当前位置:文档之家› 如何防止焊接变形

如何防止焊接变形

如何防止焊接变形
如何防止焊接变形

如何防止焊接变形

1、焊接变形的种类:

焊接过程中焊件产生的变形称为焊接变形。焊后,焊件残留的变形称为焊接残余变形。焊接残余变形有纵向收缩变形、横向收缩变形、角变形、弯曲变形、扭曲变形和波浪变形等共六种,见图1,其中焊缝的纵向收缩变形和横向收缩变形是基本的变形形式,在不同的焊件上,由于焊缝的数量和位置分布不同,这两种变形又可表现为其它几种不同形式的变形。

2、如何利用合理的装配焊接顺序来控制焊接残余变形?

不同的构件形式应采用不同的装配焊接方法。

1)结构截面对称、焊缝布置对称的焊接结构,采用先装配成整体,然后再按一定的焊接顺序进行生产,使结构在整体刚性较大的情况下焊接,能有效地减少弯曲变形。

例如,工字梁的装配焊接过程,可以有两种不同方案,见图4。若采用图4b所示的边装边焊顺序进行生产,焊后要产生较大的上拱弯曲变形;若采用图4c所示的整装后焊顺序,就可有效地减少弯曲变形的产生。

2)结构截面形状和焊缝不对称的焊接结构,可以分别装焊成部件,最后再组焊在一起见图5。图5b所示的方案由于焊缝1离中性轴距离较大,所以弯曲变形较大,而图5a所示的焊缝1

的位置几乎与上盖板截面中性轴重合,所以对整个结构的弯曲变形没有影响。

3、如何利用合理的焊接顺序来控制焊接残余变形?

⑴对称焊缝采用对称焊接当构件具有对称布置的焊缝时,可采用对称焊接减少变形。如

图4所示工字梁,当总体装配好后先焊焊缝1、2,然后焊接3、4,焊后就产生上拱的弯曲变形。

如果按1、4、2、3的顺序进行焊接,焊后弯曲变形就会减小。但对称焊接不能完全消除变形,

因为焊缝的增加,结构刚度逐渐增大,后焊的焊缝引起的变形比先焊的焊缝小,虽然两者方向

相反,但并不能完全抵消,最后仍将保留先焊焊缝的变形方向。

⑵不对称焊缝先焊焊缝少的一侧因为先焊焊缝的变形大,故焊缝少的一侧先焊时,使它

产生较大的变形,然后再用另一侧多的焊缝引起的变形来加以抵消,就可以减少整个结构的变

形。

4、如何利用合理的焊接方向来控制焊接残余变形?

为控制焊接残余变形而采用的焊接方向,有以下几种:

⑴长焊缝同方向焊接如T形梁、工字梁等焊接结构,具有互相平行的长焊缝,施焊时,应采用同方向焊接,可以有效地控制扭曲变形,见图6a。

⑵逆向分段退焊法同一条或同一直线的若干条焊缝,采用自中间向两侧分段退焊的方法,可以有效地控制残余变形,见图6b。

⑶跳焊法如构件上有数量较多又互相隔开的焊缝时,可采用适当的跳焊,使构件上的热量分布趋于均匀,能减少焊接残余变形,见图6c。

5、如何利用反变形法来控制焊接残余变形?

为了抵消焊接残余变形,焊前先将焊件向与焊接残余变形相反的方向进行人为的变形,这种方法称为反变形法。例如,为了防止对接接头产生的角变形,可以预先将对接处垫高,形成反向角变形见图7a。为了防止工字梁翼板焊后产生角变形,可以将翼板预先反向压弯见图7b。在薄壳结构上,有时需在壳体上焊接支承座之类的零件,焊后壳体往往发生塌陷,为此,可以在焊前将支承座周围的壳壁向外顶出,然后再进行焊接见图7c。

采用反变形法控制焊接残余变形,焊前必需较精确地掌握焊接残余变形量,通常用来控制构件焊后产生的弯曲变形和角变形,如反变形量留得适当,可以基本抵消这两种变形。

6、如何利用刚性固定法来控制焊接残余变形?

焊前对焊件采用外加刚性拘束,强制焊件在焊接时不能自由变形,这种防止焊接残余变形的方法称为刚性固定法。采用压铁防止薄板焊后的波浪变形见图8。

刚性固定法简单易行,适用面广,不足之处是焊后当外加刚性拘束卸掉后,焊件上仍会残留一些变形,不能完全消除,不过要比没有拘束时小得多。另外,刚性固定法将使焊接接头中产生较大的焊接应力,所以对于一些抗裂性较差的材料应该慎用。

7、如何利用散热法和自重法来控制焊接残余变形?

⑴散热法焊接时用强迫冷却的方法将焊接区的热量散走,减少受热面积从而达到减少变形的目的,这种方法称为散热法,利用散热法减少薄板的焊接变形见图9。图9b是将焊件浸入水中进行焊接(常用于小容器焊接)。图9c是用水冷铜块进行冷却。

散热法不适用于焊接淬硬性较高的材料。

⑵自重法利用焊件本身的质量在焊接过程中产生的变形来抵消焊接残余变形的方法称为自重法。如一焊接梁上部的焊缝明显多于下部,见图10a,焊后整根梁产生下凹弯曲变形。为此焊前将梁放在两个相距很近的支墩上,见图10b,首先焊接梁的下部两条直焊缝,由于梁的自重和焊缝的收缩,将使梁产生弯曲变形,焊毕,将支墩置于两头,并使梁反身搁置,随后焊接梁的上部,由于支墩是置于梁的两头,梁的自重弯曲变形与第一次相反,不仅如此,上部焊缝的收缩变形方向也与下部焊缝收缩变形的方向相反,因此焊后梁的弯曲变形得以控制,见图10c。

8、如何利用机械矫正法矫正焊接残余变形?

利用手工锤击或机械压力矫正焊接残余变形的方法叫机械矫正法。

手工锤击矫正薄板波浪变形的方法,见图11。图11a表示薄板原始的变形情况,锤击时锤击部位不能是突起的地方,这样结果只能朝反方向突出,见图11b,接着又要锤击反面,结果不仅不能矫平,反而要增加变形。正确的方法是锤击突起部分四周的金属,使之产生塑性伸长,并沿半径方向由里向外锤击,见图11c,或者沿着突起部分四周逐渐向里锤击,见图11d。

利用机械力矫正焊接残余变形的方法,见图12。图12a是利用加压机构矫正工字梁焊后的弯曲变形。图12b是利用圆盘形辗轮辗压薄板焊缝及其两侧,使之伸长来消除薄板焊后的残余变形。

手工锤击矫形劳动强度大,技术难度高,但无须设备,适用于薄板的焊后矫形。机械矫正效率高、速度快、效果好,但须要加压机构等设备,适用于中、大型焊件焊后的矫形。

9、如何正确进行火焰矫正焊接残余变形?

利用火焰对焊件进行局部加热时产生的塑性变形,使较长的金属在冷却后收缩,以达到矫正变形的目的称火焰加热矫正法。火焰加热矫正法矫正焊件残余变形时要注意以下事项:1)加热用火焰通常采用氧乙炔焰,火焰性质为中性焰,如果要求加热深度小时,可采用氧化焰。

2)对于低碳钢和低合金结构钢,加热温度为600~800℃,此时焊件呈樱红色。

3)火焰加热的方式有点状、线状和三角形三种,其中三角形加热适用于厚度大、刚性强的焊件。

4)加热部位应该是焊件变形的突出处,不能是凹处,否则变形将越矫越严重。

5)矫正薄板结构的变形时,为了提高矫正效果,可以在火焰加热的同时用水急冷,这种方法称为水火矫正法。对于厚度较大而又比较重要的构件或者淬硬倾向较大的钢材,不可采用水火矫正法。

6)夏天室外矫正,应考虑到日照的影响。因为中午和清晨原加热效果往往不一样。

7)薄板变形的火焰矫正过程中,可同时使用木锤进行锤击,以加速矫正效果。

10、试述用电磁锤法矫正焊接残余变形的工作原理。

电磁锤法又称强电磁脉冲矫正法,其矫正焊件变形的过程如下:把一个由绝缘的圆盘形线圈组成的电磁锤放置于焊件待矫正处,从已充电的高压电容向其放电,于是在线圈与焊件的间隙中出现一个很强的脉冲电磁场,见图13。由此产生一个比较均匀(与机械锤相比)的压力脉冲,使该处产生与焊件变形反向的变形,用以矫正焊件的变形。

电磁锤法适用于电导率大的材料如铝、铜等板壳结构的矫形。对电导率小的材料则需在焊件与电磁锤之间放置铝或铜质薄板。

电磁锤法矫正变形的优点在于:

1)焊件表面没有撞击的锤痕。

2)矫形能量可精确地控制。

3)无需挥动锤头,可在比较窄小的空间内进行工作。

控制压力容器管板焊接变形的方法(通用版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 控制压力容器管板焊接变形的 方法(通用版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

控制压力容器管板焊接变形的方法(通用 版) 在压力容器制造中,由于在控制压力容器管板进行焊接时,没有对焊接工艺参数进行合理的选择,导致在焊接过程管板焊接变形,本文主要对控制压力容器管板焊接变形的方法进行探讨。 随着科学技术的迅猛发展,压力容器被普遍应用到能源工业、石油化学工业、科研工业等工业的生产过程中。因为压力容器属于危险性比较高的一类物品,很容易出现燃烧起火、爆炸等情况,对相关人员和单位造成一定的经济损失和伤害。在压力容器在压力容器制造中,往往由于组装与施焊的顺序不当,以及焊接工艺参数选择的不合理,易引起管板焊接变形,导致密封不严,管子拉脱。因此,在压力容器制作的过程中,对密封性要求非常的高。为了有效的避免因为各种不利因素对导致压力容器的密封性降低,本文主要对控制

压力容器管板焊接变形的方法进行探讨。 管板焊接变形的原因及影响因素 管板焊接变形的原因主要表现在两个方面。一是主要是由于筒体与管板焊接的横向收缩变形在厚度方向上的不均匀分布引起的;管板与筒体的焊缝一般为单面单边V型坡口,焊接时焊缝的背面和正面的熔敷金属的填充量不一致,造成了构件平面的偏转,所以这种变形在客观上是绝对存在的;二是管板与筒体焊接角变形主要由两种变形组成,即筒体与管板角度变化和管板本身的角变形,前者相当于两个工件对接焊接引起的角变形,后者相当于在管板上堆焊时引起的角变形。而焊接变形的大小的主要取决于管板的刚性、焊接线能量、坡口角度、焊缝截面形状、熔敷金属填充量焊接操作等因素有关。根据管板变形的原因及影响因素,由于管板焊接不能实现双面焊,焊接时电流过大会引起烧穿伤及换热管,所以管板与壳体的焊接应考虑减少管板受热和提高管板刚性以减少变形。 压力容器制造工艺 一般情况下,压力容器根据使用途径的不同,可以分成不同的种

浅谈焊接变形原因及防止措施

浅谈焊接变形原因及防止措施 摘要:在工程施工过程中,各种设备、管道焊接产生的应力变形是个比较突出 的问题,采用合理焊接工艺方法可以较好减少变形。 关键词:工艺焊接变形处理 焊接在设备、管道安装过程中举足轻重,由于焊接过程中的变形与应力直接 影响工艺质量、使用性能、配件装配,为提高质量,我们在施工中采取了相对的 措施。 一、焊接应力与变形产生的原因 焊接过程中,对焊件进行局部不均匀加热,会产生焊接应力和变形。焊接时 焊缝和附近的金属处于高温,焊缝和近缝区纵向受拉应力,远离焊缝区受压应力,整个焊件纵向及横向尺寸有一定的收缩。如果在焊接过程中,焊件能够较自由的 伸缩,则焊后焊件的变形较大而焊接应力较小;反之,如果焊件厚度或刚性较大 不能自由伸缩,则焊后焊件的变形较小而焊接应力较大。还有组装与施焊的顺序 不当,焊接方向不正确,焊接参数不合理,引起局部过热,没有采用适当的辅助 措施等。 二、减小焊接变形的工艺措施 由于焊接变形在焊接生产中是不可避免的,因此应在生产中根据焊接结构的 具体形式,选用一种或几种方法,以达到控制变形的目的。 1、加裕量法和反变形法在下料时留一定量,补充焊后收缩。预先确定焊后 可能发生的变形大小和方向,将工件放在相反的方向位置上;或在焊前使工件反 方向变形,抵消焊后所发生的变形。 2、刚性夹固法输水主管上常常出现分支,这是根据工艺流程来设计的,如 来水汇管到各分支管,然后汇集到出水汇管再输出去。在制作汇管时产生很大的 焊接变形,为了减少变形需把此工艺汇管固定起来,如制作Φ426×7汇管,可在 其下放一Φ630×7的铜管,用Φ48×4短管固定。因此焊前将工件固定夹紧,并设 置拉杆提高焊接刚性,焊后即缩小变形。 3、选择合理的焊接次序减少焊接变形的施焊顺序方式很多,基本原则是使 焊接热比较均匀地加上去;或者使焊接变形相互抵消;或者用前道焊缝提高结构 刚性以限制后焊焊缝的变形工序合理的次序可缩小变形。 4、选择合理的焊接工艺(1)焊接速度高的焊接方法能减少焊件受热,减 少焊件受热,减少焊缝冷却时的收缩区宽度,从而减少变形。(2)采用从中间 向两端焊,逆向分段焊、跳焊法、多人对称焊,预热焊等。(3)利用减少焊接 线能缩小加热区或使不均匀加热或冷却尽可能趋于均匀,达到减少焊接变形的目的。(4)多层焊对减少焊缝的纵、横向收缩以及由此引起的挠曲和失稳变形是 有利的,但多层焊对角变形不利。(5)采用小电流、快焊速、不摆动焊法;小 直径焊条代替大直径焊条;厚板焊接尽可能采用多层焊代替单层焊等。 5、设计方面(1)要尽量减少焊缝数量、焊缝长度和焊缝截面积,合理地 确定坡口的外形和尺寸,合理布置焊缝,除了要避免焊缝密集以外,还应使焊缝 位置尽可能靠近构件的中和轴,并使焊缝的布置与构件中和轴相对称。(2)设 计焊接结构时,应尽量选用尺寸规格较大的板材、型材和管材,形状复杂的可采 用冲压件和铸钢件,以减少焊缝数量,简化焊接工艺和提高结构的强度和刚度。 在容器组焊时,应尽量避免十字焊缝,相邻两筒节纵缝、封头拼缝与相邻筒节的 纵缝应错开。

预防焊接变形的工艺措施

预防焊接变形的工艺措施 在焊接过程中当产生的焊接应力超过金属的屈服极限就会产生焊接变形。 应力变形的种类(从变形的外观形态来看):收缩变形、弯曲变形、角变形、波浪变形、扭曲变形等。 减少和防止焊接应力和变形的措施:1.合理进行结构设计和焊接工艺设计,设计焊接方法时应该选用对称工作断面和焊缝位置,在保证强度的前提下,尽量减小焊缝的断面和长度外在焊接工艺上采取以下措施:采取合理的装配和焊接顺序 2.反变形法(根据生产中焊件变形规律,焊前预先将焊件做出相反方向的变形以抵消焊后发生的变形)V型坡口单面焊缝一般发生角变形。 3..刚性固定法:采用把焊件固定在平台上或在焊接用夹具上夹紧进行焊接。(采用适当的方法来增加焊件的刚度或拘束度,可以达到减小变形的目的,此种方法就是)焊件预热,对焊件进行预先加热,使焊件温度差减小,这样可以均匀的同时冷却减小应力。5焊后缓冷 6.焊后轻击焊缝或回火。 焊接残余变形的主要危害有:1)首先零件或部件的焊接变形会直接降低装配质量,而结构中的焊接残余变形会使结构的尺寸达不到要求。2)过大的残余变形还会增加结构的制造成本,同时降低焊接接头的性能。3)焊件的残余变形会降低结构的承载能力。 预防焊接变形的设计措施有:1)尽量选用对称的构件截面和焊缝位置。2)合理地选择焊缝长度和焊缝数量。3)合理选择焊缝截面尺寸和坡口形式。 如果在设计上能充分估计到制造过程中可能发生的焊接变形,选择合理的设计方案,比从工艺上采取措施要方便得多。然而,如果单从设计上采取措施,在生产中不注意选择正确的工艺,同样会产生较大的焊接变形。因此,实际生产中应该从设计和工艺两方面采取措施来预防和减小焊接变形的产生。 预防焊接变形的工艺措施:1留余量法留余量法主要是用于补偿焊件的收缩变形。反变形法主要用于控制变形规律较明显的角变形和弯曲变形。 2.反变形法 3.刚性固定法刚性固定法有以下几种a将焊件固定在刚性平台上。b将焊件组合成刚性更大或对称的结构c利用焊接夹具增加结构的刚性和约束d采用临时支撑增加结构的拘束。限制角变形和弯曲变形。刚性固定法可减小焊接变形但增大焊接应力。这种方法适用塑性好的焊件。 4.选择合理的装配焊接顺序 选择合理的装配焊接顺序基本原则如下:正在施焊的焊缝应尽量靠近结构截面的中性轴;对于焊缝非对称布置的结构,装配焊接时应先焊焊缝少的一侧;焊缝对称布置的结构,应由偶数焊工对称地施焊;长焊缝焊接时,选择正确的焊接方向和焊接顺序;相邻两条焊缝的焊接,选择正确的焊接方向和顺序。 长焊缝焊接小于2m时采用直通焊;大于2m时可用分段焊、逐段退焊、跳焊法进行焊接,逐段退焊法焊接变形最小。 5.合理地选择焊接方法和焊接工艺参数 各种焊接方法的热源不同,加热集中的程度也各不相同,因而产生的变形也不一样,当焊件结构形式、尺寸及刚性拘束相同的条件下,埋弧焊产生的变形比焊条电弧大;焊条电弧焊产生的变形比其他保护焊大。

防止焊接变形的措施(2021新版)

When the lives of employees or national property are endangered, production activities are stopped to rectify and eliminate dangerous factors. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 防止焊接变形的措施(2021新版)

防止焊接变形的措施(2021新版)导语:生产有了安全保障,才能持续、稳定发展。生产活动中事故层出不穷,生产势必陷于混乱、甚至瘫痪状态。当生产与安全发生矛盾、危及职工生命或国家财产时,生产活动停下来整治、消除危险因素以后,生产形势会变得更好。"安全第一" 的提法,决非把安全摆到生产之上;忽视安全自然是一种错误。 1.设计合理的焊接结构 2.采取适当的工艺措施 其实设计合理的焊接结构,它包括了合理安排焊缝的位置,减少不必要的焊缝,合理选用焊缝形状和尺寸等。例如,采用焊缝对称布置。象咱们常用于肋板与腹板的脚焊缝的焊脚就不应该太高。一般对低碳钢有个最小焊脚尺寸推荐 板厚《6mm最小焊脚3mm 板厚7---13mm最小焊脚4mm 板厚19--30mm最小焊脚6mm 板厚31--35mm最小焊脚8mm 板厚51--100mm最小焊脚10mm 减少焊接变形的工艺措施: (1).反变形法 (2).利用装配顺序和焊接顺序控制焊接变形

(3).热调整法 (4).对称实焊法 (5).刚性固定法 (6).锤击焊缝法 其实这些里也包含了各种措施,本人打字太慢,就不详细说了。 如果有人想了解焊接的一些、知识,我象大家推荐一本书吉林化学工业集团公司组织编写.孙景荣主编. 这个老焊接工程师经验丰富的很,我刚毕业的时候跟他共事了一年,学到了很多焊接的知识.他出过好几本有关焊接方面的书.呵呵,我也算跟名人混过啊!! 钢板拼装可以采用从中间至两边分段退焊法进行 焊前要适当的做一些反变形,这是事前控制的办法! 反变形法: 在焊接进行装配时,预先将工件向焊接变形相反的方向进行人为的变形。例如,焊接8~~12mm的钢板,V型破口单面焊。将工件预先反向斜置,焊接后由于自身收缩,使工件恢复到平正的形状(我将附图说明) 对于较大刚性的构件,下料的时候,可将构件制成预定大小和方

焊接应力及焊接变形预防措施

钢结构工程焊接应力与变形差生的危害及采取的措施 随着“绿色建筑”理念的推广,以钢结构件为主体框架结构结合复合砌筑体结构已成为一种必然趋势,因为以钢结构为主的框架结构的回收利用性有效避免钢筋混凝土结构建筑垃圾的产生,具有可持续性。由于钢结构工程的特有型,焊接作业时钢结构工程最重要的工序之一,而焊接应力及焊接变形产生是影响钢结构安全性及可靠性的重要因素。本文着重对焊接应力及焊接变形的危害及所采取的对应措施进行分析。 一、焊接应力与变形产生机理 焊接热输入引起材料不均匀局部加热,使焊缝区熔化,而熔池毗邻的高温区材料的热膨胀则受到周围材料的限制,产生不均匀的压缩塑性变形。在冷却过程中,已发生压缩塑性变形的这部分材料又受到周围材料的制约,不能自由收缩,在不同程度上又被拉伸而卸载,与此同时,熔池凝固,金属冷却收缩也产生了相应的收缩拉应力和变形。这种随焊接热过程而变化的内应力场和构件变形,称为瞬态应力与变形。而焊后,在室温条件下,残留于构件中的内应力场和宏观变形称为焊接残余应力与焊接残余变形。 焊接残余应力和变形,严重影响焊接构件的承载力和构件的加工精度,应从设计、焊接工艺、焊接方法、装配工艺着手降低焊接残余应力和减小焊接残余变形。

二、焊接残余应力的危害及降低焊接应力的措施 1.焊接残余应力的危害 影响构件承受静载能力;影响结构脆性断裂;影响结构的疲劳强度;影响结构的刚度和稳定性;易产生应力腐蚀开裂;影响构件精度和尺寸的稳定性。 2.降低焊接应力的措施 (1)设计措施 尽量减少焊缝的数量和尺寸,在减小变形量的同时降低焊接应力;防止焊缝过于集中,从而避免焊接应力峰值叠加;要求较高的容器接管口,宜将插入式改为翻边式。 (2)工艺措施 采用较小的焊接线能量,减小焊缝热塑变的范围,从而降低焊接应力;合理安排装配焊接顺序,使焊缝有自由收缩的余地,降低焊接中的残余应力;层间进行锤击,使焊缝得到延展,从而降低焊接应力;焊接高强钢时,选用塑性较好的焊条;预热拉伸补偿焊缝收缩(机械拉伸或加热拉伸);采用整体预热;降低焊缝中的含氢量及焊后进行消氢处理,减小氢致集中应力。 采用热处理方法:整体高温回火、局部高温回火或温差拉伸法(低温消除应力法,伴随焊缝两侧的加热同时加水冷) 三、焊接变形的危害性及预防焊接变形得到措施 1、焊接变形的分类 焊接变形可以区分为在焊接热过程中发生的瞬态热变形和室温

焊接时防止变形的方法

Distortion - Prevention by fabrication techniques 制造技术防止变形 Distortion caused by welding a plate at the centre of a thin plate before welding into a bridge girder section. Courtesy John Allen 焊接桥梁部分前由在薄板中央焊接钢板时产生的变形. Courtesy John Allen Assembly techniques 组装技术 In general, the welder has little influence on the choice of welding procedure but assembly techniques can often be crucial in minimising distortion. The principal assembly techniques are: ?tack welding ?back-to-back assembly ?stiffening 通常,焊工在选择焊接工艺时没有什么影响但关键的是在组装技术上控制最小变形.主要安装技术是: 点焊 重叠组装 加强板 Tack welding点焊 Tack welds are ideal for setting and maintaining the joint gap but can also be used to resist transverse shrinkage. To be 点焊能很好的定位和保证连接间隙但不能防止横向收缩.为了起到好的效果, 应考虑点焊数

焊接应力和变形的产生及其消除

焊接应力和变形的产生及其消除

焊接变形的基本形式有收缩变形、角变形、弯曲变形、波浪变形和扭曲变形等。焊接过程中,对焊件进行不均匀加热和冷却,是产生焊接应力和变形的根本原因。 减少焊接应力与变形的工艺措施主要有: 一、预留收缩变形量 根据理论计算和实践经验,在焊件备料及加工时预先考虑收缩余量,以便焊 后工件达到所要求的形状、尺寸。 二、反变形法 根据理论计算和实践经验,预先估计结构焊焊接件变形的方向和大小,然后在焊接装配时给予一个方向相反、大小相等的预置变形,以抵消焊后产生的变形。 三、刚性固定法 焊接时将焊件加以刚性固定,焊后待焊件冷却到室温后再去掉刚性固定,可有效防止角变形和波浪变形。此方法会增大焊接应力,只适用于塑性较好的低碳钢结构。 四、选择合理的焊接顺序 尽量使焊缝自由收缩。焊接焊缝较多的结构件时,应先焊错开的短焊缝,再焊直通长焊缝,以防在焊缝交接处产生裂纹。如果焊缝较长,可采用逐步退焊法和跳焊法,使温度分布较均匀,从而减少了焊接应力和变形合理的装配和焊接顺序。具体如下: 1)先焊收缩量大的焊缝,后焊收缩量较小的焊缝; 2)焊缝较长的焊件可以采用分中对称焊法、跳焊法,分段逐步退焊法。交替焊法; 3)焊件焊接时要先将所焊接的焊缝都点固后,再统一焊接。能够提高焊接焊件的刚度,点焊固定后在进行焊接,其将增加焊接结构的刚度的部件先焊,使结构具有抵抗变形的足够刚度; 4)具有对称焊缝的焊件最好成双的对称焊接使各焊道引起的变形相互抵消;

5)焊件焊缝不对称时要先焊接焊缝少的一侧。; 6)采用对称与中和轴的焊接和由中间向两侧焊接都有利于抵抗焊接变形。 7)在焊接结构中,当钢板拼接时,同时存在着横向的端接焊缝和纵向的边接焊缝。应该先焊接端接焊缝再焊接边接焊缝。 8)在焊接箱体时,同时存在着对接和角接焊缝时,首先尽量焊接对接焊缝,然后焊接角焊缝。 9)十字接头和丁字接头焊接时,应该正确采取焊接顺序,避免焊接应力集中,以保证焊缝获得良好的焊接质量。对称与中轴的焊缝,应由内向外进行对称焊接。 10)焊接操作时,减少焊接时的热输入,(如:降低电流、加快焊接速度、)。 10-1)焊接操作时,减少熔敷金属量(焊接时采用小坡口、减少焊缝宽度、焊接角焊时减少焊缝尺寸)。 10-2)逐步退焊法,常用于较短裂纹的焊缝。施焊前把焊缝分成适当的小段,标明次序,进行后退焊补。焊缝边缘区段的焊补,从裂纹的终端向中心方向进行,其它各区段接首尾相接的方法进行 五、锤击焊缝法在焊缝的冷却过程中,用圆头小锤均匀迅速地锤击焊缝,使金属产生塑性延伸变形,抵消一部分焊接收缩变形,从而减小焊接应力和变形。 六、加热“减应区”法 1)焊接前,在焊接部位附近区域(称减应区)进行加热使之伸长,焊后冷却时,与焊缝一起收缩,可有效减小焊接应力和变形。 2)焊接后,在焊接部位附近区域进行加热,同样可减少焊接应力和变形。 七、焊前预热和焊后缓冷预热的目的是减少焊缝区与焊件其他部分的温差,降低焊缝区的冷却速度,使焊件能较均匀地冷却下来,从而减少焊接应力与变形。在温差相较不大的情况下可称为冷焊。 八.合理的焊接工艺方法,采用焊接热源比较集中的焊接方法进行焊接可降低焊接变形。如CO2气体保护焊,埋弧焊等

防止焊接变形的方法

防止焊接变形的方法

针对焊接变形的原因和种类从焊接工艺上进行改进,可以有效防止和减少焊接变形所带来的危害。下面,我们主要介绍几种常见的防止焊接变形的方法。 1. 反变形法 在焊前进行装配时,预置反方向的变形量为抵消(补偿)焊接变形,这种方法叫做反变形法。图1所示为8—12mm厚的钢板V形坡口单面对接焊时,采用反变形法以后,基本消除了角变形。 2. 利用装配和焊接顺序来控制变形; 采用合理的装配和焊接程序来减少变形,这在生产实践中是行之有效的好办法,如图2(a)所示为一箱形梁,由于焊缝不对称,焊后产生下挠弯曲变形。解决办法是由两人或四人,对称地先焊只有两条焊缝的一侧,如图2(b)中焊缝1和1然后就造成了如图2 ?的上拱变形。由于这两条焊缝焊后增加了箱形梁的刚性。当焊接另一侧的两条焊缝时,如先焊图2(d)中焊缝2和2,最后再焊图2(e)中焊缝3和3,就基本上防止了变形。 有许多结构截面形状对称,焊缝布置也对称,但

焊后却发生弯曲或扭曲的变形,这主要是装配和焊接顺序不合理引起的,也就是各条焊缝引起的变形,未能相互抵消,于是发生变形。 焊接顺序是影响焊接结构变形的主要因素之一,安排焊接顺序时应注意下列原则: 1)尽量采用对称焊接。对于具有对称焊缝的工作,最好由成对的焊工对称进行焊接。这样可以使由各焊缝所引起的变形相互抵消一部分。 2)对某些焊缝布置不对称的结构,应先焊焊缝少的一侧。 3)依据不同焊接顺序的特点,以焊接程序控制焊接变形量。常见的焊接顺序有五种,即: a.分段退焊法 这种方法适用于各种空间的位置的焊接,除立焊外,钢材较厚、焊缝较长时都可以设挡弧板,多人同时焊接。其优点是可以减小热影响区,避免变形。每段长应为0.5—1m。见图2(f) b.分中分段退焊法 这种方法适用于中板或较薄的钢板的焊接,它的优点是中间散热快,缩小焊缝两端的温度差。焊缝热影响区的温度不至于急剧增高,减少或避免热膨胀变形。这种方法特别适用于平焊和仰焊,

焊接中防止变形和减少内应力的方法

在农机修理中焊接是非常重要的一种方法,但是如果焊接不好就会产生变形和内应力,甚至焊后的零件无法使用而报废。 一、减少内应力的方法 1.锤打和锻冶——机械法 当焊修较长的裂缝和堆焊层,需要以一端连续焊到另一端时,在焊修进行中,趁着焊缝和堆焊层在炽热的状态下,用手锤敲打,这样可以减少焊缝的收缩和减少内应力。敲打时,焊修金属温度800℃时效果最好。若温度下降,敲打力也随之减小。温度过低,在300℃左右就不允许敲打了,以免发生裂纹。锻冶方法的道理与上述基本一致,不同的是要把焊件全部加热后再敲打。 2.预热和缓冷——热力法 此种方法就是焊修前将需焊的工件放在炉内,加热到一定的温度(100~600℃),在焊接过程中要防止加热后的工件急剧冷却。这样处理的目的是降低焊修部分温度和基体金属温度的差值,从而减少内应力。缓冷的方法是将焊接后的工件加热到600℃,放到退火炉中慢慢地冷却。3.“先破后立”法 铸铁件用普通碳素钢焊条焊接时,很容易产生裂纹,用铸铁焊条又不经济。现介绍一种“先破后立”用碳素钢焊条焊接的方法:先沿焊缝用小电流切割,注意只开槽而不切透,然后趁热焊接。由于切割时消除了裂纹周围局部应力,不会产生新裂纹,焊接效果很好。 在焊接过程中减少内应力有以上三种方法,现举例如下:铸铁泵壳裂缝的焊接。 (1)在裂缝的两端点钻止裂孔(φ10mm),以防焊接中裂缝进一步向外扩展。 (2)用手动磨光机在裂缝的位置开坡口,坡口顶宽8~9mm,略成V字形,深32mm(此泵泵壳壁厚为40mm),使得能够焊入电焊液。 (3)焊接为手工焊,采用φ3.2mm专用铸铁电焊条,使用直流电焊机,反接,电流为150A,实施间断焊,即每焊长15~20mm电焊缝,停等片

焊接变形的控制和预防

1、焊接变形的定义 在焊接过程中,焊缝金属和基材的冷热循环所引起的膨胀和收缩形成焊接变形。焊接时,沿 同一边持续焊接引起的变形比两边交叉焊接的变形大。在焊接引起的冷热循环中,很多因素 影响金属的收缩并导致变形,如金属在受热时其物理、机械性能发生变化。当热膨胀增加、 热量增大时(见图1),焊接区域温度升高,焊接区域钢板的弯曲强度、弹性、热导性能将降低。 2、产生焊接变形的原因 在金属冷热变化过程中,应了解怎样产生变形、为什么产生变形。图2 为一组钢板冷热变化 时产生的变形示例。均匀加热钢板时,向各个方向均匀膨胀,见图2a。当钢板冷却至室温时,也是均匀收缩并恢复至原始尺寸。如果钢板在加热时给予刚性约束(见图2b),两个侧边就不 会产生变形。但是,加热时钢板一定会膨胀,所以只能在无约束的垂直方向膨胀(厚度方向),从而使钢板变得更厚。同样,当钢板温度降至室温时,也将在各方向上收缩(见图2c),这样,工件就发生了永久性弯曲或扭曲变形。

在焊接受热过程中,膨胀和收缩作用于焊接金属和基材上,焊缝和基材因局部被加热而形成 很大的温度梯度。冷却时,焊接金属试图正常收缩至室温时的体积。但是,熔化的焊接金属 因基材而受到约束,焊缝金属和基材之间就会产生应力集中。焊缝附近区域因此产生应力集 中而伸展或弯曲或变薄,这些超过焊缝金属屈服应力的集中释放就形成了永久变形。当焊接 温度接近室温,整个基材受到约束而无 法变形,金属的伸缩应力接近屈服应力。如果约束(夹具固定工件或反收缩力)取消,残余应 力释放,基材将发生迁移,焊接工件将产生变形。金属内部结构因焊接不均匀的加热和冷却 产生的内应力叫焊接应力,由焊接应力造成的变形叫焊接变形。不同的焊接工艺引起的焊接 变形量不同。 3 影响焊接结构变形的主要因素和变形的种类 (1)影响焊接结构变形的主要因素。 a.焊缝在结构中的位置; b.结构刚性的大小; c.装配和焊接顺序; d.焊接规范的选择。 (2)焊接变形的种类。 a.纵向收缩和横向收缩(在焊缝长度方向上的收缩称纵向收缩,在垂直于焊缝纵向的收缩称 横向收缩); b.角变形; c.弯曲变形; d.波浪变形; e.扭曲变形。 (3)从焊接工艺上分析,影响焊接收缩量的因素。 a.采用焊条电弧焊焊接长焊缝时,一般采用焊前沿焊缝进行点固焊,有利于减小焊接变形,同时也有利于减小焊接内应力。 b.备料情况和装配质量对焊接变形也会产生影响。 c.焊接工艺中影响焊缝收缩量的因素有: ①线膨胀系数大的金属材料其焊接变形大,反之焊接变形小。 ②焊缝的纵向收缩量随着焊缝长度的增加而增加。 ③角焊缝的横向收缩比对接焊缝的横向收缩小。 ④间断焊缝比连续焊缝的收缩量小。 ⑤多层焊时,第一层引起的收缩量最大,以后各层逐渐减小。 ⑥在夹具固定条件下的焊接收缩量比没有夹具固定的焊接收缩量小,减少约40%~70%。

如何防止焊接变形

焊接变形的种类。 焊接过程中焊件产生的变形称为焊接变形。焊后,焊件残留的变形称为焊接残余变形。焊接残余变形有纵向收缩变形、横向收缩变形、角变形、弯曲变形、扭曲变形和波浪变形等共六种,见图1,其中焊缝的纵向收缩变形和横向收缩变形是基本的变形形式,在不同的焊件上,由于焊缝的数量和位置分布不同,这两种变形又可表现为其它几种不同形式的变形。 2 焊件在什么情况下会产生纵向收缩变形? 焊件焊后沿平行于焊缝长度方向上产生的收缩变形称为纵向收缩变形。当焊缝位于焊件的中性轴上或数条焊缝分布在相对中性轴的对称位置上,焊后焊件将产生纵向收缩变形,其焊缝位置见表1。

焊缝的纵向收缩变形量随焊缝的长度、焊缝熔敷金属截面积的增加而增加,随焊件截面积的增加而减少,其近似值见表2。 表2 焊缝纵向收缩变形量的近似值(mm/m) 对接焊缝连续角焊缝间断角焊缝 0.15~0.3 0.2~0.4 0~0.1 注:表中所表示的数据是在宽度大约为15倍板厚的焊缝区域中的纵向收缩变形量,适用于中等厚度的低碳钢板。 3 试述焊缝的横向收缩变形量及其计算。 焊件焊后在垂直于焊缝方向上发生的收缩变形称为横向收缩变形,横向收缩变形量随板厚的增加而增加。低碳钢对接接头、T形接头和搭接接头的横向收缩变形量,见表3、表4。

对接接头横向收缩变形量的近似计算公式,见表5。 表5 对接接头横向收缩变形量的近似计算公式坡口形式横向缩短量计算公式 Y形双Y形△L横=0.1δ①+0.6 △L横=0.1δ+0.4 ①δ——板厚(mm)。 当两板自由对接、焊缝不长、横向没有约束时,横向收缩变形量要比纵向的大得多。 4 焊件在什么情况下会产生弯曲变形? 如果焊件上的焊缝不位于焊件的中性轴上,并且相对于中性轴不对称(上下、左右),则焊后焊件将会产生弯曲变形。如果焊缝集中在中性轴下方(或下方焊缝较多)则焊件焊后将产生上拱弯曲变形;相反如果焊缝集中在中性轴上方(或上方焊缝较多),则焊件焊后将产生下凹弯曲变形。又如果焊件相对焊件中性轴左、右不对称,则焊后将产生旁弯,焊件产生弯曲变形的焊缝位置,见表6。

如何防止焊接变形

如何防止焊接变形 1、焊接变形的种类: 焊接过程中焊件产生的变形称为焊接变形。焊后,焊件残留的变形称为焊接残余变形。焊接残余变形有纵向收缩变形、横向收缩变形、角变形、弯曲变形、扭曲变形和波浪变形等共六种,见图1,其中焊缝的纵向收缩变形和横向收缩变形是基本的变形形式,在不同的焊件上,由于焊缝的数量和位置分布不同,这两种变形又可表现为其它几种不同形式的变形。 2、如何利用合理的装配焊接顺序来控制焊接残余变形? 不同的构件形式应采用不同的装配焊接方法。 1)结构截面对称、焊缝布置对称的焊接结构,采用先装配成整体,然后再按一定的焊接顺序进行生产,使结构在整体刚性较大的情况下焊接,能有效地减少弯曲变形。 例如,工字梁的装配焊接过程,可以有两种不同方案,见图4。若采用图4b所示的边装边焊顺序进行生产,焊后要产生较大的上拱弯曲变形;若采用图4c所示的整装后焊顺序,就可有效地减少弯曲变形的产生。

2)结构截面形状和焊缝不对称的焊接结构,可以分别装焊成部件,最后再组焊在一起见图5。图5b所示的方案由于焊缝1离中性轴距离较大,所以弯曲变形较大,而图5a所示的焊缝1 的位置几乎与上盖板截面中性轴重合,所以对整个结构的弯曲变形没有影响。 3、如何利用合理的焊接顺序来控制焊接残余变形? ⑴对称焊缝采用对称焊接当构件具有对称布置的焊缝时,可采用对称焊接减少变形。如 图4所示工字梁,当总体装配好后先焊焊缝1、2,然后焊接3、4,焊后就产生上拱的弯曲变形。 如果按1、4、2、3的顺序进行焊接,焊后弯曲变形就会减小。但对称焊接不能完全消除变形, 因为焊缝的增加,结构刚度逐渐增大,后焊的焊缝引起的变形比先焊的焊缝小,虽然两者方向 相反,但并不能完全抵消,最后仍将保留先焊焊缝的变形方向。 ⑵不对称焊缝先焊焊缝少的一侧因为先焊焊缝的变形大,故焊缝少的一侧先焊时,使它 产生较大的变形,然后再用另一侧多的焊缝引起的变形来加以抵消,就可以减少整个结构的变 形。

焊接的六大缺陷产生原因和预防措施大汇总

一、外观缺陷 外观缺陷(表面缺陷)是指不用借助于仪器,从工件表面可以发现的缺陷。常见的外观缺陷有咬边、焊瘤、凹陷及焊接变形等,有时还有表面气孔和表面裂纹。单面焊的根部未焊透等。 A、咬边 是指沿着焊趾,在母材部分形成的凹陷或沟槽, 它是由于电弧将焊缝边缘的母材熔化后没有得到熔敷金属的充分补充所留下的缺口。 产生咬边的主要原因:是电弧热量太高,即电流太大,运条速度太小所造成的。焊条与工件间角度不正确,摆动不合理,电弧过长,焊接次序不合理等都会造成咬边。直流焊时电弧的磁偏吹也是产生咬边的一个原因。某些焊接位置(立、横、仰)会加剧咬边。咬边减小了母材的有效截面积,降低结构的承载能力,同时还会造成应力集中,发展为裂纹源。 防止咬边的预防:矫正操作姿势,选用合理的规范,采用良好的运条方式都会有利于消除咬边。焊角焊缝时,用交流焊代替直流焊也能有效地防止咬边。 B、焊瘤 焊缝中的液态金属流到加热不足未熔化的母材上或从焊缝根部溢出,冷却后形成的未与母材熔合的金属瘤即为焊瘤。焊接规范过强、焊条熔化过快、焊条质量欠佳(如偏芯),焊接电源特性不稳定及操作姿势不当等都容易带来焊瘤。在横、立、仰位置更易形成焊瘤。 焊瘤常伴有未熔合、夹渣缺陷,易导致裂纹。同时,焊瘤改变了焊缝的实际尺寸,会带来应力集中。管子内部的焊瘤减小了它的内径,可能造成流动物堵塞。 防止焊瘤的措施:使焊缝处于平焊位置,正确选用规范,选用无偏芯焊条,合理操作。 C、凹坑 凹坑指焊缝表面或背面局部的低于母材的部分。 凹坑多是由于收弧时焊条(焊丝)未作短时间停留造成的(此时的凹坑称为弧坑),仰立、横焊时,常在焊缝背面根部产生内凹。凹坑减小了焊缝的有效截面积,弧坑常带有弧坑裂纹和弧坑缩孔。 防止凹坑的措施:选用有电流衰减系统的焊机,尽量选用平焊位置,选用合适的焊接规范,收弧时让焊条在熔池内短时间停留或环形摆动,填满弧坑。 D、未焊满 未焊满是指焊缝表面上连续的或断续的沟槽。填充金属不足是产生未焊满的根本原因。规范太弱,焊条过细,运条不当等会导致未焊满。 未焊满同样削弱了焊缝,容易产生应力集中,同时,由于规范太弱使冷却速度增大,容易带来气孔、裂纹等。 防止未焊满的措施:加大焊接电流,加焊盖面焊缝。 E、烧穿 烧穿是指焊接过程中,熔深超过工件厚度,熔化金属自焊缝背面流出,形成穿孔性缺。 焊接电流过大,速度太慢,电弧在焊缝处停留过久,都会产生烧穿缺陷。工件间隙太大,钝边太小也容易出现烧穿现象。 烧穿是锅炉压力容器产品上不允许存在的缺陷,它完全破坏了焊缝,使接头丧失其联接飞及承载能力。

焊接变形的产生和防止

焊接变形的产生和防止 手工电弧焊接过程中的变形成因及对策 在工业生产中,焊接作业特别是手工电弧焊作业作为制造、修理的一种重要的工艺方法得到越来越广泛的运用。同时,由于手工电弧焊自身的焊接特点必然引起其焊接变形较大,如不对其变形的原因进行分析并针对其成因提出有效的对策,必将给生产带来极大的危害。一、手工电弧焊接过程中的变形成因 我们知道,手工电弧焊接过程中的焊接电弧由在两个电极之间的气体介质中产生持久的放电现象所产生的。 电弧的产生是先将两电极相互接触而形成短路,由于接触电阻和短路电流产生电流热效应的结果,使两电极间的接触点达到白热状态,然后将两电极拉开,两电极间的空气间隙强烈地受热,空气热作用后形成电离化;与此同时,阴极上有高速度的电子飞出,撞击空气中的分子和原子,将其中的电子撞击出来,产生了离子和自由电子。在电场的作用下,阳离子向阴极碰撞;阴离子和自由电子向阳极碰撞。这样碰撞的结果,在两电极间产生了高热,并且放射强光。 电弧是由阴极区(位于阴极)、弧柱(其长度差不多等于电弧长度)和阳极区(位于阳极)三部分所组成。阴极区和阳极区的温度,主要取决于电极的材料。一般地,随电极材料而异,阴极区的温度大约为2400K—3500K,而阳极区大约为2600K—4200K,中间弧柱部分的温度最高,约为5000K—8000K。 焊接接头包括焊缝和热影响区两部分金属。焊缝金属是由熔池中的液态金属迅速冷却、凝固结晶而成,其中心点温度可达2500℃以上。靠近焊缝的基本金属在电弧的高温作用下,内部组织发生变化,这一区域称为热影响区。焊缝处的温度很高,而稍稍向外则温度迅速下降,热影响区主要由不完全熔化区、过热区、正火区、不完全正火区、再结晶区和蓝脆区等段组成,热影响区的宽度在8—30 mm范围内,其温度从底到高大约在500 ℃--1500℃之间。 金属结构内部由于焊接时不均匀的加热和冷却产生的内应力叫焊接应力。由于焊接应力造成的变形叫焊接变形。 在焊接过程中,不均匀的加热,使得焊缝及其附近的温度很高,而远处大部分金属不受热,其温度还是室内温度。这样,不受热的冷金属部分便阻碍了焊缝及近缝区金属的膨胀和收缩;因而,冷却后,焊缝就产生了不同程度的收缩和内应力(纵向和横向),就造成了焊接结构的各种变形。金属内部发生晶粒组织的转变所引起的体积变化也可能引起焊件的变形。这是产生焊接应力与变形的根本原因。 二、焊件的残余变形和应力的危害性 在焊接过程中焊件将发生变形,随着变形的产生,焊件内的应力状态也发生了变化,而焊完并冷却后所留下的变形和应力不是暂时的而是残余的。通常焊件的残余变形和应力是同时存在的,但在一般焊接结构中残余变形的危害性比残余应力大得多,它使焊件或部件的尺寸改变而无法组装,使整个构件丧失稳定而不能承受载荷,使产品质量大大下降,而校正却要消耗大量的精力和物力,有时导致产品报废。同时焊接裂缝的产生往往也和焊接残余变形和应

焊接中防止变形和减少内应力的方法

焊接中防止变形和减少内应力的方法 焊接 在机械修理中焊接是非常重要的一种方法,但是如果焊接不好就会产生变形和内应力,甚至焊后的零件无法使用而报废。 一、减少内应力的方法 1.锤打和锻冶——机械法 当焊修较长的裂缝和堆焊层,需要以一端连续焊到另一端时,在焊修进行中,趁着焊缝和堆焊层在炽热的状态下,用手锤敲打,这样可以减少焊缝的收缩和减少内应力。敲打时,焊修金属温度800℃时效果最好。若温度下降,敲打力也随之减小。温度过低,在300℃左右就不允许敲打了,以免发生裂纹。锻冶方法的道理与上述基本一致,不同的是要把焊件全部加热后再敲打。 2.预热和缓冷——热力法 此种方法就是焊修前将需焊的工件放在炉内,加热到一定的温度(100~600℃),在焊接过程中要防止加热后的工件急剧冷却。这样处理的目的是降低焊修部分温度和基体金属温度的差值,从而减少内应力。缓冷的方法是将焊接后的工件加热到600℃,放到退火炉中慢慢地冷却。 3.“先破后立”法 铸铁件用普通碳素钢焊条焊接时,很容易产生裂纹,用铸铁焊条又不经济。现介绍一种“先破后立”用碳素钢焊条焊接的方法:先沿焊缝用小电流切割,注意只开槽而不切透,然后趁热焊接。由于切割时消除了裂纹周围局部应力,不会产生新裂纹,焊接效果很好。 在焊接过程中减少内应力有以上三种方法,现举例如下:铸铁泵壳裂缝的焊接。 (1)在裂缝的两端点钻止裂孔(φ10mm),以防焊接中裂缝进一步向外扩展。 (2)用手动磨光机在裂缝的位置开坡口,坡口顶宽8~9mm,略成V字形,深32mm(此泵泵壳壁厚为40mm),使得能够焊入电焊液。 (3)焊接为手工焊,采用φ3.2mm专用铸铁电焊条,使用直流电焊机,反接,电流为150A,实施间断焊,即每焊长15~20mm电焊缝,停等片刻。在停焊间隙,当焊接熔液凝固后,由白热状态到红热状态时,用小尖锤捶击电焊缝,捶击用力要轻,速度要快,次数要多,使焊缝金属减薄向四周伸长,抵消一些焊缝收缩并减少焊接应力,这样能有效地提高焊缝金属的抗裂性(注意使用小锤头必须是半径为10mm左右的圆弧形的)。待焊接熔池冷却到暗红色消失后再接着焊。 (4)对于较长的裂缝,为避免开裂,必须分段焊补。分段的原则是先焊能自由伸缩的那段。如分三段,应首先焊中间的一段,当此段冷至暗红色消失时,立即施焊另一段,然后焊最后一段。 (5)施焊前,先对焊缝区进行预热,焊后保温,以降低冷却速度。预热、保温不仅能提高焊缝金属的抗裂性,而且还有益于降低熔合线附近区域的硬度。

防止焊接变形的方法

防止焊接变形的方法 通过以上的分析,我们基本了解焊接变形的原因及变形的种类,针对焊接变形的原因和种类从焊接工艺上进行改进,可以有效防止和减少焊接变形所带来的危害。下面,我们主要介绍几种常见的防止焊接变形的方法。 1. 反变形法 在焊前进行装配时,预置反方向的变形量为抵消(补偿)焊接变形,这种方法叫做反变形法。 为8—12mm厚的钢板V形坡口单面对接焊时,采用反变形法以后,基本消除了角变形。 2. 利用装配和焊接顺序来控制变形; 采用合理的装配和焊接程序来减少变形,这在生产实践中是行之有效的好办法,如图2(a)所示为一箱形梁,由于焊缝不对称,焊后产生下挠弯曲变形。解决办法是由两人或四人,对称地先焊只有两条焊缝的一侧,如图2(b)中焊缝1和1然后就造成了如图2 (c)的上拱变形。由于这两条焊缝焊后增加了箱形梁的刚性。当焊接另一侧的两条焊缝时,如先焊图2(d)中焊缝2和2,最后再焊图 2(e)中焊缝3和3,就基本上防止了变形。 有许多结构截面形状对称,焊缝布置也对称,但焊后却发生弯曲或扭曲的变形,这主要是装配和焊接顺序不合理引起的,也就是各条焊缝引起的变形,未能相互抵消,于是发生变形。 焊接顺序是影响焊接结构变形的主要因素之一,安排焊接顺序时应注意下列原则: 1)尽量采用对称焊接。对于具有对称焊缝的工作,最好由成对的焊工对称进行焊接。这样可以使由各焊缝所引起的变形相互抵消一部分。 2)对某些焊缝布置不对称的结构,应先焊焊缝少的一侧。 3)依据不同焊接顺序的特点,以焊接程序控制焊接变形量。常见的焊接顺序有五种,即: a.分段退焊法 这种方法适用于各种空间的位置的焊接,除立焊外,钢材较厚、焊缝较长时都可以设挡弧板,多人同时焊接。其优点是可以减小热影响区,避免变形。每段长应为0.5—1m。见图2(f) b.分中分段退焊法 这种方法适用于中板或较薄的钢板的焊接,它的优点是中间散热快,缩小焊缝两端的温度差。焊缝热影响区的温度不至于急剧增高,减少或避免热膨胀变形。这种方法特别适用于平焊和仰焊,横焊一般不采用,立焊根本不能用。见图2(g) c.跳焊法 这种方法除立焊外,平焊、横焊、仰焊三种方法都适用,多用在6—12mm厚钢板的长焊缝和铸铁、不锈钢、铜的焊接上,可以分散焊缝热量,避免或减小变形。钢材每段焊缝长度在200—400mm之间;铸铁焊件按铸铁焊接规范处理;不锈钢和铜由于导热快,每段长不宜超过200mm (薄板应短些)。 d.交替焊法 这种焊法和跳焊法基本相同,只是每段焊接距离拉长,特别适用于薄板和长焊缝。见图2(i) e.分中对称法

防止焊接变形的措施标准版本

文件编号:RHD-QB-K6602 (解决方案范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 防止焊接变形的措施标 准版本

防止焊接变形的措施标准版本 操作指导:该解决方案文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 1.设计合理的焊接结构 2.采取适当的工艺措施 其实设计合理的焊接结构,它包括了合理安排焊缝的位置,减少不必要的焊缝,合理选用焊缝形状和尺寸等。例如,采用焊缝对称布置。象咱们常用于肋板与腹板的脚焊缝的焊脚就不应该太高。一般对低碳钢有个最小焊脚尺寸推荐 板厚《6mm 最小焊脚3mm 板厚7---13mm 最小焊脚4mm 板厚19--30mm 最小焊脚6mm 板厚31--35mm 最小焊脚8mm

板厚51--100mm 最小焊脚10mm 减少焊接变形的工艺措施: (1).反变形法 (2).利用装配顺序和焊接顺序控制焊接变形 (3).热调整法 (4).对称实焊法 (5).刚性固定法 (6).锤击焊缝法 其实这些里也包含了各种措施,本人打字太慢,就不详细说了。 如果有人想了解焊接的一些、知识,我象大家推荐一本书吉林化学工业集团公司组织编写.孙景荣主编. 这个老焊接工程师经验丰富的很,我刚毕业的时候跟他共事了一年,学到了很多焊接的知识.他出过好

几本有关焊接方面的书.呵呵,我也算跟名人混过啊!! 钢板拼装可以采用从中间至两边分段退焊法进行 焊前要适当的做一些反变形,这是事前控制的办法! 反变形法: 在焊接进行装配时,预先将工件向焊接变形相反的方向进行人为的变形。例如,焊接8~~12mm的钢板,V型破口单面焊。将工件预先反向斜置,焊接后由于自身收缩,使工件恢复到平正的形状(我将附图说明) 对于较大刚性的构件,下料的时候,可将构件制成预定大小和方向的反变形,咱们制作的吊车梁,焊后就会出现下挠度问题,解决这个问题,一般采用,

焊接变形及解决方法

焊接变形及解决方法 车架多数采用复杂管、是车架支撑骨架,在整车中既要满足众多车体零件安装的要求,又要保证车辆行驶平稳,因此对车架的结构尺寸和形状精度要求较高。车架焊接后往往会出现变形,不但直接影响整车装配及整车性能,还可能降低车架结构的承载能力引发事故,因此制造中限制和消除焊接变形非常重要。控制车架的焊接变形主要从设计和工艺2个方面解决,现探讨如何控制车架焊接变形的措施。 影响车架变形的因素和焊接变形的种类 1、影响因素 影响车架焊接变形的因素有很多,主要有以下几点: a)焊接工艺方法:不同的焊接方法将产生不同的温度场,形成的热变形也不相同。一般来说自动焊比手工焊加热集中,受势区窄,变形较小;CO2气体保护焊焊丝细,电流密度大,加热集中,变形小,比手工焊更适合于车架焊接。 b)焊接参数(焊接电流、电弧电压、焊接速度):焊接变形随焊接电流和电弧电压增大而增大,随焊接速度增快而减小,其中电弧电压的作用明显。因此低电压、高速大电流密度的自动焊变形较小。 c)焊缝数量和断面大小:焊缝数量愈多,断面尺寸愈大,焊接变形愈大。 d)施焊方法:连续焊、断续焊的温度场不同,产生的热变形也不同。通常连续焊变形较大,断续焊变形较小。 e)材料的热物理性能:不同材料的导热系数、比热和膨胀系数等均不同,产生的热变形不同,焊接变形也不同。 f)焊接夹具的设计合理性:采用焊接夹具,增加了构件的刚性,从而影响到焊接变形。 g)构件焊接程序:焊接程序能引起构件在不同组合阶段刚性变化和质心位置改变,对控制构件焊接变形有很大影响。 2、车架焊接变形的种类 车架结构的焊接变形分为整体变形和局部变形,整体变形是焊接以后,整个构件的尺寸或形状发生变化,包括纵向和横向收缩,弯曲变形和扭曲变形等;局部变形是指焊接后构件的局部区域出现变形,包括角变形和波浪变形等。 设计措施 1、合理的焊缝尺寸和形式 焊缝尺寸直接关系到车架的焊接工作量和焊接变形大小,焊缝尺寸大,焊接工作量大,焊接变形也大。因此,在保证车架承载能力的情况下,应尽量减小焊缝尺寸,但并不是说焊缝尺寸越小越好,焊缝尺寸太小,

相关主题
文本预览
相关文档 最新文档