当前位置:文档之家› 最小二乘法基本原理

最小二乘法基本原理

最小二乘法基本原理
最小二乘法基本原理

该方程的参数估计步骤如下:

取n 组观测值n i x x x y ki i i i ,,2,1),,,,(211 =代入上式中可得下列形式:

?????????++??+++=++??+++=++??+++=m

mk k m m m k k k k u x x x y u x x x y u x x x y ββββββββββββ2211022222211021

112211101

(2) (2)的矩阵表达形式为:

U B X y += (3) 对于模型(3),如果模型的参数估计值已经得到,则有:

^^B X y =

(4) 那么,被解释变量的观测值与估计值之差的平方和为:

∑∑==--==-==n

i i i n i i B X Y B X Y e e y y e Q 1

^

'^'2^12)()()(

(5) 根据最小二乘法原理,参数估计值应该是下列方程: 0)()(^'

^^=--??B X Y B X Y B

(6) 的解。于是,参数的最小二乘估计值为:

Y X X X B '1'^)(-=

7)

多变量预测模型是以多元线性回归方程为基础,其一般形式为: i ki k i i i u x x x y +++++=ββββ 22110 (8) 其中:k n i ;,,2,1 =为解释变量的数目;k x x x ,,,21 为解释变量,)1(+k 为解释变量的数目;k βββ ,,21为待估参数;u 为随机干扰项;i 为观测值下标。

统计检验是依据统计理论来检验模型参数估计值的可靠性。主要包括方程显著性检验(F 检验)和变量显著性检验(F 检验)。前者计算出F 统计量的数值;给定一个显著性水平α,查F 分布表,得到一个临界值),1,(--k n k F α当)1,(-->k n k F F α时,通过F 检验。后者计算出t 统计量的数值;给定一个显著性水平α,查t 分布表,得到一个临界值)1(2/--k n t α,当)1(||2/-->k n t t α时,通过t 检验。

最小二乘法及其应用..

最小二乘法及其应用 1. 引言 最小二乘法在19世纪初发明后,很快得到欧洲一些国家的天文学家和测地学家的广泛关注。据不完全统计,自1805年至1864年的60年间,有关最小二乘法的研究论文达256篇,一些百科全书包括1837年出版的大不列颠百科全书第7版,亦收入有关方法的介绍。同时,误差的分布是“正态”的,也立刻得到天文学家的关注及大量经验的支持。如贝塞尔( F. W. Bessel, 1784—1846)对几百颗星球作了三组观测,并比较了按照正态规律在给定范围内的理论误差值和实际值,对比表明它们非常接近一致。拉普拉斯在1810年也给出了正态规律的一个新的理论推导并写入其《分析概论》中。正态分布作为一种统计模型,在19世纪极为流行,一些学者甚至把19世纪的数理统计学称为正态分布的统治时代。在其影响下,最小二乘法也脱出测量数据意义之外而发展成为一个包罗极大,应用及其广泛的统计模型。到20世纪正态小样本理论充分发展后,高斯研究成果的影响更加显著。最小二乘法不仅是19世纪最重要的统计方法,而且还可以称为数理统计学之灵魂。相关回归分析、方差分析和线性模型理论等数理统计学的几大分支都以最小二乘法为理论基础。正如美国统计学家斯蒂格勒( S. M. Stigler)所说,“最小二乘法之于数理统计学犹如微积分之于数学”。最小二乘法是参数回归的最基本得方法所以研究最小二乘法原理及其应用对于统计的学习有很重要的意义。 2. 最小二乘法 所谓最小二乘法就是:选择参数10,b b ,使得全部观测的残差平方和最小. 用数学公式表示为: 21022)()(m in i i i i i x b b Y Y Y e --=-=∑∑∑∧ 为了说明这个方法,先解释一下最小二乘原理,以一元线性回归方程为例. i i i x B B Y μ++=10 (一元线性回归方程)

最小二乘法的基本原理和多项式拟合

最小二乘法的基本原理和多项式拟合 一 最小二乘法的基本原理 从整体上考虑近似函数)(x p 同所给数据点),(i i y x (i=0,1,…,m)误差 i i i y x p r -=)((i=0,1,…,m) 的大小,常用的方法有以下三种:一是误差 i i i y x p r -=)((i=0,1,…,m)绝对值的最大值i m i r ≤≤0max ,即误差 向量 T m r r r r ),,(10 =的∞—范数;二是误差绝对值的和∑=m i i r 0 ,即误差向量r 的1— 范数;三是误差平方和∑=m i i r 02 的算术平方根,即误差向量r 的2—范数;前两种方法简单、自然,但不便于微分运算 ,后一种方法相当于考虑 2—范数的平方,因此在曲线拟合中常采用误差平方和∑=m i i r 02 来 度量误差i r (i=0,1,…,m)的整 体大小。 数据拟合的具体作法是:对给定数据 ),(i i y x (i=0,1,…,m),在取定的函数类Φ中,求Φ∈)(x p ,使误差i i i y x p r -=)((i=0,1,…,m)的平方和最小,即 ∑=m i i r 2 = 从几何意义上讲,就是寻求与给定点),(i i y x (i=0,1,…,m)的距离平方和为最 小的曲线 )(x p y =(图6-1)。函数)(x p 称为拟合函数或最小二乘解,求拟合函数)(x p 的方法称为曲线拟合的最小二乘法。 在曲线拟合中,函数类Φ可有不同的选取方法 . 6—1 二 多项式拟合 假设给定数据点),(i i y x (i=0,1,…,m),Φ为所有次数不超过)(m n n ≤的多项式构成的函数类,现求一 Φ ∈=∑=n k k k n x a x p 0 )(,使得 [] min )(0 02 02 =??? ??-=-=∑∑∑===m i m i n k i k i k i i n y x a y x p I (1) [ ] ∑ = = - m i i i y x p 0 2 min ) (

移动平均法对小儿科门诊人次的预测分析

移动平均法对小儿科门诊人次的预测分析 目的运用移动平均法对小儿科门诊量进行预测。方法选择我院小儿科2010~2013年各季度门诊量,采用移动平均法建立一元线性回归模型,根据回归模型对2014年各季度数据进行评估预测并做95%置信区间检测。结果2014年各季度小儿科的门诊量均在置信区间内。结论移动平均法可以为我们提供较准确的预测数据,为科室的管理提供决策依据。 标签:移动平均;门诊人次;预测 小儿科门诊是医院里门诊量最大的科室之一,同时也是对季节波动较为敏感的科室,它随着季节变化而呈现有规律性的起伏波动[1],现根据这种规律性的波动采用移动平均法对门诊人次进行预测,①可以对医院、科室的发展规划提供参考,②可据此来调整门诊医师的做诊班次,在患者高峰来临之前做好准备,减少患者的等待时间,提高患者满意度,因而具有十分重要的意义[2]。 1 资料与方法 1.1一般资料根据我院2010~2013年每季度小儿科门诊人次数据为资料进行统计分析。数据来源我院信息科统计报表,真实可靠。 1.2统计学方法数据采用spss 19.0进行分析,以时间序列的实际值为依据,计算出移动平均的季节比率、校正系数和预测误差,求出长期趋势线,以95%的置信区间对长期趋势值进行预测。 2 结果 2.1计算移动平均比率依据门诊人次(Yt)计算4个季度的移动平均数,再对4项移动平均进行2项移动平均,以剔除时间数列中季节的变动和不规则变动的影响,计算移动平均比率,并计算平均指数的均值,本例为1.0010541;按平均1来校正移动平均比率,本例中校正系数=1/1.0010541。季节修正指数=各季节平均指数×校正系数,并求得调和时间序列(Tt),见表1、表2。 2.2计算调和时间序列并进行季节比率预测调和时间序列等于每一实际门诊数值/季节修正指数。以时间序列号为自变量,以调和时间序列值为应变量建立长期时间趋势序列直线:T=a+b×t,根據最小二乘法原则,采用spss 19.0软件计算:Tt=14984.422+524.141×t。 2.3计算误差及置信区间根据所得直线方程求出各期预测值:Yt=(14984.422+524.141×t)×季节修正指数。并再次利用最小二乘原则计算误差平方e2=(Yt-Yt)2,并对其进行合理性分析得到95%相应置信区间,得到其合理性检验并据此对14年各季度门诊人次进行预测和各季度人次分析,见表3。

最小二乘法原理

最小二乘法原理 1. 概念 最小二乘法多项式曲线拟合,根据给定的m 个点,并不要求这条曲线精确地经过这些点,而是曲线y=f(x)的近似曲线y= φ(x)。 2. 原理 给定数据点pi(xi,yi),其中i=1,2,…,m 。求近似曲线y= φ(x)。并且使得近似曲线与y=f(x)的偏差最小。近似曲线在点pi 处的偏差δi= φ(xi)-yi ,i=1,2,...,m 。 常见的曲线拟合方法: 1. 是偏差绝对值最小 11min (x )y m m i i i i i φδφ===-∑∑ 2. 是最大的偏差绝对值最小 min max (x )y i i i i φδ?=- 3. 是偏差平方和最小 2211min ((x )y )m m i i i i i φδ?===-∑∑ 按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法。 推导过程: 1. 设拟合多项式为: 01...k k y a a x a x =+++ 2. 各点到这条曲线的距离之和,即偏差平方和如下: 2 2 011(...)m k i i k i i R y a a x a x =??=-+++??∑ 3. 为了求得符合条件的a 值,对等式右边求ak 偏导数,因而我们得到了: 011 2(...)0m k i k i i y a a x a x =??--+++=??∑ 011 2(...)0m k i k i i y a a x a x x =??--+++=??∑

…….. 0112( 0 k k i k i i y a a x a x x =??--+++=??∑ 4. 将等式简化一下,得到下面的式子 01111...n n n k i k i i i i i a n a x a x y ===+++=∑∑∑ 2 1011111...n n n n k i i k i i i i i i i a x a x a x y x +====+++=∑∑∑∑ …… 12011111...n n n n k k k k i i k i i i i i i i a x a x a x y x +====+++=∑∑∑∑ 5. 把这些等式表示成矩阵形式,就可以得到下面的矩阵: 11102111111121111.........n n n k i i i i i i n n n n k i i i i i i i i i n n n n k k k k k i i i i i i i i i n x x y a a x x x x y a x x x x y ===+====+====??????????????????????=?????????????????????? ∑∑∑∑∑∑∑∑∑∑∑ 6. 将这个范德蒙矩阵化简后得到: 0111122 21...1...1...k k k k n n n a y x x a y x x a y x x ??????????????????=????????????????????

最小二乘法的原理及其应用

最小二乘法的原理及其应用 一、研究背景 在科学研究中,为了揭示某些相关量之间的关系,找出其规律,往往需要做数据拟合,其常用方法一般有传统的插值法、最佳一致逼近多项式、最佳平方逼近、最小二乘拟合、三角函数逼近、帕德(Pade)逼近等,以及现代的神经网络逼近、模糊逼近、支持向量机函数逼近、小波理论等。 其中,最小二乘法是一种最基本、最重要的计算技巧与方法。它在建模中有着广泛的应用,用这一理论解决讨论问题简明、清晰,特别在大量数据分析的研究中具有十分重要的作用和地位。随着最小二乘理论不断的完善,其基本理论与应用已经成为一个不容忽视的研究课题。本文着重讨论最小二乘法在化学生产以及系统识别中的应用。 二、最小二乘法的原理 人们对由某一变量t或多个变量t1…..tn 构成的相关变量y感兴趣。如弹簧的形变与所用的力相关,一个企业的盈利与其营业额,投资收益和原始资本有关。为了得到这些变量同y之间的关系,便用不相关变量去构建y,使用如下函数模型 , q个相关变量或p个附加的相关变量去拟和。 通常人们将一个可能的、对不相关变量t的构成都无困难的函数类型充作函数模型(如抛物线函数或指数函数)。参数x是为了使所选择的函数模型同观测值y相匹配。(如在测量弹簧形变时,必须将所用的力与弹簧的膨胀系数联系起来)。其目标是合适地选择参数,使函数模型最好的拟合观测值。一般情况下,观测值远多于所选择的参数。 其次的问题是怎样判断不同拟合的质量。高斯和勒让德的方法是,假设测量误差的平均值为0。令每一个测量误差对应一个变量并与其它测量误差不相关(随机无关)。人们假设,在测量误差中绝对不含系统误差,它们应该是纯偶然误差,围绕真值波动。除此之外,测量误差符合正态分布,这保证了偏差值在最后的结果y上忽略不计。 确定拟合的标准应该被重视,并小心选择,较大误差的测量值应被赋予较小的权。并建立如下规则:被选择的参数,应该使算出的函数曲线与观测值之差的平方和最小。用函数表示为:

最小二乘法的本原理和多项式拟合

第一节 最小二乘法的基本原理和多项式拟合 一 最小二乘法的基本原理 从整体上考虑近似函数)(x p 同所给数据点),(i i y x (i=0,1,…,m)误差 i i i y x p r -=)((i=0,1,…,m) 的大小,常用的方法有以下三种:一是误差 i i i y x p r -=)((i=0,1,…,m)绝对值的最大值i m i r ≤≤0max ,即误差 向量 T m r r r r ),,(10 =的∞—范数;二是误差绝对值的和∑=m i i r 0 ,即误差向量r 的1— 范数;三是误差平方和∑=m i i r 02 的算术平方根,即误差向量r 的2—范数;前两种方法简单、自然,但不便于微分运算 ,后一种方法相当于考虑 2—范数的平方,因此在曲线拟合中常采用误差平方和∑=m i i r 02 来 度量误差i r (i=0,1,…,m)的整 体大小。 数据拟合的具体作法是:对给定数据 ),(i i y x (i=0,1,…,m),在取定的函数类Φ中,求Φ∈)(x p ,使误差i i i y x p r -=)((i=0,1,…,m)的平方和最小,即 ∑=m i i r 0 2 =[]∑==-m i i i y x p 0 2 min )( 从几何意义上讲,就是寻求与给定点),(i i y x (i=0,1,…,m)的距离平方和为最 小的曲线)(x p y =(图6-1)。函数)(x p 称为拟合 函数或最小二乘解,求拟合函数)(x p 的方法称为曲线拟合的最小二乘法。 在曲线拟合中,函数类Φ可有不同的选取方法. 6—1 二 多项式拟合 假设给定数据点),(i i y x (i=0,1,…,m),Φ为所有次数不超过)(m n n ≤的多项式构成的函数类,现求一 Φ ∈=∑=n k k k n x a x p 0 )(,使得 [] min )(0 02 02 =??? ??-=-=∑∑∑===m i m i n k i k i k i i n y x a y x p I (1) 当拟合函数为多项式时,称为多项式拟合,满足式(1)的)(x p n 称为最小二乘 拟合多项式。特别地,当n=1时,称为线性拟合或直线拟合。

移动最小二乘法

移动最小二乘法 2.1 移动最小二乘曲线拟合 将拟合函数表述为如下形式: 1 ()()()()()m T i i i f x p x a x p x a x ===∑, (3) 其中a (x )=(a 1(x ), a 2(x ),…, a m (x ))T 为待定系数,p (x )=(p 1(x ), p 2(x ),…, p m (x ))T 为基函数向量,通常需要选择完备多项式基,例如二维情况 线性基 p (x ) = (1, x , y )T (m =3) 二次基 p (x ) = (1, x , y , x 2, xy , y 2)T (m=6) 为了得到较为精确的局部近似值,需使局部近似值f (x i )和节点值y i 之差平方带权最小,因此残差的离散加权L 2范式为: 2 21 1 ()[()]()[()()]n n T i i i i i i i J w x x f x y w x x p x a x y ===--=--∑∑, (4) 其中n 是求解区域内的节点数,f (x )是拟合函数,w (x -x i )是节点x i 的权函数。 权函数应该是非负的,且随着2 i x x -的增加单调递减,权函数还应该具有紧支性,即 在支持域(x 的影响区域)内不等于0,在支持域之外全为0,一般选用圆形作为权函数的 支持域,半径记为r 。常用的权函数是样条函数,记i s x x '=-,s s r ' =,则三次样条函数形式如下: 23 23 214432 4 41 ()4413 32 0 1. s s s s s s s s s ω?-+≤ ?? ?=-+-<≤??>? ?? (5) 要求出待定系数a (x ),先要使J 取得最小值,先将(4)式写成矩阵形式: J = (Pa (x )-Y )T W (x ) (Pa (x )-Y ) 其中 Y = (y 1, y 2,…, y n )T , W (x ) = diag (w 1(x ), w 2(x ),…, w n (x )),w i (x ) =()i w x x -. 1121112 22212()()()()()()() ()()m m n n m n p x p x p x p x p x p x P p x p x p x ??????=?? ? ??? . 根据最小二乘原理求得待定系数为: a (x ) = A -1(x )B (x )Y 其中A (x ) = P T W (x ) P , B (x ) = P T W (x )。

最小二乘法原理及应用【文献综述】

毕业论文文献综述 信息与计算科学 最小二乘法的原理及应用 一、国内外状况 国际统计学会第56届大会于2007年8月22-29日在美丽的大西洋海滨城市、葡萄牙首都里斯本如期召开。应大会组委会的邀请,以会长李德水为团长的中国统计学会代表团一行29人注册参加了这次大会。北京市统计学会、山东省统计学会,分别组团参加了这次大会。中国统计界(不含港澳台地区)共有58名代表参加了这次盛会。本届大会的特邀论文会议共涉及94个主题,每个主题一般至少有3-5位代表做学术演讲和讨论。通过对大会论文按研究内容进行归纳,特邀论文大致可以分为四类:即数理统计,经济、社会统计和官方统计,统计教育和统计应用。 数理统计方面。数理统计作为统计科学的一个重要部分,特别是随机过程和回归分析依然展现着古老理论的活力,一直受到统计界的重视并吸引着众多的研究者。本届大会也不例外。 二、进展情况 数理统计学19世纪的数理统计学史, 就是最小二乘法向各个应用领域拓展的历史席卷了统计大部分应用的几个分支——相关回归分析, 方差分析和线性模型理论等, 其灵魂都在于最小二乘法; 不少近代的统计学研究是在此法的基础上衍生出来, 作为其进一步发展或纠正其不足之处而采取的对策, 这包括回归分析中一系列修正最小二乘法而导致的估计方法。 数理统计学的发展大致可分 3 个时期。① 20 世纪以前。这个时期又可分成两段,大致上可以把高斯和勒让德关于最小二乘法用于观测数据的误差分析的工作作为分界线,前段属萌芽时期,基本上没有超出描述性统计量的范围。后一阶段可算作是数理统计学的幼年阶段。首先,强调了推断的地位,而摆脱了单纯描述的性质。由于高斯等的工作揭示了最小二乘法的重要性,学者们普遍认为,在实际问题中遇见的几乎所有的连续变量,都可以满意地用最小二乘法来刻画。这种观点使关于最小二乘法得到了深入的发展,②20世纪初到第二次世界大战结束。这是数理统计学蓬勃发展达到成熟的时期。许多重要的基本观点和方法,以及数理统计学的主要分支学科,都是在这个时期建立和发展起来的。这个时期的成就,包含了至今仍在广泛使用的大多数统计方法。在其发展中,以英国统计学家、生物学家费希尔为代表的英国学派起了主导作用。③战后时期。这一时期中,数理统计学在应用和理论两方面继续获得很大的进展。

最小二乘法基本原理

该方程的参数估计步骤如下: 取n 组观测值n i x x x y ki i i i ,,2,1),,,,(211 =代入上式中可得下列形式: ?????????++??+++=++??+++=++??+++=m mk k m m m k k k k u x x x y u x x x y u x x x y ββββββββββββ2211022222211021 112211101 (2) (2)的矩阵表达形式为: U B X y += (3) 对于模型(3),如果模型的参数估计值已经得到,则有: ^^B X y = (4) 那么,被解释变量的观测值与估计值之差的平方和为: ∑∑==--==-==n i i i n i i B X Y B X Y e e y y e Q 1 ^ '^'2^12)()()( (5) 根据最小二乘法原理,参数估计值应该是下列方程: 0)()(^' ^^=--??B X Y B X Y B (6) 的解。于是,参数的最小二乘估计值为: Y X X X B '1'^)(-= ( 7)

多变量预测模型是以多元线性回归方程为基础,其一般形式为: i ki k i i i u x x x y +++++=ββββ 22110 (8) 其中:k n i ;,,2,1 =为解释变量的数目;k x x x ,,,21 为解释变量,)1(+k 为解释变量的数目;k βββ ,,21为待估参数;u 为随机干扰项;i 为观测值下标。 统计检验是依据统计理论来检验模型参数估计值的可靠性。主要包括方程显著性检验(F 检验)和变量显著性检验(F 检验)。前者计算出F 统计量的数值;给定一个显著性水平α,查F 分布表,得到一个临界值),1,(--k n k F α当)1,(-->k n k F F α时,通过F 检验。后者计算出t 统计量的数值;给定一个显著性水平α,查t 分布表,得到一个临界值)1(2/--k n t α,当)1(||2/-->k n t t α时,通过t 检验。

最小二乘法拟合原理

最小二乘拟合 在物理实验中经常要观测两个有函数关系的物理量。根据两个量的许多组观测数据来确定它们的函数曲线,这就是实验数据处理中的曲线拟合问题。这类问题通常有两种情况:一种是两个观测量x 与y 之间的函数形式已知,但一些参数未知,需要确定未知参数的最佳估计值;另一种是x 与y 之间的函数形式还不知道,需要找出它们之间的经验公式。后一种情况常假设x 与y 之间的关系是一个待定的多项式,多项式系数就是待定的未知参数,从而可采用类似于前一种情况的处理方法。 一、最小二乘法原理 在两个观测量中,往往总有一个量精度比另一个高得多,为简单起见把精度较高的观测量看作没有误差,并把这个观测量选作x ,而把所有的误差只认为是y 的误差。设x 和y 的函数关系由理论公式 y =f (x ;c 1,c 2,……c m ) (0-0-1) 给出,其中c 1,c 2,……c m 是m 个要通过实验确定的参数。对于每组观测数据(x i ,y i )i =1,2,……,N 。都对应于xy 平面上一个点。若不存在测量误差,则这些数据点都准确 落在理论曲线上。只要选取m 组测量值代入式(0-0-1),便得到方程组 y i =f (x ;c 1,c 2,……c m ) (0-0-2) 式中i =1,2,……,m.求m 个方程的联立解即得m 个参数的数值。显然Nm 的情况下,式(0-0-2)成为矛盾方程组,不能直接用解方程的方法求得m 个参数值,只能用曲线拟合的方法来处理。设测量中不存在着系统误差,或者说已经修正,则y 的观测值y i 围绕着期望值 摆动,其分布为正态分布,则y i 的概率密度为 ()()[] ??? ???? ???--= 2 2 212,......,,;exp 21i m i i i i c c c x f y y p σσπ, 式中i σ 是分布的标准误差。为简便起见,下面用C 代表(c 1,c 2,……c m )。考虑各次测量是相互独立的,故观测值(y 1,y 2,……c N )的似然函数 ( ) ()[]?? ? ???????-- = ∑ =N i i i N N C x f y L 1 2 2 21;2 1exp (21) σσ σσπ . 取似然函数L 最大来估计参数C ,应使 ()[]min ;1 1 2 2 =-∑=N i i i i C x f y σ (0-0-3) 取最小值:对于y 的分布不限于正态分布来说,式(0-0-3)称为最小二乘法准则。若为正态分布的情况,则最大似然法与最小二乘法是一致的。因权重因子 2 /1i i σω=,故式 (0-0-3)表明,用最小二乘法来估计参数,要求各测量值y i 的偏差的加权平方和为最小。 根据式(0-0-3)的要求,应有

最小二乘法的基本原理和多项式拟合

最小二乘法的基本原理和多项式拟合 一最小二乘法的基本原理 从整体上考虑近似函数同所给数据点 (i=0,1,…,m)误差 (i=0,1,…,m) 的大小,常用的方法有以下三种:一是误差 (i=0,1,…,m)绝对值的最大值,即误差向量 的∞—范数;二是误差绝对值的和,即误差向量r的1—范数;三是误差平方 和的算术平方根,即误差向量r的2—范数;前两种方法简单、自然,但不便于微分运算,后一种方法相当于考虑 2—范数的平方,因此在曲线拟合中常采用误 差平方和来度量误差 (i=0,1,…,m)的整体大小。 数据拟合的具体作法是:对给定数据 (i=0,1,…,m),在取定的函数类 中,求,使误差(i=0,1,…,m)的平方和最小,即 = 从几何意义上讲,就是寻求与给定点 (i=0,1,…,m)的距离平方和为最小的曲线 (图6-1)。函数称 为拟合函数或最小二乘解,求拟合函数的方法称为曲线拟合的最小二乘法。 在曲线拟合中,函数类可有不同的选取方法. 6—1 二多项式拟合 假设给定数据点 (i=0,1,…,m),为所有次数不超过的多项式构成的函数类,现求一,使得 (1)

当拟合函数为多项式时,称为多项式拟合,满足式(1)的称为最小二乘拟合多项式。特别地,当n=1时,称为线性拟合或直线拟合。 显然 为的多元函数,因此上述问题即为求的极值问题。由多元函数求极值的必要条件,得 (2) 即 (3) (3)是关于的线性方程组,用矩阵表示为 (4) 式(3)或式(4)称为正规方程组或法方程组。 可以证明,方程组(4)的系数矩阵是一个对称正定矩阵,故存在唯一解。从式(4)中解出 (k=0,1,…,n),从而可得多项式 (5) 可以证明,式(5)中的满足式(1),即为所求的拟合多项式。我们把 称为最小二乘拟合多项式的平方误差,记作 由式(2)可得 (6) 多项式拟合的一般方法可归纳为以下几步: (1) 由已知数据画出函数粗略的图形——散点图,确定拟合多项式的次数n; (2) 列表计算和; (3) 写出正规方程组,求出; (4) 写出拟合多项式。

【开题报告】最小二乘法的原理和应用

开题报告 数学与应用数学 最小二乘法的原理和应用 一、选题的意义 最小二乘法在很多领域都的到了广泛的应用。在研究两个变量之间的关系时,可以用回归分析的方法进行分析。当确定了描述两个变量之间的回归模型后,就可以使用最小二乘法估计模型中的参数,进而建立经验方程。简单的说,最小二乘法思想就是要使得观测点和估计点的距离的平方和达到最小。这里的“二乘”指的是用平方来度量观测点与估计点的远近,“最小”指的是参数的估计值要保证各个观测点与估计点的距离的平方和达到最小。从计算角度看,最小二乘法与插值法类似,都是处理数据的算法。但从创设的思想看,二者却有本质的不同,前者寻求一条曲线,使其与观测数据“最接近”,目的是代表观测数据的趋势;后者则是使曲线严格通过给定的观测数据,其目的是通过来自函数模型的数据来接近近似刻画函数。在观测数据带有测量误差的情况下,就会使得这些观测数据偏离函数曲线,结果使得观测数据保持一致的插值法不如最小二乘法得到的曲线更符合客观实际。 最小二乘法能在统计学中得到应用,也是因为测量误差的存在。事实上,在高斯等人创立了测量误差理论,对最小二乘法进行了分析后,这种方法才在统计界获得了合法地位,正式成为了一张统计方法。最小二乘法逐步渗入到统计数据分析领域,对统计学的发展产生了重大影响。 二、研究的主要内容,拟解决的主要问题(阐述的主要观点) 最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最

小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。曲线拟合中最基本和最常用的是直线拟合。用最小二乘法估计参数时,要求观测值的偏差的加权平方和为最小。由于直线参数的估计值是根据由误差的观测数据点计算出来的,他们不可避免地存在着偏差。 三、研究(工作)步骤、方法及措施(思路) 研究(工作)步骤: 1.2010.12.15-2010.12.31 根据选题,广泛查阅资料,填写任务书有关事项,明确任务要求,初步形成研究方向。 2.2011.1.1-2011.3.6利用课余时间、假期仔细研读参考文献,初步拟定论文提纲,收集所要翻译的外文资料,完成两篇外文翻译,以及撰写开题报告和文献综述。 3.2011.3.6-2011.3.12修改开题报告、文献综述和外文翻译,进一步整理论文大纲。 4.2011.3.13-2011.3.16根据论文大纲翻阅相关详细资料。 5.2011.3.17-2011.3.26整理收集的相关材料,开始写论文工作。 6.2011.3.27-2011.4.10撰写论文初稿,上交论文、译文、开题报告、指导记录、中期检查表。 7.2011.4.11-2011.4.25修改论文,上交所有相关材料。 8.2011.4.26-2011.5.18补充必要的内容,论文打印、定稿。 9. 2011.5.19-2011.5.28准备毕业论文答辩。 方法及措施:主要采用举例分析、探讨的方法。 四、毕业论文(设计)提纲 1. 最小二乘法的引入 1.1最小二乘法及其证明 1.2最小二乘法的简单运用

【开题报告】浅谈最小二乘法的原理及其应用

开题报告 信息与计算科学 浅谈最小二乘法的原理及其应用 一、综述本课题国内外研究动态, 说明选题的依据和意义 最小二乘法(Least Square Method )是提供“观测组合”主要工具之一, 它依据对某事件的大量观测而获得“最佳”结果或“最可能”表现形式. 如已知两变量为线性关系, 对其进行次观测而获得对数据. 若将这对数据代入方程求y a bx =+(2)n n >n n 解的值则无确定解, 而最小二乘法提供了一个求解方法, 其基本思想是寻找“最接,a b 近”这个观测点的直线. n 最小二乘法创立与十九世纪初, 是当时最重要的统计方法, 在长期的发展中, 人们一直处于不断的研究中, 在传统最小二乘法的基础上, 出现了许多更为科学先进的方法, 如移动最小二乘法、加权最小二乘法、偏最小二乘法、模糊最小二乘法和全最小二乘法等, 使得最小二乘法在参数估计、系统辨识以及预测、预报等纵多领域都有着广泛的应用. 相关回归分析、方差分析和线性模型理论等数理统计学的几大分支都以最小二乘法为理论基础, 所以最小二乘法被称之为数理统计学的灵魂. 正如美国统计学家斯蒂格勒(S. M. Stigler )所说, “最小二乘法之于数理统计学犹如微积分之于数学”. 因此对最小二乘法的研究就显得意义重大. 国内外的学者们一直在对传统最小二乘法做进一步的研究. 勒让德(A. M. Legender )于1805年发表了论著《计算彗星轨道的新方法》, 在书中勒让德描述了最小二乘法的思想、具体做法及其优点, 他认为: 赋予误差的平方和为极小, 则意味着在这些误差间建立了一种均衡性, 它阻止了极端情形所施加的过分影响. 1809年高斯 (C. F. Gauss )在著作《天体沿圆锥截面围绕太阳运动的理论》中发表有关最小二乘法的理论, 随后在1826年的著作中阐述了最小二乘法的全部内容. 统计学者对最小二乘法做了进一步的研究探讨, 1970年, 由霍尔(A. E. Horel )和肯纳德(R. W. Kennard )提出的岭估计(Ridge Estimate ), 用取代, ()()11?n i i i k S kI x y β -==+∑?β有效的降低了原方法的病态性.

最小二乘法的综述及算例

题目:最小二乘法的综述及算例 院系:航天学院自动化 班级: 学号: 学生签名: 指导教师签名: 日期:2011年12月6日 目录 1.综述 (3) 2.概念 (3) 3.原理 (4) 4.算例 (6) 5.总结 (10) 参考文献 (10) 1.综述 最小二乘法最早是由高斯提出的,这是数据处理的一种很有效的统计方法。高斯用这种方法解决了天文学方面的问题,特别是确定了某些行星和彗星的天体轨迹。这类天体的椭圆轨迹由5个参数确定,原则上,只要对它的位置做5次测量就足以确定它的整个轨迹。但由

于存在测量误差,由5次测量所确定的运行轨迹极不可靠,相反,要进行多次测量,用最小二乘法消除测量误差,得到有关轨迹参数的更精确的值。最小二乘法近似将几十次甚至上百次的观察所产生的高维空间问题降到了椭圆轨迹模型的五维参数空间。 最小二乘法普遍适用于各个科学领域,它在解决实际问题中发挥了重要的作用。它在生产实践、科学实验及经济活动中均有广泛应用。比如说,我们引入等效时间的概念,根据Arrhenius 函数和指数函数研究水化热化学反应速率随温度的变化,最后采用最小二乘法回归分析试验数据,确定绝热温升和等效时间的关系式。 为了更好地掌握最小二乘法,我们引入以下两个问题: (1)假设已知一组二维数据(i i y x ,),(i=1,2,3···n ),怎样确定它的拟合曲线y=f(x)(假 设为多项式形式f(x)=n n x a x a a +++...10),使得这些点与曲线总体来说尽量接近? (2)若拟合模型为非多项式形式bx ae y =,怎样根据已知的二维数据用最小二乘线性拟合确定其系数,求出曲线拟合函数? 怎样从给定的二维数据出发,寻找一个简单合理的函数来拟合给定的一组看上去杂乱无章的数据,正是我们要解决的问题。 2.概念 在科学实验的统计方法研究中,往往要从一组实验数(i i y x ,)(i=1,2,3···m )中寻找自变量x 与y 之间的函数关系y=F(x).由于观测数据往往不准确,此时不要求y=F(x)经过所有点(i i y x ,),而只要求在给定i x 上误差i δ=F (i x )i y -(i=1,2,3···m )按某种标准最小。 若记δ=()δδδm T 2,1,就是要求向量δ的范数δ最小。如果用最大范数,计算上困难较大,通常就采用Euclid 范数2δ作为误差度量的标准。 关于最小二乘法的一般提法是:对于给定的一组数据(i i y x ,) (i=0,1,…m)要求在函数空间Φ=span{ n ???,....,,10}中找一个函数S*(x),使加权的误差平方和22δ=2 0))()((i i m i i y x S x -∑=ω最小,其中,0)(>=i x ω是[a,b]上的权函数,它表示反应数据(i i y x ,) 在实验中所占数据的比重。 我们说,S(x)=)()()(1100x a x a x a n n ???+++ (n

最小二乘法原理

第一节最小二乘法的基本原理和多项式拟合 一最小二乘法的基本原理 从整体上考虑近似函数同所给数据点(i=0,1,…,m)误差(i=0,1,…,m)的大小,常用的方法有以下三种:一是误差 (i=0,1,…,m)绝对值的最大值,即误差向量 的∞—范数;二是误差绝对值的和,即误差向量r的1— 范数;三是误差平方和的算术平方根,即误差向量r的2—范数;前两种方法简单、自然,但不便于微分运算,后一种方法相当于考虑 2—范数的平方, 因此在曲线拟合中常采用误差平方和来度量误差(i=0,1,…,m)的整体大小。 数据拟合的具体作法是:对给定数据(i=0,1,…,m),在取定的函数类中,求,使误差(i=0,1,…,m)的平方和最小,即 = 从几何意义上讲,就是寻求与给定点(i=0,1,…,m)的距离平方和为最小的曲线(图6-1)。函数称为拟合函数或最小二乘解,求拟合函数的方法称为曲线拟合的最小二乘法。 在曲线拟合中,函数类可有不同的选取方法. 6—1 二多项式拟合 假设给定数据点(i=0,1,…,m),为所有次数不超过的多项式构成的函数类,现求一,使得 (1)

当拟合函数为多项式时,称为多项式拟合,满足式(1)的称为最小二乘 拟合多项式。特别地,当n=1时,称为线性拟合或直线拟合。 显然 为的多元函数,因此上述问题即为求的极值问题。由多元函数求极值的必要条件,得 (2) 即 (3) (3)是关于的线性方程组,用矩阵表示为 (4) 式(3)或式(4)称为正规方程组或法方程组。 可以证明,方程组(4)的系数矩阵是一个对称正定矩阵,故存在唯一解。 从式(4)中解出(k=0,1,…,n),从而可得多项式 (5) 可以证明,式(5)中的满足式(1),即为所求的拟合多项式。我 们把称为最小二乘拟合多项式的平方误差,记作 由式(2)可得 (6) 多项式拟合的一般方法可归纳为以下几步: (1) 由已知数据画出函数粗略的图形——散点图,确定拟合多项式的次数n;

最小二乘法曲线拟合原理及maab实现

曲线拟合( curve-fitting ):工程实践中,用测量到的一些离散的数据 {( X, yj,i 0,1,2,...m}求一个近似的函数(x)来拟合这组数据,要求所得的拟合曲线能最好的反映数据的基本趋势(即使(x)最好地逼近f x,而不必满足插值原则。因此没必要取(X)=y i,只要使i (X i) y i尽可能地小)。 原理: 给定数据点{( x i,y i),i 0 ,1 , 2, . . . m} 。求近似曲线( x) 。并且使得近似曲线与f x 的偏差最小。 近似曲线在该点处的偏差i(x i ) y i,i=1,2,...,m 。 常见的曲线拟合方法: 1. 使偏差绝对值之和最小 2. 使偏差绝对值最大的最小 3. 使偏差平方和最小 最小二乘法: 按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法。推导过程: 1. 设拟合多项式为: 2. 各点到这条曲线的距离之和,即偏差平方和如下: 3?问题转化为求待定系数a0...a k对等式右边求q偏导数,因而我们得到了: 4、把这些等式化简并表示成矩阵的形式,就可以得到下面的矩阵: 5. 将这个范德蒙得矩阵化简后可得到: 6. 也就是说X*A=Y ,那么A = (X'*X)-1*X'*Y ,便得到了系数矩阵A ,同时,我们也就得到了拟合曲线。 MATLAB 实现: MATLAB 提供了polyfit ()函数命令进行最小二乘曲线拟合。 调用格式:p=polyfit(x,y,n) [p,s]= polyfit(x,y,n) [p,s,mu]=polyfit(x,y,n) x,y 为数据点,n 为多项式阶数,返回p 为幂次从高到低的多项式系数向量p。x 必须是单调的。矩阵s包括R (对x进行QR分解的三角元素)、df(自由度)、 normr(残差)用于生成预测值的误差估计。 [p,s,mu]=polyfit(x,y,n) 在拟合过程中,首先对x 进行数据标准化处理,以在拟合中消除量纲等影响,mu包含标准化处理过程中使用的x的均值和标准差。polyval( ) 为多项式曲线求值函数,调用格式:y=polyval(p,x)

最小二乘法拟合原理

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 最小二乘法拟合原理 最小二乘法拟合原理最小二乘拟合在物理实验中经常要观测两个有函数关系的物理量。 根据两个量的许多组观测数据来确定它们的函数曲线,这就是实验数据处理中的曲线拟合问题。 这类问题通常有两种情况: 一种是两个观测量 x 与 y 之间的函数形式已知,但一些参数未知,需要确定未知参数的最佳估计值;另一种是 x 与 y 之间的函数形式还不知道,需要找出它们之间的经验公式。 后一种情况常假设 x 与 y 之间的关系是一个待定的多项式,多项式系数就是待定的未知参数,从而可采用类似于前一种情况的处理方法。 一、最小二乘法原理在两个观测量中,往往总有一个量精度比另一个高得多,为简单起见把精度较高的观测量看作没有误差,并把这个观测量选作 x,而把所有的误差只认为是 y 的误差。 设 x 和 y的函数关系由理论公式 y=f(x; c1, c2, cm)(0-0-1)给出,其中 c1, c2, cm 是 m 个要通过实验确定的参数。 对于每组观测数据(xi,yi) i=1, 2,, N。 都对应于 xy 平面上一个点。 若不存在测量误差,则这些数据点都准确落在理论曲线上。 1 / 12

只要选取 m 组测量值代入式(0-0-1),便得到方程组 yi =f(x; c1, c2, cm)(0-0-2)式中 i=1, 2,, m. 求m 个方程的联立解即得 m 个参数的数值。 显然 Nm 时,参数不能确定。 在 Nm 的情况下,式(0-0-2)成为矛盾方程组,不能直接用解方程的方法求得 m 个参数值,只能用曲线拟合的方法来处理。 设测量中不存在着系统误差,或者说已经修正,则y 的观测值 yi 围绕着期望值 f(x; c1, c2, cm)摆动,其分布为正态分布,则yi 的概率密度为 p yi 1 yi f xi; c1, c2, . . . . . . , cm exp 2 2i2i 2 , 式中 i 是分布的标准误差。 为简便起见,下面用 C 代表(c1, c2, cm)。 考虑各次测量是相互独立的,故观测值(y1, y2, cN)的似然函数 L 1 1exp 2 N 2 N N 1 2. . . i 1 yi N 2 f x; C 2 i . 取似然函数 L 最大来估计参数 C,应使y i 1 2 i 1 i f xi; C min 2 (0-0-3)取最小值: 对于 y 的分布不限于正态分布来说,式(0-0-3)称为最小二乘法准则。 若为正态分布的情况,则最大似然法与最小二乘法是一致的。

最小二乘法原理

最小二乘法原理 最小二乘法(也称为最小二乘法)是一种数学优化技术。它通过最小化误差平方和来找到数据的最佳函数匹配。最小二乘法可用于轻松获取未知数据,并使获取的数据与实际数据之间的误差平方和最小。最小二乘法也可以用于曲线拟合。通过最小化能量或最大化熵,也可以通过最小二乘法来表达一些其他优化问题。当我们研究两个变量(x,y)之间的关系时,通常可以得到一系列配对数据(x1,y1。x2,y2 ... xm,ym);将这些数据绘制在x处。在y直角坐标系中,如果在直线附近找到这些点,则该直线的方程式可以为(方程1-1)。 Yj = a0 + a1 X(公式1-1) 其中:a0,a1是任何实数 要建立此线性方程,必须确定a0和a1,应用“最小二乘原理”,并将测量值Yi 与计算值(Yj = a0 + a1X)(Yi-Yj)进行比较。平方[∑(Yi-Yj)2]是“优化标准”。 令:φ= ∑(Yi-Yj)2(式1-2) 将(公式1-1)代入(公式1-2),我们得到: φ= ∑(Yi-a0-a1 * Xi)2(等式1-3) 当∑(Yi-Yj)的平方最小时,函数φ可用于获得a0和a1的偏导数,因此这两个偏导数等于零。 那是: m a0 +(∑Xi)a1 = ∑Yi(式1-6) (∑Xi)a0 +(∑Xi2)a1 = ∑(Xi,Yi)(公式1-7)

关于a0和a1的两个方程是未知数。求解这两个方程,得到: a0 =(∑Yi)/ m-a1(∑Xi)/ m(公式1-8) a1 = [m∑Xi Yi-(∑Xi ∑Yi)] / [m∑Xi2-(∑Xi)2)](等式1-9) 此时,将a0和a1代入(方程式1-1),这时(方程式1-1)是我们返回的基本线性方程:数学模型。 在回归过程中,回归相关公式不可能传递每个回归数据点(x1,y1。x2,y2 ... xm,ym)。为了判断相关公式,可以使用相关系数“R”,统计“F”,剩余标准偏差“S”进行判断;“R”越接近1,越好;“F”的绝对值越大,越好;“S”越接近0越好。 R = [∑XiYi-m(∑Xi / m)(∑Yi / m)] / SQR {[∑Xi2-m(∑Xi / m)2] [∑Yi2-m (∑Yi / m)2]} (公式1-10)* 在(等式1-1)中,m是样本大小,即实验次数;Xi和Yi分别是任意一组实验X和Y的值。

相关主题
文本预览
相关文档 最新文档