于准确地确定病变体的空间位置、大小、几何形状及与周围 生物组织的空间关系,仅通过观察二维切片图象是很难实现的。因此,利用计算机图像处理技术对二维切片图象进行分析和处理。实现对人体器官,软组织和病变体的分割提取,三维重建和三维显示,可以辅助医生对病变体及其它感兴趣的区域进行定性甚至定量的分

像素级多尺度医学图像融合方法研究

像素级多尺度医学图像融合方法研究 医学图像融合是利用某种方法将多张不同模态的医学图像合成为一张图像 并最大限度地保留输入图像重要信息的过程,其目的是为医生提供更加准确的病灶信息,本文重点研究像素级多尺度医学图像融合方法。像素级多尺度医学图像融合方法主要包含三部分:图像分解与重构、图像融合规则和图像评价指标。 针对已有医学图像融合方法在图像分解与重构和图像融合规则两个方面的 问题,本文提出四种新的像素级多尺度医学图像融合方法。针对医学图像融合方法时间复杂度高和噪声问题,提出一种两尺度本征图像分解的MRI-PET融合方法。 该方法的主要特点在于快速的空域图像分解与重构。该方法首先利用视网膜皮层理论对MRI进行两尺度本征图像分解,并利用灰度世界理论对PET进行两尺度本征图像分解。 这种两尺度分解方法能够降低输入图像的噪声。在融合阶段,采用三种不同的方法:主元分析法、图像系数重要程度法和颜色空间变换法来得到融合图像。 实验结果表明,两尺度本征图像分解的融合方法能够恢复图像本身的信息, 从而减少图像的噪声。针对传统结构张量融合方法中图像亮度信息丢失和色彩失真的问题,提出一种三尺度结构张量的MRI-PET和MRI-SPECT融合方法。 该方法利用结构张量对图像进行空域上的分解与重构,首先利用结构张量对灰度图像MRI进行三尺度分解,然后利用彩色结构张量对伪彩色图像PET/SPECT 进行三尺度分解避免色彩失真。在融合阶段,利用绝对值最大方法来处理含有平滑信息的图像,利用空间频率法来处理含有细节、亮度信息的图像。 实验结果表明,三尺度结构张量的融合方法能够同时保留解剖医学图像MRI 和功能医学图像PET/SPECT的亮度信息。针对拉普拉斯金字塔融合方法中图像边

医学MRI及CT图像融合 课程设计

1设计目的、意义 综合应用医学影象物理学、医学成像原理、医学图象处理、计算机编程、Matlab 语言等基础与专业知识,通过理论与实践相结合,掌握所学知识的综合应用方法,掌握图象融合的应用方法,培养和提高解决本专业实际工程问题的能力。 课程设计的主要目的: (1)培养学生文献检索的能力,特别是如何利用Internet检索需要的文献资料。(2)培养学生综合分析问题、发现问题和解决问题的能力。 (3)培养学生用maltab处理图像与数据的能力。 2 设计内容 2.1 设计要求: 要求设计出MRI与CT图像融合处理与分析程序。 (1) 处理对象:MRI与CT图像 (2) 内容:对给定图像做图像滤波、增强等预处理;选择相应配准算法进行两图像的配准;选择合理融合方法进行两图像的融合;确定评价参数,定量分析融合效果,采用Matlab编程,实现上述各过程。 (3) 结果:整理所设计资料,提交设计报告 2.2 设计内容: (1)了解医学MRI和CT图像成像原理,分析MRI和CT图像的特征,确定图像滤波、增强等预处理算法,并编程实现; (2)确定图像配准处理算法,并编程实现; (4)确定图像融合处理算法,并编程实现; (5)确定评价参数,定量分析融合效果。 2.3 实验原理 医学图像融合技术作为图像处理主要的技术已逐渐成为图像处理研究的热点,它的研究将会对未来医学影像技术进步带来深远的影响。 2.31 CT的成像基本原理

电脑断层扫描(Computed Tomography 简称(CT)):它是用X射线照射人体,由于人体内不同的组织或器官拥有不同的密度与厚度,故其对X射线产生不同程度的衰减作用,从而形成不同组织或器官的灰阶影像对比分布图,进而以病灶的相对位置、形状和大小等改变来判断病情。CT由于有电脑的辅助运算,所以其所呈现的为断层切面且分辨率高的影像。 一般临床所提及的CT,指的是以X光为放射源所建立的断层图像,称为X光CT。事实上,任何足以造成影像,并以计算机建立断层图的系统,均可称之为CT。 CT是用X线束对人体某部一定厚度的层面进行扫描,由探测器接收透过该层面的X线,转变为可见光后,由光电转换变为电信号,再经模拟/数字转换器(analog/digital converter)转为数字,输入计算机处理。图像形成的处理有如对选定层面分成若干个体积相同的长方体,称之为体素(voxel),见图1。扫描所得信息经计算而获得每个体素的X线衰减系数或吸收系数,再排列成矩阵,即数字矩阵(digital matrix),数字矩阵可存贮于磁盘或光盘中。经数字/模拟转换器(digital/analog converter)把数字矩阵中的每个数字转为由黑到白不等灰度的小方块,即象素(pixel),并按矩阵排列,即构成CT图像。所以,CT图像是重建图像。每个体素的X线吸收系数可以通过不同的数学方法算出。 图2.31 ct成像原理示意图 CT图像是由一定数目由黑到白不同灰度的象素按矩阵排列所构成。这些象素反映

刍议影像融合推动医学影像领域发展

刍议影像融合推动医学影像领域发展 科技的进步不仅是带动了工商业的发展,同时也推动了医学发展,计算机技术被广泛用于影像医学中。现在医学上的各种检查仪器越来越精密,功能更加完善,图像信息的存储和传输为医学的研究和诊断提供了更好的依据。医学影像的融合就是影像信息的融合,是借助计算机技术辅助诊断病情的。医学影像的融合是医学影像学新的发展方向,本文对医学影像的融合进行分析,探讨影像融合对医学影像发展的影响和作用。 标签:医学影像;影像融合;诊断 1.影像融合 医学影像融合其实就是利用计算机技术,将影像信息进行融合。其中包括将图像信息进行数字化处理,再进行数据协同和匹配,得到一个新的影像信息来获得对病情更好的观测,以计算机为辅助手段,使诊断更加准确、具象。 1.1影像融合的发展趋势 医学影像学是近年来发展的比较快的临床学科之一,其中的超声、放射等早就被应用到医学的诊断上,但是,面对不同病人的各种症状,单一的影像检查已经不足以作为诊断的依据。因此,影像融合越来越成为医学中的焦点,人们更希望通过多重的影像检查、比较和分析,使检查结果更准确,更好的辅助临床疾病的治疗。影响融合的发展提高了医学诊断的综合水平,对于推动影像学的发展有重要的意义。而且,医学影像的融合不仅可以对诊断锦上添花,还可以为治疗提供帮助。例如:X线、超声、聚焦和磁共振结合在一起进行治疗。影响融合的发展是势在必行的,而且将推动医学影像学的更新与发展。 1.2影像融合的必要性 (1)医学技术的更新与发展需要影响融合 计算机技术被广泛应用于各个领域中,这也包括医学影像学。随着新技术的发展和实施,图像后期处理技术也需要不断的提高,影像的融合技术就是后处理技术的新发展。前后技术的同步才能更好的将影像学的好处发挥出来。 (2)影像融合使检查更全面准确 影像学的检查手段是很多的,从B超到射线再到CT等,每项检查都是有针对性的,但是正因为这样又有一定的局限性。每项检查都有单一局限性,只能准确的体现一方面的数据值,不利于诊断病情。影像的融合弥补了这一缺陷。 (3)临床诊断需要影像融合

多模图像配准融合

浅析多模态医学图像的配准与融合技术 来源:本站原创作者:朱俊林发布时间:2009-06-07 1 医学图像的配准技术简介 医学图像的配准技术是90年代才发展起来的医学图像处理一个重要分支, 并且日益受到了医学界和工程界的重视。医学图像的配准是指对于一幅医学图像寻求一种或者是一系列的空间变换,使两幅图像的对应点达到空间位置和解 剖结构的一致,这种一致是指人体上的同一解剖点在两张匹配的图像上有相同的空间位置。简单地说医学图像配准就是解决两幅图像的严格对齐问题。配准的结果应使两幅图像上所有的解剖点,或至少是所有具有诊断意义的解剖点及 手术感兴趣的点都达到匹配。 医学图像的配准按图像来源分为:单模态(mono-modality)与多模态配准(multi-modality)。单模态配准是指对来自同一成像设备的不同时刻或不同角度的图像进行配准。但在实际临床应用中,单一模态的图像往往不能提供医生所需要的足够信息,通常需要将不同模态的图像融合在一起得到更丰富的信息量,从而作出准确的诊断,制订出合适的治疗方案。所谓多模态配准,是将来自不同形式的医学图像进行空间上的对准,将对应的相同解剖位置标记出来以实现图像融合和进一步后期处理。多模态图像之间的配准使用最频繁,主要应用在诊断方面,可分为解剖—解剖的配准和解剖—功能的配准两大类,前者将显示组织形态学不同方面的两幅图像混合,后者将组织的新陈代谢与它相对于解剖 结构的空间位置联系起来。目前,主要的研究工作重点是进行CT、MRI以及PET、fMRI等图像的配准。 2 医学图像融合技术简介 医学图像的融合是指将两幅(或两幅以上)来自不同成像设备或不同时刻获 取的已配准图像,采用某种算法,把各个图像的优点或互补性有机结合起来,获得信息量更为丰富的新图像的技术。医学诊断往往要综合许多不同信息进行,传统的方法是,临床医生利用灯箱分别观看这些胶片,综合对比,得到结果。如果能够把这些互补信息以某种方式综合在一起作为一个整体作为医学诊断的依据,使得临床医生只要在一张综合图像上就能看到不同原始图像的信息,那么就能提供全方位的信息细节。 3 医学图像配准及融合的关系及意义 医学图像的配准和融合有着非常密切的关系,特别是对于多模态图像而言,配准和融合是密不可分的。配准是融合的前提,也是决定图像融合技术发展的关键技术,若事先不对待融合图像进行空间上的对准,那么融合后的图像也是毫无意义的。融合是配准的目的,通过来自不同影像设备的图像融合,可以得到更多的信息,提高影像数据的利用率。在多模态医学图像信息融合中,是要把相对应的组织结构融合在一起,而待融合的图像往往来自不同的成像设备,它们的成像方位、角度和分辨率等因素都是不同的,所以这些图像中相应组织的位置、大小等都是有差异的,必须先进行配准处理,才能实现准确地融合。 医学影像学为临床诊断提供了多种模态的医学图像,如 CT、MR、SPECT、PET、

大专医学影像技术论文

大专医学影像技术论文 谈医学影像的融合 科技的进步带动了现代医学的发展,计算机技术的广泛应用,又进一步推动了影像医学向前迈进。各类检查仪器的性能不断地提高,功能不断地完善,并且随着图像存档和传输系统(PACS)的应用,更 建立了图像信息存储及传输的新的模式。而医学影像的融合,作为 图像后处理技术的完善和更新,将会成为影像学领域新的研究热点,同时也将是医学影像学新的发展方向。所谓医学影像的融合,就是 影像信息的融合,是信息融合技术在医学影像学领域的应用;即利用 计算机技术,将各种影像学检查所得到的图像信息进行数字化综合 处理,将多源数据协同应用,进行空间配准后,产生一种全新的信 息影像,以获得研究对象的一致性描述,同时融合了各种检查的优势,从而达到计算机辅助诊断的目的[1,2]。本文将从医学影像融 合的必要性、可行性、关键技术、临床价值及应用前景5个方面进 行探讨。 1医学影像融合的必要性 1.1影像的融合是技术更新的需要随着计算机技术在医学影像学 中的广泛应用,新技术逐渐替代了传统技术,图像存档和PACS的应 用及远程医疗的实施,标志着在图像信息的存储及传输等技术上已 经建立了新的模式。而图像后处理技术也必须同步发展,在原有的 基础上不断地提高和创新,才能更好更全面地发挥影像学的优势。 影像的融合将会是后处理技术的全面更新。 1.2影像的融合弥补了单项检查成像的不足目前,影像学检查手 段从B超、传统X线到DSA、CR、CT、MRI、PET、SPECT等,可谓丰 富多彩,各项检查都有自身的特点和优势,但在成像中又都存在着 缺陷,有一定的局限性。例如:CT检查的分辨率很高,但对于密度 非常接近的组织的分辨有困难,同时容易产生骨性伪影,特别是颅 后窝的检查,影响诊断的准确性;MRI检查虽然对软组织有超强的显

医学图像融合技术在肿瘤放射治疗中的应用

医学图像融合技术在肿瘤放射治疗中的应用 发表时间:2018-03-01T13:32:50.540Z 来源:《医药前沿》2018年1月第3期作者:李超 [导读] 在勾画放疗靶细胞的过程中,采用医学图像融合技术明显要比常规方法更加准确,同时也可减少放疗剂量的使用。 (四川省德阳市人民医院四川德阳 618000) 【摘要】目的:将医学图像融合技术运用在肿瘤放射治疗中,从而分析出医学图像融合技术的应用价值。方法:从我院中选取2015年4月到2016年4月需要接受肿瘤放射治疗的患者共62例,运用随机数表的方法将对其分成两组,即对照组和观察组各31例,其中,对对照组的患者采用常规方法(CT、MRI扫描)来进行肿瘤放射治疗,对观察组则在常规方法的基础之上应用肿瘤放射进行治疗,并最终确定CT图像与融合图像来确定靶区体积以及照射剂量。结果:在CT的照射下,靶区肿瘤体积为72.45立方厘米,而采用医学图像融合技术对靶区肿瘤进行照射,所勾画出的肿瘤体积为51.12立方厘米,由此可见,在肿瘤放射治疗过程中,采用医学图像融合技术对靶区肿瘤进行照射比常规技术对靶区肿瘤进行照射的准确性要高。同时对膀胱和资产的照射剂量机械计算,最终计算出,采用医学图像融合技术所现实的最小照射剂量和最大照射剂量都小于常规图像(CT),且具有统计学意义(P<0.05)。结论:在勾画放疗靶细胞的过程中,采用医学图像融合技术明显要比常规方法更加准确,同时也可减少放疗剂量的使用。 【关键词】医学图像融合技术;肿瘤放射治疗;应用 【中图分类号】R730.55 【文献标识码】A 【文章编号】2095-1752(2018)03-0036-03 【Abstract】Objective To apply medical image fusion technology in tumor radiotherapy, and to analyze the application value of medical image fusion technology. Methods From April 2015 to April 2016 in our hospital to accept radiotherapy with a total of 62 cases, using the method of random number table will be divided into two groups, namely control group and observation group of 31 cases, among them, the conventional methods for patients in the control group (CT, MRI scan) for tumor radiotherapy on the basis, the observation group in the conventional method using tumor radiation treatment, and ultimately determine the CT image and fused image to determine the target volume and dose. Results In the CT under the irradiation of the tumor target volume is 72.45 cubic centimeters, and the use of medical image fusion technology to irradiate the tumor of target area, drawing the tumor volume was 51.12 cm3, therefore, in the process of tumor radiotherapy, the accuracy of medical image fusion based on target tumor than conventional irradiation the technology in the target area of tumors were irradiated to high. At the same time dose of bladder and mechanical assets calculation, finally calculate the minimum radiation dose, medical image fusion technology and the maximum dose of reality is less than that of the conventional image (CT), which has statistical significance (P<0.05). Conclusion In the delineation of radiation target cells, the use of medical image fusion technology is significantly more accurate than conventional methods, and also can reduce the use of radiation dose. 【Key words】Medical image fusion technique; Tumor radiotherapy; Application 目前,随着时代的发展进步,并随着医学科技水平的提升,新型的疾病治疗方式和办法已逐步得到人们的认可,其中,医学图像融合技术就是一种结合计算机信息以及医院影像的融合技术,在医学信息的获取上,为医学诊断提供了新的方式和方法。而将医学图像融合技术应用在肿瘤放射治疗中则现今最为重要的应用举措,具体而言,不仅将多种模态的医学图像进行了融合,而且对肿瘤靶区轮廓进行了准确的勾勒,进而减少了放疗剂量,使肿瘤放射治疗更具有精准性和有效性。因此,本文就通过从我院中选取2015年4月到2016年4月需要接受肿瘤放射治疗的患者共62例,在其接受肿瘤放射治疗的过程中,对其应用医学图像融合技术,并对其进行了综合性分析,探讨了最终的应用效果分析,现报告如下。 1.资料和方法 1.1 临床资料 从我院中选取2015年6月到2016年6月需要接受肿瘤放射治疗的患者共62例,运用随机数表的方法将对其分成两组,即对照组和观察组各31例,在对照组组中,男性患者17例,女性患者14例子,年龄在34岁至72岁之间,平均年龄在(48±7.2)岁,其中鼻咽癌7例,食道癌3例,肺癌5例,脑瘤4例,盆腔癌6例,非何杰金氏淋巴瘤6例;在观察组中,男性患者为15例,女性患者为16例,年龄在35岁至73岁之间,平均年龄在(48±7.5)岁,鼻咽癌8例,食道癌5例,肺癌7例,脑瘤3例,盆腔癌5例,非何杰金氏淋巴瘤3例。且均确认肿瘤为恶性肿瘤,具有放疗的条件[1]。 1.2 方法 将全部患者都进行常规的放射治疗,并在治疗的过程中应用CT、MRI融合技术。 (1)图像的获取 ①CT图像的获取 采用64排螺旋式的CT机对患者进行扫描,扫描结果参数如下:120kv、400mA,Tile0.0,层厚5mm,螺距1.375:1,窗位W300、 L40。而在此过程中,应先对患者进行平扫,然后再进行增强扫描,从而最终获得CT图像[2]。 ②MRI图像的获取 采用磁共振扫描仪对患者进行扫描,并利用真空袋对患者进行固定,从而实现定位,在定位完成后,利用鱼油材料对标志点进行定位,其中,MRI扫描是一种序列扫描,进而最终获得MRI图像。 (2)图像的处理 首先,在进行图像预处理的过程中,应该将CT扫描数据和MRI扫描数据进行取出,并运用专用电脑和相似图像重建软件对图像进行处理。其次,在对上述两项数据进行预处理完成后,则应该对图像进行融合,且在整个过程中采用刚性变换和放射性变换的形式来展开,在局部特殊情况下,则采用相似性图像非线性变换来完成。再次,在图像进行融合后,则将相关的图像数据输入放射治疗计划系统中,以达到图像融合的目的以及实现肿瘤靶区勾画的最终目的。最终,对实体体膜、CT图像上的体膜影像、MRI图像上的体膜图像进行测量,在误差小于1毫米的情况下,则不需要对融合图像进行修正,如果融合图像的误差大于1毫米,则应该对融合图像进行修正[3]。 (3)肿瘤靶区勾画和测量 通常情况下,若要对肿瘤靶区进行勾画,一般在放疗治疗计划系统中来展开,同时,在肿瘤靶区的勾画过程中,应该依据单一的CT图像和MRI图像来进行,并依据CT和MRI融合图像。而在勾画的过程中,一般将肿瘤的边缘作为基准。

相关主题
文本预览
相关文档 最新文档