当前位置:文档之家› 用于低电压穿越测试的电压跌落发生器研究

用于低电压穿越测试的电压跌落发生器研究

用于低电压穿越测试的电压跌落发生器研究
用于低电压穿越测试的电压跌落发生器研究

低电压穿越试验检测装置

低电压穿越试验检测装置用户使用手册

目录 第一章概述 (2) 第二章技术条件 (3) 2.1 环境条件 (3) 2.2 执行现行国家标准 (4) 第三章装置技术说明 (4) 3.1 功能特点 (4) 3.2 技术参数 (5) 第四章装置使用说明 (6) 第一章概述 2011年4月,随着国家发改委出台了关于完善太阳能光伏发电上网电价政策的通知,2011年中国光伏市场前景大好,中国光伏装机容量增长依旧强劲,2011全年的安装量达到2GW,2012年装机超过4GW。到2015年底和2020年底,分别达到20GW和50GW。由此可见未来几年的光伏市场潜力和产能需求非常大。

随着光伏在电力能源中所占比例越来越大,光伏发电系统对电网的影响已不容忽视。尤其是我国光电大规模集中式开发,当电网发生故障造成并网点电压跌落时,一旦光伏逆变器自动脱网可能造成电网电压和频率的崩溃,严重影响电网的安全稳定运行。因此,大功率光伏并网逆变器必须具有低电压穿越能力(Low V oltage Ride Through,LVRT)。其并网必须满足相应的技术标准,只有当电网电压跌落低于规定曲线以后才允许光伏逆变器脱网,当电压在凹陷部分时,逆变器应提供无功功率。 目前,丹麦、德国等欧洲国家制定了新的电网运行准则;在国内,国家电网公司也已发布了《光伏电站接入电网技术规定》、《光伏电站接入电网测试规程》。然而,目前国内试验和测试手段匮乏,尚不能研制与技术标准相配套的低电压穿越测试装置(电压跌落发生装置),低电压穿越等测试试验无法在现场进行,难以为光伏电站并网验收试验提供有效的技术支撑,也严重制约我国光伏发电的应用和发展。 为了提高我国光伏逆变器并网运行检测能力,推动光伏发电配套设备的自主创新,解决我国光伏发电并网运行的瓶颈,中国电科院中电普瑞科技有限公司在成功研制张北国家风光储实验基地风电检测中心35kV/6MV A电压跌落发生装置的基础上,通过自主创新进一步研制出国内首创的光伏逆变器低电压穿越测试装置。该装置采用阻抗分压式、集中结构、紧凑型设计,具有运输方便、测试灵活、占地面积小等优点。 低电压穿越测试装置根据国内光伏逆变器的特点,开发LVRT—1M系列产品,分别适用于1MW及以下光伏并网逆变器的低电压穿越测试装置,可根据用户需要灵活选择。 第二章技术条件 2.1 环境条件 序号项目现场条件 1 安装地点室外 2 海拔高度1500m

给煤机变频器低电压穿越装置安装、调试方案

给煤机、空预器变频器低电压穿越装置 安装、调试方案 批准: 复审: 初审: 编写: 河南检修电气专业 2012年07月13日

一、装置概况: 根据根据坑口公司电气专业要求,对1、2号炉14台给煤机8台空预器变频器安装变频器低电压穿越装置。 GLT-20A、B型变频器低电压穿越装置当电网电压正常时装置待机,电能通过交流旁路向变频器送电,BOOST升压回路处于旁路状态,不参与装置运行。当电网电压发生跌落时,BOOST升压电路以BOOST工作状态启动,保证到负载稳定的直流电压。 装置的运行模式下有两种工作状态:BOOST工作状态、非BOOST工作状态。BOOST工作状态是指在电网电源发生跌落时,BOOST升压电路可以提供变频器稳定的直流电压,维持变频器正常工作; 非BOOST工作状态是指在电网电源正常时,BOOST升压电路不参与装置的运行,电能通过交流旁路向变频器送电。 二、组织措施: (一)施工技术负责人:徐洪民 施工安全负责人:和占明 施工人员:和海涛李海龙等 施工上岗到位人员: 1、组织人员:徐洪民、和占明、张海明 2、参加人员:河南维护电气二次班人员

(二)人员责任分工: 1、徐洪民负责本次安装全面协调工作,负责技术方案审核并负有安全技术措施管理执行和完成落实责任。 2、和占明组织本专业全面检修与配合工作,对检修人员的安全负管理责任。 3、张海明负责检修工作过程中的技术监督工作,负责整体检修工作人员组织与协调工作。 一、施工安全措施 (一)、施工作业危险点分析 1、不办理工作票即开始工作,即无票工作,安全措施未落实,造成人身伤害、设备损坏。 2、进行拆接线时,发生人身触电。 3、误接线。 4、电缆勋伤 (二)、施工作业危险点预控措施 1、电气工作应按照规定办理电气工作票,严禁无票工作。 2、作业前工作负责人向工作班成员交待好作业危险点,现场使用的检修电源必需配臵合格的漏电保安器。 3、工作前要验电,确认设备停电并将盘内电源开关至于断开位臵后方可开始工作。 拆接线时应做好监护、拆接线应做好绝缘防护严防短路和接地,工作时要戴好线手套。

低电压穿越

低电压穿越:当电网故障或扰动引起风电场并网点的电压跌落时,在电压跌落的范围内,风电机组能够不间断并网运行。 低电压穿越 英文:Low voltage ride through 缩写: LVRT 低电压穿越(LVRT),指在风力发电机并网点电压跌落的时候,风机能够保持 低电压穿越 并网,甚至向电网提供一定的无功功率,支持电网恢复,直到电网恢复正常,从而“穿越”这个低电压时间(区域)。LVRT是对并网风机在电网出现电压跌落时仍保持并网的一种特定的运行功能要求。不同国家(和地区)所

基本要求 对于风电装机容量占其他电源总容量比例大于5%的省(区域)级电网,该电网区域内运行的风电场应具有低电压穿越能力。 风电场低电压穿越要求 右图为对风电场的低电压穿越要求。 a) 风电场内的风电机组具有在并网点电压跌至20%额定电压时能够保证不脱网连续运行625ms的能力; b) 风电场并网点电压在发生跌落后2s内能够恢复到额定电压的90%时,风电场内的风电机组能够保证不脱网连续运行。 不同故障类型的考核要求 对于电网发生不同类型故障的情况,对风电场低电压穿越的要求如下: a) 当电网发生三相短路故障引起并网点电压跌落时,风电场并网点各线电压在图中电压轮廓线及以上的区域内时,场内风电机组必须保证不脱网连续运行;风电场并网点任意线电压低于或部分低于图中电压轮廓线时,场内风电机组允许从电网切出。 b) 当电网发生两相短路故障引起并网点电压跌落时,风电场并网点各线电压在图中电压轮廓线及以上的区域内时,场内风电机组必须保证不脱网连续运行;风电场并网点任意线电压低于或部分低于图中电压轮廓线时,场内风电机组允许从电网切出。 c) 当电网发生单相接地短路故障引起并网点电压跌落时,风电场并网点各相电压在图中电压轮廓线及以上的区域内时,场内风电机组必须保证

高压变频器低电压穿越功能的实现49

高压变频器低电压穿越功能的实现 摘要:本文首先阐述了高压变频器设备现状,接着分析了高压变频器低电压穿越 治理系统, 最后对设备改造方案、实现方法、效果评价进行了探讨。通过近几年 新高压变频器系统的设计,实现了高压变频器的低电压穿越功能。 关键词:高压变频器;低电压穿越功能 引言: 电厂中,高压变频器用于拖动各类辅机,对于电厂的节能环保具有重要作用。由于电网电压不稳定,当高压变频器的输入电压过低时,会触发保护,从而导致 辅机停机,甚至引起机组停机,因此要求高压变频器具备低电压穿越的能力。 1设备现状 高压变频器跳闸主要有两个原因:变频器功率回路(变频器动力部分)和控 制回路(控制部分)。变频器的功率回路均由整流模块、直流环节、逆变模块组成。在变频系统中,变频器并非独立运行,有相应的控制电路板、采样反馈系统、继电器和接触器与其配合工作,这些部件均需稳定的控制电源供电。电力系统发 生低电压故障时,控制电源也会发生跌落,进而造成控制系统与继电器系统的瘫痪,变频器同样无法正常运行,导致高压变频停止运行。 2高压变频器低电压穿越治理系统 2.1高压变频器低电压穿越治理系统逻辑控制 控制单元输入信号:变频器运行状态接点信号;母线电压监测信号。输出信号:断路器、直流接触器的闭合断开信号。交流电压正常条件下低电压穿越治理 系统投入过程:变频器电源端送入正常电压,变频器受电,内部CPU准备运行,DCS或PLC控制设备送来启动指令;模拟控制4~20mA电流决定变频器拖动电机 的运行转速;等到系统正常运行后变频器状态接点闭合;低电压穿越治理系统控 制单元接收到变频器正常运行状态指令后,向执行单元发出合闸指令,这时该回 路在热备用状态;此次操作结束。变频器电源失电,控制单元给执行单元一个运 行信号,低电压穿越治理系统给变频器直流母线供电,此过程变频器运行不间断。变频器电源供电恢复时其直流环节的电压应立刻上升;执行单元撤出对变频器的 供电,变频器转为电源供电。母线电压未恢复,直流支撑系统给变频器供电时间 不小于10s。 2.2高压变频器低电压穿越治理系统工作流程 系统直流输出母线由晶闸管和直流压差控制系统控制,正常运行时与变频器 完全隔离。电网电压大于90%时,系统不工作,处于热备用状态。当电压跌落到0~90%范围内系统瞬时(<200μs)启动工作,维持变频器直流母线电压在 DC500V左右,保证变频器正常运行。当电网电压恢复时,系统自动退出工作状态,转为热备用状态,变频器自动转换由电网供电。当MFT动作或变频器停止运 行时,系统自动退出,转为热备用状态。 3设备改造方案 通常,变频器采用“交-直-交”工作模式,主要有变频器功率回路和控制电 源两部分。若要彻底解决变频器因电压低而跳闸的问题,就必须同时解决直流电 源支撑问题和控制电源问题。考虑到高压变频器负荷转矩特性,计划为高压变频 器加装低电压穿越电源装置。在系统发生低电压期间,低电压穿越装置输出稳定 直流,可靠提供高压变频器直流电源,同时提供可靠的控制电源,保障变频器拖 动系统的连续稳定运行。

低电压穿越技术规范书

低电压穿越技术规范书 1 总则 1.1低电压穿越技术规范书适用于光伏发电站并网验收、风电场接入并网验收、光伏逆变器型 式试验、风力发电机组的低电压穿越检测平台,包括主要设备及其辅助设备的功能设计、结构、性能、安装和试验等方面的技术要求。 1.2低电压穿越技术规范书要求该检测平台能够同时满足现场安装在风电场的单台风电机组低 电压穿越能力检测,满足光伏发电站并网接入验收的低电压穿越能力检测,满足光伏逆变器与风电发电机组的型式试验的低电压穿越试验检测。 1.3低电压穿越技术规范书所提出的是最低限度的技术要求,并未对一切技术细节做出规定,也 未充分引述有关标准和规范的条文。供方应保证提供符合本规范书和工业标准的优质产品。 2 低电压穿越技术使用条件 2.1低电压穿越技术环境条件 a) 户外环境温度要求:-40℃~ 50℃; b) 户外环境湿度要求:0~90% ; c) 海拔高度:0~2000米(如果超过2000米,需要提前说明)。 2.2安装方式:标准海运集装箱内固定式安装。 2.3储存条件 a)环境温度-50℃~50℃; b)相对湿度0~95% 。 2.4低电压穿越技术工作条件 a) 环境温度-40 oC~40oC; b) 相对湿度10%~90%,无凝露。 2.5低电压穿越技术电力系统条件 a) 电网电压最高额定值为35kV,电压运行范围为31.5kV~40.5kV;同时也可以同时满足 10kV\20kV电网电压的试验检测。 b) 电网频率允许范围:48~52Hz;

c) 电网三相电压不平衡度:<= 4%; d) 电网电压总谐波畸变率:<= 5%。 2.6负载条件 负载包括直驱或双馈式等风力发电机组,其总容量不大于6.0MVA。其控制和操作需要满足国家关于风电机组电电压穿越测试与光伏发电站的相关测试规程技术要求。 本检测平台能够同时满足同等条件下光伏电站或光伏逆变器的低电压穿越能力测试。 2.7接地电阻:<=5Ω。 3低电压穿越技术检测平台的技术要求 3.1 结构及原理要求 根据模拟实际电网短路故障的要求,测试系统须采用阻抗分压方式,原理如下图1所示(以实际为准)。测试系统串联接入风电机组出口变压器高压侧(35kV、20 kV、10 kV侧)。 图1 低电压穿越技术测试系统原理图 3.2 测试系统功能要求 (1)整体要求 ?测试系统紧凑式安装; ?任何测试引起的测试系统电网侧电压波动均小于5%Un; ?测试接入系统电压等级:适用于35kV系统,如果需要可考虑兼容10kV系统;

变频器低电压穿越能力

低电压穿越能力 低电压穿越能力(Low voltage ride through capability),就是指风力发电机的端电压 降低到一定值的情况下不脱离电网而继续维持运行,甚至还可为系统提供一定无功以帮助系 统恢复电压的能力。具有低电压穿越能力的风力发电机可躲过保护动作时间,故障切除后恢 复正常运行。这可大大减少风电机组在故障时反复并网次数,减少对电网的冲击。 具有低电压穿越能力可保证风电机组在电网故障电压降低的情况下 , 尽最大可能与电网连接 ,保持发电运行能力,减少电网波动。一般 230 kV 或更高电压等级线路的故障,在 6 个周波(120 ms)内被切除 ,电压恢复到正常水平的 15 %需要 100 ms ,恢复到正常水平的 75 %或者更高水平则需要1 s ,LVRT功能是要风电机组在故障电压短时间消失期间 ,保持持续运行的能力 ,如此后电压仍处在低压 ,风电机组将被低压保护装置切除。 低电压穿越能力的具体实现方式 目前实现低电压穿越能力的方案一般有三种:1).采用了转子短路保护技术,2).引入新型拓扑结构,3).采用合理的励磁控制算法。 1、转子短路保护技术(crowbar电路) 这是目前一些风电制造商采用得较多的方法,其在发电机转子侧装有crowbar电路,为转子侧电路提供旁路,在检测到电网系统故障出现电压跌落时,闭锁双馈感应发电机励磁变流器,同时投入转子回路的旁路(释能 电阻)保护装置,达到限制通过励磁变流器的电流和转子绕组过电压的作用,以此来维持发电机不脱网运行(此时双馈感应发电机按感应电动机方式运行)。 2、新型拓扑结构包括以下几种:1).新型旁路系统 2).并联连接网侧 变流器 3).串联连接网侧变流器 3、采用新的励磁控制策略 从制造成本的角度出发,最佳的办法是不改变系统硬件结构,而是通 过修改控制策略来达到相同的低电压穿越效果:在电网故障时,使发电机 能安全度越故障,同时变流器继续维持在安全工作状态。

#1机给煤机低电压穿越电源改造试验方案

中铝宁夏能源集团有限公司六盘山热电厂 #2炉给煤机 低电压穿越电源改造送电试验方案 批准: 审核: 编写:

#2炉给煤机 低电压穿越电源改造送电试验方案 一、设备现状 按照宁夏电力调度控制中心《关于印发2014 年宁夏电网网源协调重点工作的通知》宁电调字〔2014〕18号以及《关于印发2015年宁夏电网网源协调重点工作方案的通知》文件要求,我厂须按照宁夏电力调度控制中心制定的2015年电网网源协调重点工作计划,开展火电机组一类辅机变频器低电压穿越能力整改工作,即对#1、#2炉给煤机变频器加装低电压穿越装置;目前,#2炉低电压穿越装置已安装完毕并具备调试条件,为确保调试、试验工作安全、顺利进行,特制订以下方案: 二、组织措施 总负责人:王子龙 技术负责人:侯红伟 安全负责人:柳银兰 三、安全措施 在进行#2机组低电压穿越电源调试及试验工作时,必须落实以下安全措施、防止发生任何影响人身、设备的不安全现象,现根据工作中的危险点及《安规》,就有关安全事项规定如下: 1、工作前,对工作中的危险因素进行认真分析,填写危险点预控单,办理工作票,经许可后进入现场,对工作班成员进行危险点的告知后方可开展工作,工作时严格按照工作票所留安全措施执行。

2、参加本次工作的所有人员,必须熟悉本工作的内容及流程。 3、工作班成员应明确本次工作中所需执行的措施并经现场确认后,方可开展相应工作。 4、工作组保持通讯畅通,并保证集控室值长和现场检修人员的通讯畅通,集控室发现和现场有关的任何预告和保护动作信号,立即停止工作。 5、工作中,所有工作统一由工作负责人负责,如有需要协调问题,汇报总工作负责人协调处理,本次改造工作统一由总工作负责人全面负责实施。 6、禁止工作人员擅自扩大工作范围,以及擅自进入非作业区 域,严防意外事故的发生 四、技术措施 低电压穿越装置的接线调试,由北京四方厂家人员到厂协助班组完成。该低电压穿越装置所供给给煤机控制柜变频器的动力电源应具备低电压穿越能力,具体试验的技术性能测试的目的、内容如下:1)、试验目的 验证发电机组一类辅机在电网电压跌落时(由380V 的额定值分别跌落至额定电压的20%、60%,持续运行时间分别为0.5s、5s),变频器正常工作且出力波动不大于10%。 2)试验前准备: 变频器一般由控制回路和动力回路构成,在低穿试验中,我们只对动力回路的电源进行电压跌落测试,因此控制回路电源应提前与动

低电压穿越性能论文

浅谈风电场涉网性能 ——低电压穿越性能 编制:韩树才 项目:中宁天润项目 提交时间:2014-12-24 部门:宁夏事业部

摘要 随着风力发电技术的迅速发展和其装机容量的不断增大,风力发电技术面临着提高电能质量和电网稳定性的严峻挑战。当电网发生故障导致电压跌落时,若风电机组不具备低电压穿越能力将会从电网切除,风电机组的大面积切机不仅将对电网稳定性造成巨大影响,而且还会对风机本身产生影响,因此风电机组具备较高的低电压穿越能力很重要。 关键词:风电场;电流保护;低电压穿越;集电线 目录

摘要 (2) 一、风电场低电压穿越简述 (3) (一)风电场低电压穿越能力基本概念 (4) (二)风电场低电压穿越能力评估 (4) (三)风电场低电压穿越面临的问题 (5) 二、风电场机组配置及特性改进 (8) (一)风电场电气结构保护配置 (8) 三结束语 (9) 参考文献 (10) 一、风电场低电压穿越简述

(一)风电场低电压穿越能力基本概念 大容量风电场并网必须具备一定的低电压穿越能力(英文缩写 LVRT),在电网故障等紧急情况下提供一定的电压和无功支撑。如出现过电压、过电流或转速上升等,严重危害风机本身及其控制系的安全运行;当电压无法恢复时,风电机组将会实施被动式自我保护解列,从电网中切除,从而更大地增加整个系统的恢复难度,甚至可能加剧故障,最终导致整个电网瘫痪。因此必须采取有效的低电压穿越措施,以维护风场电网的稳定和提高电能传输效率。低电压穿越能力主要体现在两个关键指标上:电压跌落幅值和持续时间。 电压跌落幅值:电网中严重的电压跌落基本上都是由系统故障引起的,继电保护将检测电压跌落的幅值并判断是否动作跳闸,直接决定电压跌落的持续时间,从而影响对并网风电场的低电压穿越能力要求如果能有效地辨识风电场并网处母线电压跌落的危害程度,自适应调整故障间隔的保护控制策略,将有效地整体降低健全间隔上风电机组感受到的电压跌落持续时间,从而提高风电场低电压穿越能力; 持续时间:利用电容器的瞬间对大电感放电当电流达到峰值时,使电流延续通过,从而达到较长的放电时间,风机能够保持并网,甚至向电网提供一定的无功功率,支持电网恢复正常,从而“穿越”这个低电压时段,提高风电场的整体平稳运行能力。 因此,有必要将风电场低电压穿越能力规范要求引入到继电保护的动作特性中,研究改进风电场集电线路继电保护的动作特性,降低对并网风电机组拖网风险。(二)风电场低电压穿越能力评估 国家电网公司于2009年颁布《风电场接入电网技术规定》,规定风电场低电压穿越要求如图1所示,其关键点为:并网点电压跌落至额定电压的20%时,风电机组必须保持运行0.625s;当并网点电压为额定电压的90%时,风电机组应稳定运行。考虑到风电机组输出功率的非突变性,将图1所示的低电压穿越能力规范反映到风电机组中,表现为低电压运行状态下的风电机组大电流输出能力要求,以维持风电机组输入、输出功率的平衡。

电厂变频器低电压穿越改造方案

****电厂 给煤机/空气预热器变频器低电压穿越改造方案

目录 一、火力发电厂给煤/粉机及空预器系统现状分析 (2) 二、网源协调对火电厂关键辅机变频器低穿能力要求 (4) 三、电厂关键辅机变频器低穿能力梳理核查 (6) (一)厂用负荷分类 (6) (二)厂用负荷继电保护动作特性 (6) (三)厂用负荷变频器低穿能力要求原则 (7) (四)低电压对现有厂用负荷的影响分析 (7) 四、技术改造方案 (9) (一)大惯性类负荷变频器 (9) (二)给煤机、给粉机类负荷变频器 (9) (三)各种技术方案特点及对比分析 (12) 五、SCS-230火电机组辅机电源控制系统 ................................................. 错误!未定义书签。 (一)系统原理..................................................................................... 错误!未定义书签。 (二)系统特性..................................................................................... 错误!未定义书签。 (三)支撑方式..................................................................................... 错误!未定义书签。 (四)SCS-230火电机组辅机电源控制系统两种技术方案.............. 错误!未定义书签。 (五)检验方法..................................................................................... 错误!未定义书签。 (六)SCS-230火电机组辅机电源控制系统检测报告...................... 错误!未定义书签。

变频器低电压穿越电源装置操作规范 (1)1

变频器低电压穿越电源装置操作规范 一、安全须知 1、操作人员熟知《电力安全工作规程》并严格遵守《电力安全工作规程》的前提下,针对低电压穿越电源屏柜特点突出强调如下几点: 1)熟悉低电压穿越屏柜强弱电走线情况,确认各元器件器件可靠连接,严禁盲 目仓促操作; 2)开关的上电顺序必须按照操作规范的说明,不能为追求屏柜快速投入运行而置安全于不顾。若运行过程中出现异常(故障灯亮、停机灯亮、开入后台故障信号),应立即停止屏柜(先使用“急停”按钮,然后是断开柜内的“12SW”控制器电源,断开交流开关QF1),断开相关电源并告知屏柜负责人,待查明原因后方可继续工作; 3)产品的某些端子带有高电压或大电流,运行时不得随意触摸屏柜内相关零部件,禁止带电插拔插件; 4)严防CT开路、PT短路等现象发生; 5)需要测量时,千万要小心使用仪表和工具,避免出现短路、接地、开路等事故; 二、特别强调 上电前应先检查变频器和低电压穿越装置,检查柜内是否有杂物,配线是否有松动,严禁触摸直流母排及电容两端,检查时应先用万用表测量直流母线电压,注意人身安全。 三、外部接线 1、将三相交流电源接入低电压穿越电源装置的QF1端口,注意相序的正确。 2、将低电压穿越电源装置的直流端子接入变频器的直流端口,注意极性的正确。

3、低电压穿越电源装置内部的接线排1X3的端子“1”、“2”和“4”、“5”两对端子,提供给变频器控制柜的操作电源110V。 4、低电压穿越电源装置内部的接线排1X3的端子“10”和“11”作为上送后台的故障空节点。 四、装置内部开关说明 11SW:UPS供电开关,闭合该开关,UPS输入侧接入市电。 12SW:装置控制器、操作继电器电源 13SW:UPS输出侧开关,闭合该开关,UPS向变频器控制柜提供110V AC。 五、低电压穿越开机流程 1、手动闭合变频器柜的交流开关,变频器开始上电。 2、操作低电压穿越装置前需将屏柜正面的“急停”按钮拍下。 3、手动闭合低电压穿越装置内的11SW,则装置通过交流电源给UPS进行 充电。 4、长按UPS机箱上的“开/关机”键(大概4秒),听到“嗒”的一声,看 到UPS机箱上的“功能键”处绿灯点亮,则UPS已经开始工作。 5、闭合低电压穿越装置内部的手动开关12SW,低电压穿越装置控制板、 操作电源、风扇上电。 6、手动闭合低电压穿越装置内的13SW,则装置输出110V单相交流电,为 变频器控制柜提供控制电源。 7、手动闭合低电压穿越装置的交流侧断路器QF1。 8、关闭穿越装置柜门,拨出柜体正面的“急停”按钮,装置开始依次合内 部接触器,进入工作状态。 9、设定变频器转速及相关指令,给煤机开始工作。

低电压穿越规范

低电压穿越 当前光伏发电已成为太阳能资源开发利用的重要形式,其中大型光伏电站的接入,将对电网的安全稳定运行产生深刻影响,特别是在电网故障时光伏电站的突然脱网会进一步恶化电网运行状态,带来更加严重的后果。 当光伏电站渗透率较高或出力加大时,电网发生故障引起光伏电站跳闸,由于故障恢复后光伏电站重新并网需要时间,在此期间引起的功率缺额将导致相邻的光伏电站跳闸,从而引起大面积停电,影响电网安全稳定运行[3]。因此,亟须开展大型光伏电站低电压穿越技术的研究,保障光伏电站接入后电网的安全稳定运行。 一、低电压穿越使用条件 1、环境条件 a) 户外环境温度要求:-40℃~ 50℃; b) 户外环境湿度要求:0~90% ; c) 海拔高度: 0~2000米(如果超过2000米,需要提前说明)。 2、低电压穿越安装方式:标准海运集装箱内固定式安装。 3、储存条件 a)环境温度-50℃~50℃; b)相对湿度 0~95% 。 4、低电压穿越工作条件 a) 环境温度-40 oC~40oC; b) 相对湿度 10%~90%,无凝露。

5、低电压穿越电力系统条件 a) 电网电压最高额定值为35kV,电压运行范围为31.5kV~40.5kV;同时也可以同时满足10kV\20kV电网电压的试验检测。 b) 电网频率允许范围:48~52Hz; c) 电网三相电压不平衡度:<= 4%; d) 电网电压总谐波畸变率:<= 5%。 6、低电压穿越负载条件 负载包括直驱或双馈式等风力发电机组,其总容量不大于6.0MVA。其控制和操作需要满足国家关于风电机组电电压穿越测试与光伏发电站的相关测试规程技术要求。 本检测平台能够同时满足同等条件下光伏电站或光伏逆变器的低电压穿越能力测试。 7、低电压穿越接地电阻:<=5Ω。 二、低电压穿越技术要求 光伏电站低电压穿越技术(Low Voltage Ride Through,LVRT)是指当电网故障或扰动引起的光伏电站并网点电压波动时,在一定的范围内,光伏电站能够不间断地并网运行。 2010年底,国家电网公司出台的《光伏电站接入电网技术规定》(企标)明确指出[10],“大中型光伏电站应具备一定的低电压穿越能力;电力系统发生不同类型故障时,若光伏电站并网点考核电压全部在图中电压轮廓线及以上的区域内

低电压穿越控制方案

低电压穿越控制方案 低电压穿越功能是通过变流器的有源crowbar来实现的,当变频器检测到电网电压下降时,根据直流母线的电压来控制Crowbar部件的动作,泄放转子上的能量来抑制转子电压的升高,但会引起电网电压模块和变桨系统模块报故障。并且由于转矩突降为零左右,进而会引起发电机的转速超速等问题,下面就上述问题的分析和处理过程进行相应阐述。 一、主控和变流器的软件修改 为保证风机在低压穿越状态下保持并网运行,需要对主控系统和变流器参数进行如下修改。电压跌落至低电压穿越区时,变流器参数9.10的BIT10 (converter_low_voltage_for_ride_through)置位作为低电压区的触发条件,对电网电压和变桨故障进行相关逻辑处理,电网电压跌落至低电压穿越区以下时变流器本身报直流过压和转子侧变流器过流。 1.主控程序grid_voltage模块 现风机的主控检测当电网电压低于额定电压的90%延时100ms滞后,风机将脱网停机,为保证对低压穿越状态下风机能并网运行,需要对电压保护限值进行修改。编程思路为: 当电网电压正常时,保持原检测模式不变,把低电压穿越过程分为三个阶段: 从电压降至低于90%额定电压开始640ms内电压不低于20%额定电压80v,电压检测模块不报故障; 从低压穿越过程开始的第640ms至3s电压升至90%额定电压360v,电压检测模块不报故障; 3s后低电压穿越完成,电压应保持在90%额定电压以上 在低压穿越过程的上述三个阶段中,如检测电网电压低于允许的最低电压限值,则报error_grid_voltage_limit_min故障,主控系统中对电网电压检测超下限报程序需作如下修改: 变流器的状态字converter_com.converter_low_voltage_for_ride_through赋值给low_voltage_for_ride_through并把它定义为全局变量。

变频器防低电压穿越的分析及装置

变频器防低电压穿越的分析及装置翟培亮 变频器防低电压穿越的分析及装置 Analysis and Device of Frequency Converter Against Low Voltage Crossing 翟"亮 (郑州商业技师学院,河南郑州455121) [摘要]随着电网的日益扩大,电力系统出现故障的概率也随之增加,实际应用中由于供电 用户增多、线路复杂等原因,造成电力系统发生瞬时低电压的情况。而今,变频器在工业生产 中的应用越来越多,但低电压会对变频器产生较大的影响,容易引起变频器停运,同时某企业 还发生过因工艺处理不及时而引起的较大安全环保次生事故等。为了保证生产装置连续生产,为企业减少损失以及降低事故发生率,关键变频器控制设备的安全稳定长周期运行显得尤为重 要。分析了低电压对变频器的影响,简要论述了低电压穿越装置的性能、配置技术、工作原 理、试验方法及在变频器中的应用。 [关键词]变频器;低电压穿越系统;分析及装置 [中图分类号]TM921&51 [文献标识码]B 引言 随着电网的日益扩大,供电用户增多、线路 复杂等各种原因,易造成企业变电站内的供电电网晃电,从而直接影响电网稳定运行。每次电网 出现晃电时,由于变频器整流逆变元件特性的原因,电源电压下降往往会触发变频器低电压保护,导致变频器所带设备跳停或者设备损坏,引起生 产系统不同程度的中断或者事故的发生。而电网 发生事故时,电压跌落持续时间较短,因此为了 保证工艺生产的连续性,实现某石化企业聚酯材料装置的安全、长期、高效生产,变频设备防低电压穿越研究日趋重要。 1变频器低压失电分析 变 频 器 流 器 、逆 变 器 、电路 等 成 ,1 所 。原 先把频率固定的交流电整流成直流电,再把直 流 电逆 变 成 频 的 流 电供 电 机工作。当某种原因引发变频器输入动力电源 发 生 低 电压 时 ,供 逆 变 的能量,触发变频器控制单元的保护,引起变频器停 运 行,变频器低电压停 方面的原因。 图1 变频器工作原理图

低电压穿越教学文稿

1.1 文献[1]文中以发电厂给煤机变频器为例,分析低电压穿越产生的原因和危害,并结合生产现场经验,从安全性、经济性分析防范措施,提出优化DCS控制逻辑和变频器控制电源是防止变频器低电压穿越事故的最佳解决方案。方案 1,即参照《大型汽轮发电机组一类辅机变频器高、低电压穿越技术规范》要求,提高变频器自身躲过低电压穿越能力。经投入运行的一类辅机变频器。方案2,即一方面变频器控制电源采用UPS供电,保证控制电源不中断;另一方面优化DCS控制策略,并结合不同系统的设备允许电动机停运时间增加延时来躲过低电压穿越情况,当电源供电恢复时,及时实现变频器自启动。 [1]周道军.变频器防低电压穿越分析[J].江苏电机工程.2015.34(2):37-40. 1.2 文献[2]本文主要研究了在给煤机变频器交流电源输入部分加装抗低电压扰动设备的技术方案。提出两种解决方案:方案一,在变频器中间直流环节加装 UPS(蓄电池)。方案二,在辅机变频器前部加装抗低电压扰动设备。并分析了电网故障情况下辅机安全运行问题,通过仿真验证了该技术方案在系统电压跌落至 20% 且持续 10 s 的情况下不灭火、不跳闸和其出力波动≤10% 的技术指标且必须保证各种运行方式下机组都具有足够的低电压穿越能力。 [2]张东明,姚秀萍,王维庆,常喜强,王海云.含低电压穿越电源的火电厂辅机变频器的研究[J].华东电力.2013.41.(6):1345-1347. 1.3 文献[3]本文主要阐述了高低压变频器结构,总结了各种低电压穿越改造方案,提出并联蓄电池,并联升压电路,并联升压电路加少量蓄电池,并联升压电路加厂内保安电源,串联UPS,串联升压电路等,并分析了各种方案的优缺点。其中并联蓄电池和串联UPS取得了很好的效果。国家电网对变频器低电压穿越的定义是:变频器及供电对象设备外部故障或扰动引起的暂态、动态或长时间电源进线电压降低到规定的低电压穿越区内时,能够可靠供电,保障供电对象的安全运行。 [3]姚新阳,黄学良,顾文,蒋琛,唐一铭.火电机组一类辅机变频器低电压穿越改造技术研究[J].电气技术.2015.(12):26-30. 1.4 文献[4]本文详细阐述了高压变频器的低电压穿越对火电厂安全运行的重要性以及其具体实现方式。对于高压变频器,通过改变矢量控制方式实现变频器在电压暂降期间能够不跳闸,实现高压变频器的安全运行;对于低压变频器则采用外加电源或补偿装置来保证低电压穿越的实现。为火电厂实现高低压变频器的低电压穿越提供了实现方法。 并提出了三个低电压穿越区即暂态穿越区,动态穿越区和稳态穿越区。 1)变频器暂态低电压穿越区:变频器在进线电源电压跌落到≥20%额定电压,持续时间≤0.5 s 的区域内,能够可靠供电,保障供电对象的安全运行。 2)变频器动态低电压穿越区:变频器在进线电源电压跌落到≥60%额定电压,持续时间≤5 s 的区域内,能够可靠供电,保障供电对象的安全运行。 3)变频器稳态低电压穿越区:变频器在进线电源电压跌落≥90%额定电压,持续时间≥5 s 的区域内,能够可靠供电,保障供电对象的安全运行。

风电机组的低电压穿越测试

中国清洁能源博览会/ 2010亚 清洁能源与并网技 风电机组的低电压穿 2010-06-25 J Ch i t h K hl Jan Christoph Kahlen 亚洲风能大会 技术论坛 穿越测试 Forschungsgemeinsch aft für Elektrische

概要 引言 并网导则要求 一般要求 测试方案的发展 测试设备 主要组件和功能 基本参数

引言–低电压穿越测试的动一般 电 动机 般要求: 电网故障时的行为 电网电压跌落期间与电压强相关的 无功功率发生情况 在确定电压-时间限制下的低电压穿越能力 并网导则由输电网运行商制定 分布式发电设备(例如:风电机组,光伏发电设备) 需要证明符合这些)并网导则 -> 需要制定测试程序和测试设备

并网导则要求--范例 (欧洲国 电压在曲线以上时,风电机组必 测试必须模拟近端以及远端2相 测试必须在额定功率Pn 的10-3 开发具备离散的电压跌落水平的 国家,基于IEC 61400) 必须保持不脱网 相及3相电网故障 30%和大于90%情况下执行 的测试方案适合于并网导则的具体特点

并网导则要求--范例(欧洲国 电压在曲线以上时,风电机组必 测试必须模拟近端以及远端2相 测试必须在额定功率Pn 的10-3 开发具备离散的电压跌落水平的 国家,基于IEC 61400) 必须保持不脱网 相及3相电网故障 30%和大于90%情况下执行 的测试方案适合于并网导则的具体特点

并网导则要求--范例 (欧洲国 电压在曲线以上时,风电机组必 测试必须模拟近端以及远端2相 测试必须在额定功率Pn 的10-3 开发具备离散的电压跌落水平的 多种并网导则 国家,基于IEC 61400) 必须保持不脱网 相及3相电网故障 30%和大于90%情况下执行 的测试方案适合于并网导则的具体特点

移动式低电压穿越测试装置(宣传)

LVRT-6、LVRT-3系列低电压穿越测试装置 LVRT-6M、LVRT-3M系列 移动式低电压穿越测试装置 中国电力科学研究院 中电普瑞科技有限公司

内容摘要 本文介绍了中国电科院中电普瑞科技有限公司的移动式低电压穿越测试装置(现有产品LVRT—6M测试装置和LVRT—3M测试装置两类,从检测点电压等级上可分为35kV/10kV和690V两大类)。对国内外低电压穿越测试装置的研发情况、各国的低电压穿越标准等进行了简要介绍。详细阐述了中电普瑞科技有限公司移动式低电压穿越测试装置的适用范围、所符合的标准、整体设计、性能要求、装置配置和主要技术特点。此外,本文还介绍了中电普瑞科技有限公司研制成功的张北风电研究检测中心35kV/6MV A固定电压跌落装置的主要性能特点。

目录 1前言 (2) 2低电压穿越测试装置的原理及分类 (3) 3国内外研制情况概述 (5) 4装置使用环境和引用标准 (6) 4.1使用环境条件 (6) 4.2所符合的标准 (7) 5移动式低电压穿越测试装置配置 (9) 5.1装置整体设计 (9) 5.2性能要求 (10) 5.2.1总体要求 (10) 5.2.2电压跌落和恢复过程 (10) 5.3装置基本配置 (11) 5.4关键技术简介 (12) 5.5装置主要技术特点 (14) 6移动式与普通固定式结构对比分析 (15) 7总结 (16) 附件1 张北风电检测中心固定式电压跌落装置简介 (17) 附件2 中电普瑞科技有限公司在风机低电压穿越测试装置方面的研制能力简介 (21)

1前言 我国风电发展前景广阔:陆地上可开发的风力资源至少有2.53亿千瓦,未来十年中,西北、东北、内蒙等内陆将建设多个千万千瓦级风电基地;我国近海区域的风力资源可开发储量有7.5亿千瓦,发展海上风电的潜力很大,在上海、江苏、山东等省市近海仅2010年—2011年就将有10多个海上风电场开始建设。据国家能源局的规划,预计到2020年,我国风力发电装机总量将占全国总装机容量的20%。 随着风力发电在电力能源中所占比例越来越大,风力发电系统对电网的影响已经不能忽略。特别对于我国风电大规模集中接入的方式,当电网发生故障造成并网点电压跌落时,一旦风电机组自动脱网可能造成电网电压和频率的崩溃,严重影响电网的安全稳定运行,使风力发电这种清洁能源的应用受到限制。因此,大规模并网运行的风电机组必须具有低电压穿越能力(Low V oltage Ride Through,LVRT)。风电机组并网必须满足相应的技术标准,只有当电网电压跌落低于规定曲线以后才允许风力发电机脱网,当电压在凹陷部分时,发电机应提供无功功率。 目前,丹麦、德国等欧洲国家制定了新的电网运行准则,应用范围较广的风电机组并网标准是《欧洲E.ON并网导则》;在国内,国家电网公司也已发布了《风电场并网技术规定》。然而,目前国内试验和测试手段匮乏,尚不能研制与技术标准相配套的低电压穿越测试装置(电压跌落发生装置),低电压穿越测试试验无法在现场进行,难以为风电场的并网验收试验提供有效的技术支撑,也严重制约我国风力发电的发展。 为了提高我国风电机组并网运行检测能力,推动风电机组配套设备的自主创新,解决我国风电机组并网运行的瓶颈,中国电科院中电普瑞科技有限公司在成功研制张北风电研究检测中心35kV/6MV A固定电压跌落发生装置的基础上,通过自主创新进一步研制出国内首创的低电压穿越测试装置。该装置采用阻抗分压式、集中结构、紧凑型设计,具有运输方便、测试灵活、占地面积小等优点。 低电压穿越测试装置根据国内风机的特点分为适用于6MV A及以下风机的低电压穿越测试装置(以下简称LVRT—6M)、适用于3MV A及以下风机用低电

低电压穿越

在背靠背NPC转换器的风力发电系统中用于低电压穿越的存储在发电机转子惯量的能量的应用 萨尔瓦多阿勒颇子,会员,IEEE,亚历杭德罗卡,学生会员,IEEE,塞尔吉奥布斯克茨蒙日,高级会员,IEEE,萨米尔库罗,会员,IEEE,和本吴,研究员,IEEE 摘要 随着风电装机容量的增长,风力发电成在整个发电系统中已占据十分重要的比例。所以,电力系统运营商包括风电厂的监管为了提高整个电力系统的控制水平,无论是在稳态和暂态操作状态。因此,风力发电系统需要验证电力系统运营商规定的电网连接的要求。当出现电网电压降时,低电压穿越(LVRT)技术要求的承诺生成在所产生的有功功率和向电网提供的有功功率之间的不匹配。传统的解决方案假设有源电力过剩消耗在一个直流环节电阻上。在本文中,一个连续的控制方案提出了中性点钳位转换器。在电网电压骤降时,发电机侧和电网侧转换器的控制器同时工作以符合储存在涡轮发电机的机械系统惯性的有功功率过剩同时保持恒定的直流母线电压的低电压穿越技术的要求。仿真和实验结果验证了所提出的控制方案。 关键词:低电压穿越(LVRT),中性点钳位转换器,风能转换。 一、引言 上世纪90年代初以来,风力发电装机容量已明显增加[ 1 、2]。到2010年底,世界总装机容量的风力发电能力达到194.5GW [如图 1 ],同时并入电网的风能不断增加。例如,在西班牙,平均风能渗透度在2008、2009、2010年分别已经达到11%,13.8%,和16% [ 3、4、5 ] 。然而,风电穿透暂时达到更高的重要性,例如,在西班牙已达到53% (2009年11月8日)[ 6 ]。 在这样的背景下,电力系统运营商通过逐步更新他们的电网连接要求(GCR)确保可靠性和效率来应对这种新的情况。这种更新的电网连接要求包括在整个电力系统的运行控制的分布式发电[ 7 、8] 。 典型的稳态或准稳态运行的要求如基于系统电压和频率的反应和有功功率调节在电网连接要求被指定。在短暂的操作,当电网跌落时低电压穿越(LVRT)技术要求需要风力发电厂保持连接,有助于通过具体的取决于电网电压跌落深度的配置文件向电网提供有功和无功功率来保持网络的电压和频率稳定。因此,低电压穿越技术可能是在电网连接要求中最具挑战性的,至少从风能转换系统(WECS)的观点可以看出。所有这些要求大大影响现代的风能转换系统中功率转换器和控制器的设计 [9 、10 ]。

变频器低电压穿越装置的研究

变频器低电压穿越装置的研究 发表时间:2017-09-19T10:26:33.357Z 来源:《电力设备》2017年第13期作者:杨攀林白智勇 [导读] 摘要:近年来,随着火电厂内部辅机系统变频器的大规模使用,出现了电网发生瞬时电压波动引起大量火电机组跳机的问题,由于变频调速设备不具备低电压穿越功能,触发了变频器的低电压保护,致使变频器闭锁输出,最终导致事故发生。为满足工业现场对变频器低电压穿越的实际需求,变频器低电压穿越电源装置成为解决问题的关键。 (国电投宁夏能源铝业临河发电分公司发电运行部宁夏灵武 750411) 摘要:近年来,随着火电厂内部辅机系统变频器的大规模使用,出现了电网发生瞬时电压波动引起大量火电机组跳机的问题,由于变频调速设备不具备低电压穿越功能,触发了变频器的低电压保护,致使变频器闭锁输出,最终导致事故发生。为满足工业现场对变频器低电压穿越的实际需求,变频器低电压穿越电源装置成为解决问题的关键。 关键词:变频器;低压穿越;装置;分析 1导言 变频器已经成为火电厂重要的辅机调速设备,特别是火电厂燃煤机组给煤机变频器的应用更为广泛。在电网发生故障而引起电压跌落时,若电压降落达到变频器极限运行电压,而变频器本身不具备低电压穿越能力,会直接导致运行中机组给煤机全停,触发全炉膛燃料丧失保护导致机组跳闸。另外给煤机控制器一般均取至厂用交流电源,控制器本身工作电源也有一定的范围,若电网电压跌落导致给煤机控制器不能正常工作时也会导致给煤机停运。 2变频器概述 变频器(Variable-frequency Drive,VFD)是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成。变频器靠内部IGBT的开断来调整输出电源的电压和频率,根据电机的实际需要来提供其所需要的电源电压,进而达到节能、调速的目的,另外,变频器还有很多的保护功能,如过流、过压、过载保护等等。随着工业自动化程度的不断提高,变频器也得到了非常广泛的应用。 3功能作用 3.1变频节能 变频器节能主要表现在风机、水泵的应用上。为了保证生产的可靠性,各种生产机械在设计配用动力驱动时,都留有一定的富余量。当电机不能在满负荷下运行时,除达到动力驱动要求外,多余的力矩增加了有功功率的消耗,造成电能的浪费。风机、泵类等设备传统的调速方法是通过调节入口或出口的挡板、阀门开度来调节给风量和给水量,其输入功率大,且大量的能源消耗在挡板、阀门的截流过程中。当使用变频调速时,如果流量要求减小,通过降低泵或风机的转速即可满足要求。 3.2功率因数补偿节能 无功功率不但增加线损和设备的发热,更主要的是功率因数的降低导致电网有功功率的降低,大量的无功电能消耗在线路当中,设备使用效率低下,浪费严重,使用变频调速装置后,由于变频器内部滤波电容的作用,从而减少了无功损耗,增加了电网的有功功率。 4变频器低电压穿越电源 4.1变频器低电压穿越电源装置构成 变频器低电压穿越电源拓扑。该设备的主功率输入为系统三相交流电源和直流保安电源,主功率输出包括一路三相交流电源和一路直流电源。其中直流保安电源输入为可选择项。 交流三相电源分为两路为变频器进行供电:一路为交流供电通路,可通过原有送电线路或设置旁路开关,将三相交流电直接送人变频器A/B/C三相交流输人端子;另一路为直流供电通路,三相交流电能经手动断路器QF1送人二极管整流桥TM1-3构成的整流回路,再经过电控开关KM1变换为直流电能并储存于电容C1和C2。电感L1与IGBT构成BOOST型式的升压斩波电路,可将C 1/C2上的直流电能变换为电压等级更高的直流电能储存于电容C3/C4,并经二极管防反回路和熔断器后,送人变频器的直流输人端子。电动开关KM1与电阻YR1构成预充电回路,当预充电结束之后闭合KM1,实现在装置初始上电时为电容C 1/C2/C3/C4的平稳充电功能。 直流保安电源输人为可选择项。直流保安电源并联于C1/C2的直流母线处,当系统电压低于20%时,由保安电源为后续升压回路供电,从而保证装置在0}100%的全电压范围内均可保证变频器的稳定运行。 在现场改造施工中,变频器低电压穿越电源串接在系统三相380 V电源与变频器之间,无需对变频器的配置、设置做任何改动,并可利用现场已铺设的电缆,无需新增任何电力线缆。 4.2变频器低电压穿越电源装置工作原理 变频器低电压穿越电源装置的控制目标为在系统电压跌落时保证变频器及其拖动电机系统的转速、功率、转矩不变。其工作原理介绍如下。 装置挂网运行时,断路器QF 1 r-J电动开关KM 1均处于闭合状态。在系统电压正常的状态下,电能通过交流送电回路送人变频器交流输人端子,装置中的电力电子器件均处于旁路状态,不参与装置运行。在系统电压发生跌落,进而造成C 1/C2上整流得到的直流电压跌落时,装置内置的控制系统实时监测到此电压跌落趋势,将电感L1与IGBT构成的BOOST斩波升压回路快速投人运行,保证在A/B/C三相电压跌落期间,C3/C4上的直流电压被举高,维持到可保证变频器输出功率、电机转矩、电机转速均不变的电压水平。在系统电压跌落结束,系统电压恢复正常后,IGBT停止运行,BOOST回路退出工作状态,变频器的供电仍由三相交流送电回路提供。装置中,交流送电通道与直流送电通道的切换由电力电子器件(SCR)完成,切换动作时间小于lms,为无缝切换,对变频器的稳定运行不会造成冲击。 4.3变频器低电压穿越电源的特点 1)更高的安全可靠性。保留原有送电线路或设置旁路开关作为旁路电路,在系统电压正常的情况下,装置工作于旁路模式,变频器由电力系统直接供电,电源变换模块部分处于休眠状态,不参与装置运行。由此降低装置中电力电子器件投人使用的工作时间,从而降低故障概率。2)高效的定期自检与故障自诊断,免维护应用。装置采用免维护设计,其使用过程中无需工作人员对其进行任何操作和维护。该装置集成定期自检功能,对于自检中发现的问题,具备强大的故障自诊断功能,并可将故障诊断结果通过硬接点、通讯等多种方式送至后台管理系统,方便故障的统计与记录。3)宽温度范围,长运行寿命。核心部件为目前世界上最先进的第五代IGBT,其耐受能力达到巧。

相关主题
文本预览
相关文档 最新文档