当前位置:文档之家› 吸收解吸塔的详细设计计算(做CO2吸收塔和解吸塔的同学不用愁了)

吸收解吸塔的详细设计计算(做CO2吸收塔和解吸塔的同学不用愁了)

吸收解吸塔的详细设计计算(做CO2吸收塔和解吸塔的同学不用愁了)
吸收解吸塔的详细设计计算(做CO2吸收塔和解吸塔的同学不用愁了)

水吸收_低浓度二氧化硫_填料吸收塔_设计

水吸收低浓度SO2填料吸收塔设计 第一部分设计任务、依据和要求 一、设计任务及操作条件 1、混合气体(空气中含SO 2 气体的混合气体)处理量为90 kmol/h 2、混合气体组成:SO 2 含量为7.6%(摩尔百分比),空气为:92.4%(mol/%) 3、要求出塔净化气含SO 2为:0.145%(mol/%),H 2 O为:1.172 kmol/h 4、吸收剂为水,不含SO 2 5、常压,气体入塔温度为25°C,水入塔温度为20°C。 二、设计内容 1、设计方案的确定 2、填料吸收塔的塔径、填料层高度及填料层压强的计算。 3、填料塔附属结构的选型与设计。 4、填料塔工艺条件图。 三、H2O- SO2 在常压20 °C下的平衡数据

四、 气体与液体的物理性质数据 气体的物理性质: 气体粘度()0.0652/G u kg m h =? 气体扩散系数20.0393/G D m s = 气体密度31.383/G kg m ρ= 液体的物理性质:液体粘度 3.6/()L u kg m h =? 液体扩散系数625.310/L D m s -=? 液体密度 3998.2/L kg m ρ= 液体表面张力 4273/92.7110/L dyn cm kg h σ==? 五、 设计要求 1、设计计算说明书一份 2、填料塔图(2号图)一张

第二部分 SO2净化技术和设备 一、SO2的来源、性质及其危害: 1、二氧化硫的来源 二氧化硫的来源很广泛,几乎所有企业都要产生二氧化硫,最主要途径是含硫化石燃料的燃烧。大约一吨煤中含有5-50kg硫,一吨石油中含有5-30kg硫。这些燃料经燃烧都产生并排放出二氧化硫,占所有排放总量的96%. 二氧化硫的来源包括微生物活动,火山活动,森林火灾以及海水飞沫。主要有自然来源和人为来源两大类: 自然来源主要是火山活动,喷出的火山气体中含有大量的二氧化硫气体,地质深处的天然硫元素在火山喷发过程中燃烧氧化为二氧化硫,随火山灰一起喷射到大气中。地球上57%的二氧化硫来自自然界,沼泽、洼地、大陆架等处所排放的硫化氢,进入大气,被空气中的氧氧化为二氧化硫。自然排放大约占大气中全部二氧化硫的一半,通过自然循环过程,自然排放的硫基本上是平衡的。 人为来源则指在人类进行生产、生活活动中,使用含硫及其化合物的矿石进行燃烧,以及硫矿石的冶炼和硫酸、磷肥纸浆的生产等产生的工业废气,从而使其中一部分或全部的硫以二氧化硫的形式排放到大气中,形成二氧化硫污染。这部分二氧化硫占地球上二氧化硫来源的43%。随着化石燃料消费量的不断增加,全世界认为排放的二氧化硫在不断在增加,其中北半球排放的二氧化硫占人为排放总量的90%。我国的能源主要依靠煤炭和石油,而我国的煤炭、石油一般含硫量较高,因此,火力发电厂、钢铁厂、冶炼厂、化工厂和炼油厂排放出的大量二氧化硫和二氧化碳是造成我国大气污染的主要原因。由于我国部分地区燃用高硫煤,燃煤设备未能采取脱硫措施,致使二氧化硫排放量不断增加,造成严重的环境污染。 2、二氧化硫的性质 (1)物理性质: 二氧化硫又名亚硫酸酐,英文名称: sulfur dioxide 。无色气体,有强烈刺激性气味。分子量64.07 密度为1.4337kg/m3 (标准状况下),密度比空气大。溶解度:9.4g/mL(25℃)熔点-76.1℃(200.75K)沸点-10℃ (263K)

二氧化碳吸收塔设计(可编辑修改word版)

《化工原理》课程设计水吸收二氧化碳填料塔设计 学院医药化工学院 专业精细化工 班级 姓名 学号 指导教师 年月日

目录 概述 (1) 1.设计题目 (1) 2.操作条件 (1) 3.填料类型 (1) 4.设计内容 (1) 4.1吸收剂的选择 (1) 4.2装置流程的确定 (1) 4.3填料的类型与选择 (2) 5.填料吸收塔的工艺尺寸的计算 (2) 5.1基础物性数据 (2) 5.1.1液相物性数据 (2) 5.1.2气相物性数据 (2) 5.1.3气液相平衡数据 (2) 5.2物料衡算 (2) 5.3填料塔的工艺尺寸计算 (3) 5.3.1塔径计算 (3) 5.3.2填料层高度计算 (4) 6.填料层压降计算 (6) 7.液体分布器建简要设计 (7) 7.1液体分布器的选型 (7) 7.2分布点密度计算 (7) 7.3布液计算 (7) 8.吸收塔接管尺寸计算 (8) 9.要符号说明 (8) 9.1料的特性参数 (8) 9.2符号说明 (8) . 附图(工艺流程简图、主体设备设计条件图)

概述 填料塔不但结构简单,且流体通过填料层的压降较小,易于用耐腐蚀材料制造,所以它特别适用于处理量小,有腐蚀性的物料及要求压降小的场合。液体自塔顶经液体分布器喷洒于填料顶部,并在填料的表面呈膜状流下,气 体从塔底的气体口送入,流过填料的空隙,在填料层中与液体逆流接触进行传质。因气液两相组成沿塔高连续变化,所以填料塔属连续接触式的气液传 质设备。吸收操作在化学工业中是一种重要的分离方法,本次设计采用水吸收空气中的二氧化碳,处理流量为 3800m3/h,其中进塔二氧化碳的体积分数为 7%,二氧化碳的吸收率达到 95%。吸收效果以减少对大气的污染,属于物理吸收。影响吸收的因素主要为溶质在吸收剂中的溶解度, 其吸收速率主要 决定于气相或液相与界面上溶质的浓度差,以及溶质从气 相向液相传递的扩散速率。本设计本设计采用 4 个同类型的吸收塔并联,塔高 8.4m,塔径 2.9m,采用聚丙烯阶梯填料,具有通量大、阻力小、传质效率高等优点,可以达到较好的通过能力和分离效果。一般说来,完整的吸收过程应包括吸收和解吸两部分。在化工生产过程中,原料气的净化,气体产品的精制,治理有害气体,保护环境等方面都要用到气体吸收过程。填料塔作为主要设备之一,越来越受到青睐。 1.设计题目 试设计一座填料吸收塔,采用清水吸收混于空气中的二氧化碳气体。混合气体的处理量为3800 m3/h,其中含二氧化碳为7%(体积分数),混合气体的进料温度为25℃。要求: 二氧化碳的回收率达到95% 。 2.操作条件 (1)操作压力:常压(2)操作温度:20℃ (3)吸收剂用量为最小用量的 1.5 倍。 3.填料类型 公称直径为50mm 的聚丙烯塑料阶梯环 4.设计内容 设计方案的确定 4.1吸收剂的选择 因为用水作吸收剂,同时CO2不作为产品,故采用纯溶剂。 4.2装置流程的确定 用水吸收CO2属于中等溶解度的吸收过程,故为提高传质效率,选择用逆

吸收塔的计算

第4节吸收塔的计算 吸收过程既可在板式塔内进行,也可在填料塔内进行。在板式塔中气液逐级接触,而在填料塔中气液则呈连续接触。本章对于吸收操作的分析和计算主要结合连续接触方式进行。 填料塔内充以某种特定形状的固体填料以构成填料层。填料层是塔实现气、液接触的主要部位。填料的主要作用是:①填料层内空隙体积所占比例很大,填料间隙形成不规则的弯曲通道,气体通过时可达到很高的湍动程度;②单位体积填料层内提供很大的固体表面,液体分布于填料表面呈膜状流下,增大了气、液之间的接触面积。 通常填料塔的工艺计算包括如下项目: (1)在选定吸收剂的基础上确定吸收剂的用量; (2)计算塔的主要工艺尺寸,包括塔径和塔的有效高度,对填料塔,有效高度是填料层高度,而对板式塔,则是实际板层数与板间距的乘积。 计算的基本依据是物料衡算,气、液平衡关系及速率关系。 下面的讨论限于如下假设条件: (1)吸收为低浓度等温物理吸收,总吸收系数为常数; (2)惰性组分B在溶剂中完全不溶解,溶剂在操作条件下完全不挥发,惰性气体和吸收剂在整个吸收塔中均为常量; (3)吸收塔中气、液两相逆流流动。 吸收塔的物料衡算与操作线方程式 全塔物料衡算图2-12所示是一个定态操作逆流接触的吸收塔,图中各符号的意义如下:

V -惰性气体的流量,kmol (B )/s ; L —纯吸收剂的流量,kmol (S )/S ; Y 1;、Y 2—分别为进出吸收塔气体中溶质物质量的比,kmol (A )/kmol (B );X 1、X 2——分别为出塔及进塔液体中溶质物质量的比,kmol (A )/kmol (S )。注意,本章中塔底截面一律以下标“l ”表示,塔顶截面一律以下标“2”表示。 在全塔范围内作溶质的物料衡算,得: VY 1+LX 2=VY 2+LX 1 或V (Y 1-Y 2)=L (X 1-X 2) (2-38) 一般情况下,进塔混合气体的流量和组成是吸收任务所规定的,若吸收剂的流量与组成已被确定,则V 、Y 、L 及X 2。为已知数,再根据规定的溶质回收率,便可求得气体出塔时的溶质含量,即: Y 2=Y l (1-фA ) (2-39) 式中фA 为溶质的吸收率或回收率。 通过全塔物料衡算式2-38可以求得吸收液组成X 1。于是,在吸收塔的底部与顶部两个截面上,气、液两相的组成Y 1、X l 与Y 2、X 2均成为已知数。 2.吸收塔的操作线方程式与操作线 2 1 图2-12 物料衡算示意图

合成氨车间二氧化碳吸收塔设计毕业设计

摘要 在工业合成氨的生产过程中,粗原料气经过一氧化碳变换以后,变换气中除氢气外,还有二氧化碳和甲烷等成分,其中二氧化碳含量多达15%-35%。二氧化碳不仅降低氨合成催化剂的活性,又是制造尿素、碳酸氢铵等氮肥的原料,因此要想法除去。 本设计的目的是根据所给技术特性参数,合理设计Ι段二氧化碳吸收塔,用来脱除变换气中的二氧化碳气体。根据《GB150-1998钢制压力容器》、《JBT4710-2005钢制塔式容器》等标准,通过常规设计方法步骤进行设计,包括塔体的筒体和封头壁厚计算和水压试验,接管、接管法兰、人孔法兰和塔内件的选取,裙座的计算和设计,开孔补强计算,风载荷和地震载荷的计算和校核,以及筒体和裙座的应力分析等。强度校核时,大部分情况下将受压元件的应力限制在材料的需用应力以内,用来确保设计的安全性和经济性。 关键词:二氧化碳合成塔;填料塔;合成氨

引言 塔设备又称塔器,塔设备有许多种类型,塔设备是化工、石油化工和炼油生产中最重要的设备之一。用以使气体与液体、气体与固体、液体与液体或液体与固体密切接触,并促进其相互作用,以完成化学工业中热量传递和质量传递过程。 二氧化碳吸收塔,是利用碳酸钾溶液来脱去变换气中的二氧化碳气体,要保证较高的脱碳效率和设备的安全性能,必须对吸收塔系统进行合理的设计,包括吸收塔的尺寸设计,吸收塔材料的选择以及塔部件的选取。吸收塔的主要部件有外壳、填料、填料支承、液体分布器、中间支承和再分布器、气体、液体进出口接管等。 填料塔是以塔内的填料作为气液两相间接触构件的传质设备。填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。填料的上方安装填料压板,以防被上升气流吹动。液体从塔顶经液体分布器喷淋到填料上,并沿填料表面流下。气体从塔底送入,经气体分布装置后,与液体呈逆流连续通过填料层的空隙,在填料表面上,气液两相密切接触进行传质。填料塔属于连续接触式气液传质设备,两相组成沿塔高连续变化,在正常操作状态下,气相为连续相,液相为分散相。 当液体沿填料层向下流动时,有逐渐向塔壁集中的趋势,使得塔壁附近的液流量逐渐增大,这种现象称为壁流。壁流效应造成气液两相在填料层中分布不均,从而使传质效率下降。因此,当填料层较高时,需要进行分段,中间设置再分布装置。液体再分布装置包括液体收集器和液体再分布器两部分,上层填料流下的液体经液体收集器收集后,送到液体再分布器,经重新分布后喷淋到下层填料上。 填料塔具有生产能力大,分离效率高,压降小,持液量小,操作弹性大等优点。填料塔也有一些不足之处,如填料造价高;当液体负荷较小时不能有效地润湿填料表面,使传质效率降低;不能直接用于有悬浮物或容易聚合的物料;对侧线进料和出料等复杂精馏不太适合等。塔内件是填料塔的组成部分,它与填料及塔体共同构成一个完整的填料塔。塔内件的作用是使气液在塔内更好地接触,以便发挥填料塔的最大效率和最大生产能力,因此塔内件设计的好坏直接影响填料性能的发挥和整个填料塔的性能。另外,填料塔的“放大效应”除填料本身因素外,塔内件对它的影响也很大。填料塔的内件主要有:填料支撑装置、填料压紧

关于重整脱戊烷塔顶空冷器结盐腐蚀问题的思考

关于重整脱戊烷塔顶空冷器结盐腐蚀问题的思考 最近我收到乌石化许真铭总工程师的一份邮件,提到该厂新投产的100万吨/年连续重整装置在操作四个月之后发现脱戊烷塔顶空冷器泄漏,原因是发生结盐腐蚀现象,因而临时进行停工抢修,详情见附件。 这种现象是怎么发生的?我们应当怎么办?我就这个问题,对同类装置的现场情况作了一些调查,有了一些新的认识。 1。设计基本情况 在早期的重整装置设计中,重整生成油的稳定塔(或脱戊烷塔)只考虑了注缓释剂的设施,没有其他措施。上世纪90年代,在有些重整装置的脱戊烷塔内发现有结盐现象,专利商建议在脱戊烷塔进料及塔顶管线上各设置一个注水口,回流罐设分水包,供用户在必要时注水清洗结盐。 在最近几年的新设计中,不少装置在脱戊烷塔的进口设置了脱氯罐,以脱除氯化物,在专利商Axens和UOP新提供的大连福佳和四川的工艺包中就是这样做的。 2。目前现场实际情况 过去脱戊烷塔结盐腐蚀情况并不严重,但最近一段时间,这问题显得比较普遍,很多厂都出现过,值得引起注意。据了解辽化、大连、上海、天津都曾经出现过同样问题,惠州装置开了两年没事,最近也刚出现这种情况,看来这问题带有一定的普遍性。 结盐腐蚀的情况各厂并不完全相同,最典型的例子就是乌石化:原来一套40万吨/年连续重整装置(采用法国Axens专利技术和国产催化剂,反应压力3.5MPa),开了10年没有问题;这次新建的100万吨/年连续重整装置(采用美国UOP专利技术和R234催化剂,反应压力也是3.5MPa),操作四个月脱戊烷塔顶空冷器就出现了严重结盐腐蚀现象。 3。原因分析 造成这种现象的原因是什么?为什么有的严重有的不大严重?有一些不同的分析: (1)结盐腐蚀是氯化物造成的,与氯含量有关系。据说乌石化老重整装置催化剂含氯量一般控制在0.9%的水平,气中氯含量很低(一般检测不出来),而

CO2吸收塔设计

摘要 塔设备是化工、炼油生产中最重要的设备之一,是一种重要的单元操作设备。它可使气(或汽)液或液液两相之间进行充分接触,达到相际传质及传热的目的。常见的、可在塔设备中完成的单元操作有:蒸馏、吸收、解收、萃取、气体的洗涤等。此外,工业气体的冷却与回收、气体的湿法制作和干燥,以及兼有气液两相传质和传热的增湿和减湿等也可在塔设备中完成。 塔设备按其结构特点可以分为板式塔、填料塔和复合塔3类。本次设计选用填料塔作为吸收塔,主要考虑填料塔的以下优点:填料塔结构简单、压力降小,传热效率高,便于采用耐腐蚀的材料制造等,对于热敏性及容易起泡的物料更显出优越性。 本次设计内容包括:发展概况及应用的了解,塔体的选型,填料的选择,工艺计算(包括物料衡算,模拟计算,工艺尺寸计算,高度计算,压降计算,分布装置设计,支撑装置设计);机械计算(包括塔釜设计,上部筒体机械设计,开孔与开孔补强计算,强度设计和稳定设计,支座的选型和设计,接管的选用,法兰的选取),设备的制造及安装等,最后利用CAD将其装配图和部分零件图分别绘制出。 关键词:填料塔;二氧化碳;气液传质;逆相混合

Abstract Tower is one of the most important equipment in chemical industry and oil production, it is also an important handling equipment. It will enable gas(or steam) liquid or liquid-liquid connnecting fully and reaching the purposes of transfering media and heat . Commonly, operation can be completed in tower are: distillation, absorption, of the admission, extraction, washing of the gases. In addition, recycling and cooling of gas in industrial , the gas production of wet and dry, and both two-phase of gas-liquid mass transfering and heat transfering by the humidification and wet,could also be done in the tower. The struction of tower can be divided into plate tower, packed tower and the tower due to its characteristics . The packed tower is choosen as the absorber in the design, Given to the following advantages of the tower: the structure of the tower is simple, the pressure is small , the efficiency of heat conveying is high , and it could be made by corrosion-resistant materials easily, such as manufacturing, thermosensitive and sparkling materials more easily Demonstrate superiority. The design includes: Development and application of knowledge of the tower, and the selection of the structer about the tower, the choice of packing terms and caculating(including the caculating about material balance, simulation caculating, process size, height, the pressure drop, the distribution of design, Design Support Unit); mechanical calculations (including the reactor design of the tower, the design of the upper shell, the opening and the opening reinforcement, the strength of the design and stability of the design, the selection and design of the bearing ,the choice to take over, the selection of flange ), The manufacture the map of assemble and parts with the help of CAD. Key words:Packed tower;Carbon dioxide;Gas-liquid mass transfer; Reverse mixed

脱戊烷塔顶回流罐

第1章设计数据及设备简图 设计压力:1.5MPa 设计温度:80C 操作压力:1.36MPa 操作温度:80C 水压试验压力:0.63MPa 筒体焊接接头系数:0.85 封头焊接接头系数:0.85 腐蚀余量:2m m 介质:戊烷 筒体直径: 1000m m 设备总长度:3400m m 筒体长度:2850mm 筒体材料: Q245R 标准椭圆封头材料:Q245R 封头直边段长度:25mm 鞍座材料:Q245R 回流罐结构简图如下: 图1-1 脱戊烷塔顶回流罐简图

第2章 设计计算书 2.1确定筒体和封头的壁厚 (1)筒体壁厚按GB150—98式(6---1)计算 c i t c P D 2[]P δ= σφ- (2-1) 式中: c P ——计算压力 即:-6 C P P gh 1.59.880810 1.508MPa =+ρ=+??= φ——焊封系数,考虑双面焊局部无损探伤,0.85φ=; []t σ——设计温度下Q245R 材料的许用应力 [] t 147.25MPa σ= i D ——设备内直径, i D =1000m m 1.5081000 2147.250.85 1.508 ?δ= ??-=6.06m m 1C ——钢板的负偏差 1C 0.8=mm 2C ——介质腐蚀裕度 2C 2=mm C ——壁厚附加量 12C C C 0.82 2.8=+=+=mm 设计壁厚 d C 6.06 2.88.86 δ=δ+ =+=mm 根据GB 713钢板厚度标准查得 n 10δ=mm (2)封头壁厚按GB150-98式计算 c i t c KP D 2[]0.5P δ= σφ- (2-2) 式中: K ——椭圆形封头形状系数,对标准椭圆形封头K 1=; φ——焊封系数0.85?= 其他符号意义与数值同前 1 1.5081000 2147.250.850.5 1.508??δ=??-?=6.04m m d C 6.04 2.88.84δ=δ+=+=mm 为了保证封头与筒体能很好满足焊接要求取封头壁厚10=n δmm 封头名义厚度为10mm ,封头深度为275mm 直边高h=25mm

化工原理课程设计-填料吸收塔的设计

化工原理课程设计-填料吸收塔的设计

课程设计 题目:填料吸收塔的设计 教学院:化学与材料工程学院 专业:化学工程与工艺(精细化工方向) 学号: 学生姓名: 指导教师: 2012 年 5 月31 日

《化工原理课程设计》任务书 2011~2012 学年第2学期 学生姓名:专业班级:化学工程与工艺(2009) 指导教师:工作部门:化工教研室 一、课程设计题目:填料吸收塔的设计 二、课程设计内容(含技术指标) 1. 工艺条件与数据 煤气中含苯2%(摩尔分数),煤气分子量为19;吸收塔底溶液含苯≥0.15%(质量分数);吸收塔气-液平衡y*=0.125x;解吸塔气-液平衡为y*=3.16x;吸 收回收率≥95%;吸收剂为洗油,分子量260,相对密度0.8;生产能力为每小时 处理含苯煤气2000m3;冷却水进口温度<25℃,出口温度≤50℃。 2. 操作条件 吸收操作条件为:1atm、27℃,解吸操作条件为:1atm、120℃;连续操作;解吸气流为过热水蒸气;经解吸后的液体直接用作吸收剂,正常操作下不再补充 新鲜吸收剂;过程中热效应忽略不计。 3. 设计内容 ①吸收塔、解吸塔填料层的高度计算和设计; ②塔径的计算; ③其他工艺尺寸的计算。 三、进度安排 1.5月14日:分配任务; 2.5月14日-5月20日:查询资料、初步设计; 3.5月21日-5月27日:设计计算,完成报告。 四、基本要求 1. 设计计算书1份:设计说明书是将本设计进行综合介绍和说明。设计说明 书应根据设计指导思想阐明设计特点,列出设计主要技术数据,对有关工艺流程 和设备选型作出技术上和经济上的论证和评价。应按设计程序列出计算公式和计 算结果,对所选用的物性数据和使用的经验公式、图表应注明来历。 设计说明书应附有带控制点的工艺流程图。 设计说明书具体包括以下内容:封面;目录;绪论;工艺流程、设备及操作 条件;塔工艺和设备设计计算;塔机械结构和塔体附件及附属设备选型和计算; 设计结果概览;附录;参考文献等。 2. 图纸1套:包括工艺流程图(3号图纸)。 教研室主任签名: 年月日

解吸塔及蒸氨塔的改造与计算

解吸塔及蒸氨塔的改造与计算 唐伯国林长青张振欧黄洁 (天津博隆塔器新技术开发有限公司300193)我国目前尿素装置多采用水溶液全循环法生产工艺。在生产过程中会形成一定数量的含NH35%~8%的稀碳铵液,浓度太低不能利用,直接排放既污染环境又损失氨。国家废液排放标准中要求含NH3≤0.07%(质量百分数,下同),随着人们对环保要求的重视,有些地方排放废水中含氨量要求指标更低。利用解吸塔将碳铵液中残余的氨和CO2解吸出来,返回吸收系统,既提高氨的利用率,又可使排放废水达到排污标准。 这样对解吸塔的基本要求是: (1)解吸后的排放废液应尽量少地含氨,降低氨耗,减小污染。 (2)解吸后塔顶的解吸气要返回系统,含水量应尽量少,有利于实现系统水平衡。 近年来,世界能源供应日益紧张,节能降耗已成为主要发展方向,从合成氨尾气中回收有价值的气体并加以综合利用,已成为人们普遍关心的问题。合成尾气主要由两部分气体组成:合成放空气和液氨贮槽弛放气,其组分与生产操作有关。合成氨厂将其中的氨清洗后制成稀氨水,氨水浓度一般在15%,再利用蒸氨塔将稀氨水汽提得到99%以上的浓氨,使氨得到充分回收。同时蒸氨塔塔底排放液也要达到排放标准,不会影响环境。 多年来我公司与各合成氨生产厂协作,完成了多项解吸塔与蒸氨

塔的技改工作。本文将以解吸塔和蒸氨塔的各一个改造实例,介绍它们的模拟计算工作,并对相关的问题提出分析意见。 1解吸塔 某生产厂家原解吸塔为DN800,操作压力为0.35MPa,处理量较小,塔釜液出口含NH3指标为0.08%,不能达到国家的废液排放标准。为了增大处理量并能够达到国家的排放标准,该厂决定新增1台解吸塔,委托我公司进行设计。解吸液组分为:NH36.0%、CO20.99%、尿素0.94%,要求处理量为20~25m3/h、排放废液中含NH3≤0.03%。对该塔进行了详细计算,最终确定设计方案,塔径为 1000、所选用的填料为规整填料。开车后操作稳定,解吸塔塔顶解吸气中含NH3为35%,返回系统,塔底排放废液中含NH3为0.023%,满足设计要求。 1.1工艺流程 (1)较早期的解吸塔工艺流程如图1所示。 图1较早期的碳铵解吸塔工艺流程示意图图2经改进的碳铵解吸塔

脱戊烷塔顶空冷器腐蚀与防护

收稿日期:2007205228 作者简介:迟春雨(19732),男,辽宁丹东人,工程师,学士,从事设备管理工作。 文章编号:100027466(2007)增刊20111202 脱戊烷塔顶空冷器腐蚀与防护 迟春雨 (中石油大连石化分公司,辽宁大连116032) 摘要:介绍了中石油大连石化分公司催化重整装置脱戊烷塔顶空冷器出现的腐蚀问题及采取的措 施,分析认为造成腐蚀的主要原因是重整原料中存在过量的氯、硫,操作失误以及补氯过量等。对氯、硫的来源及腐蚀机理进行了分析,并提出了相应的防护措施。关键词:脱戊烷塔;空冷器;腐蚀;防护中图分类号:TQ 0511501 文献标志码:B 中石油大连石化分公司60万t/a 连续重整装置于2001年11月开工,该装置采用了美国UOP 公司超低压重整及第三代(C YCL EMA X )催化剂再生技术,主要生产高辛烷值汽油,并付产氢气。在5a 多的运行过程中,曾多次出现了冷换设备的泄漏。2007201229,脱戊烷塔顶空冷器A204/B 有异常声响,判断是空冷器管板处有漏点。经过详细检查发现有3根管子泄漏,这是第4次发生泄漏。4次泄漏部位均是空冷器管束与管板的连接处。从管束内采样的结晶物分析来看,主要成分为氯化铵。通过对工艺过程及操作因素的分析,明确了造成该设备腐蚀的主要原因是氯化物及硫化物的腐蚀,并进行了理论和实际操作分析。 1 介质腐蚀特性及原理[1] 1.1  含硫化合物硫化物的腐蚀作用与温度有直接关系,一些硫化物对热是不稳定的,在温度升高的过程中会逐渐分解成水分子量的硫化物。元素硫和硫化氢可互相转化,硫化氢被空气氧化可以生成元素硫,元素硫与原油中的烃类物质反应又可以生成硫化氢。 t ≤120℃时,硫化物未分解,无水情况下对设备无腐蚀,但含水时,则形成炼油厂各装置中轻油部位的H 2S 2H 2O 型腐蚀,成为难以控制的腐蚀部位。当120℃480℃,硫化氢接近于完全分解,腐蚀率下降。而t >500℃不是硫化物的腐蚀范围,此时为高温氧化腐蚀。 1.2 氯化物 氯化物遇水后会生成腐蚀性很强的盐酸,生成的盐酸遇到钢铁后会发生反应使钢发生点蚀。 2HCl +H 2O →2HCl ?H 2O 2HCl ?H 2O +Fe →FeCl 2?H 2O +H 2↑在低温或p H 值较高时,FeCl 2又可以和油中所含的H 2S 发生可逆反应: FeCl 2+H 2S =FeS +2HCl 在没有H 2O 和HCl 的情况下,H 2S 可以和钢发生反应,形成FeS 保护膜附着在钢的表面,使钢不再受到进一步的腐蚀。 如果有HCl 存在,则可能发生下面的反应破坏生成的FeS 保护膜: FeS +2HCl →FeCl 2+H 2S 产生的FeCl 2溶于水,可以被物流冲刷掉。失去保护膜的金属可能再次被H 2S 腐蚀生成FeS 保护膜,FeS 保护膜又再次被HCl 分解失去作用,如此反复循环,极大促进了碳钢设备的腐蚀。 2 腐蚀性介质来源 ①装置原料石脑油加氢处理不充分。由于加氢  第36卷 增刊 石 油 化 工 设 备 Vol 136 Supplement 2007年8月 PETRO 2CH EMICAL EQU IPM EN T Aug.2007

CSTS吸收_解吸工艺仿真设计

吸收解吸单元仿真培训系统 操作说明书 北京东方仿真软件技术有限公司 2009年1月

目录 一、工艺流程说明 .................................... 错误!未定义书签。 1、工艺说明 ......................................... 错误!未定义书签。 2、本单元复杂控制方案说明 ........................... 错误!未定义书签。 3、设备一览 ......................................... 错误!未定义书签。 二、吸收解吸单元操作规程 ............................ 错误!未定义书签。 1、开车操作规程 ..................................... 错误!未定义书签。 2、正常操作规程 ..................................... 错误!未定义书签。 3、停车操作规程 ..................................... 错误!未定义书签。 4、仪表及报警一览表 ................................. 错误!未定义书签。 三、事故设置一览 .................................... 错误!未定义书签。 四、仿真界面 ........................................ 错误!未定义书签。附:思考题 .......................................... 错误!未定义书签。

吸收与解吸实验

一、实验目的 12 3 4 二、实验原理 ㈠、吸收实验 根据传质速率方程,在假定Kxa 低浓、难溶等] 条件下推导得出吸收速率方程: Ga=Kxa ·V ·Δx m 则: Kxa=Ga/(V ·Δx m ) 式中:Kxa ——体积传质系数 [kmolCO 2/m 3hr Ga ——填料塔的吸收量 [Kmol CO 2 V ——填料层的体积 [m 3] Δx m ——填料塔的平均推动力 1、Ga 的计算 已知可测出:Vs[m 3/h]、V B [m 3/h](可由色谱直接读出) Ls[Kmol/h]=Vs ×ρ水/M 水 101 1'29]/[ρρρρV M V h Kmol G B B B =?=?= 空气 标定情况:T 0=273+20 P 0=101325 测定情况:T 1=273+t1 P 1=101325+ΔP 因此可计算出L S 、G B 。又由全塔物料衡算:G a =Ls(X 1-X 2)=G B (Y 1-Y 2) 2 2 21 1111y y Y y y Y -= -= 且认为吸收剂自来水中不含CO 2,则X 2=0,则可计算出G a 和X 1 2、Δx m 的计算 根据测出的水温可插值求出亨利常数E[atm],本实验为P=1[atm] 则 m=E/P m y x m y x x x x x x x x x x x x e e e e m 1 1221 112221 2 1 2ln = = -=?-=????-?= ?

㈡、解吸实验 低浓、难溶等] Ga=K Y a ·V 则: K Y a=Ga/(V 式中:K Y a Ga V ΔY m 1、Ga 的计算 已知可测出:y 2 ]/[h Kmol G B 标定情况:T 0 测定情况:T 1因此可计算出L S 、G B 。又由全塔物料衡算:G a =Ls(X 1-X 2)=G B (Y 1-Y 2) 0112 2 21 11=-= -= y y Y y y Y 且认为空气中不含CO 2,则y 2=0;又因为进塔液体中X 1有两种情况,一是直接将吸收后的液体用于解吸,则其浓度即为前吸收计算出来的实际浓度X 1;二是只作解吸实验,可将CO 2用文丘里吸碳器充分溶解在液体中,可近似形成该温度下的饱和浓度,其X 1*可由亨利定律求算出: m m y x 1 *1== 则可计算出G a 和X 2 2、ΔY m 的计算 根据测出的水温可插值求出亨利常数E[atm],本实验为P=1[atm] 则 m=E/P 1 12 21112221 2 1 2ln x m y x m y Y Y Y Y Y Y Y Y Y Y Y e e e e m ?=?=-=?-=????-?= ? 根据 e e Y y y y Y 换算成将-= 1 三、实验装置

吸收塔设计

大庆师范学院 《化工原理》课程设计说明书 设计题目吸收塔设计 学生姓名濮玲 指导老师 学院化学化工学院 专业班级化工4班 完成时间2010年12月18日

目录 第一节前言 (5) 1.1 填料塔的主体结构与特点 (5) 1.2 填料塔的设计任务及步骤 (5) 1.3 填料塔设计条件及操作条件 (5) 第二节填料塔主体设计方案的确定 (6) 2.1 装置流程的确定 (6) 2.2 吸收剂的选择 (6) 2.3填料的类型与选择 (6) 2.3.1 填料种类的选择 (6) 2.3.2 填料规格的选择 (6) 2.3.3 填料材质的选择 (7) 2.4 基础物性数据 (7) 2.4.1 液相物性数据 (7) 2.4.2 气相物性数据 (7) 2.4.3 气液相平衡数据 (8) 2.4.4 物料横算 (8) 第三节填料塔工艺尺寸的计算 (9) 3.1 塔径的计算 (9) 3.2 填料层高度的计算及分段 (10) 3.2.1 传质单元数的计算 (10) 3.2.3 填料层的分段 (12) 3.3 填料层压降的计算 (12) 第四节填料塔内件的类型及设计 (13) 4.1 塔内件类型 (13) 4.2 塔内件的设计 (13) 4.2.1 液体分布器设计的基本要求: (13) 4.2.2 液体分布器布液能力的计算 (13) 注:14 1填料塔设计结果一览表 (14) 2 填料塔设计数据一览 (14)

3 参考文献 (16) 4 后记及其他 (16) 附件一:塔设备流程图 (16) 附件二:塔设备设计图 (17)

大庆师范学院本科学生 化工原理课程设计任务书 设计题目苯和氯苯的精馏塔塔设计 系(院)、专业、年级化学化工学院、化学工程与工艺专业、08级化工四班学生姓名学号 指导教师姓名下发日期 任务起止日期:2010 年日6 月21 日至2010 年7 月20

化工厂精馏塔吊装方案(400T履带吊)

**公司10万吨/年气分脱戊烷塔改造项目设备(精馏塔)吊装方案 编制: 审核: 批准: **建设有限公司 2019年月日

目录 1.编制说明 (1) 2.编制依据 (1) 3.拟用吊装机具 (1) 4.吊装规划 (1) 4.1吊装措施选择 (1) 4.2吊装工艺综述 (1) 5.吊装验算 (3) 6.吊车的使用 (5) 7.劳动力安排 (6) 8.所用机具 (6) 9.安全技术及措施 (6) 10.平面布置图 (8) 11.400吨履带吊性能表 (8) 12.120吨汽车吊性能表 (9)

1.编制说明 2.编制依据 a)《大型设备吊装工程施工工艺标准》SH/T3515-2003 b)《石油化工工程起重施工规范》SH/T3536-2002 3.拟用吊装机具 利勃海尔400吨履带吊及利勃海尔120吨汽车吊。 4.吊装规划 4.1吊装措施选择 本着安全、先进、经济、快速高效的目标,结合我公司过去成熟的类似工程经验,在本工程中拟定采用多种吊装方法相结合的施工工艺,拟采用租赁履带式起重机和一般轻型轮式起重机械完成吊装工作。 4.2吊装工艺综述 设备到达现场前,按照卸车方法准备好卸车机械和场地。对于特大型设备,因水平移动困难,在卸车时应尽可能一次性将设备置于起吊位置。 立式设备吊装,设备由卧姿变为立姿,采用一主、一辅双吊车抬升法,即设备上部由主起重机械提升,设备尾部由辅助吊车抬送,直至设备呈直立状态。 吊装索具应根据受力计算和设备设计的吊耳形状、位置、大小进行选择。

下部索具可根据设备设计制造情况采用卡环或捆绑方法选择,且应有防止绳扣滑动的有效措施。当设备尾部吊点位置在设备上侧面时,辅助吊车可将设备一直送到直立状态,此时对主吊车受力最有利。吊装流程如下: 吊车的站位应遵守以下准则 履带式起重机,利用其能移动的特性,可在吊装过程中不断变换位置,但在辅助吊车脱钩前,尽可能站到最终位置。 汽车起重机的站位 由于负重状态下汽车起重机不可进行位移,因此必须按照事先计算准确站立在可将设备从起吊位置经变幅或转动、起落,最终到达设备就位点的最佳位置。 在设备吊装过程中,随着主吊车将设备上部的提升,使设备水平投影距离变小,辅助吊车应不断将尾端向前抬送,随着设备轴线与地面夹角的不断变大,尾部辅助吊车的受力会不断减小,直至设备直立时,可摘去辅助吊车吊钩。为此在辅助吊车摘钩前,主吊车必须调整好最佳位置,以便承

化工原理 第8章 吸收作业 吸收塔的计算

姓名:;学号:;班级: 第8章吸收(吸收塔的计算) 一、填空题: 1. 计算吸收塔的填料层高度,必须运用如下三个方面的知识关联计算:______、______、______。 2. 吸收过程物料衡算时的基本假定是: (1)____________________________。 (2)___________________________。 3. 由于吸收过程气相中的溶质分压总____液相中溶质的平衡分压,所以吸收操作线总是在平衡线的____。增加吸收剂用量,操作线的斜率____,则操作线向____平衡线的方向偏移,吸收过程推动力(y-ye)_____。 4. 在气体流量,气相进出口组成和液相进口组成不变时,若减少吸收剂用量,则传质推动力将____,操作线将___平衡线。 5. 一般吸收塔中常采用逆流操作,其目的是 ____________________________________________________________。 5. 某吸收塔中,物系的平衡线方程为y=2.0x,操作线方程为y=3.5x+0.001,当 y1=0.06,y2=0.0030时,x1=_______,x2=_____________,L/V=______,气相传质单元数 N=_______. OG 6. 某逆流吸收塔,用纯溶剂吸收混合气中易溶组分,设备高为无穷大,入塔Y1=8%(体积),平衡关系Y=2X。试问: ⑴.若液气比(摩尔比,下同)为2.5时,吸收率= ______% ⑵.若液气比为1.5 时,吸收率=________% H将_____,7. 对一定操作条件下的填料吸收塔,如将塔料层增高一些,则塔的 OG N将_____(增加,减少,不变)。 OG 8.用纯溶剂逆流吸收混合气中的溶质,符合亨利定律。当入塔气体浓度上升(属低浓度

水吸收丙烯酸气体吸收塔设计

水吸收丙烯酸气体吸收塔设计 一、设计条件的选定 1、混合气:产物:丙烯酸气体 副产物:醋酸,甲酸,二氧化碳,马来酸,丙烯醛,乙醛,丙酮等气体。 混合气的处理量为:h /m 640.467393 2、进塔混合气组成:含丙烯酸摩尔分率:%6.6 3、进塔混合气温度:100℃ 4、进塔吸收剂(水)的温度:25℃ 5、丙烯酸回收率:%64.74 6、操作条件:操作压力在常压下进行 第一章 概述 1.1吸收塔的概述 气体吸收过程是化工生产中常用的气体混合物的分离操作,其基本原理是利用混合物中各组分在特定的液体吸收剂中的溶解度不同,实现各组分分离的单元操作。 实际生产中,吸收过程所用的吸收剂常需回收利用。故一般来说,完整的吸收过程应包括吸收和解吸两部分。在设计上应将两部分综合考虑,才能得到较为理想的设计结果。作为吸收过程的工艺设计,其一般性问题是在给定混合气体处理量、混合气体组成、温度、压力以及分离要求的条件下,完成以下工作: (1) 根据给定的分离任务,确定吸收方案; (2) 根据流程进行过程的物料和热量衡算,确定工艺参数; (3) 依据物料及热量衡算进行过程的设备选型或设备设计; (4) 绘制工艺流程图及主要设备的工艺条件图; 1.2吸收设备的发展 吸收操作主要在填料塔和板式塔中进行,尤以填料塔的应用较为广泛。 塔填料的研究与应用已取得长足的发展:鲍尔环、阶梯环、金属环矩鞍等的出现标志散装填料朝高通量、高效率、低阻力方向发展有新的突破;规整填料在工业装置大型化和要求高分离效率的情况下倍受重视,已成为塔填料的重要品种。 填料塔仍处于发展之中,今后的研究方向主要是提高传质效率,同时考虑填料的强度、操作性能及使用上的通用因素并综合环型、鞍型及规整填料的优点开发构型优越、堆积接触方式合理、流体在整个床层均匀分布的新型填料。目前看来,填料的材质以陶瓷、金属、塑料为主,为满足化工生产温度和耐腐蚀要求,已开发了氟塑料制成的填料。 填料塔的发展,与塔填料的开发研究是分不开的。除了提高原有填料的流体力学与传质性能外,还开发了效率高、放大效应小的新型填料。加上塔填料本身具有压降小、持液量小、耐腐蚀、操作稳定、弹性大等优点,使填料塔开发研究达到了新的台阶。 1.3吸收过程在工业生产上应用 化工生产中吸收操作广泛应用于混合气体的分离: (1) 净化或精制气体,混合气体中去除杂质。如用K 2CO 3水溶液脱除合成气中的CO 2,丙酮脱除石油裂解气中的乙炔等。 (2) 制取某种气体的液态产品。如用水吸收氯化氢气体制取盐酸。 (3) 混合气体以回收所需组分。如用汽油处理焦炉气以回收其中的芳烃。 (4) 工业废气处理。工业生产中所排放的废气中常含有丙酮,NO ,NO 2,HF 等有害组分,组成一般很低,但若直接排入大气,则对人体和自然环境危害都很大。因此排放之前必须加以处理,选用碱性吸收剂吸收这些有害的气体是环保工程中最长采用的方法

相关主题
文本预览
相关文档 最新文档