当前位置:文档之家› 各种类型离子交换树脂常用再生剂及其用量(打印)

各种类型离子交换树脂常用再生剂及其用量(打印)

各种类型离子交换树脂常用再生剂及其用量(打印)
各种类型离子交换树脂常用再生剂及其用量(打印)

各种类型离子交换树脂常用再生剂及其用量

离子交换树脂性能降解原因

树脂在长期使用中,性能会逐渐下降,表现为出水(即产品)质量降低。影响树脂性能降解的因素很复杂,如树脂体积减少,交换能力下降,球粒裂纹增多,破碎流失等,造成上述现象的原因不外是:(1)胀缩内应力不均。在使用中树脂内部由于溶胀及收缩变化的不均匀,局部结构中应力不平衡,造成断链裂解。

(2)氧化破坏。体系中的氧化剂,包括酸、碱、溶剂等对树脂骨架及功能基的破坏。

(3)杂质污染。水中杂质堵塞了树脂的内部孔道,阻挡交换吸附。

离子交换树脂如何进行预处理

(1)阳离子交换树脂的预处理步骤

首先用清水对树脂进行冲洗(最好为反洗)洗至出水清澈无混浊、无杂质为止。而后用4~5%的HCl和NaOH在交换柱中依次交替浸泡2~4小时,在酸碱之间用大量清水淋洗(最好用混合床高纯度去离子水进行淋洗)至出水接近中性,如此重复2~3次,每次酸碱用量为树脂体积的2倍。最后一次处理应用4~5%的HCl溶液进行,用量加倍效果更好。放尽酸液,用清水淋洗至中性即可待用。

(2)阴离子交换树脂的预处理步骤

首先用清水对树脂进行冲洗(最好为反洗),洗至出水清澈无混浊、无杂质为止。而后用4 ~5%的NaOH和HCl在交换柱中依次交替浸泡2 ~4小时,在碱酸之间用大量清水淋洗(最好用混合床高纯度去离子水进行淋洗)至出水接近中性,如此重复2~3次,每次酸碱用量为树脂体积的2倍。最后一次处理应用4~5%的NaOH溶液进行,用量加倍效果更好。放尽碱液,用清水淋洗至中性即可待用。

(3)应用于医药、食品行业的树脂,预处理最好先用乙醇浸泡,而后再用酸碱进行交替处理,大量清水淋洗至中性待用。

(4)预处理中最后一次通过交换柱的是酸还是碱,决定于使用时所要求的离子型式。

(5)为了保证所要求的离子型式的彻底转换,所用的酸、碱应是过量的。

判别离子交换树脂铁污染的程度

不同含水量的D005-IIMTBE专用树脂催化剂的理化指标。

MTBE生产技术有:

1、混相床反应器+共沸蒸馏合成MTBE技术

2、绝热外循环反应器+共沸蒸馏合成MTBE技术

3、混相床反应器+催化蒸馏合成MTBE技术

4、绝热外循环反应器+催化蒸馏合成MTBE 技术

主要特点如下:

1.原料适应性强,可以利用FCC、乙烯生产、异丁烷脱氢、烯烃异构、烯烃氧化脱氢、煤制烯烃等碳四原料,根据原料和产品要求选择最佳工艺。

2.能耗低,由于采用独特的热源综合利用技术,能耗比传统的MTBE生产技术降低20%以上,比国内同行业技术降低10%以上。

3.产品纯度高,调油型纯度98%以上,化工型纯度99%以上,MSBE≤0.2%,可以用于裂解制取高纯度异丁烯。

4.异丁烯转化率高,醚后碳四异丁烯≤0.3%,可以作为甲乙酮生产原料或选择性加氢后制取丁烯—1等。

5.腐蚀性小,采用我公司的专利技术后,甲醇回收系统循环水PH 值长期在

6.5以上稳定运行,很好的解决了腐蚀问题。

6. 环境污染小,正常运行时现场无污水、废气排放。

轻汽油醚化技术

轻汽油醚化技术是将催化裂化装置稳定汽油中的C5~C7活性烯烃与甲醇反应生成相应的醚,从而降低了汽油中烯烃的含量。经醚化后的汽油辛烷值可提高1~3个单位。通过醚化装置可以使价格较低的甲醇通过醚化转化为高附加值的汽油产品,提高了炼油厂的经济效益。

轻汽油醚化技术主要包括:轻重汽油的分离、选择性加氢、催化醚化、产品分离、甲醇回收等工序。

主要特点如下:

1.投资省,可根据客户的产品目标、投资状况选择不同的工艺组合。

2.装置运行稳定,装置设计连续运行2年以上。

3.催化剂使用寿命长,催化剂设计使用寿命2年以上。

4.转化率高,采用自主开发的先进催化精馏技术,轻汽油中可醚化炭五烯烃转化率达到95%。

5.腐蚀性小,采用我公司的专利技术后,甲醇回收系统循环水PH 值长期在

6.5以上稳定运行,很好的解决了腐蚀问题。

6.无污水、废气排放。

丙烯水合生产异丙醇技术有:

1、丙烯与水顺流水合生产异丙醇技术

2、丙烯与水对流水合生产异丙醇技术

主要特点如下:

1.采用高活性的阳离子交换树脂作催化剂,大水烯配比进行反应。

2.反应条件温和,反应温度130—160℃、压力0.7—0.8MPa。

3.单程转化率高,正常生产单程转化率50%以上。

4.副反应少,初期异丙醇选择性大于95%,周期平均大于92%。

5.压差小,采用特殊的结构的反应器,单层压差小于0.1MPa。

6.循环水电导率低、腐蚀小。

7.设备运行周期长设计运行周期1年以上。

8.可以副产高纯度二异丙醚。

碳四综合利用技术

煤制烯烃技术在我国得到快速发展,使得碳四资源更加丰富,利用廉价的碳四生产高附加值化工产品是碳四利用的方向,我公司利用已经开发的成熟技术,可以对客户的碳四资源进行综合利用,主要工艺路线有:1.碳四醚化生产MTBE,醚后碳四异丁烯含量≤0.3%。

2.碳四醚化生产MTBE,醚后碳四选择性加氢生产丁烯—1。

3.碳四水合生产叔丁醇,剩余碳四醚化生产MTBE,醚化后碳

四水合生产仲丁醇、甲乙酮。

4.正丁烯异构化生产MTBE。

5.异丁烷脱氢醚化生产MTBE。

丁二烯抽余混合碳四与纯水在阳离子树脂催化剂存在下,水合生成叔丁醇,经分层、提浓,制得高浓度叔丁醇。

主要工艺有:

1.异丁烯与水顺流水合制取叔丁醇技术

2.异丁烯与水对流水合制取叔丁醇技术

主要特点如下:

1.产品纯度高,根据客户要求,普通产品纯度≥85%,采用特殊精馏技术产品纯度≥98%。

2.单程转化率高,由于采用独特的顺流、对流工艺和我公司自主开发高活性的催化剂单程转化率高。

3.催化剂寿命长,催化剂使用寿命18个月以上。

4.原料适应性强。

5.能耗低。

6.压差小。

二甲醚生产技术

甲醇脱水制二甲醚分为液相法和气相法两种工艺,目前国内主要采用气相法制备二甲醚工艺。由于需要将甲醇加热蒸发气化,在反应器中高温脱水生成二甲醚再进行精馏分离,反应器体积大、投资大、操作温度高、能耗高。

我公司开发的二甲醚生产技术采用液相催化蒸馏工艺,主要包括甲醇净化、脱水预反应、催化蒸馏3个单元。

主要特点如下:

1.反应条件温和,由于采用高活性树脂催化剂反应温度130—160℃。

2.投资省,由于反应是在液相进行,反应器体积小、投资省。

3.能耗低,反应温度较低、原料不需要气化、充分利用反应热,反应与分离同时进行,能耗非常低。

4.转化率高,由于采用催化蒸馏技术单程转化率接近100%。

5.产品纯度高,产品纯度99.6%以上。

6.副反应少,由于反应温度较低,几乎无副反应

催化剂使用注意事项或中毒(失活) 原因分析

原因之一:“阳离子”中毒

1、阳离子的组成:C4原料中的金属离子和碱性氮化物、氨气和有机胺。

2、阳离子的来源:

①上游原料水洗不彻底而带来的钠离子、钙离子;

②设备管道或阀门所产生的可溶性的铁离子、铬离子;

③FCC分子筛中的微量铝离子和硅离子;

④C4中的氨、甲胺等碱性化合物也属于阳离子的范畴。

3、中毒原理和形式:这些阳离子和催化剂中的SO3OH产生离子交换而使催化剂“中毒”。反应式如下:SO3OH+M+(Na+、Ca2+、Fe3+、Cr4+、Al4+、NH4+、CH3NH2+……)

中毒形式:“一层一层”地中毒,即:先接触物料的先中毒,后接触物料暂不中毒。

原因之二:可水解的腈类和酰胺类物质中毒

1.其来源:

①在催化裂化中,C4、C5原料通常含有乙腈、丙腈。

②蒸气裂解C4料原中,偶尔会带有上游的丁二烯之抽提用的DMF.

2.中毒原理:如乙腈:CH3CH2CN+H2OCH3CH2C-NH2产物胺会使催化剂中毒。

3.中毒形式:扩散型。此类物质使催化剂的形式与以上不同,将中毒

范围扩散到催化剂整体各个角落。

原因之三:催化剂孔道堵塞,使催化剂失活。

1.聚合物堵塞孔道:聚合物来源于丁二烯,在高温下自聚。

2.控制丁二烯的含量指标:一般要求<0.2%。

原因之四:催化基团脱落,使催化剂失活。

催化剂最高耐温120℃,但长时间在此温度下运行,催化剂的磺化基团会从结构骨架上脱落下来,而流入液相中,从而造成催化剂失活。

离子交换树脂原理

离子交换树脂原理 离子交换树脂是一种聚合物,带有相应的功能基团。一般情况下,常规的钠离子交换树脂带有大量的钠离子。当水中的钙镁离子含量高时,离子交换树脂可以释放出钠离子,功能基团与钙镁离子结合,这样水中的钙镁离子含量降低,水的硬度下降。硬水就变为软水,这是软化水设备的工作过程。 当树脂上的大量功能基团与钙镁离子结合后,树脂的软化能力下降,可以用氯化钠溶液流过树脂,此时溶液中的钠离子含量高,功能基团会释放出钙镁离子而与钠离子结合,这样树脂就恢复了交换能力,这个过程叫作“再生”。 由于实际工作的需要,软化水设备的标准工作流程主要包括:工作(有时叫做产水,下同)、反洗、吸盐(再生)、慢冲洗(置换)、快冲洗五个过程。不同软化水设备的所有工序非常接近,只是由于实际工艺的不同或控制的需要,可能会有一些附加的流程。任何以钠离子交换为基础的软化水设备都是在这五个流程的基础上发展来的(其中,全自动软化水设备会增加盐水重注过程)。 反洗:工作一段时间后的设备,会在树脂上部拦截很多由原水带来的污物,把这些污物除去后,离子交换树脂才能完全曝露出来,再生的效果才能得到保证。反洗过程就是水从树脂的底部洗入,从顶部流出,这样可以把顶部拦截下来的污物冲走。这个过程一般需要5-15分钟左右。 吸盐(再生):即将盐水注入树脂罐体的过程,传统设备是采用盐泵将盐水注入,全自动的设备是采用专用的内置喷射器将盐水吸入(只要进水有一定的压力即可)。在实际工作过程中,盐水以较慢的速度流过树脂的再生效果比单纯用盐水浸泡树脂的效果好,所以软化水设备都是采用盐水慢速流过树脂的方法再生,这个过程一般需要30分钟左右,实际时间受用盐量的影响。 慢冲洗(置换):在用盐水流过树脂以后,用原水以同样的流速慢慢将树脂中的盐全部冲洗干净的过程叫慢冲洗,由于这个冲洗过程中仍有大量的功能基团上的钙镁离子被钠离子交换,根据实际经验,这个过程中是再生的主要过程,所以很多人将这个过程称作置换。这个过程一般与吸盐的时间相同,即30分钟左右。 快冲洗:为了将残留的盐彻底冲洗干净,要采用与实际工作接近的流速,用原水对树脂进行冲洗,这个过程的最后出水应为达标的软水。一般情况下,快冲洗过程为5-15分钟。 应用 1)水处理 水处理领域离子交换树脂的需求量很大,约占离子交换树脂产量的90%,用于水中的各种阴阳离子的去除。目前,离子交换树脂的最大消耗量是用在火力发电厂的纯水处理上,其次是原子能、半导体、电子工业等。 2)食品工业 离子交换树脂可用于制糖、味精、酒的精制、生物制品等工业装置上。例如:高果糖浆的制造是由玉米中萃出淀粉后,再经水解反应,产生葡萄糖与果糖,而后经离子交换处理,可以生成高果糖浆。离子交换树脂在食品工业中的消耗量仅次于水处理。 3)制药行业 制药工业离子交换树脂对发展新一代的抗菌素及对原有抗菌素的质量改良具有重要作用。链霉素的开发成功即是突出的例子。近年还在中药提成等方面有所研究。 4)合成化学和石油化学工业 在有机合成中常用酸和碱作催化剂进行酯化、水解、酯交换、水合等反应。用离子交换树脂代替无机酸、碱,同样可进行上述反应,且优点更多。如树脂可反复使用,产品容易分离,反应器不会被腐蚀,不污染

各种类型离子交换树脂常用再生剂及其用量(打印)模板

各种类型离子交换树脂常用再生剂及其用量 离子交换树脂性能降解原因 树脂在长期使用中,性能会逐渐下降,表现为出水(即产品)质量降低。影响树脂性能降解的因素很复杂,如树脂体积减少,交换能力下降,球粒裂纹增多,破碎流失等,造成上述现象的原因不外是:(1)胀缩内应力不均。在使用中树脂内部由于溶胀及收缩变化的不均匀,局部结构中应力不平衡,造成断链裂解。 (2)氧化破坏。体系中的氧化剂,包括酸、碱、溶剂等对树脂骨架及功能基的破坏。 (3)杂质污染。水中杂质堵塞了树脂的内部孔道,阻挡交换吸附。

离子交换树脂如何进行预处理 (1)阳离子交换树脂的预处理步骤 首先用清水对树脂进行冲洗(最好为反洗)洗至出水清澈无混浊、无杂质为止。而后用4~5%的HCl和NaOH在交换柱中依次交替浸泡2~4小时,在酸碱之间用大量清水淋洗(最好用混合床高纯度去离子水进行淋洗)至出水接近中性,如此重复2~3次,每次酸碱用量为树脂体积的2倍。最后一次处理应用4~5%的HCl溶液进行,用量加倍效果更好。放尽酸液,用清水淋洗至中性即可待用。 (2)阴离子交换树脂的预处理步骤 首先用清水对树脂进行冲洗(最好为反洗),洗至出水清澈无混浊、无杂质为止。而后用4 ~5%的NaOH和HCl在交换柱中依次交替浸泡2 ~4小时,在碱酸之间用大量清水淋洗(最好用混合床高纯度去离子水进行淋洗)至出水接近中性,如此重复2~3次,每次酸碱用量为树脂体积的2倍。最后一次处理应用4~5%的NaOH溶液进行,用量加倍效果更好。放尽碱液,用清水淋洗至中性即可待用。 (3)应用于医药、食品行业的树脂,预处理最好先用乙醇浸泡,而后再用酸碱进行交替处理,大量清水淋洗至中性待用。 (4)预处理中最后一次通过交换柱的是酸还是碱,决定于使用时所要求的离子型式。 (5)为了保证所要求的离子型式的彻底转换,所用的酸、碱应是过量的。

离子交换树脂的种类和性能

离子交换树脂的种类和性能 离子交换树脂在现代制糖工业中起着很重要的作用。世界上许多糖厂制造精糖和高级食用糖浆,多数使用离子交换树脂将糖液脱色提纯,而过去传统用骨炭的精炼糖厂亦有逐渐转向使用离子交换树脂的趋势。 离子交换技术有相当长的历史,某些天然物质如泡沸石和用煤经过磺化制得的磺化煤都可用作离子交换剂。但是,随着现代有机合成工业技术的迅速发展,研究制成了许多种性能优良的离子交换树脂,并开发了多种新的应用方法,离子交换技术迅速发展,在许多行业特别是高新科技产业和科研领域中广泛应用。近年国内外生产的树脂品种达数百种,年产量数十万吨。 在工业应用中,离子交换树脂的优点主要是处理能力大,脱色范围广,脱色容量高,能除去各种不同的离子,可以反复再生使用,工作寿命长,运行费用较低(虽然一次投入费用较大)。以离子交换树脂为基础的多种新技术,如色谱分离法、离子排斥法、电渗析法等,各具独特的功能,可以进行各种特殊的工作,是其他方法难以做到的。离子交换技术的开发和应用还在迅速发展之中。 离子交换树脂的应用,是近年国内外制糖工业的一个重点研究课题,是糖业现代化的重要标志。膜分离技术在糖业的应用也受到广泛的研究。 离子交换树脂都是用有机合成方法制成。常用的原料为苯乙烯或丙烯酸(酯),通过聚合反应生成具有三维空间立体网络结构的骨架,再在骨架上导入不同类型的化学活性基团(通常为酸性或碱性基团)而制成。 离子交换树脂不溶于水和一般溶剂。大多数制成颗粒状,也有一些制成纤维状或粉状。树脂颗粒的尺寸一般在0.3~1.2mm 范围内,大部分在0.4~0.6mm之间。它们有较高的机械强度(坚牢性),化学性质也很稳定,在正常情况下有较长的使用寿命。 离子交换树脂中含有一种(或几种)化学活性基团,它即是交换官能团,在水溶液中能离解出某些阳离子(如H+或Na+)或阴离子(如OH-或Cl

离子交换树脂的再生

离子交换树脂的再生 一、常规的再生处理 离子交换树脂使用一段时间后,吸附的杂质接近饱和状态,就要进行再生处理,用化学药剂将树脂所吸附的离子和其他杂质洗脱除去,使之恢复原来的组成和性能。在实际运用中,为降低再生费用,要适当控制再生剂用量,使树脂的性能恢复到最经济合理的再生水平,通常控制性能恢复程度为70~80%。如果要达到更高的再生水平,则再生剂量要大量增加,再生剂的利用率则下降。 树脂的再生应当根据树脂的种类、特性,以及运行的经济性,选择适当的再生药剂和工作条件。 树脂的再生特性与它的类型和结构有密切关系。强酸性和强碱性树脂的再生比较困难,需用再生剂量比理论值高相当多;而弱酸性或弱碱性树脂则较易再生,所用再生剂量只需稍多于理论值。此外,大孔型和交联度低的树脂较易再生,而凝胶型和交联度高的树脂则要较长的再生反应时间。 再生剂的种类应根据树脂的离子类型来选用,并适当地选择价格较低的酸、碱或盐。例如: 钠型强酸性阳树脂可用10%NaCl溶液再生,用药量为其交换容量的2倍(用NaCl量为117g/ l树脂);氢型强酸性树脂用强酸再生,用硫酸时要防止被树脂吸附的钙与硫酸反应生成硫酸钙沉淀物。为此,宜先通入1~2%的稀硫酸再生。 氯型强碱性树脂,主要以NaCl溶液来再生,但加入少量碱有助于将树脂吸附的色素和有机物溶解洗出,故通常使用含10%NaCl + 0.2%NaOH的碱盐液再生,常规用量为每升树脂用150~200g NaCl,及3~4g NaOH。OH型强碱阴树脂则用4%NaOH溶液再生。 树脂再生时的化学反应是树脂原先的交换吸附的逆反应。按化学反应平衡原理,提高化学反应某一方物质的浓度,可促进反应向另一方进行,故提高再生液浓度可加速再生反应,并达到较高的再生水平。

各种型号离子交换树脂

几种常用的离子交换树脂型号 一、001x7Na(732)阳离子交换树脂 本产品是在苯乙烯一二乙烯苯共聚基体上带有磺酸基(-SO 3 H)的离子交换树脂,它具有交换容量高、交换速度快、机械强度好等特点。 本产品相当于美国Amberlite IR-120;Dowex-50,德国:Lewatit-100.日本:精品文档,超值下载 Diaion SK-1,法国AllassionCS;Duolite C-20,前苏联ky-3;SDB-3,相当于我国老牌号:732;强酸1号、2号、3号、4号;010。 用途:本产品主要用于硬水软化、脱盐水、纯水和高纯水的制备,也用于催化剂和脱水剂,以及湿法冶金、分离提纯稀有元素、食品、制药、制糖工业等。 二、201x7(717)强碱性阴离子交换树脂 本产品是在苯乙烯一二乙烯苯共聚基体上带有季铵基[N(CH 3) 3 OH]的阴离子 交换树脂,该树脂具有机械强度好,耐热性能高等特点。 本产品相当于美国Amberlite IRA-400,德国:Lewatit M500,日本:Diaion SA-10A,法国Allassion AG217,前苏联AB-17,相当于我国老牌号:717、702、强碱2号、4号、2041号。 用途:本产品主要用于纯水、高纯水的制备,废水处理,生化制品的提取,放射性元素提炼,抗菌素分离等。 三、D201大孔强碱阴离子交换树脂 本产品的性能与201×7强碱性阴离子交换树脂相似,但有更好的物理及化学稳定性(耐渗透压力,耐磨损等)及抗污染性能,由于具有大孔结构,因此可用于吸附分子尺寸较大的杂质以及在非水溶液中使用。 本产品相当于美国Amberlite IRA-900,德国:Lewatit MP-500日本:Diaion PA 308。相当于我国老牌号:D231;DK251;731;290。 用途:本产品主要用于高纯水的制备(尤其适用于高速混床)及用于凝结水净化装置(H-OH或NH 4 -OH混床系统),也用于废水处理,回收重金属,生化药物分离和糖类提纯。 四、D301大孔弱碱性苯乙烯系阴离子交换树脂 本产品是大孔结构的苯乙烯一二乙烯苯共聚体上带有叔胺基[-N(CH3)2]的离子交换树脂,其碱性较弱,能在酸性、近中性介质中有效地交换无机酸及硅酸根,并能吸附分子尺寸较大的杂质以及在非水溶液中使用,该树脂具有再生效率高、碱水耗低、交换容量大、抗有机物污染及抗氧化能力强、机械强度好等优点。 本产品相当于美国Amberlite IRA-93,德国Lewatit MP-60,日本Diaion WA-30,法国Duolite A305,前苏联AH-89×77Ⅱ,英国Zerolite MPH,相当于我国老牌号:D354、D351、710、D370。 用途:本产品主要用于纯水及高纯水的制备,用于阴复床、阴双层床系统,对含盐量较高的水源尤为合适,并能保护强碱阴树脂不受有机物污染,以及糖液脱色含铬废水的处理及回收等等。

树脂再生原理

树脂进行离子交换反应的性能和再生问题 一、交换能力氢型阳离子交换树脂在水中可解离出氢离子(H+),当遇到金属离子或其它阳离子,就发生互相交换作用,但交换后的树脂,就不再是氢型树脂了。例如,当水中的阳离子如钙离子、镁离子的浓度相当大时,磺酸型的阳离子交换树脂中的氢离子,可和钙、镁离子进行交换,而形成「钙型」或「镁型」的阳离子交换树脂,如下式: 2R-SO3H + Ca2+ → (R-SO3)2Ca + 2H+ (钙型强酸性阳离子交换树脂) 2R- SO3H + Mg2+ → (R-SO3)2Mg + 2H+(镁型强酸性阳离子交换树脂)氢型阳离子交换树脂的交换能力与被交换的阳离子的价数有密切关系。在常温下,低浓度水溶液中,交换能力随离子价数增加而增加,即价数越高的阳离子被交换的倾向越大。此外,若价数相同,离子半径越大的阳离子被交换的倾向也越大。如果以自来水中经常出现阳离子列为参考对象,则氢型阳离子交换树脂的交换能力顺序可表示如下:强酸性:Fe3+>Fe 2+>Mn2+>Ca2+>Mg2+>K+>NH4+>Na+>H+ 弱酸性:H+>Fe3+>Fe 2+>Mn2+>Ca2+>Mg2+>K+>NH4+>Na+ 由上述交换能力顺序可知:强酸性与弱酸性阳离子交换树脂的母体,对阳离子交换能力顺序完全相同,唯一的差异是:两者对H+的交换能力不同,强酸性对氢离子的亲和力最弱,弱酸性对氢离子的亲和力最强,这个特性可能会深深影响它们在水草缸的作用与功能。虽然氢型弱酸性阳离子交换树脂对氢离子的亲合力最强,但氢离子(H+)与氢氧离子(OH-)结合成水(H2O)的亲合力更强,所以在碱性水质中,弱酸性阳离子交换树脂中的H+会快速被OH-所消耗,OH-主要来自KH硬度(HCO3-)的水解反应: HCO3- + H2O ←→ H2CO3 + OH- H+所遗留之「活性位置」再改由其它阳离子如Fe3+>Fe 2+>Mn2+>Ca2+>Mg2+……等依序取代,一直持续到HCO3-完全被消除为止(KH=0)。因此弱酸性阳离子交换树脂的主要作用区间是在于pH=5 ~ 14的水质。由于HCO3-为暂时硬度的阴离子,因此当HCO3-完全被消除后,它的「当量阳离子」,如如钙、镁等离子也同时完全被取代,故能消除所有暂时硬度的「当量阳离子」。氢型强酸性阳离子交换树脂对氢离子(H+)的亲合力最弱,使它在任何pH之下,它都具有交换能力,因此可以完全除去GH硬 度(暂时硬度及永久硬度)。 二、交换容量离子交换树脂进行离子的交换反应的性能,主要由「交换容量」表现出来。所谓交换容量是指每克干树脂所能交换离子的毫克当量数,以m mol/g为单位。当离子为一价时(如K+),其毫克当量数即为其毫克分子数,对于二价(如Ca2+)或更多价离子(如 Fe3+),其毫克当量数即为其毫克分子数乘以其离子价数。交换容量又分为「总交换容量」、「操作交换容量」和「再生容量」等三种表示方法。「总交换容量」表示每克干树脂所能进行离子交换反应的化学基总量,属于理论性计量。「操作交换容量」表示每克干树脂在某一定条件下的离子交换能力,属于操作性计量,它与树脂种类、总交换容量,以及具体操作条件(如接触时间、温度)等因素有关,可用于显示操作效率。「再生容量」表示每克干树脂在一定的再生剂量条件下,所取得的再生树脂之交换容量,可用于显示树脂再生效率。由于树脂的结构不同(主要是活性基数目不同),强酸性与弱酸性阳离子交换树

离子交换树脂的研究现状与应用

离子交换树脂 摘要:本文综述了离子交换树脂的发展历史、分类;在各领域的应用、树脂的使用和保管方法及其发展前景等。 关键词:离子交换树脂;分类;应用;保管 1 引言 离子交换树脂是一类带有活性基团的网状结构高分子化合物。在它的分子结构中,一部分为树脂的基体骨架,另一部分为由固定离子和可交换离子组成的活性基团。离子交换树脂具有交换、选择、吸附和催化等功能,在工业高纯水制备、医药卫生、冶金行业、生物工程等领域都得到了广泛的应用。近年来,离子交换树脂无论是从种类、结构还是性能上都出现了很大的变化,其生产和应用也都得到了很大的发展。 我国自20世纪50年代以来开始生产和应用离子交换树脂。经过半个多世纪的发展,国内常规离子交换树脂的制备和应用技术已经较为成熟,水平与国外相当。离子交换树脂主要应用于电力、食品、医药、电子和冶金等行业,随着锅炉给水、饮用水和电子用水等对离子交换出水的纯度要求日益提高,促使常规的离子交换树脂生产和应用技术不断完善,同时催生了许多新型的生产工艺不断涌现,使得离子交换树脂产品升级和技术进步的步伐也日益加快。 2 离子树脂的分类 依据离子交换树脂所带活性基团的性质,离子交换树脂课分为阳离子交换树脂和阴离子交换树脂两大类。能与水中阳离子进行交换反应的称为阳离子交换树脂;能与水中的阴离子进行交换反应的称为阴离子交换树脂。根据活性基团上Hˉ和OHˉ电离的强弱程度,又可以分为强酸性阳离子交换树脂和弱酸性阳离子交换树脂,以及强碱性阴离子交换树脂和弱碱性阴离子交换树脂。 2.1强酸性阳离子树脂 这类树脂含有大量的强酸性基团,如磺酸基-SO3H,容易在溶液中离解出H+,故呈强酸性。树脂离解后,本体所含的负电基团,如SO3ˉ,能吸附结合溶液中的其他阳离子。这两个反应使树脂中的H+与溶液中的阳离子互相交换。强酸

离子交换树脂注意事项

2015离子交换树脂的贮存和装填 一、Lewatit 离子交换树脂的贮存 1、要保持树脂的水分。Lewatit树脂出厂时,其含水率是饱和的,在贮存过程中必须防止水分的消失。建议将离子交换树脂储存于干燥、没有阳光直射的室内.如发现树脂变干时,切忌将树脂直接置于水中浸泡,而应该将它置于饱和食盐水中浸泡,使树脂缓慢膨胀,然后再逐渐稀释食盐水溶液。 2、应将树脂贮存在产品资料中推荐的合适温度下。若贮存的温度过高,容易引起树脂交换基团的分解和微生物污染。若贮存在水的冰点之下,会使树脂内的水分冻结。如果树脂冻结,不能用机械方法处理,将其置于环境温度中逐步解冻。在处理或使用前,应当使树脂完全解冻。不能试图去加速解冻过程。 3、防止树脂受到污染。树脂贮存时要避免和铁容器、氧化剂和油类物质直接接触,以免树脂被污染或被氧化降解。 4、贮存期不要超过产品资料中的推荐值。 二、树脂的装填 1、离子交换器在装填树脂前要彻底清理和检查。确保所有接受树脂的容器在装树脂前是清洁的并用去离子水淋洗过。 2、用去离子水将树脂装入再生塔中,在再生塔中加入去离子水,以使下部排水管免受树脂的冲击。建议用水力引入器将混合水的树脂装入容器。也可以“倒”入容器,但是要始终将液面保持在树脂层上面。不要用机械泵装填树脂。速率最大不超过1m/s,水和树脂的混合比例>2:1。 3、确信去离子水的液面至少高于已经装入的树脂床的0.5m以上。然后将树脂浸泡在去离子水中至少2小时。浸泡时间越长越好,对树脂无害。(对于弱碱性和中碱性树脂(Lewatit MP 62,MonoPlus MP 64等)必须过夜使之浸泡透,防止反洗时损失树脂。 4、浸泡结束后,仔细并彻底反洗树脂约30min。除去所有的树脂细颗粒以及在装填过程中带入的外界杂质。可能会有一些细树脂,也可能没有。反洗出口处不应该有视窗,其会妨碍树脂细颗粒的去除。所有的细颗粒必须反洗出容器。小心不要将好的树脂也反洗出容器。阳树脂的反洗流出液开始的时候可能是棕色的,不必担心,这是磺酸树脂的共有特点,继续反洗,一直到反洗液澄清无细颗粒。推荐分步反洗,每次反洗50%的树脂,反洗速率根据各树脂的技术资料。阴树脂和阳树脂最好使用两个不同的反洗塔,防止交叉污染。 5、在所有的过程中,需要使用去离子水,如果没有去离子水,先用原水反洗阳离子树脂,然后用阳离子树脂软化后的原水,反洗和装填阴树脂。 5、第一次使用树脂前,使用倍量再生剂,再生树脂。注意:只需要增加再生剂的量,不要增加再生剂的浓度。 6、由于树脂在再生过程中会膨胀,所以推荐先装填90%的树脂,再生,淋洗,然后根据树脂的膨胀程度补填剩余的树脂 离子交换树脂床正确的反洗和再生 只有对离子交换树脂床采用适当的反洗和再生措施,才可以使离子交换树脂床正常有效的运行。如果反洗和再生的措施不恰当,可能会导致下列问题: a)树脂床的压降增高 b)由于额外的机械压力,会导致树脂颗粒易破碎 c)离子柱出口出的离子泄漏增大

离子交换树脂浅谈

离子交换树脂 摘要:我国自20世纪50年代以来开始生产和应用离子交换树脂。经过半个多世纪的发展,国内常规的离子交换树脂制造和应用技术已经较为成熟,水平与国外相当。 关键字:水处理、离子交换树脂、湿法冶金 前言:离子交换技术有相当长的历史,某些天然物质如泡沸石和用煤经过磺化制得的磺化煤都可用作离子交换剂。但是,随着现代有机合成工业技术的迅速发展,研究制成了许多种性能优良的离子交换树脂,并开发了多种新的应用方法,离子交换技术迅速发展,在许多行业特别是高新科技产业和科研领域中广泛应用。近年国内外生产的树脂品种达数百种,年产量数十万吨。离子交换树脂都是用有机合成方法制成。常用的原料为苯乙烯或丙烯酸(酯),通过聚合反应生成具有三维空间立体网络结构的骨架,再在骨架上导入不同类型的化学活性基团(通常为酸性或碱性基团)而制成。 离子交换树脂不溶于水和一般溶剂。大多数制成颗粒状,也有一些制成纤维状或粉状。树脂颗粒的尺寸一般在0.3~1.2mm 范围内,大部分在0.4~0.6mm之间。它们有较高的机械强度(坚牢性),化学性质也很稳定,在正常情况下有较长的使用寿命。 特点 1.树脂颗粒尺寸 离子交换树脂通常制成珠状颗粒,树脂颗粒较细者,反应速度较大,但细颗粒对液体阻力较大,需要较高的工作压力。将树脂在充分吸水膨胀后进行筛分,累计其在20、30、40、50…目筛网上的留存量,以9000粒子可以通过其相对应的筛孔直径,称为树脂的“有效粒径”。大粒径树脂为0.6~1. 2mm(20^40目)之间,粉末树脂的粒径树脂0. 01~0. 1mm。一般离子交换树脂的粒径。 2.树脂的密度 树脂密度分为干密度和湿密度。干密度是在温度115℃真空干燥后的密度。 干真密度=干树脂重/干树脂颗粒的体积g/cm3 湿密度又分湿真密度和湿视密度。 (1)湿真密度一是树脂在水中充分膨胀后的质量与自身所占体积(不含树脂颗粒的空隙)比 值(g/ cm3,不同类型树脂,湿真密度不同。 湿真密度=湿树脂重/湿树脂颗粒的体积g/cm3 即使同一类型的阳树脂或阴树脂,由于所含交换离子种类不同,湿真密度大小也不相同,此值一般在1.04~1.3之间,阳树脂常比阴树脂湿真密度大。 湿真密度在双层床工艺过程中与树脂的分层效果有关, (2)湿视密度。 树脂的密度与它的交联度和交换基团的性质有关。交联度高的树脂密度较高,强酸性或强碱性树脂的密度高于弱酸或弱碱性,大孔型树脂的密度则较低。例如,苯乙烯系凝胶型强酸阳离子树脂的真密度为1. 26g/mL,视密度为0. 85g/mL;丙烯酸系凝胶型弱酸阳离子树脂的真密度为1. 19g/mL,视密度为0. 75g/mL。. 此值一般在0.60~0.85之间,实际采用湿视密度(堆积密度)来计算离子交换器内填充树脂的质量。

阳离子交换树脂的处理再生操作规程

阳离子交换树脂的处理再生操作规程 1、适用范围:1号、2号、3号、树脂罐。 2、职责:树脂处理再生人员严格按照本标准处理。 3、工作原理: 离子交换树脂是一种聚合物,带有相应的功能基因,一般情况下,常规的钠离子交换树脂带有大量的钠离子,当水中的钙镁离子含量高时,离子交换树脂可以释放出钠离子,功能基因与镁离子结合,这样水中的钙镁离子含量降低,水的硬度降低,硬水变成软水,这是软化水设备的工作过程。 当树脂上的大量功能基因与钙镁离子结合后,树脂的软化能力下降,可以用氯化钠溶液流过树脂,此时溶液中的钠离子含量高,功能集团会释放出钙镁离子而与钠离子结合,这样树脂就恢复了交换能力。 4、工作流程: 4.1、小反洗:再生前应对中间排液管上面进行小反洗,洗去进水时积聚在中间排液装置上的污物,小反洗是先关闭进水阀及出水阀,再打开小反洗进水阀及反洗排水阀直至冲洗干净,小反洗结束后关闭小反洗进水阀及反洗排水阀。 4.2、大反洗:打开大反洗进水阀,使水从树脂底部流入,顶部流出,这样可以把顶部拦截的污物冲走,排除破碎的树脂和树脂中的气泡,这个过程一般需要5-15分钟。 4.3、吸盐(再生):即将盐水注入树脂罐的过程,用盐泵将浓度为3%-8%的盐水从罐的底部进入,缓缓流过树脂层,从顶部阀门排出,进盐大约1小时左右,可适当延长浸泡时间。 4.4、慢冲洗(置换):用盐水流过树脂以后,用原水以同样的流速慢慢将树脂中的盐全部冲洗干净的过程叫慢冲洗,由于这个冲洗过程仍有大量的功能集团上的钙离子、镁离子被钠离子置换,这个过程是再生的主要过程,这个过程一般与吸盐的过程一样,一般大约1小时左右。 4.5、快冲洗:为了将残留的盐彻底冲洗干净,用于实际工作相当的流速对树脂进行冲洗,直到冲出符合规定的软化水。 4.6、产水:当树脂罐产出符合规定的软化水时,投入正常运行,应在用前,使用中、使用后,随时检测软化水的硬度,防止不合格水进入生产用水。 5、注意事项 5.1、离子交换树脂罐一定保持一定水分,切勿脱水。

离子交换树脂

1、离子交换树脂在长期储存中,或需在停用设备内长期存放,强型树脂(强酸性和强碱性树脂)应转为盐型,弱型树脂(弱酸性和弱碱性树脂)可转为相应的氢型或游离胺型,也可转变为盐型,以保持树脂性能的稳定。然后浸泡在洁净的水中。停用设备若须将水排去,则应密封,以防树脂中水份散失。 2、离子交换树脂内含有一定的平衡水份,在储存和运输中应保持湿润,防止脱水。树脂应储存在室内或加遮盖,环境温度以5°C-40°C为宜。袋装树脂应避免直接日晒,远离锅炉、取暖器等加热装置,避免脱水。 若发现树脂已有脱水现象,切勿将树脂直接放于水中,以免干树脂遇水急剧溶胀而破碎。应根据其脱水程度,用10%左右的食盐水慢慢加入到树脂中,浸泡数小时后用洁净水逐步稀释。 3、当环境温度在0°C或以下时,为防止树脂因内部水份结冰而崩裂,应做好保温措施,或根据气温条件,将树脂存于相应浓度的食盐水中,防止冰冻。若发现树脂已被冻,则应让其缓慢自然解冻,切不可用机械力施于树脂。 食盐溶液浓度与冰点的关系如下表: 4、长期停用而放置在交换器内的树脂,为防止微生物(如藻类、细菌等)对树脂的不可逆污染,树脂在停用前须彻底反洗,以除去运行时积聚的悬浮物质,并注意定期冲洗和换水。或彻底反洗后采用以下措施: 阴树脂:用3倍树脂体积的10%NaCl+2%NaOH混合液分两次通过树脂层,每次静止浸泡数小时,然后将其排去。如有必要,在重新启动前用2倍树脂体积的0.2%过氧化氢(H2O2)溶液淋洗树脂层。 阳树脂:在阳离子交换器及管系内可充入0.5%的甲醛溶液,并在停用期间保持此浓度。也可用食盐水浸泡。在设备重新启动前用0.2%过氧化氢或0.5%甲醛溶液淋洗。 2 树脂的预处理 在离子交换树脂的工业产品中,常含有少量的有机低聚物及一些无机杂质。在使用初期会逐渐溶解释放,影响出水水质或产品质量。因此,新树脂在使用前必须进行预处理,具体方法如下: 1、树脂装入交换器后,用洁净水反洗树脂层,展开率为50-70%,直至出水清晰、无气味、无细碎树脂为止。 2、用约2倍树脂体积的4-5%HCl溶液,以2m/h的流速通过树脂层。全部通入后,浸泡4-8小时,排去酸液,用洁净水冲洗至出水呈中性,冲洗流速为10-20m/h。 3、用约2倍树脂体积的2-5%NaOH溶液,按上面进HCl溶液的方法通入和浸泡。排去碱液,用洁净水冲洗至出水呈中性,冲洗流速同上。 酸、碱溶液若能重复进行2-3次,则效果更佳。

离子交换树脂再生办法

离子交换树脂再生方法 一.阳床 1.阳床再生(顺流再生) ①配酸比重≥3,同时将阳床内水全部放空; ②打开进酸阀、上排阀,其他阀门全部关闭,打开酸泵; ③待进酸液面超过树脂以上20cm后,开启下排,下排流量和进酸流量相同,此时流量控制在600~1000L/h,进 酸时间不低于40分钟。 1.阳床清洗 进酸完毕后可直接进行清洗,先开启砂过滤,精密过滤,精密过滤处于上排上进状态。放掉阳床进酸管道、上进管道内的残酸方法为:开启上进下进,下排开启进酸阀。此时将精密过滤出水阀打开、关闭上排阀,将进酸管道内的残酸冲洗到酸槽后关闭进酸阀。关闭阳床下进阀,开始进行清洗,清洗时打开阳床上排阀,阳床内的水须始终漫过树脂,注意不要使树脂失水。清洗到下排阀出水PH值为7左右(接近中性)为止。 二.阴床 1.阴床再生(水流再生) ①配碱比重≥5,将阴床内水放空; ②打开进碱阀、上排阀,其他阀门全部关闭,然后开启碱泵; ③待碱液液面超过树脂20cm后,开启下排,下排流量与进碱流量一致,此时流量控制在600~1000L/h,进碱时间不得少于60min,进碱完毕后放空阴床内碱液。 2.阴床清洗 清洗时打开中间水箱泵、风机,防止碱液倒流至中间水箱槽。将进碱管道内残碱冲洗到碱槽内及即可以开始阴床清洗。同阳床清洗一样,清洗到下排排出水PH值约为7(中性),测试电导率小于5即可。 三.混床 1.混床再生 ①阴阳树脂同步再生。首先对混床内树脂进行分层:开启清洗阀、上排阀并启动清洗泵,此时分层开始。若分层困难,可进少量酸帮助树脂分层,在混床内树脂出现明显分层时分层完毕,再开启上进阀、中排阀(同时混床以前的阴、阳床正常开启运行)将阴离子交换树脂冲洗干净直至排出的水呈中性。 ②进酸进碱 配碱比重≥5、配酸比重≥3,碱液由上排进入,中排排出;酸液由下排进入、中排排出。进酸进碱在同步进行时,必须保证各泵的流量一致,泵流量应保持在600~1000L/h,时间不低于30min。阴、阳离子交换树脂再生完毕后进行清洗时清洗水分别从上排阀、下排阀进入,由中排阀排出,此时须确保清洗的同步进行以及进水流量的一致。待中排排水呈中性时清洗操作完毕。 进酸进碱也可以分别进行,按此操作再生时进酸、碱的方式、流量与时间和同步再生时一样。步骤如下:首先将混床内阴离子交换树脂柱内的水排空,再进碱对树脂进行再生,再生完毕后将阴树脂清洗干净直至排出的水呈中性,然后将阴离子交换树脂柱内的水排空。在进酸对阳离子交换树脂进行清洗时,也应先将阳树脂柱内水排空,再进酸液进行再生,再生完毕后将阳树脂清洗干净直至排出的水呈中性,随后也应将阳树脂柱内水排空。 ③阴阳离子交换树脂的混合 清洗操作完毕后,开启压缩空气对阴、阳离子交换树脂进行混合,直至阴、阳离子交换树脂均匀混合为止。 压缩空气压力范围为:0.15~0.25MPa。 ④阴、阳离子交换树脂混合完毕后再由上、下排进水对其进行清洗,水由中排排出。清洗至出水之电导率达到规定范围时即可将混床投入运行。

离子交换膜与离子交换树脂的比较

离子交换膜又称“离子交换树脂膜”或“离子选择透过膜”。这是因为离子交换膜与用于水处理领域的粒状离子交换膜树脂,具有基本相同的结构,而且早期的离子交换膜就是使用离子交 换树脂,通过加入粘合剂混炼拉片,然后加网热压成为膜状物的,所以,有“离子交换树脂漠”之称。但是,离子交换膜和离子交换树脂之间,除形状之差而外,还有着根本不同的作用原理:离子交换树脂是通过离子的吸附、药品溶离和再生的离子交换机能进行脱盐,但离子交换膜不是通过离子交换的机能,而是以选择透过为其主要机理,将离子作为一种选择性通过的媒介物。此外,在应用方法上也不相同,例如,离子交换树脂的使用过程包含着处理、交换、再生等步骤,而离子交换膜在应用过程中,可以连续作用,不必再生。由此看来,与其称为离子交换膜,不如称为“离子选择透过膜”更为确切。不过,根据长期的习惯,人们还是沿称“离子交换膜”。 离子交换膜与离子交换树脂 离子交换膜可制成均相膜和非均相膜两类。 而离子交换树脂就属于非均相膜 ①均相膜。先用高分子材料如丁苯橡胶、纤维素衍生物、聚四氟乙烯、聚三氟氯乙烯、聚偏二氟乙烯、聚丙烯腈等制成膜,然后引入单体如苯乙烯、甲基丙烯酸甲酯等,在膜内聚合成高分子,再通过化学反应引入所需功能基。也可通过甲醛、苯酚等单体聚合制得。 ②非均相膜。用粒度为200~400目的离子交换树脂和普通成膜性高分子材料如聚苯乙烯、聚氯乙烯等充分混合后加工成膜制得。 下面给一些离子交换树脂的具体资料: 离子交换树脂分为阴阳两种类型,阳离子交换树脂又分为强酸性和弱酸性,阴离子交换树脂分为强碱性和弱碱性。 水通过阳离子交换树脂时变为酸性,再通过阴离子交换树脂变为中性后回到水族箱中,因此使用离子交换树脂时,要强酸性与强碱性、弱酸性与弱碱性配对使用,离子交换树脂依其听附对象的不同又分为H型,OH型CI型和NA型,水族箱适用NA型,(钠型)其目的是软化水质。 阳离子交换树脂的再生可用5%--10%盐酸、0.5%--5%硫酸、10%的食盐水或海水其中之一种,阴离子交换树脂的再生可用2%--10%氢氧化钠、2%--4%氨水或10%食盐水其中之一种,均浸泡24小时。离子交换树脂也是一种化学滤材 载体不同 后者属于前者,后者是前者所包含的物质之一。 如果还要细分的话还有正离子交换膜,负离子交换膜等。 水处理设备网讯:离子交换膜和球状离子交换树脂在化学结构上是相同的,所以有人称它为膜状的离子交换树脂。早期是利用粉碎的离子交换树脂加入粘合剂制成薄膜,故称为离子交换(树脂)膜。因为在膜中存在粘合剂,活性基团将会分布不均,故又称为异相(非均质)离子交换膜。随着制膜技术不断发展,近

阳离子交换树脂的处理再生操作规程

阳离子交换树脂的处理再生操作规程 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

阳离子交换树脂的处理再生操作规程 1、适用范围:1号、2号、3号、树脂罐。 2、职责:树脂处理再生人员严格按照本标准处理。 3、工作原理: 离子交换树脂是一种聚合物,带有相应的功能基因,一般情况下,常规的钠离子交换树脂带有大量的钠离子,当水中的钙镁离子含量高时,离子交换树脂可以释放出钠离子,功能基因与镁离子结合,这样水中的钙镁离子含量降低,水的硬度降低,硬水变成软水,这是软化水设备的工作过程。 当树脂上的大量功能基因与钙镁离子结合后,树脂的软化能力下降,可以用氯化钠溶液流过树脂,此时溶液中的钠离子含量高,功能集团会释放出钙镁离子而与钠离子结合,这样树脂就恢复了交换能力。 4、工作流程: 、小反洗:再生前应对中间排液管上面进行小反洗,洗去进水时积聚在中间排液装置上的污物,小反洗是先关闭进水阀及出水阀,再打开小反洗进水阀及反洗排水阀直至冲洗干净,小反洗结束后关闭小反洗进水阀及反洗排水阀。 、大反洗:打开大反洗进水阀,使水从树脂底部流入,顶部流出,这样可以把顶部拦截的污物冲走,排除破碎的树脂和树脂中的气泡,这个过程一般需要5-15分钟。 、吸盐(再生):即将盐水注入树脂罐的过程,用盐泵将浓度为3%-8%的盐水从罐的底部进入,缓缓流过树脂层,从顶部阀门排出,进盐大约1小时左右,可适当延长浸泡时间。 、慢冲洗(置换):用盐水流过树脂以后,用原水以同样的流速慢慢将树脂中的盐全部冲洗干净的过程叫慢冲洗,由于这个冲洗过程仍有大量的功能集团上的钙离子、镁离子被钠离子置换,这个过程是再生的主要过程,这个过程一般与吸盐的过程一样,一般大约1小时左右。 4.5、快冲洗:为了将残留的盐彻底冲洗干净,用于实际工作相当的流速对树脂进行冲洗,直到冲出符合规定的软化水。 、产水:当树脂罐产出符合规定的软化水时,投入正常运行,应在用前,使用中、使用后,随时检测软化水的硬度,防止不合格水进入生产用水。 5、注意事项

离子交换树脂的基本类型

离子交换树脂的基本类型 离子交换树脂还可以根据其基体的种类分为苯乙烯系树脂和丙烯酸系树脂。树脂中化学活性基团的种类决定了树脂的主要性质和类别。首先区分为阳离子树脂和阴离子树脂两大类,它们可分别与溶液中的阳离子和阴离子进行离子交换。阳离子树脂又分为强酸性和弱酸性两类,阴离子树脂又分为强碱性和弱碱性两类(或再分出中强酸和中强碱性类)。 (1) 强酸性阳离子树脂 这类树脂含有大量的强酸性基团,如磺酸基-SO3H,容易在溶液中离解出H+,故呈强酸性。树脂离解后,本体所含的负电基团,如SO3-,能吸附结合溶液中的其他阳离子。这两个反应使树脂中的H+与溶液中的阳离子互相交换。强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。 树脂在使用一段时间后,要进行再生处理,即用化学药品使离子交换反应以相反方向进行,使树脂的官能基团回复原来状态,以供再次使用。如上述的阳离子树脂是用强酸进行再生处理,此时树脂放出被吸附的阳离子,再与H+结合而恢复原来的组成。 (2) 弱酸性阳离子树脂 这类树脂含弱酸性基团,如羧基-COOH,能在水中离解出H+ 而呈酸性。树脂离解后余下的负电基团,如R-COO-(R为碳氢基团),能与溶液中的其他阳离子吸附结合,从而产生阳离子交换作用。这种树脂的酸性即离解性较弱,在低pH下难以离解和进行离子交换,只能在碱性、中性或微酸性溶液中(如pH5~14)起作用。这类树脂亦是用酸进行再生(比强酸性树脂较易再生)。 (3) 强碱性阴离子树脂 这类树脂含有强碱性基团,如季胺基(亦称四级胺基)-NR3OH(R为碳氢基团),能在水中离解出OH-而呈强碱性。这种树脂的正电基团能与溶液中的阴离子吸附结合,从而产生阴离子交换作用。 这种树脂的离解性很强,在不同pH下都能正常工作。它用强碱(如NaOH)进行再生。 (4) 弱碱性阴离子树脂 这类树脂含有弱碱性基团,如伯胺基(亦称一级胺基)-NH2、仲胺基(二级胺基)-NHR、或叔胺基(三级胺基)-NR2,它们在水中能离解出OH-而呈弱碱性。这种树脂的正电基团能与溶液中的阴离子吸附结合,从而产生阴离子交换作用。这种树脂在多数情况下是将溶液中的整个其他酸分子吸附。它只能在中性或酸性条件(如pH1~9)下工作。它可用Na2CO3、NH4OH进行再生。 (5) 离子树脂的转型 以上是树脂的四种基本类型。在实际使用上,常将这些树脂转变为其他离子型式运行,以适应各种需要。例如常将强酸性阳离子树脂与NaCl作用,转变为钠型树脂再使用。工作时钠型树脂放出Na+与溶液中的Ca2+、Mg2+等阳离子交换吸附,除去这些离子。反应时没有放出H+,可避免溶液pH下降和由此产生的副作用(如蔗糖转化和设备腐蚀等)。这种树脂以钠型运行使用后,可用盐水再生(不用强酸)。又如阴离子树脂可转变为氯型再使用,工作时放出Cl-而吸附交换其他阴离子,它的再生只需用食盐水溶液。氯型树脂也可转变为碳酸氢型(HCO3-)运行。强酸性树脂及强碱性树脂在转变为钠型和氯型后,就不再具有强酸性及强碱性,但它们仍然有这些树脂的其他典型性能,如离解性强和工作的pH范围宽广等。 离子交换树脂的物理结构 离子树脂常分为凝胶型和大孔型两类。

离子交换树脂的种类

离子交换树脂的种类 离子交换剂是指具有离子交换能力的固体物质,依其可交换离子的种类,可分为阳离子剂和阴离子剂两大类。最主要的当属合成树脂。离子交换树脂可分别按照功能、内部结构、聚合物单体种类和用途分类。其中,以功能和内部结构分类为主流方式,故此处以这两种分类方式对离子交换树脂的种类作出说明。 1按功能分类 1.1阳离子交换树脂 首先,离子交换树脂可分为阳离子树脂和阴离子树脂两大类,它们可分别与溶液中的阳离子和阴离子进行离子交换。而阳离子树脂又分为强酸性和弱酸性两类,阴离子树脂则可分为强碱性和弱碱性两类。人工合成的阳离子树脂的官能团是有机酸,并按照酸性的强弱,分为强酸性和弱酸性两类。强酸性的官能团是苯磺酸,弱酸性的官能团则包括有机磷酸、羟基酸和酚等。酸主要以H+的形式与其他阳离子进行交换。例如,用H+与金属离子交换会使树脂变成盐的形式。强阳离子树脂除了酸形式R-O H外,生产厂家也会以钠盐R-O Nα的形式出售,分别称为氢型和钠型强阳离子交换树脂。 强酸性阳离子树脂含有大量的强酸性基团,如磺酸基?SO3H,容易在溶液中离解出H+,故呈强酸性。树脂离解后,本体所含的负电基团,如?SO3H,能吸附结合溶液中的其他阳离子。这两个反应使树脂中的H+与溶液中的阳离子互相交换。强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。树脂在使用一段时间后,要进行再生处理,即使用化学药品使离子交换反应向相反的方向进行,使树脂的官能基团恢复到原来的状态,以便重复利用。例如,上述的阳离子树脂一般使用强酸进行再生处理,此时树脂释放出被吸附的阳离子并与H+结合,进而恢复到原来的组成。 弱酸性阳离子树脂含有弱酸性基团,如羧基-COOH,能在水中离解出H+而呈酸性,但因其解离程度不高,因此一般仅程弱酸性,故而属于弱酸性阳离子树 -(R为碳氢链基团),可与溶液中脂。树脂离解后余下的负电基团,如R COO 的其他阳离子吸附结合,从而产生阳离子交换作用。如上所述,此类树脂的酸性即离解性较弱,在低pH下难以离解进而进行离子交换,只能在碱性、中性或微酸性溶液中(如pH值为5~14)起作用。这类树脂也是用酸进行再生,其再生性较强阳离子交换树脂更好。 1.2阴离子交换树脂 阴离子交换树脂的官能团包括有各种胺类,强碱性的官能团是季胺;弱碱性的官能团则有伯胺、仲胺和叔胺等。季胺一般为氯盐和氢氧根型,即R-N(CH3)3Cl,R-N(CH3)3OH,其中R代表碳链骨架。

离子交换树脂的使用寿命

关键词:离子交换树脂 离子交换树脂的使用寿命,树脂反复再生:由于树脂的长时间频繁再生,每次再生时,树脂间都做相互擦洗运动,受水压及树脂间的机械磨损,树脂的交联值(机械强度)逐渐下降,骨架变形,运行中其表现为出水有时为黄褐色,产水周期明显缩短,再生效果不理想。 国内目前常用的优级阳离子软化树脂为中英合资生产的“漂莱特”钠型阳离子交换树脂,厂家提供的软化水树脂使用年限工业上为5-8年(理论值),实际运行当中,树脂受原水影响的主要原因为: A、原水管路一般为碳钢管道,水与管路发生氧化反应,生成铁离子,进入树脂后,随运行时间的延长,树脂的功能交换基团下降,其表现为耗盐量高,再生水质差。 B、树脂反复再生:由于树脂的长时间频繁再生,每次再生时,树脂间都做相互擦洗运动,受水压及树脂间的机械磨损,树脂的交联值(机械强度)逐渐下降,骨架变形,运行中其表现为出水有时为黄褐色,产水周期明显缩短,再生效果不理想。 C、树脂的理化值: 聚合物骨架-----------------------------------------------聚苯乙烯-二乙烯苯 功能基------------------------------------------------------聚苯乙烯磺酸基 出厂型式---------------------------------------------------钠型 外观---------------------------------------------------------淡色球壮颗粒 水份(钠型)---------------------------------------------46--50% 粒度----------------------------------------------------+1.2<5%; -0.3mm<1% 全交(钠型)-----------------------------------------------≥1.9eq/L湿树脂 ----------------------------------------------≥4.5eq/kg干树脂 膨胀率(Na+→H+)-------------------------------------≤5% pH稳定性----------------------------------------------------0-14 比重(钠型)-----------------------------------------------1.27 操作温度(钠型)---------------------------------------------≤150℃ 离子交换法的工作原理

相关主题
文本预览
相关文档 最新文档